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Abstract. Can the joint measures of quenched disordered lattice spin models (with finite
range) on the product of spin-space and disorder-space be represented as (suitably general-
ized) Gibbs measures of an “annealed system”? - We prove that there is always a potential
(depending on both spin and disorder variables) that converges absolutely on a set of full
measure w.r.t. the joint measure (“weak Gibbsianness’). This“positive” result is surprising
when contrasted with the results of a previous paper [K6], where we investigated the mea-
sure of the set of discontinuity points of the conditional expectations (investigation of “a.s.
Gibbsianness’). In particular we gave natural “negative” examples where this set is even of
measure one (including the random field Ising model). Further we discuss conditions giving
the convergence of vacuum potentials and conditions for the decay of the joint potential in
termsof the decay of the disorder average over certain quenched correl ations. We apply them
to various examples. From this one typically expects the existence of a potential that decays
superpolynomially outside a set of measure zero. Our proof uses a martingale argument that
allows to cut (an infinite-volume anal ogue of) the quenched free energy into local pieces,
along with generalizations of Kozlov’s constructions.

1. Introduction

Consider the joint measure corresponding to arandom infinite-volume Gibbs mea-
sure of a disordered lattice spin system. By this we mean the measure P(dn)
wu[nl(do) on the product space of disorder variables n and spin variables 0. Here
u[n](do) isarandom Gibbs measure and P is the a-priori distribution of the dis-
order variables. Prototypica examples for such quenched random systems are the
random field Ising model or an Ising model with random couplings.

In this paper we investigate the question: When can these measures be under-
stood as Gibbs measures on the skew space, respectively suitable generalizations
thereof? More specifically, are there well-defined Hamiltonians, given in terms of
interaction potentials depending on both spin and disorder variables, that provide
an annealed description for such a system? The formal description of disordered
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systems in terms of such potentials was termed “Morita’s equilibrium ensemble
approach to disordered systems” (see e.g. [Kul,2], [MKu], [Mo], [SW] and refer-
ences in [Ku2]) in the theoretical physics community. However, the existence of
such Hamiltonians was never investigated rigorously but taken for granted, and
various approximation schemes were based on the truncation of the corresponding
potentials. In thisrespect thereis an anal ogy between the problems of the existence
of joint potentials and of the existence of “renormalized potentials’ that are sup-
posed to give a Gibbsian description of ameasure that appears as an image measure
of a Gibbs measure under arenormalization group transformation. Thereisahuge
literature about thelatter onesbut the present question hasremained mathematically
neglected until recently ((EMSS], [K6]).

Now, mathematically, it turns out that the answer to our question is a some-
what complicated but interesting one. It depends on the kind of generalization of
the notion of Gibbsianness oneis asking for and on the specific system. Therefore
such joint measures corresponding to quenched random systems provide a rich
class of examples to illustrate the subtleties of the different generalizations of the
notion of Gibbsianity. We believe that, whileinteresting in itself, the study of these
measures is also valuable for the understanding of the fine (and not always very
intuitive) distinctions that are necessary if one attempts to extend Gibbsian theory
to non-Gibbsian measures.

Recall that Gibbs measures of an infinite-volume lattice system are character-
ized by thefact that their conditional expectations (given the values of the variables
outside of afinite volume) can be written in terms of an absolutely convergent in-
teraction potential. Equivalently, they are the measures for which these conditional
expectations are continuous functions of the conditioning. (The lesstrivial part of
the equivalence, i.e. existence of a potential assuming continuity of conditional
expectations, is due to the construction of [Koz]). For general information about
scenarios of the failure of the Gibbsian property for lattice measures and possible
generalizations of Gibbsianness seee.g. [F], [E], [DS], [BKL], [MRM], [MRSM],
references therein, and the basic paper [EFS].

In the first mathematical paper [EMSS] which studied a joint measure of a
guenched random system it was shown that the joint measure resulting from the di-
luted Ising ferromagnet at | ow temperaturesisnot aGibbs measurein thestrict sense
described above: [EMSS] showed that there is a point of essential discontinuity in
the conditional expectations asafunction of the conditioning. So, the measure does
not alow for a Hamiltonian constructed from an absolutely summable interaction
potential. However, the set of such discontinuities haszero measurein thisexample.
M easureswith thisproperty are commonly called “ almost Gibbsian” measures. The
notion of “amost Gibbsianness” is a straightforward measure-theoretic attempt to
generalize the classical notion of Gibbsianness where the conditional expectations
are continuous everywhere.

In arecent paper [K6] we investigated the question of discontinuity of the con-
ditional expectations in the general setup of quenched lattice spin systems with
finite range quenched Hamiltonians depending on independent disorder variables.
In particular, we gave an example where the set of discontinuities was even afull
measur e set. So, even worse, this measure even failsto be “amost Gibbsian”! The
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example was the random field Ising model in the phase transition regime. It is par-
ticularly illuminating because it showsin atransparent manner amore general fact:
The question of discontinuity of the conditional expectationsisrelated to whether
adiscontinuity can be felt on certain local expectations of the quenched measure
by varying the disorder variables arbitrarily far away. The local expectation under
consideration isjust the magnetization for the random field 1sing model; more gen-
erally this has to be replaced by the spin-observable conjugate to the independent
disorder variables. In[K6] we also discussed another interesting phenomenon: We
argued that whether the set of discontinuity points is of measure zero or one can
depend on the random Gibbs measure, for the same choice of the parameters. This
phenomenon should appear in the random bond ferromagnet at low temperatures,
weak disorder, and high dimensions. We argued that it isto be expected that the set
of discontinuities should be of measure zero for the ferromagnetic plus state while
it should be of measure one for the random Dobrushin state.

