Skip to main content

Regulation and function of ammonium carriers in bacteria, fungi, and plants

  • Chapter
  • First Online:
Molecular Mechanisms Controlling Transmembrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 9))

Abstract

The ammonium transport (Amt) family of proteins comprises a unique and ubiquitous group of integral membrane proteins found in all domains of life. They are present in bacteria, archaea, fungi, plants, and animals, including humans where they are represented by the Rhesus proteins. The Amt proteins have a variety of functions. In bacteria and fungi, they act to scavenge ammonium and to recapture ammonium lost from cells by diffusion across the cell membrane. In fungi, they have also been proposed to act as ammonium sensors to control filamentous growth. In plants, they make a major contribution to nitrogen nutrition and in higher animals; they are involved in ammonium fluxes in kidney and liver. In this paper, we review current knowledge of the biology of Amt proteins in bacteria, fungi, and plants with particular attention to the different functions of the proteins and their modes of regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Arcondéguy T, Jack R, Merrick M (2001) PII signal transduction proteins: pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80-105

    Article  PubMed  Google Scholar 

  • 2. Avent ND, Liu W, Warner KM, Mawby WJ, Jones JW, Ridgwell K, Tanner MJ (1996) Immunochemical analysis of the human erythrocyte Rh polypeptides. J Biol Chem 271:14233-14239

    Article  PubMed  CAS  Google Scholar 

  • 3. Ayling SM (1993) The effect of ammonium-ions on membrane-potential and anion flux in roots of barley and tomato. Plant Cell Environ16:297-303

    Google Scholar 

  • 4. Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 66:981-991

    Article  PubMed  CAS  Google Scholar 

  • 5. Becker D, Stanke R, Fendrik I, Frommer WB, Vanderleyden J, Kaiser WM, Hedrich R (2002) Expression of the NH4+-transporter gene LeAMT1;2 is induced in tomato roots upon association with N2-fixing bacteria. Planta 215:424-429

    Article  PubMed  CAS  Google Scholar 

  • 6. Bihler H, Slayman CL, Bertl A (1998) NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett 432:59-64

    Article  PubMed  CAS  Google Scholar 

  • 7. Blakey D, Leech A, Thomas GH, Coutts G, Findlay K, Merrick M (2002) Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J 364:527-535

    Article  PubMed  CAS  Google Scholar 

  • 8. Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA 99:1730-1735

    Article  PubMed  CAS  Google Scholar 

  • 9. Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ (2001a) Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255-4258

    Article  PubMed  CAS  Google Scholar 

  • 10. Britto DT, Glass AD, Kronzucker HJ, Siddiqi MY (2001b) Cytosolic concentrations and transmembrane fluxes of NH4+/NH3. An evaluation of recent proposals. Plant Physiol 125:523-526

    Article  PubMed  CAS  Google Scholar 

  • 11. Cordts ML, Gibson J (1987) Ammonium and methylammonium transport in Rhodobacter sphaeroides. J Bacteriol 169:1632-1638

    PubMed  CAS  Google Scholar 

  • 12. Coutts G, Thomas G, Blakey D, Merrick M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:1-10

    Article  Google Scholar 

  • 13. Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324-328

    Article  PubMed  CAS  Google Scholar 

  • 14. Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347-353

    Article  PubMed  CAS  Google Scholar 

  • 15. Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379-387

    Article  PubMed  CAS  Google Scholar 

  • 16. Eyers SA, Ridgwell K, Mawby WJ, Tanner MJ (1994) Topology and organization of human Rh (rhesus) blood group-related polypeptides. J Biol Chem 269:6417-6423

    PubMed  CAS  Google Scholar 

  • 17. Fabiny JM, Jayakumar A, Chinault AC, Barnes EM (1991) Ammonium transport in Escherichia coli: localisation and nucleotide sequence of the amtA gene. J Gen Microbiol 137:983-989

    PubMed  CAS  Google Scholar 

  • 18. Gansel X, Munos S, Tillard P, Gojon A (2001) Differential regulation of the NO3- and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143-155

    Article  PubMed  CAS  Google Scholar 

  • 19. Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937-948

    Article  PubMed  CAS  Google Scholar 

  • 20. Gerendas J, Zhu ZJ, Bendixen R, Ratcliffe RG, Sattelmacher B (1997) Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeitschrift Pflanzenernaehr und Bodenk 160:239-251

    Article  CAS  Google Scholar 

  • 21. Hallenbeck PC, Yakunin AF, Drepper T, Gross S, Masepohl B, Klipp W (2002) Regulation of nitrogenase in the photosynthetic bacterium Rhodobacer capsulatus. In: Finan TM, O’brian MR, Layzell DB, Vessey JK, Newton WE (eds) Nitrogen Frixation: Global Perspectives. Proceedings of the 13th International Congress on Nitrogen Fixation. CABI Publishing, New York, pp 223-227

