Skip to main content
Log in

Predicting future climate change impacts on the potential distribution of the black howler monkey (Alouatta pigra): an endangered arboreal primate

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change is one of the main factors affecting biodiversity worldwide at an alarming rate. In addition to increases in global extreme weather events, melting of polar ice caps, and subsequent sea level rise, climate change might shift the geographic distribution of species. In recent years, interest in understanding the effects of climate change on species distribution has increased, including species which depend greatly on forest cover for survival, such as strictly arboreal primates. Here, we generate a series of species distribution models (SDMs) to evaluate future projections under different climate change scenarios on the distribution of the black howler monkey (Alouatta pigra), an endemic endangered primate species. Using SDMs, we assessed current and future projections of their potential distribution for three Social Economic Paths (SSPs) for the years 2030, 2050, 2070, and 2090. Specifically, we found that precipitation seasonality (BIO15, 30.8%), isothermality (BIO3, 25.4%), and mean diurnal range (BIO2, 19.7.%) are the main factors affecting A. pigra distribution. The future climate change models suggested a decrease in the potential distribution of A. pigra by projected scenarios (from − 1.23 to − 12.66%). The highly suitable area was the most affected above all in the more pessimist scenario most likely related to habitat fragmentation. Our study provides new insights into the potential future distribution and suitable habitats of Alouatta pigra. Such information could be used by local communities, governments, and non-governmental organizations for conservation planning of this primate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© ESA WorldCover project 2020/contains modified Copernicus Sentinel data (2020) processed by ESA WorldCover consortium (Zanaga et al., 2021). B Calibration area used to model current potential distribution area. Models were calibrated based on the distribution of black howler monkeys populations. C Area used to project models to the future. The mask of the species is based on the ecoregions proposed by Olson et al. (2001)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author on reasonable request.

References

  • Adhikari, P., Kim, B. J., Hong, S. H., & Lee, D. H. (2022). Climate change induced habitat expansion of nutria (Myocastor coypus) in South Korea. Scientific Reports, 12(1), 3300. https://doi.org/10.1038/s41598-022-07347-5

    Article  CAS  Google Scholar 

  • Akyol, A., Örücü, Ö. K., Arslan, E. S., & Sarıkaya, A. G. (2023). Predicting of the current and future geographical distribution of Laurus nobilis L. under the effects of climate change. Environmental Monitoring and Assessment, 195(4), 459. https://doi.org/10.1007/s10661-023-11086z

    Article  Google Scholar 

  • Amato, K. R., & Estrada, A. (2010). Seed dispersal patterns in two closely related howler monkey species (Alouatta palliata and A. pigra): A preliminary report of differences in fruit consumption, traveling behavior, and associated dung beetle assemblages. Neotropical Primates, 17(2), 59–66. https://doi.org/10.1896/044.017.0203

    Article  Google Scholar 

  • Anand, V., Oinam, B., & Singh, I. H. (2021). Predicting the current and future potential spatial distribution of endangered Rucervus eldii eldii (Sangai) using MaxEnt model. Environmental Monitoring and Assessment, 193(3), 147. https://doi.org/10.1007/s10661-021-08950-1

    Article  Google Scholar 

  • Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., ... & Metcalf, C. J. E. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology20(4), 193–205. https://doi.org/10.1038/s41579-021-00639-z.

  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, G., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Bernard, A. B., & Marshall, A. J. (2020). Assessing the state of knowledge of contemporary climate change and primates. Evolutionary Anthropology: Issues, News, and Reviews, 29(6), 317–331. https://doi.org/10.1002/evan.21874

    Article  Google Scholar 

  • Borzée, A., Andersen, D., Groffen, J., Kim, H. T., Bae, Y., & Jang, Y. (2019). Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Scientific Reports, 9, 11838. https://doi.org/10.1038/s41598-019-48310-1

    Article  CAS  Google Scholar 

  • Brauner, N., & Shacham, M. (1998). Role of range and precision of the independent variable in regression of data. AIChE Journal, 44(3), 603–611. https://doi.org/10.1002/aic.690440311

    Article  CAS  Google Scholar 

  • Bronson, F. H. (2009). Climate change and seasonal reproduction in mammals. Philosophical Transactions of the Royal Society b: Biological Sciences, 364(1534), 3331–3340. https://doi.org/10.1098/rstb.2009.0140