While we focused on “amost Gibbsianness’ in [K6], the aim of the present
paper is to find out what can be said about “weak Gibbsianness’. The latter no-
tion is a different attempt to weaken (even more) the classical notion of Gibbs
measure. Here one requires only the existence of a potential that is convergent
(or even absolutely convergent) on a full measure set (and not necessarily every-
where). [MRM] noted that, in general, an amost Gibbsian measure aways has a
potential that is convergent on a set of full measure. It ishowever not expected that
there is always an absolutely convergent potential in this situation. Also, [MRM]
gave an example of ameasure having a convergent potential which was not almost
Gibbsian.

In this note we will give a completely general positive answer to the question
of weak Gibbsianness for our measures. That is, at least from the point of view of
weak Gibbsianness, the situation gets easier again. We will show:

Thejoint measurescorrespondingtoarandom infinite-volume Gibbsmea-
sure alwayspossessa potential that conver gesabsolutely on afull measure set.

For the specific example of the random field Ising model in the phasetransition
regime this gives, together with the result of [K6] the following interesting state-
ment: The set of discontinuity points of the joint measure hasfull measure, but still
there is a potential that converges absolutely on a set of full measure.! So, aimost
Gibbsianness does not hold, but weak Gibbsianness does (even in a strong form).
In fact, we expect the convergence to be very fast on a set of measure one (see
Chapter V.)

Our existence result is true for any quenched lattice spin systems with finite
range quenched Hamiltonians depending on sitewise independent disorder vari-
ables. Observe that e.g. models with independent bond disorder are also included.
(Indeed, each bond on the lattice can be accociated to one of its vertices according
to some fixed prescription; then the ‘site variable’ at a given site is formed by the
collection of all bond variables that are associated to this site.)

! Recently [Le] constructed an independent example of a lattice measure (not related to
random systems) to illustrate that this phenomenon can really occur.



4 C. Kilske

We stressherethat no continuity assumptionsat al are needed onthe measures
involved. Thismay seem surprising and isamain non-trivial point. Let us describe
our results at first in words, before we put them down in precise formulas. They
will al have thefollowing form: We construct a potential and explain its properties
and how it isrelated to the given “ quenched potential” that isthe starting point and
defines the system we are dealing with.

Now, to put the first result in perspective, we remark that in the case of
a genera lattice measure, the existence of an a.s. convergent potential can be
obtained once there is at least one direction of (as.) continuity for the con-
ditional expectations (see [MRM]) using the corresponding vacuum potential.
Due to the special form of the joint measures we are considering here, we can
improve on this in our case (see Theorems 2.1, 2.3). For this we take advan-
tage of the specific form of the infinite-volume conditional expectations of the
joint measures derived in Chapter Il. The trick to get the stronger result is to
use not a vacuum potential, but a different one; this will alow to conclude
convergence of the potential by a soft martingale argument. From this we can
get an existence result for an a.s. absolutely convergent potential generalizing
the one of [Koz]. We remark that also for this latter step we are again exploit-
ing the special nature of our measures; it would not work for a generd lattice
measure.

Nevertheless, itisalsointeresting to seewhat can be sai d about the convergence
of vacuum potentials (see Theorem 2.2). For this we need in fact some continu-
ity, conveniently expressed in terms of the behavior of the corresponding infinite-
volume Gibbs state: One needs continuity of the corresponding infinite-volume
guenched Gibbs-expectation of the spin-observable conjugate to the independent
disorder variables, as a function of the quenched variables, in the direction of a
certain realization of the disorder. These are the same observables whose behavior
was crucia aso for the question of “amost sure Gibbsianness’.

Next, if one would like to have more information about the decay of the po-
tential, one has to assume some information about the clustering properties of
the quenched random system. We relate the decay of a joint potential to the de-
cay of disorder-averages of certain quenched correlations in Theorem 2.4. These
correlations are taken between the spin-observables conjugate to the
independent disorder variables, the same ones as above. Physically, superpoly-
nomial decay of such averaged correlations is typically to be expected (off the
critical point). So, we should typically expect the existence of a potentia that
decays superpolynomially outside of a set of measure zero. Of course, to prove
it, specific analysis of the system under consideration is needed, which can be
very hard.

The paper is organized as follows. In Chapter |1 we define the class of mod-
els we will treat and state our results in precise terms. In Chapter |11 we prove
the important formulafor the infinite-volume conditional expectations of the joint
measure that is the starting point of the following. In Chapter 1V we will prove
the theorems stated in Chapter I1. In Chapter V we will discuss the examples of
therandom field Ising model, 1sing model s with random couplings, and the diluted
Ising ferromagnet, including some heuristic considerations.
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2. Themodelsand theresults

Denoteby Q = di the space of spin-configurations o = (oy), ¢, Where Qo

isafinite set. Similarly we denote by # = ;zﬂg‘l the space of disorder variables
n = (nx),ez¢ €Ntering themodel, where g isafinite set. Each copy of 5# carries
ameasure v(dn,) and # carries the product-measure over the sites, P = vz,
We denote the corresponding expectation by F. The space of joint configurations
Q= QxH = (Q x Ho)?" iscalled skew space. It isequipped with the product
topology and the corresponding Borel sigma agebra

A potential on thejoint variablesisafamily U of real functionsUys : Q@ — R
where A runs over the finite subsets of Z¢ st. U4 (&) depends only on £4. We
consider disordered models whose finite volume Gibbs-measures can be written in
terms of apotential ® = (P4) 4« ON the joint variables. In this context we will
call @ thedisordered potential (or defining potential). We fix arealization of the
disorder n and define probability measures u‘}\b‘c' [n] onthe spin space €2, called the
guenched finite volume Gibbs measures, by

be.
— L AANA#S q’A(UA‘TZdC\A’”)

% o) = — 1, , o 1)

~ _gbc
3 e 2 AANAAS ‘DA(OAUZd\A,n) T7d\A=%7d\
GA

The finite-volume summation isover oy € Q{)‘. The symbol cerg;,c\- A denotesthe

configuration in 2 that is given by o, for x € A and by a)'?-c- for x € Z9\A. We
assume for simplicity finiterange, i.e. that ®4 = 0for diamA > r. Thisformis
really quite general. It is a simple matter to write the random field Ising model or
the random bond Ising model in the above form.

Next, we suppose from the beginning that we have the existence of aweak limit

b.c.
lim u 3 (] = uln] (22
AtZ4
for P-ae. = 5,4 with anonrandom boundary condition <. In ferromagnetic
examples like the random field Ising model this can be concluded by monotonic-
ity arguments. Note that there is however no general argument that would give
the existence of this limit — indeed it is expected to fail e.g. for low temperature
spinglasses.?
Assuming (2.2) it follows that poo[174] is an infinite-volume Gibbs measure
for P-a.e. n that depends measurably on 5. We look at spins and disorder variables
at the same time and define joint spin variables &, = (oy, nx) € Qo x #o. The

2 Side-remark about the rel ation to “ metastates’ : It isthis existence problem that led to the
introduction of the general notion of metastates, which are distributions of Gibbs-measures,
see e.g. [NS1]{NS5], [K2]{K5]. Also, more generally than in the present note, in large
parts of [K6] we did not assume the a.s. convergence of the random finite volume Gibbs
measures, but only the weaker property of convergence of the corresponding finite volume
joint measures. Assuming the existence of a corresponding metastate, such a measure K
isits barycenter. The case of the present note corresponds to the trivial metastate which is
supported only on asingle state u[n].
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central object of our study isthe corresponding infinite-volume joint measure on
the skew space (0 x #)~" defined by

K(do,dn) := P(dn)u[n](do) (23

We say that apotential U onthejoint variablesisapotential for thejoint measure
K if U produces the correct conditional expectationsfor K, i.e.

e ZA:AHA;&(A Ua(®)

= =K d 2.4
T [£a16204] (24)
A

for K-a.e. £&. This work is about the existence of such a potential. It provides a
description of the joint measure as an “annealed system”. This notion should not
be confused with the following one.

Wecall apotential U™ onthejoint variablesatrivial annealed potential con-
tribution if it isfinite range and producesthe “trivial annealed local specification”,
i.e

triv
ZAOA;&(}) (UAUZd\A VIAUZ,]\A)

Y — X anago S Gaols Liians O
OASNA

[}
v(na)e = Tanass PACAT,E TG ) (2.5)
N Z (~ ZAF']A#W q)A(JAazd\A nAnzd\A) .
Ga,iin Y nae

One such potential is Uy (o, 7) = ®a(0, 1) — La(x} 10gv(ny); evidently it is
unigque only up to “physical equivalence”. We remark that, of course, the problem
of classifying the equivalent potentials U for given v, ® islong solved and can be
found in [GeQ], see paragraphs (2.3) and (2.4) therein. We call the local specifi-
cation on ther.h.s. “annealed” too because it describes a joint system given by an
Hamiltonian which is simply the quenched Hamiltonian and the logarithm of thea
priori measure given by the independent distribution [P for the disorder variables.
Of course, its properties may differ completely from the quenched system. The
reason for the introduction of U and its name isthat it will appear asa‘trivial’
part of the potentials of the joint measures that we are looking for.

