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Abstract. Themain result in this paper statesthat if a one-parameter Gaussian process has
C?% paths and satisfies a non-degeneracy condition, then the distribution of its maximum on
acompact interval is of class C*. The methods leading to this theorem permit also to give
bounds on the successive derivatives of the distribution of the maximum and to study their
asymptotic behaviour asthe level tendsto infinity.

1. Introduction and main results

Let X = {X; : ¢ € [0, 1]} be a stochastic process with real values and continuous
paths defined on a probability space (2, 3, P). The aim of this paper is to study
the regularity of the distribution function of the random variable M := max{X; :
t € [0, 1]}.

X issaidto satisfy the hypothesis Hy, k a positive integer, if:

(D) X isGaussian;

(2) as. X has C* sample paths;

(3) For every integer n > 1and any set 1, ..., t,, Of pairwise different parameter
values, the distribution of the random vector:

Xipo oo X0 X X, X, x

!/
SR 1

is non degenerate.
We denote m(¢) and r(s, t) the mean and covariance functions of X, that is

i+j

m(t) = E(X), r(s, 1) = E((Xy —m(s))(X; —m(1))) and rij i= Lor (i, j =
0, 1, ..) the partia derivatives of r, whenever they exist.
Our main results are the following:
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Theorem 1.1. Let X = {X; : t € [0, 1]} be a stochastic process satisfying Hy.
Denote by F(u) = P(M < u) thedistribution function of M.

Then, F isof classC* and itssuccesivederivatives can be computed by repeated
application of Lemma 3.3.

Corollary 1.1. Let X be a stochastic process verifying Hy, and assume also that
E(X;) =0and Var(X;) = 1.
Then, asu — +oo, F® (i) isequivalent to

k 1
(—1>k—1;—ne—“2/2 /0 S Dt )

The regularity of the distribution of M has been the object of a number of
papers. For general resultswhen X is Gaussian, one can mention:Y lvisaker (1968);
Tsirelson (1975); Weber (1985); Lifshits (1995); Diebolt and Posse (1996) and
references therein.

Theorem 1.1 appears to be a considerable extension, in the context of one-
parameter Gaussian processes, of existing resultsontheregularity of thedistribution
of the maximum which, asfar asthe authors know, do not go beyond Lipschitz con-
dition for thefirst derivative. For example, it impliesthat if the processis Gaussian
with ¢°° paths and satisfies the non-degeneracy condition for every k= 1,2, ...,
then the distribution of the maximum is%°°. The same methods provide boundsfor
the successive derivatives as well as their asymptotic behaviour as their argument
tends to oo (Corollary 1.1).

Except in Theorem 3.1, which contains a first upper bound for the density of
M, we will assume X to be Gaussian.

The proof of Theorem 1.1 is based upon the main Lemma 3.3. Before giving
the proofs we have stated Theorem 3.2 which presents the result of thisLemmain
the special case leading to thefirst derivative of the distribution function of M. As
applications one gets upper and lower bounds for the density of M under condi-
tions that seem to be more clear and more general than in previous work (Diebolt
and Posse, 1996). Some extrawork is needed to extend the implicit formula (9) to
non-Gaussian processes, but this seems to be feasible.

Asfor Theorem 1.1 for derivatives of order greater than 1, its statement and its
proof rely heavily on the Gaussian character of the process.

The main result of this paper has been exposed in the note by Azais and
Wschebor (1999).

2. Crossings

Our methods are based on well-known formulae for the moments of crossings of
the paths of stochastic processes with fixed levels, that have been obtained by a
variety of authors, starting from the fundamental work of S.O.Rice (1944-1945).
In this section we review without proofs some of these and related resullts.

Let f : I — IR beafunction defined on theinterval I of the real numbers,

Cu(fsD):={rel:f(t)=u}
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N, (f; 1) = ﬁ(cu(fQ I))

denote respectively the set of roots of the equation f(¢) = u on theinterval I and
the number of these roots, with the convention N, (f; I) = +oo if the set C,, is
infinite. N, (f; I) is caled the number of “crossings’ of f with the “level” u on
theinterval 1.

Inthe sameway, if f isadifferentiable function the number of “upcrossings’
and “downcrossings’ of f are defined by means of

Uufs D i=ttel: fO)=u, f'(t) >0}

Dy(f; ) :=t(rel: f(t) =u, f't) <O).

For amore general definition of these quantities see Cramér and L eadbetter (1967).

Inwhat follows, || ||, isthenorm of f in LP(1,1), 1 < p < 400, A denot-
ing the L ebesgue measure. The joint density of thefinite set of real-valued random
variables X1, ... X, atthepoint (x1, ...x,) will bedenoted py, ... x, (x1, ...x,) when-
ever it exists. ¢ (1) 1= (2n) " /2exp(—12/2) is the density of the standard normal
distribution, ®(¢) := f; ¢ (u)du itsdistribution function.

The following proposition (sometimes called Kac's formula) is a common tool
to count crossings.

Proposition 2.1. Let f : I = [a,b] — IRbeof class 42, f(a), f(b) # u.If f
does not have local extrema with value 1 on theinteval I, then

Na(f; 1) = lim1/(25) / L 0yat <sy | £/ Old.
840 I

For m and k, positive integers, k < m, define the factorial k¢h power of m by
mf = mm — 1) (m —k +1).

For other real values of m and k we put m!¥] := 0. If k isaninteger k > 1and I an
interval in thereal line, the “diagonal of 7% ” isthe set:

Di(I) := {(t1, ..., ) € I¥, t; = 1, for somepair (j, h), j # h}.

Finally, assumethat X = {X; : r € IR} isarea valued stochastic process with C*
paths. We set , for (t1, ..., tx) € IF\Dy(I) and x; € R(j = 1, ..., k):

X (X1, ...Xk, x/l, ...x,i)dxi...dx,/c
and
I (x1, ..xp) = /k Ag, o (X1, xp)dty.. di,
1

where it is understood that the density in the integrand of the definition of A;, .,
(x1, ...xx) exists amost everywhere and that the integrals above can take the value
—+o00.
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Proposition 2.2. Let k be a positive integer, u a real number and I a bounded
interval in the line. With the above notations and conditions, let us assume that the
process X also satisfies the following conditions:

1. thedensity

/ /
DXy Xy XY X, (VL Xk, X5 00 X)

100

exists for (t1, ...tx), (s1, ...s;) € I*\Dy(I) and is a continuous function of
(11, ...ty) and of x1, ...x; at thepoint (u, ..., u).
2. thefunction
(1, ooy Tk, X1, X)) —> Agy g (X1, . XE)

is continuous for (r1, ..., fx) € I*\Dy(I) and x1, ...x; belonging to a neigh-
bourhood of u.
3. (additional technical condition)

/k=1. / ror r g g
fIR3 X1l |x2_x3|szl,‘..,sz,X‘gl,ng,X;l (X1, ++-Xk, X1, Xp, X3)dxydxpdxz—> 0

as |sp — t1| —> 0, uniformly as (¢4, ..., fz) varies in a compact subset of
I"\ Dy (1) and x1, ..., x; in a fixed neighbourhood of u.

Then,
E((N,X, )*y = I u, ..., u). 2

Both membersin (2) may be +oo

Remarks. (a) For k = 1 formula (2) becomes

+o00
BN, = [ar [ Wiy, e )
1 —00
(b) Simple variations of (3), valid under the same hypotheses are;
+00
E[U,(X; D] = /dt/ x’thX;(u,x’)dx’ 4
1 0
0
B, 0] = [ar [ Wiy, gyt )
1 —00

In the same way one can obtain formulae for the factorial moments of “marked
crossings’, that is, crossings such that some additional condition holds true. For
example, if Y = {Y; : ¢t € IR} is some other stochastic process with real values
such that for every r , (¥, X;, X;) admit ajoint density, —oo < a < b < 400 and

NP(X, Iy:=t{r:tel, X, =u, a<Y, <b}.