    Article  CAS  Google Scholar 

  • Calixto-Pérez, E., Alarcón-Guerrero, J., Ramos-Fernández, G., Dias, P. A. D., Rangel-Negrín, A., Améndola-Pimenta, M., ... & Martínez-Meyer, E. (2018). Integrating expert knowledge and ecological niche models to estimate Mexican primates’ distribution. Primates59, 451-467 https://doi.org/10.1007/s10329-018-0673-8

  • Chapman, C. A. (1995). Primate seed dispersal: Coevolution and conservation implications. Evolutionary Anthropology: Issues, News, and Reviews, 4(3), 74–82. https://doi.org/10.1002/evan.1360040303

    Article  Google Scholar 

  • Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  Google Scholar 

  • Cortés-Ortiz, L., Bermingham, E., Rico, C., Rodrıguez-Luna, E., Sampaio, I., & Ruiz-Garcıa, M. (2003). Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Molecular Phylogenetics and Evolution, 26(1), 64–81. https://doi.org/10.1016/S1055-7903(02)00308-1

    Article  Google Scholar 

  • Cortés-Ortíz, L., Rosales-Meda, M., Marsh, L.K. & Mittermeier, R.A. 2020. Alouatta pigraThe IUCN Red List of Threatened Species 2020: e.T914A17926000. https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T914A17926000.en

  • da Silva, L. B., Oliveira, G. L., Frederico, R. G., Loyola, R., Zacarias, D., Ribeiro, B. R., & Mendes-Oliveira, A. C. (2022). How future climate change and deforestation can drastically affect the species of monkeys endemic to the eastern Amazon, and priorities for conservation. Biodiversity and Conservation, 31(3), 971–988. https://doi.org/10.1007/s10531-022-02373-1

    Article  Google Scholar 

  • Deomurari, A., Sharma, A., Ghose, D., & Singh, R. (2023). Projected shifts in bird distribution in India under climate change. Diversity, 15(3), 404. https://doi.org/10.3390/d15030404

    Article  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith, J., Kearney, M., & Phillips, S. (2010). The art of modeling range-shifting species. Methods in Ecology and Evolution, 1, 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

  • Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G., & Townsend Peterson, A. (2014). Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospatial Health, 9, 221–229. https://doi.org/10.4081/gh.2014.19

    Article  Google Scholar 

  • ESRI (2016). ArcGIS desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute.

  • Estrada, A., & Coates-Estrada, R. (1996). Tropical rain forest fragmentation and wild populations of primates at Los Tuxtlas, Mexico. International Journal of Primatology, 17, 759–783. https://doi.org/10.1007/BF02735263

    Article  Google Scholar 

  • Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez‐Duque, E., Di Fiore, A., Nekaris, K. A., Nijman, V., Heymann, E. W., Lambert, J. E., Rovero, F., Barelli, C., Setchell, J. M., Gillespie, T. R., Mittermeier, R. A., Arregoitia, L. V., de Guinea, M., Gouveia, S., Dobrovolski, R., … Li, B. (2017). Impending extinction crisis of the world’s primates: Why primates matter. Science advances,3, 1600946. https://doi.org/10.1126/sciadv.1600946.

  • Estrada, A. (2015). Conservation of Alouatta: Social and economic drivers of habitat loss, information vacuum, and mitigating population declines. Howler monkeys: Behavior, ecology, and conservation, 383–409. https://doi.org/10.1111/jbi.14617.

  • Fajardo, J., Corcoran, D., Roehrdanz, P. R., Hannah, L., & Marquet, P. A. (2020). GCM compareR: A web application to assess differences and assist in the selection of general circulation models for climate change research. Methods in Ecology and Evolution, 11(5), 656–663. https://doi.org/10.1111/2041-210X.13360

    Article  Google Scholar 

  • Fernandes, R. F., Honrado, J. P., Guisan, A., Roxo, A., Alves, P., Martins, J., & Vicente, J. R. (2019). Species distribution models support the need of international cooperation towards successful management of plant invasions. Journal for Nature Conservation, 49, 85–94. https://doi.org/10.1016/j.jnc.2019.04.001

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fontúrbel, F. E., Franco, L. M., Bozinovic, F., Quintero-Galvis, J. F., Mejías, C., Amico, G. C., Vázquez, M. S., Sabat, P., Sánchez-Hernández, J. C., Watson, D. M., Saenz-Agudelo, P., & Nespolo, R. F. (2022). The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecology and Evolution, 12(3), e8645. https://doi.org/10.1002/ece3.8645

    Article  Google Scholar 

  • Ford, S. M. (2006). The biogeographic history of Mesoamerican primates. New perspectives in the study of Mesoamerican primates: Distribution, ecology, behavior, and conservation (pp. 81–114). Springer, US.