Finally, a potential U is called summable for & if, for any AcZ9, we have
that the limit liMa s 7¢ 3> 4:anazs aca Ua(€) =1 2 sanazy Ua(§) existsand is
independent of the sequence of A’s. Thisis needed for the sumsin (2.4) to make
sense. U is called absolutely summable for ¢ if, for any AcZ? we have that
SUPACzd 2 p:anazs aca IUAE)] < oo,

Now, the most natural approach to find a potential for the joint measure is to
write down aformal vacuum potential on the joint space and ask what we can say
about its convergence (see Theorem 2.2). We remind the reader that a potential U
is called vacuum potential with vacuum &, if Ua(£4\.€x) = O whenever x € A.
However, it turns out that we get our strongest general existence result of Theorem
2.1for adifferent potential. Tothisend, let a(d&) beaproduct probability measure.
Then, apotential U iscalled a-normalized if [ o, (d&,)Ua(£4\x&x) = Owhenever
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x € A.Obvioudly, fora = 5§, an a-normalized potential isavacuum potential with

vacuum €. This notion wasfirst introduced by Israel [1] but we use the terminology
of Georgii. a-normalized potentials (for suitably chosen «) can sometimes have
better convergence properties compared to those of vacuum potentials also in the
standard Gibbs formalism (see [Geo] example (2.38), [EFS] page 958).

In the following we assume that we are given a joint measure of the type (2.5)
corresponding to aquenched random lattice model defined by (2.1), (2.2). Thenthe
following statements hold.

Theorem 2.1 (Existence of a.s. summable potential). Thereexistsa potential U
for K thatissummablefor K-a.e. &. Thisistrueunder no further assumptionsonthe
continuity properties of u[5]. This potential hastheform U (o, n) = UV (o, ) +
Ulff(n). Inthisequation U"V isan arbitrary representative of the* trivial annealed
potential contribution” (defined up to physical equivalence).

U,ff is a potential depending only on n which is convergent for P-a.e. n. Asa
potential on the disorder spaceit is P-normalized. In general, two different mea-
surable infinite-volume Gibbs-states i : n +— u[n] corresponding to the same
random local specification will yield different U/ff.

The notation U/ff(n) is meant to suggest to the reader, that this potential comes
from adecomposition into local terms of what in finite volume would be the disor-
der dependent free energies of the quenched system. Thiswill become clear in the
proofs. An anal ogous finite volume quantity is called “ disorder potential” in [KuZ2].

To describe the kind of continuity we need for the existence of the vacuum
potential in detail we need some more notation. For a subset V. cZ¢, we call the
expression

AHy oy ny. 5. mav) = > (<I>A (Gv, 77%/'73\/) — Dy (ov, mzmav))
AANV#(

(2.6)
the V-variation of the Hamiltonian w.r.t. the disorder variables. To denote the
corresponding function on the spin-variables obtained by fixing the disorder vari-
ableswewill dropthespin-variables onthel.h.s. of (2.6). Inparticular,for V = {x},
theexpression (2.6) isthe observable conjugate to theindependent disorder variable
nx. We put

_ 1,2
Qx(n)%v 77)%7 nZd\x) = M[’l;, nZd\x](e A1~1)C(n)“n)(’n()X)) (27)
for its quenched expectation.

Theorem 2.2 (A.s. summability of vacuum potential). Suppose moreover that
there exists a direction 7 of a.s. continuity for the quenched expectation of the
spin observable conjugate to the disorder variables, i.e.

Jim, O (ny. n2. navelizaya) = Qx (15, 02, nza\,) (28)
for all x, nt, n)%, for P-a.e. n. We assume that Q is defined by the weak limit (2.2)
and (2.7) and this weak limit exists for P-a.e. n. Here we have fixed a nonrandom
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boundary condition o< for those 7 that are not in the -zero-set of ’s of the
form (na#za\ 5). Moreover we assume that (2.2) also exists for 7 (and thus for all
the countably many »’s of the form 3.1 (4 774\ »)), with some possibly different
boundary condition 62-¢-.

Then there is a vacuum potential Vﬁe(n) on the disorder space with vacuum 7
st.U'(o,n) = U" (0, n)+ Vlie(n) isapotential for thejoint measure K whichis
summable K -a.s.. Here UV isan arbitrary representative of the“ trivial annealed
potential contribution” , asin Theorem 2.1.

Note that our hypothesis is weaker than requiring a.s. continuity of w[n] itself
in direction 5 (by which one understands continuity of all probabilities w[n] (o)
in this direction.) Note that, in general, the same choices of boundary conditions
to construct the state u[7], and the state i [#n] for typical n might yield a state of
different type. [In V/(iii) (before the proof of Proposition 5.1 is given) we dis-
cuss the example of the dilute Ising model where a fixed “plus-minus’ boundary
condition o2 is expected to produce a symmetric linear combination of the plus
and the minus state for typical occupation numbers n, while it should produce an
interface-state (“Dobrushin-state”) for 7 describing the fully occupied system), in
acertain parameter region.]

Now, in the situation of Theorem 2.2, fix any 6. Then we can in particular
choose U'"* (o, 1) to be the unique vacuum potential for the anneal ed system with
vacuum (6, 7).2 This gives the simple

Corollary 1. If 5 isadirection of continuity for w(n), for any 6 € €, the formal
vacuumpotential for K withvacuumé = (6, #) isconvergent for K -a.e£. Herewe
have assumed that 1.[ ] isdefined by the weak limit (2.2) with boundary conditions
asin the hypothesis of Theorem 2.2.

Remark. If K istrandation-invariant, so arethe potential s constructed in the proof
of Theorem 2.1 and Theorem 2.2. In general, they need not be absol utely summable.