Then

b +00
E[N,f’b(X; D] =/ dy/dt/ |x’|th’XhX;(y,u,x’)dx’. (6)
a 1 —00
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In particular, if A", isthe number of strict local maximaof X, on theinterval I
such that the value of X liesin theinterval (a, b), then M:b = DS”’(X/, I) and:

b 0
E[MaJib] =/ dy/dt/ Ix//lpx,,x;,x;’(X,O, xMdx". 7
a 1 —00

Sufficient conditions for the validity of (6) and (7) are similar to those for 3.

(c) Proofs of (2) for Gaussian processes satisfying certain conditions can be
found in Belayev (1966) and Cramér-Leadbetter (1967). Marcus (1977) contains
various extensions. The present statement of Proposition 2.2 is from Wschebor
(1985).

(d) It may be non trivia to verify the hypotheses of Proposition 2.2. However
some general criteriaare available. For exampleif X isaGaussian processwith %1
paths and the densities

PXig,oo X Xy o X

are non-degenerate for (1, ...t), (s1,...5) € I¥\ Dy, then conditions 1, 2, 3 of
Proposition 2.2 hold true (cf Wschebor, 1985, p.37 for a proof and aso for some
manageable sufficient conditions in non-Gaussian cases).

(e) Anather point related to Rice formulae isthe non existence of local extrema
at agiven level. We mention here two well-known results:

Proposition 2.3 (Bulinskaya, 1961). Suppose that X has % paths and that for
everyt € I, X, hasadensity px, (x) bounded for x in a neighbourhood of u.
Then, almost surely, X has no tangencies at the level «, in the sense that if

TS ={tel, X, =u, X, =0}
then P(TX = ) = 1.

Proposition 2.4 (Ylvisaker's Theorem, 1968). Supposethat {X; : r € T} isa
real-valued Gaussian process with continuous paths, defined on a compact sepa-
rable topological space T and that Var(X,) > Ofor every ¢t € T. Then, for each
u € IR, with probability 1, the function # — X, does not have any local extrema
with value u.

3. Proofsand related results

Let & be a random variable with values in IRF with a distribution that admits a
density with respect to the Lebesgue measure . The density will be denoted by
pe () . Further, suppose E is an event. It is clear that the measure

ne(B; E) = P({§ € B}NE)

defined on the Borel sets B of IR¥, is also absolutely continuous with respect to A .

We will denote the “density of & related to E” the Radon derivative:

dug(.; E)
dx

Itisobviousthat pg (x; E) < pg(x) for A-almost every x € IR,

pe(x; E) 1= (x).
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Theorem 3.1. Supposethat X has%? paths, that X, X', X” admit ajoint density at
everytimer, that for every ¢, X, hasabounded density p x; (-) and that the function

1 0
1(x,2) ::/ dt/ x| px, x;,xr(x, 2, x")dx"
0 —00

is uniformly continuousin z for (x, z) in some neighbourhood of («, 0). Then the
distribution of M admits a density pa,(.) satisfying a.e.

pm () < pxo(u; X < 0) + px, (u; X7 > 0)
1 0
—i—/ dt/ Ix"1px, x: xr(u, 0, x")dx". (8)
0 —00 e

Proof. Letu € IRand & > 0. We have

PM<u)— PM<u—h)y=Pu—h<M <u)
<Pu—-h<Xo<u Xyg<0)+Pu—h<X1<u,X;>0)
+P(M+_h’u>0),

u

whereMl‘Lh y = M;[h . (0, 1),sinceifu —h < M < u, then either the maximum

occurs in the interior of the interval [0, 1] or at O or 1, with the derivative taking
the indicated sign. Note that

P(M,, >0 <EWM,, ).

Using Proposition 2.3, with probability 1, X’(.) has no tangencies at the level 0,
thus an upper bound for this expectation follows from the Kac's formula:

1t
Mf_h,uﬂ'_('g)gfo Lix oetu—nay L oel-s.sn o< | X (0O1dt as.

which together with Fatou's lemma imply:

1 8 u u
EM;, )sliminf—/ dz/ I(x,z)dx:/ I(x,0)dx.
T s —0 28 )5 Ju—n u—h
Combining this bound with the preceeding one, we get

P(M <u)— P(M <u—h)

< / . [Pxo(x; Xg < 0) + px,(x; X1 > 0) + I (x,0)] dx,
which gives the result.

In spite of the simplicity of the proof, this theorem provides the best known
upper-bound for Gaussian processes. In fact, in this case, formula (8) isasimpler
expression of the bound of Diebolt and Posse (1996). More precisely, if we use
their parametrization by putting

p(s, 1)
(s)T(t)’

m()=0; r(s,t)=
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with
p(t’ t) = 17 pll(tv t) = 13 plO(t’ [) = 07 ,012(1‘, t) = 07 1002(ts t) = _13

after some calculations, we get exactly their bound M («) ( their formula (9)) for
the density of the maximum.

Let usillustrate formula (8) explicitly when the process is Gaussian, centered
with unit variance. By means of a deterministic time change, one can aso assume
that the process has “unit speed” (Var(X;) = 1). Let L the length of the new
timeinterval. Clearly V ¢, m(z) = 0, r(t,t) =1, r11(¢,¢t) =1, rio¢t, 1) = 0O,
r12(t,t) = 0, rop(z, t) = —1. Note that

Z~N(u, 0% = E(Z7) =0¢(u/o) — n®(—p/0).
The formulae for regression imply that conditionally on X; = u, X; = 0, X/
has expectation —u and variance r2»(¢, t) — 1. Formula (8) reduces to

L
pm(u) < p*(u):=¢<u)[1+(2n>—1/2 /0 Co(t)p(u/Cy(1)) + uq><u/cg(r))dr} :

With Cg (1) 1= /r2o(t, 1) — 1

ASx — 400, d(x) = 1— £2 1 €6 4 ¢ (%) Thisimpliesthat

X

L
P =¢w) [1+ Lu(27)~ "2+ (2m) M2 2 /0 cg(r)qs(u/cg(r))dt}
+0 (u_4¢(u/C+)> :

with C* 1= sup, (o 1] C4 (0).
Furthermore the exact equivalent of py(u) whenu — 400 is

o)y tul exp(—u2/2)

aswewill seein Corollary 1.1.
The following theorem is a special case of Lemma 3.3. We state it separately
sincewe use it below to compare the results that follow from it with known results.

Theorem 3.2. Supposethat X isa Gaussian process satisfying H,. Then M hasa
continuous density pys given for every u by

pmW) = pxou s M <u)+px,(u"; M <u)

1 0
+/ dlf X" px, x; xr @, 0,x"s M < wydx", 9
0 —00

where px,(u™; M < u) = limyy, px,(x; M < u) exists and is a continuous
function of u , aswell as px, (u~; M < u) and Px,.x, x/@”,0, x"i M < u).
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Again, we obtain a simpler version of the expression by Diebolt and Posse
(1996).
In fact, the result 3.2 remains true if X is Gaussian with 2 paths and one
requiresonly that X, X;, X;, X; admit ajoint density for al s, 7, s # ¢ € [0, 1].
If we replace the event {M < u} respectively by {X < 0}, {X] > O} and Q in
each of the three termsin the right hand member in formula (9) we get the general
upper-bound given by (8).
Toobtainlower boundsfor py, (1), weusethefollowingimmediateinequalities:
PM<u/Xo=u) =PM <u, X6 < 0/Xo=1u)
> P (Xy<0/Xo=u)
—EU,[0, 1]1{X6<0}/X0 =u).