    Chapter  Google Scholar 

  • Franklin, J. (2023). Species distribution modelling supports the study of past, present and future biogeographies. Journal of Biogeography. https://doi.org/10.1111/jbi.14617

    Article  Google Scholar 

  • Freire Filho, R., & Palmeirim, J. M. (2020). Potential distribution of and priority conservation areas for the Endangered Caatinga howler monkey Alouatta ululata in north-eastern Brazil. Oryx, 54(6), 794–802. https://doi.org/10.1017/sS0030605318001084

    Article  Google Scholar 

  • Gallo-Viracocha, F., Urgilés-Verdugo, C., Fuentes, N., Alfonso-Cortes, F., Zurita-Arthos, L., Torres, T. C., & Tirira, D. G. (2022). Distribution, conservation, and vulnerability to climate change of the Ecuadorian Brown-headed Spider Monkey (Primates: Atelidae). Mammalia aequatorialis, 4, 39–52. https://doi.org/10.59763/mam.aeq.v4i.50

    Article  Google Scholar 

  • Glad, A., & Mallard, F. (2022). Alpine marmot (Marmota marmota) distribution evolution under climate change: The use of species distribution models at a local scale in the western Pyrenees massif (France). Ecological Informatics, 69, 101646. https://doi.org/10.1016/j.ecoinf.2022.101646

    Article  Google Scholar 

  • Goberville, E., Beaugrand, G., Hautekèete, N. C., Piquot, Y., & Luczak, C. (2015). Uncertainties in the projection of species distributions related to general circulation models. Ecology and Evolution, 5, 1100–1116. https://doi.org/10.1002/ece3.1411

    Article  Google Scholar 

  • Golicher, D. J., Cayuela, L., & Newton, A. C. (2012). Effects of climate change on the potential species richness of Mesoamerican forests. Biotropica, 44(3), 284–293. https://doi.org/10.1111/j.1744-7429.2011.00815.x

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Guisan, A., Edwards, T. C., Jr., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 157(2–3), 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1

    Article  Google Scholar 

  • Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Regan, T. J., Brotons, L., McDonald-Madden, E., & Mantyka-Pringle, C. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424–1435. https://doi.org/10.1111/ele.12189

    Article  Google Scholar 

  • Gusmão, A. C., Evangelista-Vale, J. C., Pires-Oliveira, J. C., Barnett, A. A., & Da Silva, O. D. (2021). New records and modelling the impacts of climate change on the black-tailed marmosets. PLoS ONE, 16(9), e0256270. https://doi.org/10.1371/journal.pone.0256270

    Article  CAS  Google Scholar 

  • Guzman, B. K., Cotrina-Sánchez, A., Allauja-Salazar, E. E., Tarifeno, C. M. O., Sandoval, J. D. R., Cerna, M. Y. H., Barboza, E., Torres-Guzmán, C., & Oliva, M. (2022). Predicting potential distribution and identifying priority areas for conservation of the Yellow-tailed Woolly Monkey (Lagothrix flavicauda) in Peru. Journal for Nature Conservation, 70, 126302. https://doi.org/10.1016/j.jnc.2022.126302

    Article  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thaus, D., Stehman, S. V., Goetz, S. J., Loveland, T. R. M., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693

    Article  CAS  Google Scholar 

  • Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30(6), 751–777. https://doi.org/10.1177/0309133306071957

    Article  Google Scholar 

  • Helm, B., Ben-Shlomo, R., Sheriff, M. J., Hut, R. A., Foster, R., Barnes, B. M., & Dominoni, D. (2013). Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proceedings of the Royal Society b: Biological Sciences, 280(1765), 20130016. https://doi.org/10.1098/rspb.2013.0016

    Article  Google Scholar 

  • Hernández-Pérez, E. (2015). Rope bridges: A strategy for enhancing habitat connectivity of the black howler monkey (Alouatta pigra). Neotropical Primates, 22(2), 94–96.

    Article  Google Scholar 

  • Hernández-Rodríguez, D., & Serio-Silva, J. C. (2020). Éramos muchos y parió la mona: Dieta de Alouatta pigra en condiciones de fragmentación en Balancán Tabasco. Kuxulkab, 26(54), 27–39. https://doi.org/10.19136/kuxulkab.a26n54.3208

    Article  Google Scholar 

  • Hernández-Rodríguez, D., Vásquez-Aguilar, A. A., Serio-Silva, J. C., Rebollar, E. A., & Azaola-Espinosa, A. (2019). Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). Journal of Medical Primatology, 48(2), 99–105. https://doi.org/10.1111/jmp.12395

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IP CC). (2014). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • International Union for Conservation of Nature (IUCN). (2020). The IUCN red list of threatened species. Version 2020–3. Available at: www.iucnredlist.org. (Accessed: 10 December 2020).

  • Isabirye-Basuta, G. M., & Lwanga, J. S. (2008). Primate populations and their interactions with changing habitats. International Journal of Primatology, 29, 35–48. https://doi.org/10.1007/s10764-008-9239-8

    Article  Google Scholar 

  • Jiang, F., Zhang, J., Gao, H., Cai, Z., Zhou, X., Li, S., & Zhang, T. (2020). Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Science of the Total Environment, 704, 135335. https://doi.org/10.1016/j.scitotenv.2019.135335

    Article  CAS  Google Scholar 

  • Kass, J. M., Pinilla‐Buitrago, G. E., Paz, A., Johnson, B. A., Grisales‐Betancur, V., Meenan, S. I., Attali, D., Broennimann, O., Galante, P. J., Maitner, B. S., Owens, H. L., Varela, S. Aiello-Lammens, M. E., Merow, C., Blair, M. E. & Anderson, R. P. (2023). wallace 2: A shiny app for modeling species niches and distributions redesigned to facilitate expansion via module contributions. Ecography, e06547. https://doi.org/10.1111/ecog.06547.

  • Kowalewski, M. M., Salzer, J. S., Deutsch, J. C., Raño, M., Kuhlenschmidt, M. S., & Gillespie, T. R. (2011). Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: Patterns of zoonotic protozoa infection relative to degree of human–primate contact. American Journal of Primatology, 73(1), 75–83. https://doi.org/10.1002/ajp.20803

    Article  Google Scholar 

  • Kowalzik, B. K., Pavelka, M. S. M., Kutz, S. J., & Behie, A. (2010). Parasites, primates, and ant-plants: Clues to the life cycle of Controrchis spp. In black howler monkeys (Alouatta pigra) in Southern Belize. Journal of Wildlife Diseases, 46(4), 1330–1334. https://doi.org/10.7589/0090-3558-46.4.1330

    Article  Google Scholar 

  • Kuang, W., Zinner, D., Li, Y., Yao, X., Roos, C., & Yu, L. (2023). Recent advances in genetics and genomics of snub-nosed monkeys (Rhinopithecus) and their implications for phylogeny, conservation, and adaptation. Genes, 14(5), 985. https://doi.org/10.3390/genes14050985

    Article  CAS  Google Scholar 

  • Kufa, C. A., Bekele, A., & Atickem, A. (2022). Impacts of climate change on predicted habitat suitability and distribution of Djaffa Mountains Guereza (Colobus guereza gallarum, Neumann 1902) using MaxEnt algorithm in Eastern Ethiopian Highland. Global Ecology and Conservation, 35, e02094. https://doi.org/10.1016/j.gecco.2022.e02094

    Article  Google Scholar 

  • Li, W. B., Yang, P. P., Xia, D. P., Li, M., & Li, J. H. (2023). Current distribution of two species of Chinese macaques (Macaca arctoides and Macaca thibetana) and the possible influence of climate change on future distribution. American Journal of Primatology, e23493. https://doi.org/10.1002/ajp.23493.

  • Licona-Vera, Y., Ortiz-Rodriguez, A. E., Vásquez-Aguilar, A. A., & Ornelas, J. F. (2018). Lay mistletoes on the Yucatán Peninsula: Post-glacial expansion and genetic differentiation of Psittacanthus mayanus (Loranthaceae). Botanical Journal of the Linnean Society, 186(3), 334–360. https://doi.org/10.1093/botlinnean/box098

    Article  Google Scholar 

  • Linero, D., Cuervo-Robayo, A. P., & Etter, A. (2020). Assessing the future conservation potential of the Amazon and Andes Protected Areas: Using the woolly monkey (Lagothrix lagothricha) as an umbrella species. Journal for Nature Conservation, 58, 125926. https://doi.org/10.1016/j.jnc.2020.125926

    Article  Google Scholar 

  • Link, A., & Di Fiore, A. (2006). Seed dispersal by spider monkeys and its importance in the maintenance of neotropical rain-forest diversity. Journal of tropical ecology, 22(3), 235–246. https://doi.org/10.1017/S0266467405003081

    Article  Google Scholar 

  • Lippi, C. A., Canfield, S., Espada, C., Gaff, H. D., & Ryan, S. J. (2023). Estimating the distribution of Oryzomys palustris, a potential key host in expanding rickettsial tick-borne disease risk. Ecosphere, 14(3), e4445. https://doi.org/10.1002/ecs2.4445

    Article  Google Scholar 

  • Luo, Z., Zhou, S., Yu, W., Yu, H., Yang, J., Tian, Y., Zhao, M., & Wu, H. (2015). Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area. China. American Journal of Primatology, 77(2), 135–151. https://doi.org/10.1002/ajp.22317

    Article  Google Scholar 

  • Machado, A. F., da Silva, M. N. F., Farias, I. P., Anciães, M., Nunes, M. S., Miranda, C. L., Peçanha, W. T., & Duarte, L. (2023). Recent past connections between Amazonian and Atlantic forests by comparative phylogeography and paleodistribution models for Didelphid mammals. https://doi.org/10.21203/rs.3.rs-2600787/v1

  • Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., & Hannah, L. E. E. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation biology, 20(2), 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x

    Article  Google Scholar 

  • Martínez-Mota, R., Pozo-Montuy, G., Bonilla Sánchez, Y. M., & Gillespie, T. R. (2018). Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra). Therya, 9(2), 161–169. https://doi.org/10.12933/therya-18-572

    Article  Google Scholar 

  • Martínez-Mota, R., Righini, N., Mallott, E. K., Gillespie, T. R., & Amato, K. R. (2021). The relationship between pinworm (Trypanoxyuris) infection and gut bacteria in wild black howler monkeys (Alouatta pigra). American Journal of Primatology, 83(12), e23330. https://doi.org/10.1002/ajp.23330

    Article  Google Scholar 

  • Mawdsley, J. R., O’Malley, R., & Ojima, D. S. (2009). A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(5), 1080–1089. https://doi.org/10.1111/j.1523-1739.2009.01264.x

    Article  Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A., Jr. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Meyer, A. L., Pie, M. R., & Passos, F. C. (2014). Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. American Journal of Primatology, 76(6), 551–562. https://doi.org/10.1002/ajp.22247

    Article  Google Scholar 

  • Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A Systematic Review. Peerj, 5, e3093. https://doi.org/10.7717/peerj.3093

    Article  Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x

    Article  Google Scholar 

  • Nüchel, J., Klith, P., Wen, B., & Xing, X. A. (2018). Snub - nosed monkeys (Rhinopithecus): Potential distribution and its implication for conservation. Biodiversity and Conservation, 27, 1517–1538. https://doi.org/10.1007/s10531-018-1507-0

    Article  Google Scholar 

  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., Dámico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Ornelas, J. F., Licona-Vera, Y., & Vásquez-Aguilar, A. A. (2018). Genetic differentiation and fragmentation in response to climate change of the narrow endemic Psittacanthus auriculatus. Tropical Conservation Science, 11, 1–15. https://doi.org/10.1177/1940082918755513

    Article  Google Scholar 

  • Ortiz-Martínez, T., Rico-Gray, V., & Martínez-Meyer, E. (2008). Predicted and verified distributions of Ateles geoffroyi and Alouatta palliata in Oaxaca. Mexico. Primates, 49(186–194), 7. https://doi.org/10.1007/s10329-008-0088-z

    Article  Google Scholar 

  • Ortiz-Rodriguez, A. E., Licona-Vera, Y., Vásquez-Aguilar, A. A., Hernández-Soto, M., López-Huicochea, E. A., & Ornelas, J. F. (2020). Genetic differentiation among Psittacanthus rhynchanthus (Loranthaceae) populations: Novel phylogeographic patterns in the Mesoamerican tropical lowlands. Plant Systematics and Evolution, 306, 1–20. https://doi.org/10.1007/s00606-020-01638-y

    Article  Google Scholar 

  • Osorio‐Olvera, L., Lira‐Noriega, A., Soberón, J., Peterson, A. T., Falconi, M., Contreras‐Díaz, R. G., ... & Barve, N. (2020). ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution11(10), 1199–1206. https://doi.org/10.1111/2041-210X.13452.

  • Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., ... & Peterson, A. T. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological modelling263, 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011.

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudik, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049

    Article  Google Scholar 

  • Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., Waldhoff, S., Weindl, I., Wise, M., … van Vuuren, D. P. (2017). Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

    Article  Google Scholar 

  • Pozo-Montuy, G., & Serio-Silva, J. C. (2007). Movement and resource use by a group of Alouatta pigra in a forest fragment in Balancán, México. Primates, 48, 102–107. https://doi.org/10.1007/s10329-006-0026-x

    Article  Google Scholar 

  • Pozo-Montuy, G., Serio-Silva, J. C., Bonilla-Sánchez, Y. M., Bynum, N., & Landgrave, R. (2008). Current status of the habitat and population of the black howler monkey (Alouatta pigra) in Balancán, Tabasco, Mexico. American Journal of Primatology: Official Journal of the American Society of Primatologists, 70(12), 1169–1176. https://doi.org/10.1002/ajp.20620

    Article  Google Scholar 

  • Pozo-Montuy, G., Serio-Silva, J. C., & Bonilla-Sánchez, Y. M. (2011). Influence of the landscape matrix on theabundance of arboreal primates in fragmented landscapes. Primates, 52, 139–147. https://doi.org/10.1007/s10329-010-0231-5

    Article  Google Scholar 

  • Pozo-Montuy, G., Serio-Silva, J. C., Chapman, C. A., & Bonilla-Sánchez, Y. M. (2013). Resource use in a landscape matrix by an arboreal primate: Evidence of supplementation in black howlers (Alouatta pigra). International Journal of Primatology, 34, 714–731. https://doi.org/10.1007/s10764-013-9691-y

    Article  Google Scholar 

  • Pozo-Montuy, G., Miranda-Chan, M. J., de la Cruz-Córdova, S. A., & Pinacho-Guendulain, B. (2021). Population state of black saraguato monkeys (Alouatta pigra) in the Reserva de la Biosfera Pantanos de Centla. Ecosistemas y Recursos Agropecuarios, 8(I). https://doi.org/10.19136/era.a8nI.2672

  • Préau, C., Tournebize, J., Lenormand, M., Alleaume, S., Boussada, V. G., & Luque, S. (2022). Habitat connectivity in agricultural landscapes improving multi-functionality of constructed wetlands as nature-based solutions. Ecological Engineering, 182, 106725. https://doi.org/10.1016/j.ecoleng.2022.106725

    Article  Google Scholar 

  • Prieto-Torres, D. A., Rosas, L. E. N., Figueroa, D. R., & del Coro Arizmendi, M. (2021). Most Mexican hummingbirds lose under climate and land-use change: Long-term conservation implications. Perspectives in Ecology and Conservation, 19(4), 487–499. https://doi.org/10.1016/j.pecon.2021.07.001

    Article  Google Scholar 

  • Purohit, S., & Rawat, N. (2022). MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district India. Modeling Earth Systems and Environment, 8(2), 2051–2063. https://doi.org/10.1007/s40808-021-01205-5

    Article  Google Scholar 

  • Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., & Escobar, L. E. (2016). NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39(8), 805–813. https://doi.org/10.1111/ecog.01961

    Article  Google Scholar 

  • R Development Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Rahman, M., Islam, M., Gebrekirstos, A., & Bräuning, A. (2019). Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees, 33, 623–640. https://doi.org/10.1007/s00468-019-01836-3

    Article  Google Scholar 

  • Ranjitkar, S., Xu, J., Shrestha, K. K., & Kindt, R. (2014). Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species. Ecological Modelling, 282, 18–24. https://doi.org/10.1016/j.ecolmodel.2014.03.003

    Article  Google Scholar 

  • Renner, I. W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S. J., ... & Warton, D. I. (2015). Point process models for presence‐only analysis. Methods in Ecology and Evolution6(4), 366–379. https://doi.org/10.1111/2041-210X.12352.

  • Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global environmental change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

  • Rubenstein, M. A., Weiskopf, S. R., Bertrand, R., Carter, S. L., Comte, L., Eaton, M. J., ... & Thompson, L. M. (2023). Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Environmental Evidence12(1), 1–21. https://doi.org/10.1186/s13750-023-00296-0.

  • Ruiz-García, M., Cerón, Á., Sánchez-Castillo, S., Rueda-Zozaya, P., Pinedo-Castro, M., Gutierrez-Espeleta, G., & Shostell, J. M. (2017). Phylogeography of the mantled howler monkey (Alouatta palliata; Atelidae, Primates) across its geographical range by means of mitochondrial genetic analyses and new insights about the phylogeny of Alouatta. Folia Primatologica, 88(5), 421–454. https://doi.org/10.1159/000480502

    Article  Google Scholar 

  • Serio-Silva, J. C., & Rico-Gray, V. (2002). Interacting of forest fragmentation and howler monkey foraging on germination and dispersal of fig seeds. Oryx, the International Journal of Conservation, 36(3), 266–271. https://doi.org/10.1017/S0030605302000480

    Article  Google Scholar 

  • Soberón, J., & Townsend Peterson, A. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4

    Article  Google Scholar 

  • Songer, M., Delion, M., Biggs, A., Huang, Q., 2012. Modeling impacts of climate change on giant panda habitat. International Journal of Ecology 1–12 https://doi.org/10.1155/2012/108752

  • Stevenson, P. R., Pineda, M., & Samper, T. (2005). Influence of seed size on dispersal patterns of woolly monkeys (Lagothrix lagothricha) at Tinigua Park, Colombia. Oikos110(3), 435–440. http://www.jstor.org/stable/3548583

  • Stoerk, T., Wagner, G., & Ward, R. E. (2018). Policy brief—Recommendations for improving the treatment of risk and uncertainty in economic estimates of climate impacts in the sixth Intergovernmental Panel on Climate Change assessment report. Rev. Environ. Econ. Policy, 12, 371–376. https://doi.org/10.1093/reep/rey005

    Article  Google Scholar 

  • Sydeman, W. J., Hester, M. M., Thayer, J. A., Gress, F., Martin, P., & Buffa, J. (2001). Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969–1997. Progress in Oceanography, 49(1–4), 309–329. https://doi.org/10.1016/S0079-6611(01)00028-3

    Article  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148. https://doi.org/10.1038/nature02121

  • Tirira, D. G., & Gallo-Viracocha, F. (2021). Áreas prioritarias para la conservación y vulnerabilidad al cambio climático de Alouatta palliata aequatorialis (Atelidae) y Cebus aequatorialis (Cebidae) en la provincia de Azuay, Ecuador. Mammalia aequatorialis, 3, 37–57. https://doi.org/10.59763/mam.aeq.v3i.8

    Article  Google Scholar 

  • Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571–573. https://doi.org/10.1126/science.aaa4984

    Article  CAS  Google Scholar 

  • Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2022). Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecological Monographs, 92(1), e01486. https://doi.org/10.1002/ecm.1486

    Article  Google Scholar 

  • Van Belle, S., & Estrada, A. (2006). Demographic features of Alouatta pigra populations in extensive and fragmented forests. New perspectives in the study of Mesoamerican primates (pp. 121–142). Springer.

    Chapter  Google Scholar 

  • Vásquez-Aguilar, A. A., Toledo-Manuel, F. O., Barbachano-Guerrero, A., & Hernández-Rodríguez, D. (2020). Detection of antimicrobial resistance genes in Escherichia coli isolated from black howler monkeys (Alouatta pigra) and domestic animals in fragmented rain-forest areas in Tabasco. Mexico. Journal of Wildlife Diseases, 56(4), 922–927. https://doi.org/10.7589/2019-10-243

    Article  CAS  Google Scholar 

  • Vásquez-Aguilar, A. A., Ornelas, J. F., Rodríguez-Gómez, F., & Cristina MacSwiney, G. M. (2021). Modeling future potential distribution of Buff-Bellied Hummingbird (Amazilia yucatanensis) under climate change: Species vs. subspecies. Tropical Conservation Science, 14, 19400829211030830. https://doi.org/10.1177/1940082921103083

    Article  Google Scholar 

  • Vásquez-Aguilar, A. A., MacSwiney, G. M. C., Rodríguez-Gómez, F., & Ornelas, J. F. (2023). Mitochondrial, morphological and environmental data partially support current subspecies designation in Amazilia yucatanensis hummingbirds. Biological Journal of the Linnean Society, 138(4), 413–436. https://doi.org/10.1093/biolinnean/blad004