The proof of Theorem 2.2 also gives
Corollary 2. Thesum}_ 4. s a0 fP(dﬁ)Vli‘fA(f;) converges. Hence U % (o, 1)+
[V&?A(n)—f P(dﬁ)vli‘?A(f;)] isapotential for thejoint measurewhichissummable
K-as., too.4

From Theorem 2.1 one can obtain an absolutely summable potential, if one
gives up trandation invariance.

3 A clear proof of the existence of an «-normalized convergent potential in the case of
continuous conditional expectations can be found in [Geo] Theorem (2.30). Under our as-
sumptions of discrete joint spin space and finite range of the defining disordered potential
® thistheorem showsin particular: For any « there exists a unique equivalent «-normalized
potential for the annealed system with the same range.

4 This proves general existence of potentials of the form generalizing the one that was
written down in finite volume in [Ku2 (32)] for the special case of the dilute Ising model,
where no proof of the infinite-volume limit was given (see aso Chapter V).
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Theorem 2.3 (Existence of a.s. absolutely convergent potential). There exists
an a.s. absolutely summable potential U for the joint measure K of the form
US(0, ) = U (0, n) + UE®S(n). Here, as above, U™ is an arbitrary rep-
resentative of the “ trivial annealed potential contribution” . ULe’abs is a potential
depending only on 5 which is absolutely convergent for P-a.e. . U2 is not
necessarily trandation invariant even if K istrandation invariant. Asin Theorem
2.1, thisresults holds under no further continuity assumptions on w[n].

Remark. In fact the new ‘free energy’ potential U®% is even integrable w.r.t. K
(whichisto say integrable w.r.t. ?). There is no estimate on the speed of conver-
gence.

Ufe®S(y) is supported on a very sparse system of subsets of Z¢. It is ob-

tained by aresummation of the /P-normalized ‘free energy’ potential U,ff from the
construction Kozlov used on the vacuum potential in the case of a measure with
continuous conditional expectations [Koz]. We remark that the same construction
can in genera not be applied to the vacuum potential V,ﬁe of Theorem 2.2, unless
thereis additional information on its decay.

Remark. Let usalso comment on the easy case, when Q iscontinuousever ywhere,
by which we mean that

[!iTnZ)d Slfjp O« (3. 1%, naveiza\a) — Ox(t. 02, nza\ )| =0 (29)
foral n and dl x, nt, nﬁ. Then, the infinite volume conditional expectations of K
are continuous, and so K isaGibbs measure. The “free energy potentials’ ULe (of
Theorem 2.1) and Vlie (of Theorem 2.2) are both convergent everywhere. Further-
more, the stronger version of Theorem 2.3 holdswhere*“ a.s. absol ute summability”
is strengthened to “ absolute summability everywhere”.

To get an absolutely summabl e potential for the joint measurethat isalso trans-
lation invariant, more information on the clustering properties of the quenched
system on the average is needed. Theorem 2.4 below describes the existence of an
a.s. absolutely summable potentia that istransation invariant, if the measure K
is. Moreover it givesinformation about the decay of this potential.

Theorem 2.4 (A.s. absolutely summable trandlation invariant potential). As
sume that the averaged quenched correlations satisfy the decay property

% m#=1E(m) < oo where &(m) = SUP.. sy [ P@n) |cx,y (e, ny, )]
nNx.nyesQ
CX,y(nx’ Ny, ﬁ)

\N|t 1
~ AHx yy((x,y) 5 7x,y} 71
= M[n] <e { ,)}( {x. v} MHx.y} B{x,)-))>

= - X ,x~,~x,~‘ ~ _AHV( v»~v,~ )
il ( AHy 0T ”|ox>) il ( o "'a«v) (2.10)

Then there is an a.s. absolutely summable potential U&3SI™ (1)) on the disorder
space st. U™ (g, 5) = U'(0, n) + UTR®SI™ () is a potential for the joint
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measure K. Here, as above, UV is an arbitrary representative of the “ trivial
annealed potential contribution” . _
If K istranslation invariant, then U#®S1" () is tranglation invariant, too.

Remark. Again, the potential is even integrable. Moreover, for any nonnegative
tranglation invariant function w(A) giving weight to a subset AcZ¢ we have the
following estimate on its decay

> w(A)f

A:A>xg

fe abslnv

<Ci1+C2 Z m® Ywm)é(m) (2.11)

where w(m) = w ({z €74 7>0,z] < m}) where > denotes the lexicographic
order. The constants C1, Co arerelated to a-priori boundson AH,.
Under the stronger condition that we have bounds of the same form on the

SUPx.y:tx—yi=m SUP; |cx,y (12 1y, 7)| the absolute convergence is not only as. but
nx.ny €A

everywhere and (2.11) holdsfor al realizations without the P-integral (with non-
random constants).

3. Theinfinite-volume conditional expectations

We start with a suitable representation of the infinite-volume conditional expecta-
tions of the joint measure.

We write ¢ = (o, ) here and below, so that, for any set AcZ¢ we have
§a = (04, 1m4). Recall that r is the range of the defining potential ®. We write
A={yezd(y, A < r)forther-neighborhood of aset A, and put 44 = A\ A.