    Google Scholar 

  • 22. Hartel-Schenk S, Agre P (1992) Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex. J Biol Chem 267:5569-5574

    PubMed  CAS  Google Scholar 

  • 23. He L, Soupene E, Ninfa AJ, Kustu S (1998) Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 180:6661-6667

    PubMed  CAS  Google Scholar 

  • 24. Howitt S, Udvardi M (2000) Structure, function, and regulation of ammonium transporters in plants. Biochem Biophys Acta 1465:152-170

    Article  PubMed  CAS  Google Scholar 

  • 25. Jack R, de Zamaroczy M, Merrick M (1999) The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif expression in Klebsiella pneumoniae. J Bacteriol 181:1156-1162

    PubMed  CAS  Google Scholar 

  • 26. Javelle A, Rodriguez-Pastrana BR, Jacob C, Botton B, Brun A, Andre B, Marini AM, Chalot M (2001) Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 505:393-398

    Article  PubMed  CAS  Google Scholar 

  • 27. Javelle A, Andre B, Marini AM, Chalot M (2003a) High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol 11:53-55

    Article  PubMed  CAS  Google Scholar 

  • 28. Javelle A, Morel M, Rodriguez-Pastrana BR, Botton B, Andre B, Marini AM, Brun A, Chalot M (2003b) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47:411-430

    Article  PubMed  CAS  Google Scholar 

  • 29. Kaiser BN, Finnegan PM, Tyerman SD, Whitehead LF, Bergersen FJ, Day DA, Udvardi MK (1998) Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science 281:1202-1206

    Article  PubMed  CAS  Google Scholar 

  • 30. Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass AD (2002) Functional analysis of an Arabidopsis T-DNA ”knockout” of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiol 130:1263-1275

    Article  PubMed  CAS  Google Scholar 

  • 31. Klopprogge K, Grabbe R, Hoppert M, Schmitz RA (2002) Membrane association of Klebsiella pneumoniae NifL is affected by molecular oxygen and combined nitrogen. Arch Microbiol 177:223-234

    Article  PubMed  CAS  Google Scholar 

  • 32. Kosola KR, Bloom AJ (1994) Methylammonium as a transport analog for ammonium in tomato (Lycopersicon esculentum L.). Plant Physiol 105:435-442

    PubMed  CAS  Google Scholar 

  • 33. Kumar A, Silim SN, Okamoto M, Siddiqi MY, Glass AD (2003) Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ 26:907-914

    Article  PubMed  CAS  Google Scholar 

  • 34. Lauter FR, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci USA 93:8139-8144

    Article  PubMed  CAS  Google Scholar 

  • 35. Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wiren N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218-2232

    Article  PubMed  CAS  Google Scholar 

  • 36. Liu Z, Peng J, Mo R, Hui C-C, Huang C-H (2000) Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 276:1424-1433

    Article  Google Scholar 

  • 37. Lorenz MC, Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 16:7008-7018

    Article  PubMed  CAS  Google Scholar 

  • 38. Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17:1236-1247

    Article  PubMed  CAS  Google Scholar 

  • 39. Ludewig U, von Wiren N, Rentsch D, Frommer WB (2001) Rhesus factors and ammonium: a function in efflux? Genome Biol 2:1-5

    Article  Google Scholar 

  • 40. Ludewig U, von Wirén N, Frommer WB (2002) Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 277:13548-13555

    Article  PubMed  CAS  Google Scholar 

  • 41. Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El Bakkoury M, Marini AM, Andre B, Hamacher T, Boles E, von Wiren N, Frommer WB (2003) Homo- and hetero-oligomerization of AMT1 NH4+-uniporters. J Biol Chem. 278:45603-45610

    Google Scholar 

  • 42. Marini A-M, Vissers S, Urrestarazu A, Andre B (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13:3456-3463

    PubMed  CAS  Google Scholar 

  • 43. Marini A-M, Soussi-Boudekou S, Vissers S, Andre B (1997a) A family of ammonium transporters in Saccharomyces cerevisae. Mol Cell Biol 17:4282-4293

    PubMed  CAS  Google Scholar 

  • 44. Marini A-M, Urrestarazu A, Beauwens R, Andre B (1997b) The Rh (Rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem Sci 22:460-461

    Article  PubMed  CAS  Google Scholar 

  • 45. Marini A-M, Andre B (2000) In vivo N-glycosylation of the Mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol 38:552-564

    Article  PubMed  CAS  Google Scholar 

  • 46. Marini A-M, Matassi G, Raynal V, Andre B, Cartron JP, Cherif-Zahar B (2000a) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26:341-344