    Article  Google Scholar 

  • Vázquez, M. S., Ripa, R. R., Rodriguez-Cabal, M. A., & Amico, G. C. (2023). Potential distribution and conservation implications of key marsupials for the Patagonian temperate forest. Mammalian Biology, 103(1), 13–21. https://doi.org/10.1007/s42991-022-00322-7

    Article  Google Scholar 

  • Vidal-García, F., & Serio-Silva, J. C. (2011). Potential distribution of Mexican primates: Modeling the ecological niche with the maximum entropy algorithm. Primates, 52, 261–270. https://doi.org/10.1007/s10329-011-0246-6

    Article  Google Scholar 

  • Villers-Ruiz, L., & Trejo-Vázquez, I. (1997). Assessment of the vulnerability of forest ecosystems to climate change in Mexico. Climate Research9(1–2), 87–93. https://www.jstor.org/stable/24864620.

  • Vitazkova, S. K., & Wade, S. E. (2006). Parasites of free-ranging black howler monkeys (Alouatta pigra) from Belize and Mexico. American Journal of Primatology: Official Journal of the American Society of Primatologists, 68(11), 1089–1097. https://doi.org/10.1002/ajp.20309

    Article  Google Scholar 

  • Walker, W. H., Meléndez-Fernández, O. H., Nelson, R. J., & Reiter, R. J. (2019). Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness. Ecology and Evolution, 9(17), 10044–10054. https://doi.org/10.1002/ece3.5537

    Article  Google Scholar 

  • Xu, D., Zhuo, Z., Wang, R., Ye, M., & Pu, B. (2019). Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19, e00691. https://doi.org/10.1016/j.gecco.2019.e00691

    Article  Google Scholar 

  • Yan, X., Wang, S., Duan, Y., Han, J., Huang, D., & Zhou, J. (2021). Current and future distribution of the deciduous shrub Hydrangea macrophylla in China estimated by MaxEnt. Ecology and Evolution, 11(22), 16099–16112. https://doi.org/10.1002/ece3.8288

    Article  Google Scholar 

  • Zahoor, B., Liu, X., Kumar, L., Dai, Y., Tripathy, B. R., & Songer, M. (2021). Projected shifts in the distribution range of Asiatic black bear (Ursus thibetanus) in the Hindu Kush Himalaya due to climate change. Ecological Informatics, 63, 101312. https://doi.org/10.1016/j.ecoinf.2021.101312

    Article  Google Scholar 

  • Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F. & Arino, O. (2021). ESA WorldCover 10 m 2020 v100. https://doi.org/10.5281/zenodo.5571936

  • Zappa, G., & Shepherd, T. G. (2017). Storylines of atmospheric circulation change for European regional climate impact assessment. Journal of Climate, 30(16), 6561–6577. https://doi.org/10.1175/JCLI-D-16-0807.1

    Article  Google Scholar 

  • Zhang, S., Liu, B., Liu, X., Yuan, Q., Xiao, X., & Zhou, T. (2022). Maximum entropy modeling for the prediction of potential plantation distribution of Arabica coffee under the CMIP6 mode in Yunnan. Southwest China. Atmosphere, 13(11), 1773. https://doi.org/10.3390/atmos13111773

    Article  Google Scholar 

Download references

Acknowledgements

We thank Arturo Barbachano Guerrero for the image of Alouatta pigra used in the Fig. 1 A, Saddan Morales Saldaña and Luis Manuel García Feria for their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

Antonio Acini Vásquez-Aguilar: conceptualization, writing—original draft preparation; methodology and formal analysis; Antonio Acini Vásquez-Aguilar and Dolores Hernández-Rodríguez: validation and visualization. All authors: supervision, writing—reviewing and editing; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Antonio Acini Vásquez-Aguilar.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 791 KB)

Supplementary file2 (CSV 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez-Aguilar, A.A., Hernández-Rodríguez, D. & Martínez-Mota, R. Predicting future climate change impacts on the potential distribution of the black howler monkey (Alouatta pigra): an endangered arboreal primate. Environ Monit Assess 196, 392 (2024). https://doi.org/10.1007/s10661-024-12543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12543-z

Keywords

Navigation