Proposition 3.1. Assume thereis a set of realizations #°c.# of P-measure one
such that the quenched infinite-volume Gibbs measure w[n] is a weak limit (2.2)
of the quenched finite volume measures (2.1) for all n € #°. Then, a version
of the infinite-volume conditional expectation of the corresponding joint measure
K(do,dn) = P(dn)u[n](do) isgiven by the formula

AN (g0 )

f ann, &y Adna)Oaa, A, Uzd\A)

K [ |§Zf1\A] (3.1

Here M””"’g“ (€p) isthetrivial annealed local specification given by (2.5), which
can bewritten in terms of the potential U”“’(a, n) = ®alo, n)—Lazixy logv ().
Further we have put

_ 1 .2
QA(TR. 3s Nz\a) = N nza\ gl (e AHATR M 1)) (3.2

According to our assumption on the measurability on u[n], Qs depends measur-
ably on 774\ » . e note the following properties

. -1
(i) Qa3 04 nza\a) = [QA MR- k. nza\ )]
(i) For any ADA wehave QA (nina\a, 1A na\as Nzi\a) = Ok, 3, Nzd\A)
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OA(}.n3.1zd\p)

iii) For any n3 we have ——4 4290~
(i) Y A QA(']f\,ni,nZd\A)

= Qa(%. 13- Nzi\A)

whenever € #9,

Remark. Note that, by our assumption on the a.s. convergence of the infinite-vol-
ume Gibbs measures, Q 5 can be written in the form

b.c.
1 .2 ; ToNy 2 —AHA (X 72
On(p, nys Nzaa) = MmOV ] (6 AGIA T ""A))
Antzd
§’A°
N[UAWAN\A]

= lim 33
Antzd J&A
N [ Ma ﬂAN\A]
with the quenched partition function
Zigf'\c. [nx] = Z o~ ZAANAED ®alon0g oy (3.9

OA

whenever € #°. Moraly, Q , isthusaratio of infinite-volumepartition functions
whose disorder variables differ in the volume A.

Remark. We note that formulasfor the finite volume conditional expectations have
appeared in [K6] [see Lemma 2.1, (2.4) therein]. They seem to look more com-
plicated than the infinite-volume expression (3.1). In that paper we wanted to be
ableto deal also with the more general casein which we do not assume P-a.s. con-
vergence of the finite volume Gibbs measures, but only convergence of the finite
volume joint measures. Then (3.1) is not available.

Proof . Properties (i), (ii), (iii) are clear from (3.3).

To get (3.1) we will show at first that, for the measure K, AN(oAN, May) =
bc

P(nAN)/LAN [nAN](aAN)onQAfo we have, for finite A, A, Ay with ACA
and ACA y, the formula

b.c.

Ko™ [£nlEara]

b.c
=/KAM [dUAN\Ad’IAN\MEA\A]

ann,&anabana
jz (a)
X A ?c (3.5)

[nA’?A\ATIAN\A]
c

SENN
ZAN [UAUA\A’?AN\A]

M?\"’LSE?AﬁAé’)A\A (dﬁA)

In particular the formula holds true for A = A. Now, (3.5) isjust a computation.
Indeed, write

obe.
o/\

[éA |Eava]
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Tony

b.c obe.
= / Ky, [dC}AN\Adﬁm\A|SA\A:| KAd;N [éA’EA\AUAN\Anm\A:I
(3.6
and note that the term under the integral on ther.h.s. equals

b.c.
LEINY

K,, [5A§A\A5AN\A’7H\A]

Oony [z _ _
Zg,\ Ky, N [éAéA\AGAN\Anm\A]
Ub.c. _ _
B PO [1ana\ ATz Al (0ATA\AGA N \A) @7
- obe :
2 G P(UA):U«A);,\N[nAnA\Aﬁm\A](UAUA\A5AN\A)

Spelling out the quenched local specifications in terms of the random potential
® this can be rewritten in terms of the special annealed potential Uj‘”"(o, n) =
D4(0,n) — Lazixylogv(ny) as

e DA ANARS U;\”U(UAUA\A(}AN\AJ)AUA\AT_IH\A)

(3.8)

b.c.
Nnanaa Tay\al

. 9N
» = 2 AANAZS Uﬁ{’”(UAUA\AGAN\AJ/AUA\AUW\A) Zay
Ga.fin € b.c.

TONN [~ _
ZAN [WAWA\AWW\A]

Note that, due to cancellations for AC Ay, the U-sums do not depend on obC
Note that, for AcCA, (3.8) does not depends on Ga,\a. In this case the
outer integral in (3.5) reduces to an integration over the disorder variables.
Note however that this is not a product integration! Finally, dividing both
numerator and denominator of (3.8) by the annealed partition function

ZFTA,?;A o~ L AANAL U™ GAOMATAN\ATATA\ATR R\ A) we get the desired (3.5).
Next we claim that

K [£al6ava] = / K [déza\p|5a\A]

M‘j\”"fﬁAﬂAéaA\A (Er) 39

MT”’&AM&A\A (dna) @AM, NA, NA\ATzd\A)

To seethis, write down (3.5) explicitly in terms of the quenched local specifications
and (3.9) in terms of the infinite-volume Gibbs measure. Note that the dependence
on those measuresis completely local- therefore (3.9) follows by the assumption of
P-as. local convergence of the finite volume Gibbs measures. But from (3.9) we
can conclude now, that what is under the integral on ther.h.s. must be the infinite-
volume conditional expectation. More precisely, (3.1) follows from the following
general measure-theoretic

Fact. Assume that &4 is a random field with distribution K, &, taking valuesin a
finite set, and K [£4 |£4, , | is@ Borel probability kernel that satisfies

K [Exléaa] = / K [d&za\p|Ea\a] K [£a|Ea\néza\a] (3.10)
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for all finite AD A, where K [d&z4 o |4\ | IS version of the conditional expecta-
tion. Then K 3 |§Zd\ ] isaversion of theinfinite-volume conditional expectation
K [gnléz0a)-

We include a proof for the convenience of the reader:

K [€n|&74\,] is assumed to be o (£74, , )-measurable. So, to verify the def-
inition of the conditional expectation we have to show that, for al events C €
o (§z4\4) @d A € o (§24) we have that

) < | & [dealéiu ] @0, (dszd\A)> K(d&}u ) = K(ANC)  (31D)

writing Aintheform A = 3", ({6a} x Ag,) where A, € o (£74\ ) Weseethat
thisisequivalentto ., [ K [£x[), , | L, cey K (@8 )= Y, K(lEa)x

(Agy N C)). So, it suffices to show that, for any B € o (£74,,) and any &5, we
have that

f R [enl6o o | K (@8L0 ) = K (A} x B) (312)
B

To see this, we apply the standard Dynkin-class argument to show an equality for
all setsof agiven o -algebra, seee.g. [Co] Theorem 1.6.1 (which statesthat, for any
N-stable set # of subsets, the smallest o -algebrawhich contains.# coincides with
the smallest Dynkin-class which contains #). First note that the system & of sets
Bino (£74\ ) for which thisequality holdsisaDynkin class: That Q2 € & follows
from (3.10) for A = A; furthermore & is stable under formation of complements
and countable unions of pairwise digoint sets, by the properties of the integral.

Thuswe only need to prove (3.12) for the set of cylinder sets, sincethey form a
N-stable generator of o (£, » ). It sufficestotake setsof theform B = (£, Ea\a =
£a\a}- But note that in this case

K "o | KWdEL, )= | K Lo | K(dEL, K
[ & enlehu ] K@en ) = [ & [enlenntias] K e K Ean)

= K [Enléa\a] K (Eara)
= K({éa} x B) (313

where we have used the hypothesisin the second equality. This concludesthe proof
of the “fact” and concludes the proof of the proposition. O

4. Construction of potentials— proofs of the theorems

Starting from the formula of Proposition 3.1 for the infinite-volume conditional
expectations of the joint measure K we will prove Theorems 2.1 and 2.2 at the
sametime. A little later we will prove Theorem 2.4.

Asalfirst consequence of Proposition 3.1 we separate the potential for thejoint
measures we are about to construct into an “annealed part” and a “free energy”
part. We have
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Lemma4.1. Supposethat U (&) isapotential for the annealed system. Then we
have that U (o, ) = U (0, ) + U™ (5)) generates the conditional expectations
for the joint measure K if U'€(y) is summable for P-a.en and, P-ass.,

lim  }° (U}{eminﬂm)—Uﬁeminm))=|ogQA(ni,ni,nzd\A>

ANZY A ANAAS
4.0
Proof. For finite ADA we write
e~ 2 aaca,anazn Ua®)
ZéA e 2 aaca,anazn Ua (SAézd\A)
e~ 2aaca anaza U™ €)
Zg e D AACA, ANALED UXM(gAgzd\A)e* Y aaca (U/{e(ﬁz\ ’)Zd\A)*U/{e(U»
A
ann, &y
_ 12N éa) (42)

fe fe
futll\nn,ézm (dﬁ[\)e_ ZA:ACA(UA (nAnzd\A)_UA (7)))

Here the first equality is just a resummation of sums and the second follows
from normalizing by the annealed partition function. Now the claim follows from
formula (3.1) for the infinite-volume conditional expectations of K by the limit
A1 74, O

Thus we are completely reduced to the investigation of the Q-part. Hence we
will define our potentials in terms of logarithms of QA’s. This makes life much
easier and formulas much more transparent than dealing with the full conditional
probabilities of the joint measuresthemselves. The situation isespecially nice here,
since the Q-part depends only on the disorder variables and the marginal of the
joint measures we consider on the disorder variablesis just a product measure.

