Skip to main content
Log in

Aging improvement of Mn–Zn–Ni–Mg–Al–O high-entropy oxide films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn(1.9−x) Zn0.2Ni0.6MgxAl0.3O4 (0 < x < 1) high-entropy oxide films were prepared on silicon substrate. The effects of Mg doping on microstructure, cation distribution, and electrical and aging properties of thin films were investigated. Mg2+ mainly replaces Mn2+ in the tetrahedron and does not affect the distribution of other trivalent cations in the octahedron. The thermal constant of the film varies from 2989.5 to 2176.6 K with the change of Mg/Mn ion content. Aging coefficient varies from 10.47 to 9.07%. The aging improvement of the films is ascribed to the multiple mechanisms of cationic sluggish diffusion as well as the variance in film grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. X.B. Zhang, W. Ren, W.W. Kong et al., Effect of sputtering power on structural, cationic distribution and optical properties of Mn2Zn0.25Ni0.75O4 thin films. Appl. Surf. Sci. 435, 815–821 (2018). https://doi.org/10.1016/j.apsusc.2017.11.196

    Article  CAS  Google Scholar 

  2. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 5, 967–983 (2009). https://doi.org/10.1111/j.1551-2916.2009.02990.x

    Article  CAS  Google Scholar 

  3. Y.F. Liu, Z.L. Fu, X.Y. Chen et al., Microstructural and electrical changes in Ca0.9R0.1CeNbMoO8 (R = Y, sm, nd, La) ceramics Induced by rare-earth ion doping. J. Am. Ceram. 13, 2134–2142 (2021). https://doi.org/10.1111/jace.17670

    Article  CAS  Google Scholar 

  4. Q. Wang, W.W. Kong, J.C. Yao et al., Fabrication and electrical properties of the fast response Mn1.2Co1.5Ni0.3O4 miniature NTC chip thermistors. Ceram. Int. 45, 378–383 (2018). https://doi.org/10.1016/j.ceramint.2018.09.177

    Article  CAS  Google Scholar 

  5. T. Dinh, H.P. Phan, A. Qamar et al., Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. 5, 966–986 (2017). https://doi.org/10.1109/JMEMS.2017.271034

    Article  Google Scholar 

  6. W. Ren, Y.C. Zhang, N.N. Zhu et al., Synthesis of NiMn2O4 thin films via a simple solid-state reaction route. Ceram. Int. 8, 11675–11679 (2020). https://doi.org/10.1016/j.ceramint.2020.01.198

    Article  CAS  Google Scholar 

  7. W. Ren, T. Ding, W.L. Wang et al., Microstructure and cation distribution of Mn2–xAlxZn0.2Ni0.6Mg0.2O4 high entropy oxide films. J. Mater. Sci. Mater. Electron. 34, 655 (2023). https://doi.org/10.1007/s10854-023-10082-w

    Article  CAS  Google Scholar 

  8. J.H. Rong, H.M. Zhang, P.J. Zhao et al., Effect of Zn/Fe co-doping on the microstructure, electrical properties and aging behavior of Co–Mn–Ni–O NTC ceramics. Appl. Phys. A 128, 444 (2022). https://doi.org/10.1007/s00339-022-05585-y

    Article  CAS  Google Scholar 

  9. M. Zhao, W. Chen, W. Wu et al., Aging characteristic of Cu-doped nickel manganite NTC ceramics. J. Mater. Sci. Mater. Electron. 31, 11784–11790 (2020). https://doi.org/10.1007/s10854-020-03730-y

    Article  CAS  Google Scholar 

  10. D. Bérardan, S. Franger, D. Dragoe et al., Colossal dielectric constant in high entropy oxides. Phys. Status Solidi Rapid Res. Lett. 4, 328–333 (2016). https://doi.org/10.48550/arXiv.1602.07842

    Article  Google Scholar 

  11. C.M. Rost, E. Sachet, T. Borman et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485

    Article  CAS  Google Scholar 

  12. K. Zhang, W.W. Kong, Q. Wang et al., Effect of substrate temperature on structure, cationic distribution and electrical properties of MnCo0.2Ni0.1Mg0.6Al1.1O4 thin films. J. Mater. Sci. Mater. Electron. 30, 14200–14206 (2019). https://doi.org/10.1007/s10854-019-01787-y

    Article  CAS  Google Scholar 

  13. C.W. Peng, H.M. Zhang, A.M. Chang et al., Effect of mg substitution on microstructure and electrical properties of Mn1.25Ni0.75Co1.0–xMgxO4 (0 ≤ x ≤ 1) NTC ceramics. J. Mater. Sci. Mater. Electron. 23, 851–857 (2012). https://doi.org/10.1007/s10854-011-0505-8

    Article  CAS  Google Scholar 

  14. R.F. Li, Q.Y. Fu, X.H. Zou et al., Mn-Co-Ni-O thin films prepared by sputtering with alloy target. J. Adv. Ceram. 9, 64–71 (2020). https://doi.org/10.1007/s40145-019-0348-y

    Article  CAS  Google Scholar 

  15. C. Ma, W. Ren, L. Wang et al., Structural, optical, and electrical properties of (Mn1.56Co0.96Ni0.48O4)1–x(LaMnO3)x composite thin films. J. Eur. Ceram. Soc. 36, 4059–4064 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.019

    Article  CAS  Google Scholar 

  16. M.H. Tsai, J.W. Yeh, H.-E. Alloys, Crit. Rev. Mater. Res. Lett. 3, 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  17. M.X. Ji, W. Ren, L. Li et al., Formation of highly textured Zn0.2Ni0.8Mn2O4 thin films by RF magnetron sputtering. ECS J. Solid State Sci. Technol. 7, N114-116 (2018). https://doi.org/10.1149/2.0011809jss

    Article  CAS  Google Scholar 

  18. S.Y. Zhang, B. Han, M.Y. Li et al., Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating. Intermetallics 131, 107111–107116 (2021). https://doi.org/10.1016/j.intermet.2021.107111

    Article  CAS  Google Scholar 

  19. R.D. Shannon, Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  20. W. Ren, N.N. Zhu, L. Li et al., Improvement of ageing issue in Zn0.4Fe2.1Co2Mn1.5O8 thermistor films. J. Eur. Ceram. Soc. 39, 4189–4193 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.068

    Article  CAS  Google Scholar 

  21. X.S. Yao, Q.T. Lin, L.Z. Zeng et al., Degradation of humic acid using hydrogen peroxide activated by CuO-Co3O4 @AC under microwave irradiation. Chem. Eng. J. 330, 783–791 (2017). https://doi.org/10.1016/j.cej.2017.08.008

    Article  CAS  Google Scholar 

  22. W.W. Kong, J.H. Wang, J.C. Yao et al., Influence of oxygen atmosphere annealing on the thermal stability of Mn1.2Co1.5Ni0.3O4±δ ceramic films fabricated by RF magnetron sputtering. Ceram. Int. 44, 1455–1460 (2018). https://doi.org/10.1016/j.ceramint.2017.10.040

    Article  CAS  Google Scholar 

  23. R. Dannenberg, S. Baliga, R.J. Gambino et al., Resistivity, thermopower and the correlation to infrared active vibrations of Mn1.56Co0.96Ni0.48O4 spinel films sputtered in an oxygen partial pressure series. J. Appl. Phys. 86, 514–523 (1999). https://doi.org/10.1063/1.370760

    Article  CAS  Google Scholar 

  24. W.A. Groen, C. Metzmacher, V. Zasplis et al., Aging of NTC ceramics in the system Mn–Ni–Fe–O. J. Eur. Ceram. Soc. 21, 1973–1796 (2001). https://doi.org/10.1016/S0955-2219(01)00117-0

    Article  Google Scholar 

Download references

Funding

Thanks for the Key Industry Innovation Chain Project of Shaanxi Province (2020ZDLGY12-02) as well as the National Natural Science Foundation of China (Grant No.: 51931005, 52171048, and 51571163) for the financial supports.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the concept and design of the study. The preparation and electrical aging characteristics of Mn-based high-entropy thermosensitive thin films were reported. The first draft of the manuscript was written by HYX, and all the authors commented on the previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Ren or Wei-Li Wang.

Ethics declarations

Competing interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Han, YX., Wang, WL. et al. Aging improvement of Mn–Zn–Ni–Mg–Al–O high-entropy oxide films. J Mater Sci: Mater Electron 35, 40 (2024). https://doi.org/10.1007/s10854-023-11853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11853-1

Navigation