    Article  PubMed  CAS  Google Scholar 

  • 47. Marini A-M, Springael JY, Frommer WB, Andre B (2000b) Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol Microbiol 35:378-385

    Article  PubMed  CAS  Google Scholar 

  • 48. Marschner H (1995) Mineral nutrition in higher plants. Academic Press, London, UK

    Google Scholar 

  • 49. Martin DE, Reinhold-Hurek B (2002) Distinct roles of PII-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72. J Bacteriol 184:2251-2259

    Article  PubMed  CAS  Google Scholar 

  • 50. Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant Cell Environ. 24:1119-1137

    Google Scholar 

  • 51. Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiol 147:135-143

    CAS  Google Scholar 

  • 52. Monahan BJ, Fraser JA, Hynes MJ, Davis MA (2002a) Isolation and characterization of two ammonium permease genes, meaA and mepA, from Aspergillus nidulans. Eukaryot Cell 1:85-94

    Article  PubMed  CAS  Google Scholar 

  • 53. Monahan BJ, Unkles SE, Tsing IT, Kinghorn JR, Hynes MJ, Davis MA (2002b) Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Fungal Genet Biol 36:35-46

    Article  PubMed  CAS  Google Scholar 

  • 54. Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S (2002) A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 36:22-34

    Article  PubMed  CAS  Google Scholar 

  • 55. Moroni A, Bardella L, Thiel G (1998) The impermeant ion methylammonium blocks K+ and NH4+ currents through KAT1 channel differently: evidence for ion interaction in channel permeation. J Membr Biol 163:25-35

    Article  PubMed  CAS  Google Scholar 

  • 56. Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Transport of NH3/NH in oocytes expressing aquaporin-1. Am J Physiol Renal Physiol 281:F255-F263

    PubMed  CAS  Google Scholar 

  • 57. Neuwald AF, Krishnan BR, Brikun I, Kulakauskas S, Suziedelis K, Tomcsanyi T, Leyh TS, Berg DE (1992) cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol 174:415-425

    PubMed  CAS  Google Scholar 

  • 58. Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110-114

    Article  PubMed  CAS  Google Scholar 

  • 59. Ninnemann O, Jauniaux J-C, Frommer WB (1994) Identification of a high affinity NH4+ transporter from plants. EMBO J 13:3464-3471

    PubMed  CAS  Google Scholar 

  • 60. Palková Z, Janderová B, Gabriel J, Zikanová B, Pospisek M, Forstová J (1997) Ammonia mediates communication between yeast colonies. Nature 390:532-536

    Article  PubMed  Google Scholar 

  • 61. Palková Z, Devaux F, Ricicová M, Mináriková L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13:3901-3914

    Article  PubMed  Google Scholar 

  • 62. Plant PJ, Manolson MF, Grinstein S, Demaurex N (1999) Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem 274:37270-37279

    Article  PubMed  CAS  Google Scholar 

  • 63. Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass AD (1999) AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J 19:143-152

    Article  PubMed  CAS  Google Scholar 

  • 64. Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256-16261

    Article  PubMed  CAS  Google Scholar 

  • 65. Roberts DM, Tyerman SD (2002) Voltage-dependent cation channels permeable to NH4+, K+, and Ca2+ in the symbiosome membrane of the model legume Lotus japonicus. Plant Physiol 128:370-378

    Article  PubMed  CAS  Google Scholar 

  • 66. Saier MH Jr, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nussinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng T-T, Wachi S, Young GB (1999) Phylogenetic characterisation of novel transport protein families revealed by genome analysis. Biochem Biophys Acta 1422:1-56

    PubMed  CAS  Google Scholar 

  • 67. Salvemini F, Marini A, Riccio A, Patriarca EJ, Chiurazzi M (2001) Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene 270:237-243

    Article  PubMed  CAS  Google Scholar 

  • 68. Shelden MC, Dong B, de Bruxelles GL, Trevaskis B, Whelan J, Ryan PR, Howitt SM, Udvardi MK (2001) Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil 231:151-160

    Article  CAS  Google Scholar 

  • 69. Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterisation of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398-5403

    Article  PubMed  CAS  Google Scholar 

  • 70. Simon-Rosin U, Wood C, Udvardi MK (2003) Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus. Plant Mol Biol 51:99-108

    Article  PubMed  CAS  Google Scholar 

  • 71. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • 72. Sohlenkamp C, Shelden M, Howitt S, Udvardi M (2000) Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett 467:273-278

    Article  PubMed  CAS  Google Scholar 

  • 73. Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol 130:1788-1796

    Article  PubMed  CAS  Google Scholar 

  • 74. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44:726-734

    Article  PubMed  CAS  Google Scholar 

  • 75. Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030-7034

    Article  PubMed  CAS  Google Scholar 

  • 76. Soupene E, Ramirez RM, Kustu S (2001) Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH3 across the cytoplasmic membrane. Mol Cell Biol 21:5733-5741