In the same way
PM <u/X1=u) =P(M <u,X;>0/X1=u)

P (X} >0/X1=u)
—E(Dy[0, 1]1ix; .0/ X1 = 1)

v

andif x” <O

PM<u/X;=u,X;=0X; =x"
Z 1 - E([Du([o’ t]) + UM([t7 1])] /Xt =1u, X; = 0’ X;/ = -x//)~

If we plug these lower bounds into Formula (9) and replace the expectations of
upcrossings and downcrossings by means of integral formulae of (4), (5) type, we
obtain the lower bound:

pmu) > pxy(u; Xg < 0) + px, (u; X7 <0)
1 0
+ / di f " 1D, xr 7 (u, O, x)dx"
0 —00 pot

1 0 +o00
/ / / U /
_/ ds/ dx / xstS,Xégxoxé(u,xs,u,x)dxs
0 —o0 0 '

1 0 ! 0 / / ” ’
| ar Tl Jods [=oo 1X'1Px, x1 x, x x7 s X', u, 0, x")dx Iy
+flds f+<>0 .x/ ’ ’ //(M )C/ u O X//)d.x/ '
0 —00 ' 0 Px,.x,.x,.x,x; @, x" u, 0,

(10)

Simpler expressionsfor (10) al so adapted to numerical computations, can be found
in Cierco (1996).

Finally, some sharper upperbounds for p,, () are obtained when replacing the
event {M > u} by {Xo + X1 > 2u}, the probability of which can be expressed
using the conditionnal expectation and variance of Xg + X1; we are able only to
express these bounds in integral form.

We now turn to the proofs of our main results.
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Lemma 3.1. (a) Let Z be a stochastic process satisfying Hy (k > 2) and ¢ a point
in [0, 1]. Define the Gaussian processes Z", Z™, Z* by means of the orthogonal
decompositions:

Zy=a" () Zo+sZ° se€(0,1]. (11)
Zy=a'(s)Z1+1—5)Z 5€[0,1). (12)
(s —1)?

Z, =b'(s)Z; + ' (s5) Z; +

5 Z! se[0,1] s #t. (13
Then, the processes Z", Z, Z! can be extended defined at s = 0,5 = 1,5 = ¢
respectively sothat they become pathwise continuousand satisfy Hy—1, Hy—1, Hy—2
respectively.

(b) Let £ be any function of class C*. When there is no ambiguity on the pro-
cess Z, we will define 7, £, f* in the same manner, putting f instead of Z in
(11), (12), (13), but still keeping the regression coefficients corresponding to Z.
Then £, 7, f! can be extended by continuity in the same way to functions in
Cck1, ck=1, Ck=2 respectively.

(c) Let m be a positive integer, suppose Z satisfies Hp,,+1 and r1, ..., t,,, belong
to[0, 1] U {, -}. Denote by z":- the process obtained by repeated application
of the operation of part (a) of this Lemma, that is

Denote by s1, ..., s, (p < m) the ordered p-tuple of the elements of 1, ..., ,, that
belong to [0, 1] (i.e. they are not “F" or “—"). Then, a.s. for fixed values of the
symbols“H" ,“—" the application:

(sl, ...,sp,s) — (Z;l""’t”’, (Ztl """ t’"):)
is continuous.

Proof . (a) and (b) follow in a direct way, computing the regression coefficients
a" (s), a™ (s), b'(s), ¢’ (s) and substituting into formulae (11), (12), (13). Note
that (b) also follows from (&) by applyingitto Z 4+ f and to Z. We prove now (c)
which is a consequence of the following:

Suppose Z(11, ..., t) isaGaussian field with C? sample paths (p > 2) defined on
[0, 1]¥ with no degeneracy in the same sense that in the definition of hypothesis H,
(3) for one-parameter processes. Then the Gaussian fields defined by means of:

2501, 1) = )7 (2000 e e, 1) = @ (01 e 0 Z(0, 121, 0))
fors, #£ 0,

7t i) = A= 1)t (Z(tl, o oo 1) — @ (s s ) Z(ELs oo Tt 1))
fore # 1,

5 2
Z(t1, oo tk, i) = 2(p1 — 1)~ (Z(t1, ooy Br—1, k1)
—b(t1, ..., te, tkt1) Z (11,5 ..y 1)

0Z
—c(ty, ... I, tk+1)£(t1, e 1)) for 41 # 1k
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can be extended to [0, 1]* (respectively [0, 1]%, [0, 1]¥*1) into fields with pathsin
CP~1 (respectively CP~1, €P~2). In the above formulae,

-a" (11, ..., ) istheregression coefficient of Z(t1, ..., ;) on Z(t1, ..., tx_1, 0),
-a™\(11, ..., 1) istheregression coefficient of Z(r1, ..., &) on Z(t1, ..., tx—1, 1),
-b(t1, ooy t, ter 1), (1, ..., Ir, tr41) @€ the regression coefficients of

Z(11, ..., ty—1, tr+1) on the pair (Z(tl, e 1), %(rl, tk)) )

Let usprovethestatement on Z.Theother twoaresi mpler. Denoteby V the sub-
spaceof L2 (Q, X, P) generated by the pair (Z(tl, e 10), g%(tl, tk)> . Denote

by ITy, . theversion of the orthogonal projection of L? (2, X, P) ontheorthogonal
complement of V, defined by means of.

0z
Myo(Y) =Y — [bZ(t1, ... 1x) + ca(tl, e 0],

where b and ¢ are the regression coefficients of Y on the pair

0Z
Z(t1, ooy ti)y — (11, -ons ti).
g

Note that if {Yy : 6 € ®} isarandom field with continuous paths and such that
6 — Yy iscontinuousin L2 (2, 3, P), thenas.

(0,11, ... ) = My (Yp)

iS continuous.
From the definition:

Z(t1, s t, i) = 2 (k1 — 1) "2 Tyt (Z(t1, ooy i1, 1)) -

On the other hand, by Taylor's formula:

0Z
Z(t1,y oo i1, iy 1) = Z(11, oo, )+ (tkp1 — ) a—tk(tl, cn i) FR2 (11, .0, 1, Ty 1)

with
1 927
R2 (11, sty trg1) = / — (1, o k-1, T) (k41 — T) dT
I 8tk
so that

Z(t1, ooy 1, tr1) = M1 [2 (te+1 — 1) 2 R (11, ..., 1k, tk+1)] . (19

Itisclear that the paths of the random field Z are p — 1 times continuously dif-
ferentiablefor #;,4.1 # #;. Relation (14) showsthat they have a continuous extension

to [0, 1t with Z(1y, ..., tx, 1) = TTpe (3;75(11, zk)). Infact,
k

My (2(sk+1 — 5K 72 R2 (510 oy Sk, Skr1))
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—2 s 9z
= 2(sk41 = sK) 7 [ Ty (W(Sls o Sk—1, T)) (Sk+1 — D) dT.
k

According to our choice of the version of the orthogonal projection Iy 1, as. the
integrand is a continuous function of the parameters therein so that, a.s.;

2

~ 0°Z
Z (81, .-y Sk»> Sk+1) — ITyo <W(t1’ e tk)> when (s1, ..., Sk, Sk+1)
k
— (t1, oo, tr, ).

This proves (c). In the same way, when p > 3, we obtain the continuity of the
partial derivatives of 4 up to the order p—2.

The following lemma has its own interest besides being required in our proof
of Lemma 3.3. It isa dight improvement of Lemma 4.3, p. 76 in Piterbarg (1996)
in the case of one-parameter processes.

Lemma 3.2. Supposethat X isa Gaussian process with 2 paths and that for all
s # t, thedistributions of X, X}, X,, X; and of X;, X}, Xt(z), Xt(g) do not degen-
erate. Then, there exists a constant K (depending on the process) such that

4
Px,.x,.x,x, (¥1, X2, X7, x3) < K(t = 5)

for all x1, x2, x7, x5 € IRand all 5,7, s # ¢ € [0, 1].
Proof .

