Skip to main content

Advertisement

Log in

Urine-derived stem cells-extracellular vesicles ameliorate diabetic osteoporosis through HDAC4/HIF-1α/VEGFA axis by delivering microRNA-26a-5p

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Critical roles of stem cell-extracellular vesicles (EVs) in the management of osteoporosis have been documented. Here, this study was designed to enlarge the research of the specific effects and underlying mechanism of urine-derived stem cells-EVs (USCs-EVs) on osteoporosis in diabetes rats. Firstly, miR-26a-5p and histone deacetylase 4 (HDAC4) expression in USCs of rats after diabetic osteoporosis (DOP) modeling induced by streptozotocin injection was determined, followed by study of their interaction. Then, USCs-EVs were co-cultured with osteogenic precursor cells, the effects of miRNA-26a-5p (miR-26a-5p) on osteoblasts, osteoclasts, bone mineralization deposition rate were evaluated. Meanwhile, the effect of USCs-EVs carrying miR-26a-5p on DOP rats was assessed. Elevated miR-26a-5p was seen in USCs-EVs which limited HDAC4 expression. Moreover, USCs-EVs delivered miR-26a-5p to osteogenic precursor cells, thereby promoting their differentiation, enhancing the activity of osteoblasts, and inhibiting the activity of osteoclasts, thereby preventing DOP through the activation of hypoxia inducible factor 1 subunit alpha (HIF-1α)/vascular endothelial growth factor A (VEGFA) pathway by repressing HDAC4. In a word, USCs-EVs-miR-26a-5p is a promising therapy for DOP by activating HIF-1α/VEGFA pathway through HDAC4 inhibition.

Graphical abstract

1. USCs-EVs-miR-26a-5p targeted HDAC4 and limited HDAC4 expression. 2. miR-26a-5p was delivered by USCs-EVs into osteoblast precursor cells. 3. USCs-EVs-miR-26a-5p promoted the differentiation of osteoblast precursor cells into osteoblasts. 4. miR-26a-5p delivered by USCs-EVs could inhibit HDAC4. 5. USCs-EVs-miR-26a-5p could prevent the pathogenesis of DOP via HIF-1α/VEGFA aix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data and materials of the study can be obtained from the corresponding author upon request.

Code availability

Not applicable.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dan Zhang conceived and together with Linna Suo designed the study. Dan Zhang, Min Yu, and Linna Suo were involved in data collection. Dan Zhang and Jian Du performed the statistical analysis and preparation of Figs. Dan Zhang and Linna Suo drafted the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Linna Suo.

Ethics declarations

Ethics approval

This study was implemented under the ratification of the Research Ethics Committee of The Fourth Affiliated Hospital of China Medical University (approval number: EC-2019-KS-072(YJ)). We tried our best to limit animals’ pain. Informed consent form was signed prior to participation by all participants.

Consent to participate

All participants signed informed consent documentation.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Du, J., Yu, M. et al. Urine-derived stem cells-extracellular vesicles ameliorate diabetic osteoporosis through HDAC4/HIF-1α/VEGFA axis by delivering microRNA-26a-5p. Cell Biol Toxicol 39, 2243–2257 (2023). https://doi.org/10.1007/s10565-022-09713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09713-5

Keywords

Navigation