Skip to main content

Advertisement

Log in

Metabolic Regulation of Tendon Inflammation and Healing Following Injury

  • Osteoarthritis (M Goldring and T Griffin, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function, tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis.

Recent Findings

Recent advances in the field include a substantial improvement in our understanding of tendon cell biology, including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better understood.

Summary

A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to enhance or maintain tendon function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Floridi A, Ippolito E, Postacchini F. Age-related changes in the metabolism of tendon cells. Connect Tissue Res. 1981;9(2):95–7.

    Article  CAS  PubMed  Google Scholar 

  2. Birch HL, Rutter GA, Goodship AE. Oxidative energy metabolism in equine tendon cells. Res Vet Sci. 1997;62(2):93–7.

    Article  CAS  PubMed  Google Scholar 

  3. Nichols AEC, Settlage RE, Werre SR, Dahlgren LA. Novel roles for scleraxis in regulating adult tenocyte function. BMC Cell Biol. 2018;19(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Izumi S, Otsuru S, Adachi N, Akabudike N, Enomoto-Iwamoto M. Control of glucose metabolism is important in tenogenic differentiation of progenitors derived from human injured tendons. PLoS One. 2019;14(3):e0213912 This study examines how metabolic flux through glycolysis and the TCA cycle differently influence differentiation potential of cells derived from human injured tendons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang K, Asai S, Yu B, Enomoto-Iwamoto M. IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochem Biophys Res Commun. 2015;463(4):667–72 This study demonstrated that pro-inflammatory cytokine IL-1β enhanced lactate production, directly affecting expression of tendon marker Scx and matrix gene Col1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sikes KJ, Li J, Gao SG, Shen Q, Sandy JD, Plaas A, et al. TGF-b1 or hypoxia enhance glucose metabolism and lactate production via HIF1A signaling in tendon cells. Connect Tissue Res. 2018;59(5):458–71 This study used a TGF-β1-induced murine Achilles tendinopathy model to demonstrate that glycolytic reprogramming may play a role in the development of pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee WY, Lui PP, Rui YF. Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro. Tissue Eng Part A. 2012;18(5–6):484–98.

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Xu Y, Gan Y, Song L, Zhang C, Wang L, et al. Role of the ERK1/2 signaling pathway in osteogenesis of rat tendon-derived stem cells in normoxic and hypoxic cultures. Int J Med Sci. 2016;13(8):629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu Y, Lin L, Zhou Y, Lu X, Shao X, Lin C, et al. Effect of hypoxia on self-renewal capacity and differentiation in human tendon-derived stem cells. Med Sci Monit : international medical journal of experimental and clinical research. 2017;23:1334–9.

    Article  CAS  Google Scholar 

  10. Zhang J, Wang JH. Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS One. 2013;8(4):e61424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Wang B, Zhang WJ, Zhou G, Cao Y, Liu W. Enhanced proliferation capacity of porcine tenocytes in low O2 tension culture. Biotechnol Lett. 2010;32(2):181–7.

    Article  PubMed  Google Scholar 

  12. Lavagnino M, Oslapas AN, Gardner KL, Arnoczky SP. Hypoxia inhibits primary cilia formation and reduces cell-mediated contraction in stress-deprived rat tail tendon fascicles. Muscles Ligaments Tendons J. 2016;6(2):193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scott A, Khan KM, Duronio V. IGF-I activates PKB and prevents anoxic apoptosis in Achilles tendon cells. J Orthop Res. 2005;23(5):1219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liang M, Cornell HR, Zargar Baboldashti N, Thompson MS, Carr AJ, Hulley PA. Regulation of hypoxia-induced cell death in human tenocytes. Adv Orthop. 2012;2012:984950.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou Z, Akinbiyi T, Xu L, Ramcharan M, Leong DJ, Ros SJ, et al. Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell. 2010;9(5):911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsai WC, Chang HN, Yu TY, Chien CH, Fu LF, Liang FC, et al. Decreased proliferation of aging tenocytes is associated with down-regulation of cellular senescence-inhibited gene and up-regulation of p27. J Orthop Res. 2011;29(10):1598–603.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang D, Jiang Z, Zhang Y, Wang S, Yang S, Xu B, et al. Effect of young extrinsic environment stimulated by hypoxia on the function of aged tendon stem cell. Cell Biochem Biophys. 2014;70(2):967–73.

    Article  CAS  PubMed  Google Scholar 

  18. McBeath R, Edwards RW, O'Hara BJ, Maltenfort MG, Parks SM, Steplewski A, et al. Tendinosis develops from age- and oxygen tension-dependent modulation of Rac1 activity. Aging Cell. 2019;18(3):e12934.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thankam FG, Agrawal DK. Hypoxia-driven secretion of extracellular matrix proteins in the exosomes reflects the asymptomatic pathology of rotator cuff tendinopathies. Can J Physiol Pharmacol. 2020.

  20. Thankam FG, Chandra I, Diaz C, Dilisio MF, Fleegel J, Gross RM, et al. Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocytes and adipose-derived mesenchymal stem cells. Mol Cell Biochem. 2020;465(1–2):75–87.

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Ge HA, Wu GB, Cheng B, Lu Y, Jiang C. Autophagy prevents oxidative stress-induced loss of self-renewal capacity and stemness in human tendon stem cells by reducing ROS accumulation. Cell Physiol Biochem. 2016;39(6):2227–38 This study demonstrated that human tendon-derived cells treated with oxidative stressor H2O2 resulted in reactive oxygen species accumulation and impaired self-renewal capacity and stemness, and also provided evidence that autophagy reverses these phenotypes.

    Article  CAS  PubMed  Google Scholar 

  22. Lee YW, Fu SC, Yeung MY, Lau CML, Chan KM, Hung LK. Effects of redox modulation on cell proliferation, viability, and migration in cultured rat and human tendon progenitor cells. Oxidative Med Cell Longev. 2017;2017:8785042.

    Article  Google Scholar 

  23. Liu YC, Wang HL, Huang YZ, Weng YH, Chen RS, Tsai WC, et al. Alda-1, an activator of ALDH2, ameliorates Achilles tendinopathy in cellular and mouse models. Biochem Pharmacol. 2020;175:113919.

    Article  CAS  PubMed  Google Scholar 

  24. di Giacomo V, Berardocco M, Gallorini M, Oliva F, Colosimo A, Cataldi A, et al. Combined supplementation of ascorbic acid and thyroid hormone T(3) affects tenocyte proliferation. The effect of ascorbic acid in the production of nitric oxide. Muscles Ligaments Tendons J. 2017;7(1):11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maman E, Somjen D, Maman E, Katzburg S, Sharfman ZT, Stern N, et al. The response of cells derived from the supraspinatus tendon to estrogen and calciotropic hormone stimulations: in vitro study. Connect Tissue Res. 2016;57(2):124–30.

    Article  CAS  PubMed  Google Scholar 

  26. Min K, Lee JM, Kim MJ, Jung SY, Kim KS, Lee S, et al. Restoration of cellular proliferation and characteristics of human tenocytes by vitamin D. J Orthop Res. 2019;37(10):2241–8.

    Article  CAS  PubMed  Google Scholar 

  27. Webb S, Gabrelow C, Pierce J, Gibb E, Elliott J. Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitrox. Stem Cell Res Ther. 2016;7:45.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, et al. Evaluation of apocynin in vitro on high glucose-induced oxidative stress on tenocytes. Bone Joint Res. 2020;9(1):23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsai WC, Liang FC, Cheng JW, Lin LP, Chang SC, Chen HH, et al. High glucose concentration up-regulates the expression of matrix metalloproteinase-9 and -13 in tendon cells. BMC Musculoskelet Disord. 2013;14:255.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu YF, Wang HK, Chang HW, Sun J, Sun JS, Chao YH. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Sci Rep. 2017;7:44199 This study revealed that rat Achilles tendon cells exposed to high glucose levels had reduced expression of key tendon-related genes, which may be mediated through an AMPK/Egr1 mechanism.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin YC, Li YJ, Rui YF, Dai GC, Shi L, Xu HL, et al. The effects of high glucose on tendon-derived stem cells: implications of the pathogenesis of diabetic tendon disorders. Oncotarget. 2017;8(11):17518–28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res. 2018;7(5):362–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwan CK, Fu SC, Yung PS. A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells - a possible factor contributing to tendinopathy in diabetic patients. Asia-Pacif J Sports Med Arthrosc Rehabil Techno. 2020;19:1–6.

    Google Scholar 

  34. Patel SH, Yue F, Saw SK, Foguth R, Cannon JR, Shannahan JH, et al. Advanced glycation end-products suppress mitochondrial function and proliferative capacity of Achilles tendon-derived fibroblasts. Sci Rep. 2019;9(1):12614 This study demonstrated that advanced glycation end-products significantly impaired rat Achilles tendon cell energy production and proliferative capacity.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi L, Li YJ, Dai GC, Lin YC, Li G, Wang C, et al. Impaired function of tendon-derived stem cells in experimental diabetes mellitus rat tendons: implications for cellular mechanism of diabetic tendon disorder. Stem Cell Res Ther. 2019;10(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li K, Deng Y, Deng G, Chen P, Wang Y, Wu H, et al. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Res Ther. 2020;11(1):131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li K, Deng G, Deng Y, Chen S, Wu H, Cheng C, et al. High cholesterol inhibits tendon-related gene expressions in tendon-derived stem cells through reactive oxygen species-activated nuclear factor-κB signaling. J Cell Physiol. 2019;234(10):18017–28.

    Article  CAS  PubMed  Google Scholar 

  38. Bian X, Liu T, Zhou M, He G, Ma Y, Shi Y, et al. Absence of estrogen receptor beta leads to abnormal adipogenesis during early tendon healing by an up-regulation of PPARγ signalling. J Cell Mol Med. 2019;23(11):7406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hudgens JL, Sugg KB, Grekin JA, Gumucio JP, Bedi A, Mendias CL. Platelet-rich plasma activates proinflammatory signaling pathways and induces oxidative stress in tendon fibroblasts. Am J Sports Med. 2016;44(8):1931–40.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abate M, Salini V. Mid-portion Achilles tendinopathy in runners with metabolic disorders. Eur J Orthop Surg Traumatol : orthopedie traumatologie. 2019;29(3):697–703.

    Article  PubMed  Google Scholar 

  41. Dakin SG, Martinez FO, Yapp C, Wells G, Oppermann U, Dean BJ, et al. Inflammation activation and resolution in human tendon disease. Sci Transl Med. 2015;7(311):311ra173 A thorough characterization of the inflammatory signature for different stages of tendinopathy using human supraspinatus tendon.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tran PHT, Malmgaard-Clausen NM, Puggaard RS, Svensson RB, Nybing JD, Hansen P, et al. Early development of tendinopathy in humans: sequence of pathological changes in structure and tissue turnover signaling. FASEB J. 2020;34(1):776–88.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Deng XH, Lebaschi AH, Wada S, Carballo CB, Croen B, et al. Expression of alarmins in a murine rotator cuff tendinopathy model. J Orthop Res. 2020;38(11):2513–20.

    Article  CAS  PubMed  Google Scholar 

  44. Spiesz EM, Thorpe CT, Chaudhry S, Riley GP, Birch HL, Clegg PD, et al. Tendon extracellular matrix damage, degradation and inflammation in response to in vitro overload exercise. J Orthop Res. 2015;33(6):889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akbar M, Gilchrist DS, Kitson SM, Nelis B, Crowe LAN, Garcia-Melchor E, et al. Targeting danger molecules in tendinopathy: the HMGB1/TLR4 axis. RMD Open. 2017;3(2):e000456 Human tendon-derived cells were used to show that blocking HMGB1 signaling via silencing TLR4 reversed inflammatory and matrix changes observed in tendinopathies.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Crowe LAN, McLean M, Kitson SM, Melchor EG, Patommel K, Cao HM, et al. S100A8 & S100A9: Alarmin mediated inflammation in tendinopathy. Sci Rep. 2019;9(1):1463.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wunderli SL, Blache U, Beretta Piccoli A, Niederöst B, Holenstein CN, Passini FS, et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol : journal of the International Society for Matrix Biology. 2020;89:11–26 This study used a tendon explant model to look at hypervascularity-driven changes involved in tendinopathy progression.

    Article  CAS  Google Scholar 

  48. Jomaa G, Kwan CK, Fu SC, Ling SK, Chan KM, Yung PS, et al. A systematic review of inflammatory cells and markers in human tendinopathy. BMC Musculoskelet Disord. 2020;21(1):78.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dakin SG, Newton J, Martinez FO, Hedley R, Gwilym S, Jones N, et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br J Sports Med. 2018;52(6):359–67.

    Article  PubMed  Google Scholar 

  50. Wang Y, He G, Tang H, Shi Y, Zhu M, Kang X, et al. Aspirin promotes tenogenic differentiation of tendon stem cells and facilitates tendinopathy healing through regulating the GDF7/Smad1/5 signaling pathway. J Cell Physiol. 2020;235(5):4778–89.

    Article  CAS  PubMed  Google Scholar 

  51. Heinemeier KM, Øhlenschlæger TF, Mikkelsen UR, Sønder F, Schjerling P, Svensson RB, et al. Effects of anti-inflammatory (NSAID) treatment on human tendinopathic tissue. J Appl Physiol (1985). 2017;123(5):1397–405.

    Article  Google Scholar 

  52. Bittermann A, Gao S, Rezvani S, Li J, Sikes KJ, Sandy J, et al. Oral ibuprofen interferes with cellular healing responses in a murine model of Achilles tendinopathy. J Musculoskelet Disord Treat. 2018;4(2):049.

    PubMed  PubMed Central  Google Scholar 

  53. Dakin SG, Colas RA, Newton J, Gwilym S, Jones N, Reid HAB, et al. 15-Epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture. FASEB J. 2019;33(7):8043–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaeley GS, Eder L, Aydin SZ, Gutierrez M, Bakewell C. Enthesitis: a hallmark of psoriatic arthritis. Semin Arthritis Rheum. 2018;48(1):35–43.

    Article  PubMed  Google Scholar 

  55. McGonagle D, Lories RJ, Tan AL, Benjamin M. The concept of a "synovio-entheseal complex" and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 2007;56(8):2482–91.

    Article  PubMed  Google Scholar 

  56. Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, Armaka M, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73(2):437–45.

    Article  PubMed  Google Scholar 

  57. Kehl AS, Corr M, Weisman MH. Review: Enthesitis: New Insights Into Pathogenesis, Diagnostic Modalities, and Treatment. Arthritis Rheum. 2016;68(2):312–22 This review focuses on how enthesitis is central to spondyloarthritis and discusses causes of enthesitis: genetic susceptibility, microbial factors, proinflammatory cytokines, etc.

    Article  Google Scholar 

  58. Junot HSN, Hertz A, Vasconcelos G, da Silveira D, Nelson P, Almeida SF. Epidemiology of trigger finger: metabolic syndrome as a new perspective of associated disease. Hand (N Y). 2019:1558944719867135.

  59. Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC, et al. Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol. 2018;9:112.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Partridge L, Rajbhandari S. Achilles Tendon in Diabetes. Curr Diabetes Rev. 2017;13(4):424–7.

    Article  PubMed  Google Scholar 

  61. Studentsova V, Mora KM, Glasner MF, Buckley MR, Loiselle AE. Obesity/type II diabetes promotes function-limiting changes in murine tendons that are not reversed by restoring normal metabolic function. Sci Rep. 2018;8(1):9218 Loss of normal tendon homeostasis occurs caused by obesity-induced type II diabetes is shown to be irreversible.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ursini F, Arturi F, D'Angelo S, Amara L, Nicolosi K, Russo E, et al. High prevalence of Achilles tendon enthesopathic changes in patients with type 2 diabetes without peripheral neuropathy. J Am Podiatr Med Assoc. 2017;107(2):99–105.

    Article  PubMed  Google Scholar 

  63. Lee JM, Veres SP. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon. J Appl Physiol (1985). 2019;126(4):832–41.

    Article  CAS  PubMed Central  Google Scholar 

  64. Soslowsky LJ, Fryhofer GW. Tendon homeostasis in hypercholesterolemia. Adv Exp Med Biol. 2016;920:151–65.

    Article  CAS  PubMed  Google Scholar 

  65. Taylor B, Cheema A, Soslowsky L. Tendon pathology in hypercholesterolemia and familial hypercholesterolemia. Curr Rheumatol Rep. 2017;19(12):76.

    Article  PubMed  Google Scholar 

  66. Mall NA, Tanaka MJ, Choi LS, Paletta GA Jr. Factors affecting rotator cuff healing. J Bone Joint Surg Am. 2014;96(9):778–88.

    Article  PubMed  Google Scholar 

  67. Cho NS, Moon SC, Jeon JW, Rhee YG. The influence of diabetes mellitus on clinical and structural outcomes after arthroscopic rotator cuff repair. Am J Sports Med. 2015;43(4):991–7.

    Article  PubMed  Google Scholar 

  68. Clement ND, Hallett A, MacDonald D, Howie C, McBirnie J. Does diabetes affect outcome after arthroscopic repair of the rotator cuff? J Bone Joint Surg (Br). 2010;92(8):1112–7.

    Article  CAS  Google Scholar 

  69. Ahmed AS, Schizas N, Li J, Ahmed M, Ostenson CG, Salo P, et al. Type 2 diabetes impairs tendon repair after injury in a rat model. J Appl Physiol (1985). 2012;113(11):1784–91.

    Article  CAS  Google Scholar 

  70. David MA, Jones KH, Inzana JA, Zuscik MJ, Awad HA, Mooney RA. Tendon repair is compromised in a high fat diet-induced mouse model of obesity and type 2 diabetes. PLoS One. 2014;9(3):e91234.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ackerman JE, Geary MB, Orner CA, Bawany F, Loiselle AE. Obesity/type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response. PLoS One. 2017;12(7):e0181127.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ahmed AS, Li J, Abdul AM, Ahmed M, Östenson CG, Salo PT, et al. Compromised neurotrophic and angiogenic regenerative capability during tendon healing in a rat model of type-II diabetes. PLoS One. 2017;12(1):e0170748.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chbinou N, Frenette J. Insulin-dependent diabetes impairs the inflammatory response and delays angiogenesis following Achilles tendon injury. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R952–7.

    Article  CAS  PubMed  Google Scholar 

  74. Egemen O, Ozkaya O, Ozturk MB, Sen E, Akan M, Sakiz D, et al. The biomechanical and histological effects of diabetes on tendon healing: experimental study in rats. J Hand Microsurg. 2012;4(2):60–4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mohsenifar Z, Feridoni MJ, Bayat M, Masteri Farahani R, Bayat S, Khoshvaghti A. Histological and biomechanical analysis of the effects of streptozotocin-induced type one diabetes mellitus on healing of tenotomised Achilles tendons in rats. Foot Ankle Surg. 2014;20(3):186–91.

    Article  PubMed  Google Scholar 

  76. Korntner S, Kunkel N, Lehner C, Gehwolf R, Wagner A, Augat P, et al. A high-glucose diet affects Achilles tendon healing in rats. Sci Rep. 2017;7(1):780.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Greve K, Domeij-Arverud E, Labruto F, Edman G, Bring D, Nilsson G, et al. Metabolic activity in early tendon repair can be enhanced by intermittent pneumatic compression. Scand J Med Sci Sports. 2012;22(4):e55–63.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang K, Hast MW, Izumi S, Usami Y, Shetye S, Akabudike N, et al. Modulating glucose metabolism and lactate synthesis in injured mouse tendons: treatment with dichloroacetate, a lactate synthesis inhibitor, improves tendon healing. Am J Sports Med. 2018;46(9):2222–31 This study examined metabolic flux during mouse Achilles tendon healing and specifically examined the function of lactate synthesis during tendon healing.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Valkering KP, Aufwerber S, Ranuccio F, Lunini E, Edman G, Ackermann PW. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial. Knee Surg Sports Traumatol Arthroscopy : official journal of the ESSKA. 2017;25(6):1807–16.

    Article  Google Scholar 

  80. Eliasson P, Couppé C, Lonsdale M, Svensson RB, Neergaard C, Kjær M, et al. Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair. Eur J Nucl Med Mol Imaging. 2016;43(10):1868–77 This study demonstrated that glucose uptake remains elevated in healing human tendon for at least 12 months and revealed that glucose uptake was related to poor clinical outcomes.

    Article  CAS  PubMed  Google Scholar 

  81. Svedman S, Westin O, Aufwerber S, Edman G, Nilsson-Helander K, Carmont MR, et al. Longer duration of operative time enhances healing metabolites and improves patient outcome after Achilles tendon rupture surgery. Knee Surg Sports Traumatol, Arthrosc : official journal of the ESSKA. 2018;26(7):2011–20.

    Article  Google Scholar 

  82. Thankam FG, Chandra IS, Kovilam AN, Diaz CG, Volberding BT, Dilisio MF, et al. Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury. Sci Rep. 2018;8(1):17027.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fluck M, Fitze D, Ruoss S, Valdivieso P, von Rechenberg B, Bratus-Neuenschwander A, et al. Down-regulation of mitochondrial metabolism after tendon release primes lipid accumulation in rotator cuff muscle. Am J Pathol. 2020;190(7):1513–29.

    Article  CAS  PubMed  Google Scholar 

  84. Locke RC, Lemmon EA, Dudzinski E, Kopa SC, Wayne JM, Soulas JM, et al. Photobiomodulation does not influence maturation and mildly improves functional healing of mouse Achilles tendons. J Orthop Res. 2020;38(8):1866–75.

    Article  CAS  PubMed  Google Scholar 

  85. Matthews TJ, Smith SR, Peach CA, Rees JL, Urban JP, Carr AJ. In vivo measurement of tissue metabolism in tendons of the rotator cuff: implications for surgical management. J Bone Joint Surg (Br). 2007;89(5):633–8.

    Article  CAS  Google Scholar 

  86. Sieg R, Garcia EJ, Schoenfeld AJ, Collins T, Owens BD. Effects of supplemental oxygen and hyperbaric oxygen on tendon healing in a rat model. J Surg Orthop Adv. 2011;20(4):225–9.

    PubMed  Google Scholar 

  87. Ishii Y, Miyanaga Y, Shimojo H, Ushida T, Tateishi T. Effects of hyperbaric oxygen on procollagen messenger RNA levels and collagen synthesis in the healing of rat tendon laceration. Tissue Eng. 1999;5(3):279–86.

    Article  CAS  PubMed  Google Scholar 

  88. Kuran FD, Pekedis M, Yıldız H, Aydın F, Eliyatkın N. Effect of hyperbaric oxygen treatment on tendon healing after Achilles tendon repair: an experimental study on rats. Acta Orthop Traumatol Turc. 2012;46(4):293–300.

    Article  PubMed  Google Scholar 

  89. Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR. Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A. 1981;78(5):2879–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Omeroğlu S, Peker T, Türközkan N, Omeroğlu H. High-dose vitamin C supplementation accelerates the Achilles tendon healing in healthy rats. Arch Orthop Trauma Surg. 2009;129(2):281–6.

    Article  PubMed  Google Scholar 

  91. Gemalmaz HC, Sarıyılmaz K, Ozkunt O, Gurgen SG, Silay S. Role of a combination dietary supplement containing mucopolysaccharides, vitamin C, and collagen on tendon healing in rats. Acta Orthop Traumatol Turc. 2018;52(6):452–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dincel YM, Adanir O, Arikan Y, Caglar AK, Dogru SC, Arslan YZ. Effects of high-dose vitamin C and hyaluronic acid on tendon healing. Acta Ortopedica Brasileira. 2018;26(2):82–5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Souza M, Moraes SAS, de Paula DR, Maciel AA, Batista EJO, Silva DGF, et al. Local treatment with ascorbic acid accelerates recovery of post-sutured Achilles tendon in male Wistar rats. Braz J Med Biol Res. 2019;52(9):e8290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oliva F, Maffulli N, Gissi C, Veronesi F, Calciano L, Fini M, et al. Combined ascorbic acid and T(3) produce better healing compared to bone marrow mesenchymal stem cells in an Achilles tendon injury rat model: a proof of concept study. J Orthop Surg Res. 2019;14(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alayna E. Loiselle.

Ethics declarations

Conflict of Interest

Jessica Ackerman, Katherine Best, Samantha Muscat, and Alayna Loiselle declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any primary data with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ackerman, J.E., Best, K.T., Muscat, S.N. et al. Metabolic Regulation of Tendon Inflammation and Healing Following Injury. Curr Rheumatol Rep 23, 15 (2021). https://doi.org/10.1007/s11926-021-00981-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-00981-4

Keywords

Navigation