_ -1/2
Px, %, x;,x, (X1, X2, X1, X5) < (20) % [Det Var(Xs, X, X}, X})] 2

where Det Var standsfor the determinant of the variance matrix. Since by hypoth-
esis the distribution does not degenerate outside the diagonal s = ¢, the conclusion
of the lemmaistrivialy true on a set of theform {|s — ¢| > 8}, § > 0. By acom-
pactness argument it is sufficient to prove it for s, ¢ in aneighbourhood of (1o, 7o)
for each 1o € [0, 1]. For this last purpose we use a generalization of a technique
employed by Belyaev (1966). Since the determinant is invariant by adding linear
combination of rows (resp. columns) to another row (resp. column),

DetVar(Xy, X;, X, X)) = DetVar(X,, X,, X®?, X®),

with
(t—s)

2
oy 2
X =X, — X, — (t — )X ~ 5 X2

- 2 . (t — 5)2
3 _ y/ ’ 2 ~ 3
X _x[—xs—(t_s)xs ~ X s

The equivalence refers to (s, 1) — (fo, o). Since the paths of X are of class
%3, (Xs, X, 21t —5)")X?, (60t —s)‘z)f(§3)> tends amost surely to
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(X,O, X;O, X,(Oz) X(?’)) as (s,t) — (to, t0). This implies the convergence of the

variance matrices. Hence

DetVar (X, Xy, X2, X2,

DetVar(Xs, X;, X, X}) ~ o Xi s

(t —s)8
144
which ends the proof.

Remark. the proof of Lemma 3.2 shows that the density of X, X;, X;, X, exists
for |s — ¢| sufficiently small as soon as the process has %2 paths and for every ¢
the distribution of X,, X;, X/, X ,(3) does not degenerate. Hence, under this only
hypothesis, the conclusion of the lemma holds true for 0 < |s — 7| <  and some
n > 0.

Lemma3.3. Suppose Z = {Z; :t €[0, 1]} is a stochastic process that verifies
H>. Define;
Fy(u)=E (Sv-lAu)
where
e A, =A,(Z,8)={Z, <B()u forallte€][0,1]},
e A(.) isareal valued C? function defined on [0, 1],
o & =G(Z,—B(tD)v, ..., Z;, — B(tm)v) for some positiveinteger m, 11, ..., ty, €
[0,1], v € IRand some C* function G : IR" — IR having at most polynomial

growth at oo, that is, |G(x)| < C(1+ ||x||”) for some positive constants C, p
and all x € IR"(] . || standsfor Euclidean norm).

Then,
For each v € IR, F, isof class C1 and its derivative is a continuous function
of the pair (u, v) that can be written in the form:

Fl@) = BOE (&, 1a,(z- ) ) -0 (B (©).0)
+BOE (&)L, (215 ) P22 (B D) )
1
_/0 B(E (g;,u (Zf — B (1).u) 1AM(Z,,5,))
Xpz,.z (B @) .u, B (1) .u)dt, (15)

where the processes Z", z7, 7' and the functions g, p7, B! areasin Lemma
3.1 and the random variables &' are given hy:

v,u’ EU u’ 'UL[
£, =Gln (ZZ — 8- ) u) FB() (U —v), ...
ot (25, = B () ) + B (1) (@ = v)]

£, =G[A-mn) (zﬁ1 — 87w u) FB() (u—v), ...
@) (Z = B ) )+ B ) (= )]
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_ 12
& = [ (7 - w0+ B @,

(tm — 1)
s o (2, = B () 1) + B (1) (0 =) .
Proof . We start by showing that the arguments of Theorem 3.1 can be extended to
our present case to establish that F, is absolutely continuous. This proof already
contains afirst approximation to the main ideas leading to the proof of the lemma.
Sep 1 Assume - with no loss of generality - that u > 0 and writefor 4 > O:

Fy(u) — Fy(u —h) = E (§&.1a04,,} — E (§0-1a,_\4, } (16)
Note that:
Ay \ Ay—n C{BO)(u —h) < Zo < B(O)u, B(0) > O}
VB~ < Z1 < pu, f) > 0 u fmP, , =1} (17)
where:
MY, =dlr:1€ 01, () =0, thefunction Z(, — A()(u — h)

has alocal maximum at ¢ with value falling in the interval [0, 8(¢)h]}.
Using the Markov inequality

1 1
Pu®, =20 <E(MY,,).

and the formula for the expectation of the number of local maxima applied to the
processt — Z; — B(t)(u — h) imply

|E (§0.1a,\Au_s) |
B(Ou
51m©>m/ E (|&1/Zo = x) pz,(x)dx
B(O)u—h)
B(Du
w0 / E(& | /Z1 = x) pz,(x)dx
B u—h)

1 Bh
+/o 1{ﬂ(t>>0}df/0 E(151(Z] = B"0)u — 1)~/ V2 = (x,0))

-Pvy(x, 0)dx, (18)
where V5 is the random vector
(2 - BO@—h). 2]~ p @ —).
Now, the usual regression formulae and the form of &, imply that
|E (§v.1a,04,_,) | < (const).h

where the constant may depend on u but islocally bounded as a function of u.
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An analogous computation replacing Mﬁh’u by

M(zh L =Ht:te(0,1), B(t) <0, thefunction Z) — B()u

hasalocal maximumat ¢, Z, — B(t)u € [0, —B(¢)h]}
leads to a similar bound for the second term in (16). It follows that
|Fy(u) — Fy(u — h)| < (const).h

where the constant is locally bounded as a function of u. This shows that F), is
absolutely continuous.

The proof of the Lemmaisin fact a refinement of this type of argument. We
will replace the rough inclusion (17) and its consequence (18) by an equality.

In the two following steps we will assume the additional hypothesis that Z
verifies Hy for every k and (.) isa C* function.

Sep 2.

Notice that:

Au\ Au—p = Ay N[{BO)u —h) < Zo < B(O)u, B(0) > O}
UIB(D —h) < Z1 < B(Du, pQ) > 0y U (MY, |, > 1)]. (19)

We use the obvious inequality, valid for any three events Fy, F», F3:

3
Z 1p, - 1u§Fj < 1mnr, + 1m0F + 1rnp
1

to write the first term in (16) as:

E (5. 1a0A,) = E (60-24, L(p0)w—h)<20<pOu)) Lip0)>0)
+ E (614, 1) (u—hy<z1<p0yu}) Lip0)>0)

1

VE (Ev.lAuMif)hYO + Ru(h) (20)
where

|RL(M)| < E (1€01118(0)u—h) < Zo<pOpu. pDyu—h) <21 <pDu}) Lip©0)>0.6(1)>0)

+E <|§v |1{ﬁ(0)(u—h)<Zo§/3(0)u,M(l)h_uZl}) 1i50)>0)

u—

+E <|€”|1{ﬁ(1>(u—h><zl<ﬂ(1>u,M;”h,u>1}> Lisw-o
+E <|SUI<M,£1_)M - 1,0 >1)> — T1(h) + Ta(h) + T3(h) + Ta(h)

Our first aim isto provethat R1(h) = o(h) ash | O.
Itisclear that T1(h) = O (h?).
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Let us consider T>(h). Using the integral formula for the expectation of the
number of local maxima:

1 O B1)h
T2(h) < Lip0)>0) fo 1ip)=0dt /o dzo /O dz.

E (1512 = B" (1) — 1)~/ V3 = v3) prs(v3),

where V3 is the random vector
(20— BO@ 1), Zi = B)w = 1), Z) = B ) — ),

and vz = (zo, z, 0).

We dividetheintegral inthe right-hand member into two terms, respectively the
integralson [0, §] and [, 1] inthe t-variable, where 0 < § < 1. Thefirst integral
can be bounded by

5 B(h
/0 Lpsondt /0 dz E (&1(Z) — B0 — b))/ Va = (2.0)) pya(z. O).

where the random vector Vs isthe same asin (18). Since the conditional expecta-
tion as well as the density are bounded for « in abounded set and 0 < /& < 1, this
expression is bounded by (const)8h.

Asfor the second integral, when ¢ is between § and 1 the Gaussian vector

(Zo = BOYw —h), Z; — ) — h), Z; — /(1) (u — h))

hasabounded density sothat theintegral isbounded by Cs/2, where C isaconstant
depending on §.

Sinced > Oisarbitrarily small, this provesthat T>(h) = o(h). T3(h) issimilar
to To(h).

We now consider T4(h). Put:

Ey = {1 2§ = BPO@=m ooz i} 0 fieul < 0724
where || . || Stands for the sup-normin [0, 1]. So,
Tah) < E (16025,M7, ,MP,, —D) + E (1&l1eMD, ) @D

(E€ denotes the complement of the event E).
The second term in (21) is bounded as follows:

E(itgm,) < £ (161 £ ((M;?,,,u)4)}1/4 (PEn) ™.

The polynomial bound on G, plus the fact that || Z|| o has finite moments of all
orders, imply that E (|&,|*) is uniformly bounded.

Also, MY, < Do(Z{, — B'(.)(u —h),[0,1]) = D (recall that Do(g: I) de-

u—h,u —

notes the number of downcrossings of level 0 by function g). A bound for E (D?)
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can be obtained on applying Lemma 1.2 in Nualart-Wschebor (1991). In fact, the
Gaussian process ZE') — B’ () (u — k) hasuniformly bounded one-dimensional mar-
ginal densities and for every positiveinteger p the maximum over [0, 1] of its p-th
derivative hasfinitemomentsof all orders. Fromthat Lemmait followsthat E (D)
is bounded independently of h,0 < & < 1.

Hence,

@
E (|$U|1EhCMu7h,u) "
< (consn) [ PUI 23 = B O = ) o> h74) + P8, > 174 ]
- 1/2
< (const) [Cae™ @ a4 (g 10)]

where C1, Co are positive constants and g any positive number. The bound on the
first term follows from the Landau-Shepp (1971) inequality (see also Fernique,
1974) since even though the process depends on 4 it is easy to see that the bound
isuniformon i, 0 < & < 1. The bound on the second term is simply the Markov
inequality. Choosing g > 8 we see that the second termin (21) iso(h).

For thefirsttermin (21) onecan usetheformulafor the second factorial moment
of M;];)h,u to write it in the form:

1,1 B(s)h B(t)h
/ / Lip(5)=0,8(n=0ydsdt / dzy / dz
0 Jo 0 0

E(1&|1E, (Z] = B"()u = )" (Z] — B" (1) — h))™ / Va = va).pv,(va),
(22)

where V4 is the random vector
(2= B = 1), Zi = BO@—h), Z, = B () — ), Z = B () — b))

and vg = (21,22, 0,0).
Lets # ¢t and Q bethe - unique - polynomial of degree 3 such that
0(s) =z1, Q(t) = z2, Q'(s) = 0, Q'(r) = 0. Check that
Q) =21+ (2 —2)(y — $)°B =2y —5)(t — )7
Q" (t) = 6(z1 — 22)(t — 5)~?
Q"(s) = —6(z1 — z2)(t — )%

Denote, for each positive h,

C(y)=2Zy = B)(u—h)— Q).

Under the conditioning V4 = vg4 in the integrand of (22), the C*° function ¢(.)
verifies ¢ (s) = ¢(t) = ¢'(s) = ¢'(t) = 0. So, there exist 11, t» € (s, t) such that
¢"(t) =¢"(tp) = 0andfory e [s, 1]:

y y T 2
|z”(y)|=|/ ¢ (D)de |=|f dr[ (@ @ydo 1< L2 e
11 41 7] 2



86 J-M. Azais, M. Wschebor

Noting that a b~ < (#)2 for any pair of real numbers a, b, it follows that the
conditional expectation in the integrand of (22) is bounded by:

E(l&|1g,.(t = )% 20 = BP O = h) [10)?/ Va = va)
<t = V2= 1 — ) n YA (23)
On the other hand, applying Lemma 3.2 we have the inequality
Pvs(21,22.0,0) < pz. 7. 77 7(0,0,0,0) < (const)(t —5)™*

the constant depending on the process but not on s, ¢.
Summing up, the expression in (22) is bounded by

(const).hz.hfg/4 =o(h).
Replacing now in (20) the expectation E (Ev.lA“ Mlﬁl_) h’u) by the corresponding
integral formula:
E (SU']'AM\Au—h }
= 130>08(0) / , E (§,.14,/Z0o = B(0)x) .pzo(B(0)x)dx
+1{,3(1)>0}ﬁ(1)/ , E (§,.14,/Z1 = B(Dx) .pz, (B(Dx)dx

1 ! B(t)h
+ /0 Lipwy=0pdt /0 dzE (£,.14,(Z] — B"(1)(u — h))™/ V2 = (2, 0))

X usz(Za 0) +o(h)
= f Hi(x, h)dx + o(h) (24)
u—h

where:

Hi(x, h) = 1p0)>0)B0)E (§4.14,/Z0 = B(0)x) .pz,(B(0)x)
+1ip)>0BVE (5,.14,/Z1 = B(Dx) .pz, (B(Dx)

1
+ / Lip)>0)
0

E(&.14,(Z] = B"(1)(u — 1)/ Zt = B(t)x, Z; = B'(t)(u — h))
P72/ (B@Ox, B'(1)(u — h))B(t)d. (25)

Sep 3. Our next aim isto prove that for each u the limit

lim Fy(u) — Fy(u —h)
hl0 h

exists and admits the representation (15) in the statement of the Lemma. For that
purpose, we will prove the existence of the limit

1
lim—-E 1 . 26
lim (0-1a0a,0) (26)
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Thiswill follow from the existence of the limit

lim Hi(x, h).
hl0,u—h<x<u

Consider the first term in expression (25). We apply Lemma 3.1(a) and with the
same notations therein:

Zi=d" (1) Zo+1ZF, B=d" 1)BO)+18 1e[0,1].
Foru — h < x < u replacing in (25) we have:
E (5,.14,/Z0 = B(0)x)

= E(G(n(z; = B"(t)x) + B = v), o tm(Zy, = B (1))

B (1) (x = ) 1au)
=E <§Kx-1B(u.,x>) (27)
where &/, is defined in the statement and
Bu, x) = {tzf < B(u —da" (1) B(O)x for all ¢ € [0, 1]} :
For each § suchthat 0 < § < 1anda™ (s) > 0if 0 < s < §, we define:

Bs(u, x) = {rzf < B(t)u —a" (1) B(O)x forall 7 € [, 1]}
a” () BO)(u — x)
t

- {ngﬁ'_(t)u+ forallte[S,l]}.

Itis clear that since we consider the case (0) > 0, then
B(u, x) = Bo+(u, x) :=lim Bs(u, x).
810

Introduce also the notations:
M5 = sup{ — B (Mu:tels, t]}

a 0
() =l = vl | - OLOL

€ [é, 1]} .
We provethat asx 4 u,
[ F
E (gv,x~1B(u,x)) —FE (gv,u-lB(u,u)> (28)
We have,

( v,x 1B(ux)) E( e 1B(uu)>|
< £ (185, — 1)+ 1E (£, Tswo — Lswa)) | 29)
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From the definition of gvﬁx itisimmediatethat thefirst termtendstoOasx 1 u.
For the second term it suffices to prove that

P(B(u, x)AB(u,u)) — 0asx 1 u. (30)
Check theinclusion:
B(u, x)ABs(u,u) C {—ns(x) < Mis,1) < ns(x)} U {Ms,11 < 0, Mo,5) > 0}
which implies that

P(B(u,x)AB(u,u)) < P(B(u,x)ABs(u,u)) + P(Bs(u, u)AB(u, u))
< P(IM5,3] < ns(x)) +2.P(M[5,11 < 0, M[o,5) > 0).

Let x 1 u for fixed §. Sincens(x) | 0, we get:

limsup P(B(u, x)AB(u,u)) < P(M[s,1 =0) +2.P(M[s,11 <0, M[o,5] > 0).

xtu

The first term is equal to zero because of Proposition 2.4. The second term
decreases to zero as § | 0 since {M(s 3 < 0, Mjo,5) > O} decreases to the empty
Set.

It is easy to prove that the function

(u,v) > E (%’Eu-lAu(zhﬁF))

is continuous. The only difficulty comes from theindicator function1, (- g a-
though again the fact that the distribution function of the maximum of the process
Z'(f) — B"()u has no atoms implies the continuity in « in much the same way as
above.

So, the first term in the right-hand member of (25) has the continuous limit:

1500 BOE (&4-La,(z+ o) ) -P2o(BO)0).

With minor changes, we obtain for the second term the limit:
_{
Lpw-0fDE (%_v,u‘lA,,(Z*,ﬁ*)) Pz (B).u),

where Z7, g™ areasin Lemma3.1 and €,', asin the statement of Lemma 3.3.
Thethird term can betreated in asimilar way. The only differenceisthat there-
gression must be performed onthepair (Z;, Z)) for each ¢ € [0, 1], applying again
Lemma3.1(a),(b),(c). The passageto the limit presents no further difficulties, even
if the integrand depends on 4.
Finally, note that conditionally on Z; = B(t)u, Z, = p’(t)u one has

Z! = B"(Ou = Z; — p'(t)u

and
(Z, — B®Ouw) 1a,z,p = —(Z; — BOu)1a,(z.p)-
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Adding up the various parts, we get:

1
L'[g B E (6o-1aaus) = Lp0>0B(OE (S:J_,u'lAu(Z",ﬁ")) -Pzo(B(0).u)

-0 (DE (é:v_,{u'lAu(Z*,ﬁ*)) Pz (B(L).u)

1
—/0 B®)ipn)=0)dt E (S,ﬂ,u(zf - ﬂt(t)u)lAM(Zr,ﬂf))
X pz, 7/(BOu, B'(t)u).

Similar computations — that we will not perform here — show an analogous result
for

1
IA?& ZE (gv'lAu—h\Au)

and replacing into (16) we have the result for processes Z with C* paths.

Sep 4. Suppose now that Z and B(.) satisfy the hypotheses of the Lemma and
define:

Z°0) = (Ye x 2)) +€¥Y()  and (1) = (Ye x ()

wheree > 0, Y (t) = e 1y (e~ 1), ¥ anon-negative C* function with compact
support,ffo‘;o Y (t)dt = 1and Y isaGaussian centered stationary processwith C*°
paths and non-purely atomic spectrum, independent of Z. Proceeding as in Sec.
10.6 of Cramer-Leadbetter (1967), one can seethat Y verifies H; for every k. The
definition of Z€ implies that Z¢€ inherites this property. Thus for each positive ¢,
Z¢ meets the conditions for the validity of Steps 2 and 3, so that the function

Fy(u) = E (§51,z¢,p0))
where £ = G(Zf, — B (1), ..., Zy — B (tm)V) is continuoustly differentiable
and its derivative verifies (15) with the obvious changes, that is:
(FE) () = B(OE ((g;u)F .1Au((ze)h(ﬂe)k)) Pz (B (0) .0)
_Hgs(]_)E ((Esu)_1 '1AL¢((Z€)_{,(/3€)_{)) Pz (ﬂf @h) u)

1
S G (G (@), = 6 O Lasarr.on)
X pze.qzey, (B ) . (B°) 0 .u) . (31)

Let € | 0. We prove next that (F¢)'(u) converges for fixed (u, v) to alimit
function F;f () that is continuousin (x, v). On the other hand, it is easy to see that
for fixed (u, v) FS(u) — F,(u). Also, from (31) it is clear that for each v, there
existseg > Osuchthatif e € (0, o), (Fy) (1) isbounded by afixed constant when
u variesin abounded set because of the hypothesis on the functions G and 8 and
the non-degeneracy of the one and two-dimensional distribution of the process Z.
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So, itfollowsthat F,f(u) = F)(u) and the same computationimpliesthat F; («)
satisfies (15).

Let us show how to proceed with the first term in the right-hand member of
(31). The remaining terms are similar.

Clearly, dmost surely, ase | Oonehas Zf — Z;, (Z2¢), — Z],(Z2°)] — Z
uniformly for ¢ € [0, 1], so that the definition of Z" in (11) impliesthat (Z€)} —
Z! uniformly for ¢ € [0, 1], since the regression coefficient (a®)" (¢) convergesto
a" (r) uniformly for 7 € [0, 1] (with the obvious notation).

Similarly, for fixed (u, v):

B — B, €S — &L

uniformly for ¢ € [0, 1].
Let us prove that

E ((g;u)klAu((ZE)F’(ﬁe)F)) S E (g;ulAu(zk’ﬁk)) .
Thisisimplied by
P (Au ((ZG)'_, (,36)'_) A A, (ZF, ﬁk)) ) (32)

ase | 0. Denote, fore > 0, > 0:

Cue = A ((ZG)F, (ﬁe)k) = {(Zé)tF < (ﬁe)F (t).u for every ¢ € [0, 1]]
Eup= (Zf < B (tu+nforalr [0, 1]) .
One has:
P(Cu,eAEu,O) = P(Cu,e \ Eu,n) + P(Eu,n \ Cu,e) + P(Eu,n \ Eu,O)-

Let K be acompact subset of the real line and suppose u € K. We denote:

Dey = { sp | [(2), = (8 0] = [z} = B 0] 1> r/}

uek,t€[0,1]

and
Fuy = I—n < sp (z7 = p7(0u) = n} .
t€[0,1]

Fix n > 0and choose ¢ small enough so that:
P (Dey) < n.
Check the following inclusions:
Cuec \ Eun CDeyr  (Euy\Cue) VDS, C Fupy Euy\ EuwoC Fuy
which imply that if € is small enough:

P(Cue AEu0) <20+ 2.P (Fup) -
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For each u, asn | 0 one has

P (Fu,) — P ( sup (z,F - ﬁk(t)u) - 0) - 0.
t€[0,1]
where the second equality follows again on applying Proposition 2.4.
Thisprovesthat ase | 0 thefirst term in the right-hand member of (31) tends
to the limit

BO)E (g;u.lAu(zk’ﬂk)) D270 (B (0).10).

It remains to prove that thisis a continuous function of (u, v). It suffices to prove
the continuity of the function

E (1Au(zk,ﬁk)) —P (Au (Z'_, ,3"))

asafunction of u. For that purpose we use inequality:

2 (s (770)) - (0 (2))

=P (I sp (27— @) 1=l 011 B ||oo>
t€[0,1]

andash — Otheright-hand member tendsto P (| sup,cjo 1) (Zf — B" (1).u) |=0)
which is equal to zero by Propostion 2.4.

Proof of Theorem 1.1 We proceed by induction on k.

We will give some details for the first two derivatives including some implicit
formulae that will illustrate the procedure for general k.

We introduce the following additional notations. Put Y; := X, — B(¢)u and de-
fine, ontheinterval [0, 1], theprocesses X", X, X*, Y™, Y™, v*, andthefunctions
B, g7, B, asin Lemma 3.1. Note that the regression coefficients corresponding
tothe processes X and Y arethe same, so that anyone of them may be used to define
the functions 87, 8, B’. One can easily check that

YSF = X; - ,BF(s)u

Y =X — B (s)u

Y! = X! — B'(s)u.
For t1,....t, € [0,1] U{H, H},m > 2, we define by induction the stochastic
processes X'b-fm = (X"tm-1)m yfoestn = (yf-tn-1) gnd the function
Bl — (,3’1>-~-1’m—1)””, applying Lemma 3.1 for the computations at each stage.
With the aim of somewhat reducing the size of the formulae we will express
the successive derivatives in terms of the processes Y- instead of X,
The reader must keep in mind that for each m-tupler, ..., t,, the results depend on

u through the expectation of the stochastic process Y1/ Also, for a stochastic
process Z we will use the notation

A(Z)=Ao(Z,B) =1{Z, <0:foradlr e[0,1]}.
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First derivative. Suppose that X satisfies H>. We apply formula (15) in Lemma
33foré =1, Z = X and B(.) = 1 obtaining for thefirst derivative:

F'w) = E (Lag)) pro© + E (Lar) ) pra(©
1
- /0 E (Y*10(r) ) Py, v, (0. 0)dra. (33)

Thisexpressionisexactly the expressionin (9) with the indicated notational chang-
es and after taking profit of the fact that the processis Gaussian, viathe regression
on the conditionning in each term. Note that according to the definition of the

Y -process:
E (1A(Y")) =F <1A“(X",ﬂ")>
E (1A(Y“)) =F <1AL,(X",/.‘3")>
E (Y,’lllA(Ytl)) —E (Y,’lllAu(xfl,ﬁfl)) :
Second derivative. Supposethat X satisfies Hs. Then, X", X', X" satisfy Hz, Hz,
H respectively. Therefore Lemma 3.3 applied to these processes can be used to
show the existence of F” (1) and to compute a similar formula, excepting for the

necessity of justifying differentiation under the integral sign in the third term. We
get the expression:

1
,0
+ fo E (YL %, ©.0dn
+ Py, (0) [ﬂ"(O)E (1A(w)) pys () + BT (DE (1A(Y"~“)) Pyr (0)]

_ folﬂk(,z) E (yt:’leA (m)) Py ey, (0. O)drz
PO [BHOE (Lar)) Py (© + B DE (Lar) yO) ]
_ /01 B (12) E (Y,;’tzl A(YA.,2)> Py, vy, 0. 0)d1z
~BE (Lyyn) ) + BHOE (Y,’f*lf,(yfl,k)) Py (0

1
- fo Py,.x}, 0.0 | 11 )E (Y,Zl’*lA(Y,H)) Py (D) dty,
_ fol IBt1 ()E (Yfll-fz thzlJz]_A(yzlAzz)) pylle’(yll);z (0, 0)dr1,
(34)

Inthisformula pgg, p%l) and Py, v, (O, 0)%-9 stand respectively for the deriv-

ative of Py, (), the derivative of py, () and the derivative with respect to the first
variable of (pytl,Yt/l(., D).
To validate the above formula, note that:
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o Thefirst two lines are obtained by differentiating with respect to u, the densities
pYo(O) = pXo(_u)a le(O) = le(_u)1 thl,Y/l (07 0) = Px,l,x;l (—M, 0)

e Lines3and4comefromtheapplicationof Lemma3.3todifferentiate £(1,y+)).
Thelemmaisappliedwith Z = X", g = 8", £ = 1.

e Similarly, lines 5 and 6 contain the derivative of E(14y-)).

e Theremaining corresponds to differentiate the function

E(YyiLarny) = E((Xfi - Bt (fl)“)lAu(Xfl,ﬂH))

in the integrand of the third term in (33). Thefirst term in line 7 comes from the
simple derivative
d

%E((Xg — BtV 1y, (x1 p)) = —BHEDE Ly yn).

The other terms are obtained by applying Lemma 3.3 to compute

%E((XE - ﬁtl(tl)v)lAu(xfl,ﬂtl)),
putting Z = X', g = g1, & = X;! — B (t1)v.

o Finally, differentiation under the integral sign is valid since because of Lemma
3.1, the derivative of the integrand is a continuous function of (¢4, 12, u) due
the regularity and non-degeneracy of the Gaussian distributions involved and
Proposition 2.4.

General case. With the above notation, given the m—tuple 1, ..., ,,, of elements
of [0, 1] U {F, -} wewill call theprocesses Y, Y™, y'2  y".!n-1the“ances
tors’ of Y1~ |n the same way we define the ancestors of the function g+,

Assume the following induction hypothesis. If X satisfies Hy; then F is k
times continuously differentiable and F® is the sum of a finite number of terms
belonging to the class D; which consists of all expressions of the form:

1 1
/ / ds1.dsyQs1, ... sp)E (glA(le,,..me K1(s1. .. sp)Ka(s1. .. 5,) (35)
0 0

where:

- 1<m<k.

— 1, ety €0, ] U, -}, m > 1.

- 51,..,8p,0 < p <m, aretheelementsin {1y, ..., t,,} that belong to [0, 1] (that
is, which are neither “+" nor “—"). When p = 0 nointegral sign is present.

— Q(s1, .., sp) isapolynomial in the variables sy, .., 5.

— Ki(s1, .., sp) is a product of values of some ancestors of g't-~» a some
locations belonging to the set {s1, .., s,} U {0, 1}.

— Ko(s1, .., sp) isasum of products of densities and derivatives of densities of
therandom variables Z, at thepoint O, or thepairs ( Z,, Z.) at the point (0, 0)
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Note that K1 does not depend on u but K> isafunction of u.

It is clear that the induction hypothesis is verified for k = 1. Assume that it
is true up to the integer k and that X satisfies Ho,». Then F® can be written as
a sum of terms of the form (35). Consider a term of this form and note that the
variable u may appear in three locations:

1. In &, where differentiation is simple given its product form, the fact that
zf—uYfl """ 4 _plelg(s), g < m,s € {51, ... sp} and the boundedness of
moments allowing to differentiate under the integral and expectation signs.

2. In K»(s1, .., sp) which is clearly ¥ as a function of u. Its derivative with
respect to u takes the form of a product of functions of thetypes K1 (s1, .., sp)
and K(s1, .., sp) defined above.

3. In1,(yu...m). Lemma3.3 showsthat differentiation produces 3 terms depend-
ing upon the processes Yt:-m-fm+1 with f,,, ;1 belonging to [0, 1] U {+, -}.
Each term obtained in thisway belongsto Dy 1.

The proof is achieved by noting that, as in the computation of the second de-
rivative, Lemma 3.1 implies that the derivatives of the integrands are continuous
functions of u that are bounded as functions of (s1, .., s, tiut+1, #) if u variesina
bounded set.

The statement and proof of Theorem 1.1 can not, of course, be used to obtain
explicit expressionsfor the derivatives of the distribution function F. However, the
implicit formulafor F® (1) as sum of elements of Dy can be transformed into ex-
plicit upper-bounds if one replaces everywhere the indicator functions 14 yr....m )
by 1 and the functions -+ (.) by their absolute value.

Onthe other hand, Theorem 1.1 permitsto have the exact asymptotic behaviour
of F® ) asu — 400 incase Var(X;) is constant. Even though the number of
termsin the formulaincreases rapidly with k, there is exactly oneterm that is dom-
inant. It turns out that asu — +oo, F® (1) is equivalent to the k-th derivative of
the equivalent of F'(1). Thisis Corollary 1.1.

Proof of Corollary 1.1. Toprovetheresultfor k = 1 notethat under thehypothesis
of the Corollary, onehasr(t,t) = 1, ro1(t,t) = O, ro2(t,t) = —r11(z,t) and an
elementary computation of the regression (13) replacing Z by X, shows that:

‘(s) = ) = el D)
b (s) =r(s, 1), c(s)= D)
and
tin S L=r(s, 1)
/3 (S) - 2 ([ _ S)2

since we start with 8(r) = 1.

Thisshowsthat for every ¢ € [0, 1] onehasinf ;¢[o,17(B' (s)) > 0 becauseof the
non-degeneracy condition and B! (¢) = —roa(t, t) = r11(¢, t) > 0. The expression
for F’ becomes:

F'(u) = ¢ () L(w), (36)
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where
L(u) = L1(u) + Lo(u) + La(u),

Li(u) = P(A, (X", BD),
Lo(u) = P(A, (X7, B7),

dt
(2ria(t, 1) Y2

Sincefor each ¢ € [0, 1] the process X' is bounded it follows that

1
L3(u) = —/0 E((X] — B'(Du) 14, x1 1))

a.s. 1Au(Xt’/3t) — lasu — +o0.

A dominated convergence argument shows now that L3 (u) is equivalent to

u L roolt, 1) /
t,t)de.
/o vl

@ Jy a2 <2n)1/2

Since L1(u), L2(u) are bounded by 1, (1) followsfor k = 1.
For k > 2, write

h=k
PO =6 Dwtw + Y (1] )et MLt Pw. @)
h=2

Asu — +oo,foreach j =0, 1, ...,k —1, ¢ (u) ~ (—1)7 u’ ¢ (u) sothat the
first termin (37) isequivalent to theexpressionin (1). Hence, to provethe Corollary
it suffices to show that the succesive derivatives of the function L are bounded. In
fact, we prove the stronger inequality

|L(j)(u)| < lj(p(f)’ j=1..,k=-1 (38)
J

for some positive constants /;, a;, j=1,....,k— 1
We first consider the function L1. One has:

B (s) = 1—+(s,0) for0<s <1870 =0,

(6 () = DI o0 <5 <1, 87710 = 10,0

The derivative L) (1) becomes
1) = B E[y, x4 g-] Pyp (B (D)

1
- /0 BT WE ((X)" = B ()L, x1 ) P oy (B O (B7) (D) d.

Notice that g7 (1) is non-zero so that the first term is bounded by a constant
times a non-degenerate Gaussian density. Even though g (0) = 0, the second
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term is aso bounded by a constant times a non-degenerate Gaussian density be-
cause the joint distribution of the pair (X, (X")/) is non-degenerate and the pair
(8" (), (B7)' (1)) # (0, 0) for every 7 € [0, 1].

Applying a similar argument to the succesive derivatives we obtain (38) with
L, instead of L.

The same follows with no changes for

Lo(u) = P(A, (X7, 7.
For the third term

dt

1
_ t_ pt 1 gty) ———
La(u) = /0 E((Xt B (Ou)la,(xi.p )) (2rria(t, 1))1/2

we proceed similarly, taking into account B’ (s) # 0 for every s € [0, 1]. So (38)
follows and we are done.

Remark. Suppose that X satisfies the hypotheses of the Corollary with k > 2.
Then, it is possible to refine the result as follows.
For j=1,..,k:

FOw = (=177 — Dhj_1(u)

1
x [1 + 27) Y2 fo (rut, r))l/zdr} ¢ (u) + pj ) ) (39)

where hj(u) = (‘j#(d)(u))—lqb(f)(u), is the standard j-th Hermite polynomial
(j=0,1,2,..)and
| pj(u) |< C; exp(—su?)

where C1, Co, ... are positive constants and § > 0 does not depend on ;.

The proof of (39) consists of aslight modification of the proof of the Corollary.

Notefirst that from the above computation of 8 (s) it followsthat 1) if Xg <0,
then if u islarge enough X! — B"(s).u < Ofor al s € [0, 1] and 2) if Xjj > O,
then X5 — B (0).u > O so that:

Li(u) = P(X" — g7 (s).u < 0)foral s € [0, 1]) 1 % asu 1 +0o.

On account of (38) thisimpliesthat if u > O:
1 +00
0=< 5~ Li(u) = / Li(v)dv < Dy exp(—81u?)
u

with D4, 81 positive constants.
Lo(u) issimilar. Finaly:

dt

1
L3(u) = /0 E ((Xf p (t)u)) (2rria(t, 1))/?
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1 dt
t t
_/0 E(XG = 8O0, 0.p0)) Gt @O

Thefirst termin (40) is equal to:

1
(271)_1/2.14./ (r11(t, 1)Y?dzt.
0

As for the second term in (40) denote Bz = iTB . B'(s) > Oandletu > 0.
5,t€|0,

Then:

P

((AM(X’, ﬂ’))c> < P@s e[0,1] suchthat X' > Bu.u) < D exp(—8au?)

with D3, §3 are positive constants, the last inequality being a consequence of the
L andau-Shepp-Fernique inequality.

The remainder follows in the same way as the proof of the Corollary.

Acknowledgements. Thiswork hasreceived asupport from CONICY T-BID-Uruguay, grant
91/94 and from ECOS program U97EQ2.

References

10.

11

12.
13.

Adler, R.J.: An Introduction to Continuity, Extrema and Related Topics for General
Gaussian Processes, IMS, Hayward, Ca (1990)

Azais, JM., Wschebor, M.: Régularité de laloi du maximum de processus gaussiens
reguliers, C.R. Acad. Sci. Paris, t. 328, sériel, 333-336 (1999)

Belyaev, Yu.: Onthe number of intersectionsof alevel by aGaussian Stochastic process,
Theory Prob. Appl., 11, 106-113 (1966)

Berman, S.M.: Sojourns and extremes of stochastic processes, The Wadworth and
Brooks, Probability Series (1992)

Bulinskaya, E.V.: On the mean number of crossings of alevel by a stationary Gaussian
stochastic process, Theory Prob. Appl., 6, 435-438 (1961)

Cierco, C.: Problemes statistiqueslies aladétection et alalocalisation d’ un gene aeffet
quantitatif. PHD dissertation. University of Toulouse.France (1996)

Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes, J. Wiley &
Sons, New-York (1967)

Diebolt, J., Posse, C.: On the Density of the Maximum of Smooth Gaussian Processes,
Ann. Probab., 24, 1104-1129 (1996)

Fernique, X.: Régularité des trajectoires des fonctions aléatoires gaussiennes, Ecole
d’ Eté de Probabilités de Saint Flour, Lecture Notesin Mathematics, 480, Springer-Ver-
lag,New-York (1974)

Landau, H.J., Shepp, L.A.: On the supremum of a Gaussian process, Sankya Ser. A, 32,
369-378 (1971)

L eadbetter, M.R., Lindgren, G., Rootzén, H.: Extremesand rel ated properties of random
sequences and processes. Springer-Verlag, New-York (1983)

Lifshits, M.A.: Gaussian random functions. Kluwer, The Netherlands (1995)

Marcus, M.B.: Level Crossings of a Stochastic Process with Absolutely Continuous
Sample Paths, Ann. Probab., 5, 52—71 (1977)



98

J-M. Azais, M. Wschebor

14.

15.

16.

17.

18.

19.

20.

21.

Nualart, D., Vives, J.: Continuité absolue delaloi du maximum d’ un processus continu,
C. R. Acad. Sci. Paris, 307, 349-354 (1988)

Nualart, D., Wschebor, M.: Intégration par parties dans |’ espace de Wiener et approxi-
mation du tempslocal, Prob. Th. Rel. Fields, 90, 83-109 (1991)

Piterbarg, V.I.: Asymptotic Methods in the Theory of Gaussian Processes and Fields,
American Mathematical Society. Providence, Rhode Island (1996)

Rice, S.O.: Mathematical Analysis of Random Noise, Bell System Technica J., 23,
282-332, 24, 45-156 (1944-1945)

Tsirelson, V.S.: The Density of the Maximum of aGaussian Process, Th. Probab. Appl.,
20, 817-856 (1975)

Weber, M. Sur ladensité du maximum d’ un processus gaussien, J. Math. Kyoto Univ.,
25, 515-521 (1985)

Wschebor, M.: Surfaces al éatoires. Mesure géometrique des ensembl es de niveau, Lec-
ture Notes in Mathematics, 1147, Springer-Verlag (1985)

Ylvisaker, D.: A Note on the Absence of Tangencies in Gaussian Sample Paths, The
Ann. of Math. Stat., 39, 261262 (1968)



