
OSTEOARTHRITIS (M GOLDRING AND T GRIFFIN, SECTION EDITORS)

Metabolic Regulation of Tendon Inflammation and Healing
Following Injury

Jessica E. Ackerman1
& Katherine T. Best1 & Samantha N. Muscat1 & Alayna E. Loiselle1

Accepted: 5 January 2021
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Purpose of Review This review seeks to provide an overview of the role of inflammation and metabolism in tendon cell function,
tendinopathy, and tendon healing. We have summarized the state of knowledge in both tendon and enthesis.
Recent Findings Recent advances in the field include a substantial improvement in our understanding of tendon cell biology,
including the heterogeneity of the tenocyte environment during homeostasis, the diversity of the cellular milieu during in vivo
tendon healing, and the effects of inflammation and altered metabolism on tendon cell function in vitro. In addition, the
mechanisms by which altered systemic metabolism, such as diabetes, disrupts tendon homeostasis continue to be better
understood.
Summary A central conclusion of this review is the critical need to better define fundamental cellular and signaling mechanisms
of inflammation and metabolism during tendon homeostasis, tendinopathy, and tendon healing in order to identify therapies to
enhance or maintain tendon function.
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Introduction

The basal metabolic rate of tendon is relatively low, likely due
to the high degree of quiescence observed in tendon cells
during tissue homeostasis. However, multiple factors can lead
to the loss of cell quiescence, alterations in tendon cell func-
tions, and altered tendon function, with inflammation being a
key regulator of these processes. This review will summarize
the central inflammatory and metabolic mechanisms that
regulate (i) tendon cell function; (ii) disruptions in tendon
homeostasis (e.g., tendinopathy); and (iii) healing of acute
tendon injuries and how inflammation can interact with and
modulate metabolism in these contexts (Fig. 1). In addition,
within the respective sections on tendinopathy and healing

of acute tendon injuries, a distinction is made between the
tendon mid-substance and the tendon-bone junction
(enthesis) as appropriate, given that there are important
region-specific differences in the tendon response to in-
flammation and altered metabolic function.

Metabolism, Inflammation, and In Vitro
Tendon Cell Biology

It has long been established that tendon cells are capable of
both glycolysis and mitochondrial respiration for energy
production [1, 2]. Recently, it has been shown that loss of
scleraxis expression in tendon cells leads to upregulated
oxidative phosphorylation and mitochondrion organiza-
tion, suggesting that putative tendon markers affect tendon
cell metabolism [3]. In contrast to tendon cells isolated during
homeostasis, tendon cells isolated from injured human flexor
tendons exhibited increased glycolytic pathway flux and the
capacity for differentiation down both tenogenic and
chondrogenic pathways [4•]. When treated with a glycolysis
inhibitor, chondrogenic differentiation was inhibited and
tenogenic differentiation was stimulated, suggesting that gly-
colysis pushed tendon cells along a non-tenogenic fate [4•].
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Furthermore, treatment of tendon cells with the inflammatory
cytokine IL-1β drives lactate production, which results in de-
creased collagen and decreased expression of key tendon
markers [5•]. This demonstrates that inflammatory signaling
can directly modulate tendon cell metabolism.

Hypoxia

Numerous studies have explored the effects of oxygen depri-
vation (hypoxia, typically 1–5% O2) on tendon cells in vitro.
Tendon cells cultured in hypoxic conditions have limited mi-
tochondrial energy production accompanied by elevated gly-
colytic flux and lactate production, demonstrating that hypox-
ia drastically changes metabolic processes in tendon cells
[6••]. For example, hypoxia drives tendon cell proliferation
and prevents multilineage differentiation potential while up-
regulating stem cell markers such as NANOG and OCT-4,
compared to normoxic culture conditions (~20% O2) [7–11].
Hypoxia also drives increased expression of tendon markers,
such as tenomodulin [7]. Importantly, tendon cells cultured in
hypoxic conditions and subsequently cultured under
normoxic conditions regain their multilineage differentiation
potential, demonstrating that the effects of hypoxia on tendon
cells are reversible [7]. Hypoxia also limits the formation of
primary cilia on tendon cells, potentially limiting their
mechanosensory properties [12]. Moreover, highly hypoxic
conditions (~0.1% O2) and anoxia lead to tendon cell death
via apoptosis [13, 14].

Previous studies have demonstrated that aged tendon cells
have impaired proliferative capacity, decreased expression of
tendon markers, increased adipogenic differentiation potential,
increased mineralized fibrocartilage phenotype, and increased
senescence relative to young tendon cells [15–18].
Interestingly, culturing aged tendon cells with the conditioned
media from young, hypoxic tendon cells increases proliferative
capacity and migration rate of the aged cells, increases

expression of tendonmarkers, and decreases the number senes-
cent cells, suggesting that paracrine signaling via secreted fac-
tors from hypoxic tendon cells reverses the aged tendon cell
phenotype [17]. Furthermore, hypoxic tendon cell co-cultures
drive other cell types, such as adipose-derived mesenchymal
stem cells, along a tendon cell fate. Recent studies show that
hypoxia triggers tendon cells to produce exosomes containing
upregulated extracellular matrix-related genes, further
supporting the idea of paracrine, cell-cell–mediated communi-
cation during hypoxia [19, 20].

Oxidative Stress

In addition to hypoxia, several other factors such as diet and
environmental stimuli can drive oxidative stress. Many studies
have examined the effects of oxidative stress in the form of
reactive oxygen species (ROS) on tendon cells in vitro.
Treatment of tendon cells with ROS results in decreases in
cellular proliferation, migration, viability, and stemness [21,
22]. Activation of mitochondrial aldehyde dehydrogenase 2
(ALDH2), a known reliever of oxidative stress, in tendon cells
prevents H2O2-induced cell death and prevents depolarization
of mitochondrial membrane potential [23]. In addition, multi-
ple vitamins have antioxidant properties. Treatment of tendon
cells with vitamin C also decreases NO synthesis by tendon
cells [24]. Treatment of tendon cells with low-dose vitamin C
increases cell proliferation, viability, and migration [22, 24].
Tendon cell proliferation is further enhanced by co-treatment
of vitamin C and thyroid hormone T3 [24]. Similarly, treat-
ment with vitamin D increases cell proliferation and reduces
production of reactive oxygen species [25, 26]. However, vi-
tamin D also reduces gene expression of type I collagen [25].
Retinoic acid, a metabolite of vitamin A, induces nuclear lo-
calization of scleraxis and aids in the maintenance of tendon
stem cell properties [27].

Fig. 1 Overview of the review. Section 1 summarizes the effects of
inflammation and metabolic alterations on in vitro tendon cell function,
with a particular emphasis on the role of inflammation-induced hypoxia
and oxidative stress, as well as the impact of high glucose on tendon cell
function. Section 2 summarizes the impact of inflammation on both the
tendon enthesis and mid-substance tendinopathy, as well as how

alterations in systemic metabolic function including diabetes can
promote tendinopathy. Section 3 focuses on the effects of inflammation,
including hypoxia, hyperoxia, and oxidative stress on the healing process,
and the effects of systemic metabolic disorders on the tendon healing
process. This figure was created using Biorender.com

15    Page 2 of 9 Curr Rheumatol Rep (2021) 23: 15

http://biorender.com


High Glucose

Supplementation of culture medium with high levels of
glucose modulates many aspects of tenocyte function.
More specifically, tenocytes in high glucose demonstrate
altered inflammatory signaling via IL-6 and COX2, in-
creased ROS production, decreased proliferation, de-
creased migration, decreased mitochondrial membrane po-
tential, and increased apoptosis [28–34]. Moreover, high
glucose decreases the expression of tendon genes, promotes
simultaneous decreases in type I collagen and increases in
type III collagen expression, increases the expression and
activity of multiple MMPs and TIMPS, and stimulates
adipogenic transdifferentiation [28–34]. In addition, the ef-
fects of high glucose are exacerbated in the presence of
advanced glycation end products (AGEs), as the combina-
tion leads to reduced proliferation, reduced ATP production,
decreased electron transport efficiency, and alterations in col-
lagen and MMP gene expression [34••]. Consistent with the
effects of high glucose supplementation, tendon cells isolated
from diabetic rat patellar tendons exhibit decreased prolifera-
tive ability, decreased expression of tendon markers, and in-
creased osteogenic and chondrogenic differentiation ability
[35], mimicking many effects of high glucose culture condi-
tions and suggesting that diabetic cells retain some “memory”
and, therefore, functional alterations of the in vivo environ-
ment. Interestingly, mechanotransduction can suppress several
aspects of the effects of high glucose on tendon cells.
Mechanical stretch prevents adipogenic transdifferentiation, in-
creases tendon cell migration, and enhances fibroblastic-like
morphology of cells under high glucose conditions, suggesting
that mechanotransduction can ameliorate some of the negative
outcomes associated with hyperglycemia [30•].

Other Metabolic Mediators of In Vitro Tendon Cell
Function

Cholesterol can also affect tendon cell function. Recent stud-
ies have shown that high cholesterol suppresses tendon cell
proliferation, cell migration, and scleraxis gene expression,
while increasing ROS production [36, 37]. The effects of fe-
male sex hormones on tendon cells have also been investigat-
ed. Estrogen increases cell proliferative ability and decreases
adipogenic differentiation potential of tendon cells [38].
Additionally, treatment with estradiol-17β increases tendon
cell proliferation but decreases Scleraxis gene expression
[25]. Finally, there is some evidence that treatment with
platelet-rich plasma (PRP) induces inflammation-related
changes in tendon cell function. PRP treatment of tendon cells
upregulates TNF-α-induced NF-κB signaling pathway,
downregulates the expression of extracellular matrix genes,
and induces the expression of autophagy-related and ROS-
related genes [39].

Inflammation and Metabolism
in Tendinopathy

Inflammation and Mid-substance Tendinopathy

Loss of tendon homeostasis, resulting in tendinopathy,
is characterized by inflammation and degeneration of
the native tendon tissue. Tendinopathy represents a ma-
jor clinical burden, decreases patient quality of life, and
increases the risk of tendon rupture [40]. Our current
understanding of the pathophysiology of tendinopathy
is a combination of supraphysiological overloading and
inflammation [41–43]. Rather than a single overloading
event, cyclic overloading is required for the rapid ex-
pression of inflammatory mediators that are observed in
tendinopathies [44]. These inflammatory mediators in-
clude alarmins (such as HIF-1α, IL-33, S100a8/9, and
HMGB1), which have been implicated in the earliest
phases of tendinopathy development [43, 45, 46].
Moreover, there is strong evidence that many of the patho-
logical changes observed in tendinopathy are driven largely
by extrinsic factors [47•]. More specifically, immune cell
involvement is thought to play a central role in
tendinopathy development, although there is limited direct
evidence for this contribution. Indeed, a recent review of
inflammatory mediators of tendinopathy [48] defines a high
degree of heterogeneity in terms of the extent of the inflam-
matory cell environment that has been characterized in
tendinopathy studies. However, samples from both
Achilles and supraspinatus tendinopathy patients demon-
strate an influx of pro-inflammatory monocyte-derived
macrophages, with increased macrophage content occur-
ring with increased disease severity [41, 49], suggesting
that severity of tendinopathy may be characterized by ex-
amination of the inflammation signature.

In terms of modulating inflammation to treat tendinopathy,
anti-inflammatory approaches have had mixed success but
have also highlighted the effects of treatment timing on treat-
ment efficacy. While some in vitro studies have suggested that
aspirin can promote tenogenesis via GDF7/Smad1/5 signaling
[50], in vivo studies have not demonstrated the same promise.
For example, Heinemeier et al. found that 1-week treatment
with ibuprofen elicited no change in adult human chronic
tendinopathic tissues [51], while Bittermann et al. showed that
ibuprofen treatment during the inflammatory phase actually
blunted healing in a model of murine Achilles tendinopathy
[52]. A potential alternative anti-inflammatory approach in-
volves the use of lipid mediators of aspirin-induced eicosanoid
metabolism, such as 15-epi LXA4. These have proven effec-
tive in other chronic inflammatory diseases such as pulmonary
inflammation and eczema and, therefore, may also hold prom-
ise in resolving tendon inflammation without the damaging
side effects [41, 53].
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Inflammation and Enthesitis

In addition to impacting the integrity and homeostasis of the
tendon mid-substance, inflammation also impacts the integrity
of the tendon-bone interface (enthesis). Enthesitis, or inflam-
mation of the enthesis, is predominantly associated with arthri-
tis [54] but can also be initiated by repeated bouts of high
mechanical stress, which induces an inflammatory response
[55], consistent withmid-substance tendinopathy development.
For example, while mice overexpressing TNF are highly sus-
ceptible to enthesitis and arthritis, hindlimb suspension
inhibited arthritis development and blunted the TNF-mediated
inflammatory response, compared to controls [56].
Importantly, enthesitis is a hallmark of spondyloarthritis
(SpA), particularly juvenile cases [57••], which often go undi-
agnosed due to lack of diagnostic criteria. As such, increasing
our fundamental understanding of the cellular and molecular
mechanisms that drive and initiate increased enthesitis in the
context of SpA could have a substantial impact of both disease
diagnosis and treatment.

Metabolism and Tendinopathy

In addition to inflammation and mechanical overloading, a
variety of metabolic diseases can also initiate tendinopathy
development. While metabolic syndrome encompasses
many comorbidities, including high blood pressure, high
blood glucose, and obesity, very few studies have exam-
ined the collective effect of metabolic syndrome on tendon
pathology but have more commonly looked at the impact
of individual comorbidities. However, there is a strong
association between metabolic syndrome and the develop-
ment of trigger finger [58]. In terms of individual condi-
tions, type II diabetes greatly increases the risk of tendon
pathology [59–62] (summarized in Fig. 2), likely due to a
combination of chronic, low-grade inflammation and a

high glucose environment. Consistent with this, there is
some evidence that alterations in glucose metabolism
may represent a metabolic marker of tendinopathy [6••].
Moreover, diabetic tendons are thicker and demonstrate
fibril disorganization at homeostasis, changes that are
thought to be due to a combination of hyperglycemia and
accumulation of AGEs [30, 34]. AGEs promote increased
cross-linking with age or diabetes and inhibit normal slid-
ing of tendon fascicles, leaving them prone to pathology
[63]. Other perturbations in metabolism have also been
shown to influence development of pathological condi-
tions, such as elevated cholesterol levels [37, 64, 65]
though these effects are less well-characterized.

Metabolic and Inflammatory Mediators
of Acute Tendon Healing

Metabolic Disorders

Metabolic disorders, such as diabetes mellitus, dramatically
affect the tendon healing process (Fig. 2). For example, rotator
cuff repairs in diabetic patients are up to two times more likely
to re-rupture than nondiabetic patients and show evidence of
diminished healing [66, 67], including slower or decreased
improvements in pain and function [68]. Moreover, murine
and rat models of type II diabetes demonstrate decreased bio-
mechanical properties following tendon injury, compared to
nondiabetic animals [69–71]. Healing type II diabetic tendons
also exhibit increased scar tissue formation [71], aberrations in
macrophage polarization [71], and detrimental effects to
angiotrophic and neurotrophic signaling pathways [72].
Interestingly, type I diabetes also disrupts tendon healing.
Streptozotocin-induced type I diabetes suppresses immune
cell infiltration (including macrophages), decreases cell pro-
liferation, and decreases biomechanical properties during

Fig. 2 Summary of the impact of
type II diabetes on tendon
homeostasis and healing of acute
tendinopathy. This figure was
created using Biorender.com
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healing, relative to nondiabetic controls [73–75]. To better
understand the effects of high blood glucose on Achilles ten-
don healing, nondiabetic rats were supplemented with a high
glucose diet, which did not elevated blood glucose levels even
after 4 weeks of treatment. Glucose supplementation resulted
in increased tendon thickness and stiffness, as well as an al-
tered gait pattern [76]. In addition, cell proliferation was in-
creased, as was expression of chondrogenic markers (Sox9,
Col2a1, Acan, Comp), and cartilage-like areas were detected
within the repair tissue [76], suggesting that high glucose al-
ters in vivo tenogenic function and may promoter aberrant
chondrogenic differentiation in the healing tendon.

Interaction of Metabolism and Inflammation

Acute tendon injuries contain elevated levels of metabolites,
including glutamate, lactate, and pyruvate, compared to unin-
jured tendon [77–79]. Recently, 13C-glucose labeling was
utilized to examine glycolytic and TCA cycle activity
during murine Achilles tendon healing following transec-
tion. While glycolysis was elevated at both 1 and 4 weeks
post-injury, the flux through the TCA cycle was signifi-
cantly increased at 1 week post-repair [78••]. This indi-
cates that multiple metabolic processes are highly active
during the early, inflammatory phases of healing, while
glycolysis persists into the later remodeling phase. A clin-
ical study in humans demonstrated that glutamate, lactate,
and pyruvate are elevated at 2 weeks post-Achilles tendon
injury [79]. Weight-bearing mobilization of the injured
tendon further increased glutamate, which was significant-
ly correlated with elevated procollagen type I levels [79].
Interestingly, metabolic activity, as measured by glucose
uptake remains elevated in healing human tendon through
at least 12 months post-injury, with metabolic activity
being highest shortly after injury and slowly decreasing
over time [80••]. Patient-reported tendon functional scores
were negatively correlated with high glucose uptake, sug-
gesting that sustained metabolic activity may negatively
impact healing [80••]. In contrast, an observational study
examining human Achilles tendon rupture duration of op-
erating time (DOT) found that patients who experienced
longer DOT had higher levels of glutamate, which was
significantly associated with improved functional out-
comes [81].

There has been relatively little exploration into how
modulation of metabolic pathways affects tendon healing.
However, inhibition of lactate synthesis (a metabolite of the
glycolysis product pyruvate) was positively correlated with
decreased width and cross-sectional area of the healing ten-
don, increased biomechanical properties, improved colla-
gen fiber alignment, and reduced mineralization of the in-
jury site, suggestive of improved healing [78••] .
Interestingly, the effects of acute injury and healing on

mitochondrial function are unclear. For example, enhanced
mitochondrial activity is observed during rat rotator cuff
healing [82], while diminished mitochondrial activity was
observed following rotator cuff tenotomy in a sheep model
[83]. Moreover, photobiomodulation, a nonionizing laser
therapy that stimulates mitochondrial energy production,
resulted in mild improvements in mechanical properties of
Achilles tendons after injury [84]. Collectively, these stud-
ies demonstrate the need for additional work to understand
the specific contributions of metabolic processes through-
out the various stages of tendon healing and to determine
how modification of mitochondrial function may impact
tendon healing.

Hypoxia, Hyperoxia, and Oxidative Stress

While alterations in tendon cell function as a result of oxygen
concentration are well-characterized in vitro, the in vivo ef-
fects are less clear. However, the importance of oxygen con-
centration and consumption is demonstrated by clinical stud-
ies in the rotator cuff, which demonstrate decreased cellular
activity and oxygen consumption in large tears and are asso-
ciated with worse outcomes, relative to smaller tears [85]. As
such, a few studies have examined the effects of hyperbaric
oxygen treatment on tendon healing, although no consensus
has yet emerged. In a rat patellar tendon injury model, hyper-
baric oxygen supplementation did not alter the healing process
in one study [86], while another reported increased collagen
gene expression at 1–2 weeks post-injury [87]. Recent work
demonstrated increased fibrotic tissue during Achilles tendon
healing following supplementation with hyperbaric oxygen in
a rat model [88].

Given the effects of oxidative stress on tendon cell function
in vitro, substantial investigation has been conducted into the
efficacy of vitamin C due to its antioxidant functions and role
in collagen formation [89]. Vitamin C supplementation in-
creases angiogenesis and type I collagen deposition in a rat
Achilles tendon injury model [90]. Moreover, administration
of a supplement containing mucopolysaccharides, vitamin C,
and collagen during Achilles tendon healing did not alter bio-
mechanical properties or collagen production but did increase
cell proliferation and TGF-β1 production in endotenon fibro-
blasts [91]. Local administration of vitamin C following
Achilles tendon repair improved mechanical properties [92]
and functional outcomes [93] of healing tendons, while a com-
bination of vitamin C and thyroid hormone T3 also enhanced
healing [94].

While oxygen concentration and consumption, as well
as oxidative stress, impact tendon cell function and
in vivo healing, more work is needed to determine if
and how these pathways can be utilized to enhance ten-
don healing.
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Conclusions and Key Knowledge Gaps

Given the frequency of tendon injuries, including those in-
duced by tendinopathy, and the substantial subsequent com-
plications that can occur, understanding the underlying mech-
anisms that regulate healing is critical to the identification of
therapeutic targets. Inflammation is central to successful
healing; however, aberrant, excessive, or insufficient inflam-
mation all has profound effects on the tendon healing process.
As such, future work is needed to better define (i) the central
inflammatory signaling cascades; (ii) how inflammatory and
immune cells interact with resident tendon cells and extrinsic
cells to mediate the healing process, and (iii) how inflamma-
tion modulates cell metabolism and therefore cell function
during healing. In terms of tendon homeostasis, while the
effects of altered systemic metabolism (e.g., type II diabetes)
on the tendon are clear (Fig. 2), there is a gap in knowledge in
terms of our fundamental understanding of how metabolism
regulates tendon cell function to maintain homeostasis and
how different aspects of metabolismmay be targeted to restore
normal tenogenic function and therefore tendon homeostasis
in the context of altered systemic metabolism (e.g., metabolic
syndrome or diabetes). Collectively, while much remains un-
known about the molecular and cellular level impact of altered
inflammation and metabolism on tendon homeostasis and
healing, the recent and rapid maturation of the tendon field
suggests it is only a matter of time until these processes are
more clearly defined and can therefore be leveraged to prevent
or reverse tendon pathology and improve healing.
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