    Article  PubMed  CAS  Google Scholar 

  • 77. Soupene E, Lee H, Kustu S (2002a) Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci USA 99:3926-3931

    Article  PubMed  CAS  Google Scholar 

  • 78. Soupene E, Chu T, Corbin RW, Hunt DF, Kustu S (2002b) Gas channels for NH3: proteins from hyperthermophiles complement an Escherichia coli mutant. J Bacteriol 184:3396-3400

    Article  PubMed  CAS  Google Scholar 

  • 79. Streeter JG (1989) Estimation of ammonium concentration in the cytosol of soybean nodules. Plant Physiol 90:779-782

    Article  PubMed  CAS  Google Scholar 

  • 80. Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wiren N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206-211

    Article  PubMed  CAS  Google Scholar 

  • 81. Thomas G, Coutts G, Merrick M (2000a) The glnKamtB operon: a conserved gene pair in prokaryotes. Trends Genet 16:11-14

    Article  PubMed  CAS  Google Scholar 

  • 82. Thomas GH, Mullins JG, Merrick M (2000b) Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol 37:331-344

    Article  PubMed  CAS  Google Scholar 

  • 83. Tyerman SD, Whitehead LF, Day DA (1995) A channel-like transporter for NH4+ on the symbiotic interface of N2-fixing plants. Nature 378:629-632

    Article  CAS  Google Scholar 

  • 84. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173-194

    Article  PubMed  CAS  Google Scholar 

  • 85. Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky A (1984) Ammonium uptake in Lemna gibba G-1, related membrane-potential changes, and inhibition of anion uptake. Physiol. Plant. 61:369-376

    Google Scholar 

  • 86. Uozumi N, Gassmann W, Cao Y, Schroeder JI (1995) Identification of strong modifications in cation selectivity in an Arabidopsis inward rectifying potassium channel by mutant selection in yeast. J Biol Chem 270:24276-24281

    Article  PubMed  CAS  Google Scholar 

  • 87. van Dommelen A, de Mot R, Vanderleyden J (2001) Ammonium transport: unifying concepts and unique aspects. Aust J Pl Physiol 28:959-967

    Google Scholar 

  • 88. Veenhoff LM, Heuberger EH, Poolman B (2002) Quaternary structure and function of transport proteins. Trends Biochem Sci 27:242-249

    Article  PubMed  CAS  Google Scholar 

  • 89. Vermeiren H, Keijers V, Vanderleyden J (2002) Isolation and sequence analysis of the glnKamtB1amtB2 gene cluster, encoding a PII homologue and two putative ammonium transporters, from Pseudomonas stutzeri A15. DNA Seq 13:67-74

    Article  PubMed  CAS  Google Scholar 

  • 90. von Wirén N, Lauter FR, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer WB (2000) Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J 21:167-175

    Article  Google Scholar 

  • 91. Wang MY, Siddiqi MY, Ruth TJ, Glass A (1993) Ammonium uptake by rice roots (II. Kinetics of 13NH4+ influx across the plasmalemma). Plant Physiol 103:1259-1267

    Article  PubMed  CAS  Google Scholar 

  • 92. Wang RC, Guegler K, Labrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491-1509

    Article  PubMed  CAS  Google Scholar 

  • 93. Ward JM (1997) Patch-clamping and other molecular approaches for the study of plasma membrane transporters demystified. Plant Physiol 114:1151-1159

    Article  PubMed  CAS  Google Scholar 

  • 94. Westhoff CM, Ferreri-Jacobia M, Mak DO, Foskett JK (2002) Identification of the erythrocyte Rh-blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem 277:12499-12502

    Article  PubMed  CAS  Google Scholar 

  • 95. Xu Y, Cheah E, Carr PD, van Heeswijk WC, Westerhoff HV, Vasudevan SG, Ollis DL (1998) GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. J Mol Biol 282:149-165

    Article  PubMed  CAS  Google Scholar 

  • 96. Yakunin AF, Hallenbeck PC (2002) AmtB is necessary for NH4+-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 184:4081-4088

    Article  PubMed  CAS  Google Scholar 

  • 97. Zikánová B, Kuthan M, Ricicová M, Forstová J, Palková Z (2002) Amino acids control ammonia pulses in yeast colonies. Biochem Biophys Res Commun 294:962-967

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Wirén, N.v., Merrick, M. (2004). Regulation and function of ammonium carriers in bacteria, fungi, and plants. In: Molecular Mechanisms Controlling Transmembrane Transport. Topics in Current Genetics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95775

Download citation

  • DOI: https://doi.org/10.1007/b95775

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21837-1

  • Online ISBN: 978-3-540-40912-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics