Skip to main content

Advertisement

Log in

Possibility of obtaining refractory high-entropy AlTiZrVNb alloys from metal oxides

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

We consider a new method for the preparation of refractory high-entropy alloys (HEAs) AlTiZrVNb, which consists in the joint aluminothermic reduction of metals from their oxides. It was determined that V and Nb undergo reduction to a greater extent, and about 90% of their amounts transfer into the metal phase. Metals Ti and Zr undergo reduction to a lesser extent, with 76 and 50% of their amounts transitioning into the metal phase, respectively. The obtained alloy has a multiphase structure consisting of C14 Laves phases, Zr5Al3-type phases, and a B2-type ordered phase, which plays the role of a matrix. The microhardness of the alloy is 6.37 GPa, which is similar to the values of refractory HEAs. The structure of the obtained alloy has a similar structure throughout its bulk, namely, coarse-grained with a number of pores, partly filled with non-metallic inclusions of aluminum oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. W. Yeh, S. K. Chen, J. W. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Metall. Mater. Transformations, 2004, 35A, 2533.

    Article  CAS  Google Scholar 

  2. J. W. Yeh, S. K. Chen, S. J. Lin, J.-Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Adv. Eng. Mater., 2004, 6, 299–303.

    Article  CAS  Google Scholar 

  3. C. Chang, H. Zhang, J. Mater. Res. Technol., 2022, 18, 1322; DOI: https://doi.org/10.1016/j.jmrt.2022.03.046.

    Article  CAS  Google Scholar 

  4. W. Jiang, X. Wang, S. Li, T. Ma, Y. Wang, D. Zhu, Mater. Lett., 2022, 328, 133144; DOI: https://doi.org/10.1016/j.matlet.2022.133144.

    Article  CAS  Google Scholar 

  5. W. Jiang, X. Wang, H. Kang, B. Jiang, D. Dong, Y. Wang, D. Zhu, J. Alloys Compd., 2022, 925, 166767; DOI: https://doi.org/10.1016/j.jallcom.2022.166767.

    Article  CAS  Google Scholar 

  6. X. P. Zhu, N. Gao, Z. C. Bai, K. Wang, J. Q. Yao, Z. T. Fan, Z. D. Wang, X. W. Liu, Mater. Lett., 2022, 325, 132897; DOI: https://doi.org/10.1016/j.matlet.2022.132897.

    Article  CAS  Google Scholar 

  7. N. Li, R. X. Wang, H. B. Zhao, Y. Tang, P. Xue, D. R. Ni, B. L. Xiao, Z. Y. Ma, L. H. Wu, Mater. Today Commun., 2022, 32, 103847; DOI: https://doi.org/10.1016/j.mtcomm.2022.103847.

    Article  CAS  Google Scholar 

  8. S. Zeng, Y. Zhu, W. Li, H. Zhang, H. Zhang, Z. Zhu, Mater. Lett., 2022, 323, 132548; DOI: https://doi.org/10.1016/j.matlet.2022.132548.

    Article  CAS  Google Scholar 

  9. J. Zhou, Y. Cheng, Y. Chen, X. Liang, Int. J. Refractory Metals and Hard Materials, 2022, 105, 105836; DOI: https://doi.org/10.1016/j.ijrmhm.2022.105836.

    Article  CAS  Google Scholar 

  10. Y. Zong, N. Hashimoto, H. Oka, Nuclear Mater. and Energy, 2022, 31, 2022; 101158, DOI: https://doi.org/10.1016/j.nme.2022.101158.

    Google Scholar 

  11. X. J. Fan, R. T. Qu, Z. F. Zhang, J. Mater. Sci. Technol., 2022, 123, 70–77; DOI: https://doi.org/10.1016/j.jmst.2022.01.017.

    Article  Google Scholar 

  12. W. Wang, K. Yang, Q. Wang, P. Dai, H. Fang, F. Wu, Q. Guo, P. K. Liaw, N. Hua, J. Alloys and Compd., 2022, 906, 164383; DOI: https://doi.org/10.1016/j.jallcom.2022.164383.

    Article  CAS  Google Scholar 

  13. X. Zhao, S. Li, J. Jiang, J. Bai, H. Xie, H. Pan, Y. Tian, Y. Ren, C. Teng, L. Wu, G. Qin, Acta Materialia, 2022, 238, 118207; DOI: https://doi.org/10.1016/j.actamat.2022.118207.

    Article  CAS  Google Scholar 

  14. B. Liu, H. Duan, L. Li, C. Zhou, J. He, H. Wu, Powder Technology, 2021, 382, 550–555; DOI: https://doi.org/10.1016/j.powtec.2021.01.021.

    Article  CAS  Google Scholar 

  15. B. S. Murty, J. W. Yeh, S. Ranganathan, P. P. Bhattacharjee, 7–Solid Solution Phases and Their Microstructures in HEAs, Elsevier, Amsterdam, 2019, pp. 119–144; DOI: https://doi.org/10.1016/B978-0-12-816067-1.00007-2.

    Google Scholar 

  16. M. S. Likhanov, A. V. Shevelkov, Russ. Chem. Bull., 2020, 69, 12; DOI: https://doi.org/10.1007/s11172-020-3047-5.

    Article  Google Scholar 

  17. Y. Tian, W. Zhou, Q. Tan, M. Wu, S. Qiao, G. Zhu, A. Dong, D. Shu, B. Sun, Trans. Nonferrous Metals Soc. China, 2022, 32, 3487–3515; DOI: https://doi.org/10.1016/S1003-6326(22)66035-7.

    Article  CAS  Google Scholar 

  18. M. G. Poletti, G. Fiore, B. A. Szost, L. Battezzati, J. Alloys and Compd., 2015, 620, 283; DOI: https://doi.org/10.1016/j.jallcom.2014.09.145.

    Article  CAS  Google Scholar 

  19. K. Leosson, S. K. Padamata, R. Meirbekova, G. Saevarsdottir, S. H. Gudmundsson, Spectrochim. Acta, Part B: Atom. Spectrosc., 2022, 190, 106387, DOI: https://doi.org/10.1016/j.sab.2022.106387.

    Article  CAS  Google Scholar 

  20. O. N. Senkov, S. V. Senkova, C. Woodward, D. B. Miracle, Acta Materialia, 2013, 61, 1545–1557; DOI: https://doi.org/10.1016/j.actamat.2012.11.032.

    Article  CAS  Google Scholar 

  21. R. Razuan, M. K. Harun, M. Talariet, Materials Science Forum, Trans Tech Publications, Ltd., 2016, 846, pp. 20–26; DOI: https://doi.org/10.4028/www.scientific.net/msf.846.20.

    Article  Google Scholar 

  22. J. Wang, S. Bai, Y. Tang, S. Li, X. Liu, J. Jia, Y. Ye, L. Zhu, J. Alloys and Compd., 2021, 868, 159190; DOI: https://doi.org/10.1016/j.jallcom.2021.159190.

    Article  CAS  Google Scholar 

  23. B. Su, B. Wang, L. Luo, L. Wang, Y. Su, Y. Xu, F. Wang, B. Han, J. Mater. Res. Technol., 2021, 15, 4896; DOI: https://doi.org/10.1016/j.jmrt.2021.10.102.

    Article  CAS  Google Scholar 

  24. Z. Zhao, C. Wang, Q. Yu, L. Song, G. Yang, J. Zhang, Materials Characterization, 2022, 189, 111917; DOI: https://doi.org/10.1016/j.matchar.2022.111917.

    Article  CAS  Google Scholar 

  25. T. T. Yao, Y. G. Zhang, L. Yang, Z. Q. Bu, J. F. Li, Mater. Sci. Eng.: A, 2022, 851, 143646; DOI: https://doi.org/10.1016/j.msea.2022.143646.

    Article  CAS  Google Scholar 

  26. J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng, L. Zheng, Corrosion Sci., 2015, 96, 186–195; DOI: https://doi.org/10.1016/j.corsci.2015.04.002.

    Article  CAS  Google Scholar 

  27. B. R. Gelchinsky, I. A. Balyakin, A. A. Yuryev, A. A. Rempel, Russ. Chem. Rev., 2022, 91, 1–32.

    Google Scholar 

  28. R. I. Gulyaeva, A. M. Klyushnikov, S. A. Petrova, L. Yu. Udoeva, Inorg. Mater.: Appl. Res., 2021, 12, 1400–1408; DOI: https://doi.org/10.1134/S2075113321050130.

    Article  Google Scholar 

  29. S. N. Tyushnyakov, R. I. Gulyaeva, L. Y. Udoeva, Metallurgist, 2021, 65, 746–759; DOI: https://doi.org/10.1007/s11015-021-01212-y.

    Article  CAS  Google Scholar 

  30. M. Allibert, H. Gaye, Slag Atlas, 2nd ed., Stahleisen, Dusseldorf, 1995, 634 pp.

    Google Scholar 

  31. DIFFRAC. EVA V5 Bruker AXS, 2010–2018; http://ural-m.uran.ru/h4_devices.php#h4_dev_01.

  32. S. Gates-Rector, T. Blanton, Powder Diffr., 2019, 34, 352.

    Article  CAS  Google Scholar 

  33. J. Laugier, B. Bochu, LMGP-Suite of Programs for the Interpretation of X-Ray Experiments, ENSP Lab. Materiaux Genie, Phys., Saint Martin d’Heres, 2004.

  34. H. M. Rietveld, J. Appl. Crystallogr., 1969, 2, 65.

    Article  CAS  Google Scholar 

  35. DIFFRACPlus: TOPAS Bruker AXS GmbH, Ostliche, Rheinbruckenstraße 50, D-76187, Karlsruhe, Germany, 2008.

  36. E. M. Zhilina, A. S. Russkikh, S. A. Krasikov, T. V. Osinkina, A. A. Rempel, Russ. J. Inorg. Chem., 2022, 67, 888; DOI: https://doi.org/10.1134/S0036023622060249.

    Article  CAS  Google Scholar 

  37. B. A. Kolachev, V. I. Elagin, V. A. Livanov, Metal Science and Thermal Treatment of Nonferrous Metals and Alloys, Textbook for High Schools, 4th ed., rev., MISIS, Moscov, 2005, 432 pp.

    Google Scholar 

  38. P. Gu, T. Qi, L. Chen, Int. J. Refractory Metals and Hard Materials, 2022, 105, 105834; DOI: https://doi.org/10.1016/j.jjrmhm.2022.105834.

    Article  CAS  Google Scholar 

  39. B. Xiao, W. Jia, H. Tang, J. Mater. Sci. Technol., 2022, 108, 54; DOI: https://doi.org/10.1016/j.jmst.2021.07.041.

    Article  Google Scholar 

  40. L. Chen, Y. Wang, X. Hao, J. Mater. Sci. Technol., 2021, 183, 109823; DOI: https://doi.org/10.1016/j.vacuum.2020.109823.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Zhilina or A. A. Rempel.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

The work was carried out according to the State task of the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (registration number 122020100404-2) using the equipment of the Ural-M Center for Collective Use.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 4, pp. 895–901, April, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilina, E.M., Russkih, A.S., Osinkina, T.V. et al. Possibility of obtaining refractory high-entropy AlTiZrVNb alloys from metal oxides. Russ Chem Bull 72, 895–901 (2023). https://doi.org/10.1007/s11172-023-3852-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3852-7

Key words

Navigation