4.1. Proof of Theorems 2.1 and 2.2

Denote by « any product-measure on the disorder space. Later we will put either
a = PP ora = §; for afixed realization of the disorder 7, thefirst case correspond-
ing to the proof of Theorem 2.1, the second case corresponding to the proof of
Theorem 2.2. For the second case we assume that 7 isin the set of realizations for
which the convergence (2.2) holds. From this follows: For al realizations which
are finite volume perturbations of 7 the convergence (2.2) to an infinite-volume
Gibbs measure with the corresponding local specification holds, too. (Thisis seen
by splitting off the corresponding terms in the Hamiltonian and treating them as
local observables.) So thel.h.s. of (2.8) is uniquely defined.
We define the ‘relative energy’

EX(na) = /a(dﬁ)log OAMA, s Nzd\p)
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= [ atdiytogutie o) 43
and define a potential by the inclusion-exclusion principle

Uy =y (-DMMES(s)  sothat
AACA i

ES(a) = Y. UM (4.49)
ATACA

We remark that the application of the inclusion-exclusion principle to define afor-
mal potential is a classical thing that goes back even before [Koz]. Note that, by
choosing a = §5, (4.3) becomes an expectation w.r.t. a non-random system and
thus, for a suitable trandation-invariant realization 7, might even be amenable to
explicit computationsin certain cases. Of course, for « = P, (4.3) involvesthefull
disorder-dependence of the random Gibbs measure and will hardly ever be suitable
for explicit computations.

Note that the family of random variables E% , indexed by finite subsets AcZ9,
isamartingalew.r.t. the product measure «. This means that, for each ADA,

/ (R ES (Iafian) = ES(na).  ES = f G @DES(n) =0  (45)

Indeed, we have by Proposition 3.1 (iii)

[ i f «(dii) 100 Qa1 Tia\a, fias iz »)
=/Ol(dﬁ)/a(dﬁ)(|09 OAMATNA\A, A, 74\ A)

+ Iog QA(ﬁAa 77/A, ﬁZ"’\A) + |Og QA(U/A, ﬁAv ﬁZ‘i\A)) (46)

for any fixed n’. The last two terms cancel, due to Proposition 3.1 (i) and the first
term equals E$ (n,), due to (ii), as desired. Note that this works also in the case
a = §8; since we assumed weak convergence for the point 7!

From this it follows easily from the usual play with signed sums that, in
fact, the potential U is a-normalized as a potential on the disorder space, i.e.
[ e (i) UL (navs7ix) = O whenever x € A.

Next, to prove that the potential converges, write

Yoo ufm= Y vl m- > ugm

ATACA,ANA#D AIACA ATACA\A
= EZ(’?) - EZ\A('?)

_ /a(dﬁ)log QA(nAvﬁAsﬁZd\A)
OAMANA\A, TAs 74\ A)

= /a(dﬁ)log OA(MA, A, NA\ATIzd\ A) 4.7)
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The second equality is (4.4) and for the next two equalities we have used properties
(ii) and (iii) for Q. Theimportant point that exploitsthe nature of « being a product
measure is the convergence statement

lim / a(di)1og Qa(nk, 13, na\afizaa)
At zd
= log QA(ﬁ/l\, 7712\, Nzd\A) for «-aen (4.8)

This follows by the martingale convergence theorem, since, for any fixed finite
AcZz? andfixed n} , n% the expression under thelimit onthel.h.sindexed by finite
subsets ACZ¢ st. ADA, isamartingale w.r.t. the distribution given by «.

Proof of Theorem 2.1. We put « = P. Then we see from (4.7) and (4.8) that the
potential convergeswith A 1 79 for P-a.e. 5. Since P isthe marginal of K on the
disorder-space, thisis exactly what we want.

Proof of Theorem 2.2. Weput o = §;; where isthe assumed direction of continu-
ity. Inthis casether.h.s. of (4.7) isjust Qa (na, fia, na\AT za\ ). USING property
(iii) for Qx we may rewrite this as a telescoping sum > .\ Oa(Ma_,» A,
na\afiza\a)- Here we have put the lexicographic order on 7% and written A<, =
{z € A; z < x} (and the analogous notation for “ <"). Thus we see that (2.7) realy
implies convergence of the potential with A 4 74,

Next we prove that the potential generates the infinite-volume conditional ex-
pectations of the joint measure K. We must verify hypothesis (4.1) of Lemma4.1.
We have

Z (UAfe(’?/l\’?Zd\A) - Uf{e(”zzxﬁzd\/\))
AACA
= E%(nina\a) — Ei(nllz\nA\A)
. OaMANA\A, TIA, T7d\A)
:/a(dnzd)log ATA Z0\A

Oa(m3naa, fia, Nzd\A)

= /a(dﬁzdﬂog Oy, 15, NA\AT 70\ A) (4.9)

But, recalling (4.8), the proof of (4.1) is the same as that of the convergence of
the potential, in the respective cases of Theorem 2.1 and Theorem 2.2.
This concludes the proof of Theorems 2.1 and 2.2. The convergence statement
of Corollary 2 follows from (4.7) by integration over n w.r.t. P. In fact, we see
that 34 anazs i P(dﬁ)Vli‘fA(ﬁ) equals the finite quantity [ P(d7)
log QA (ias A, 174\ 5)- Finaly we also note that, assuming continuity of Q ev-
erywhere, we have even pointwise convergence of (4.8) for both choices of . This
proves the first convergence statement after (2.9). O

4.2. Ageneral remark about resummed potentials

The potentials used in the proofs of Theorem 2.3 and Theorem 2.4 are obtained
by resumming the supports of the «-normalized potential Uf(’fe(n). The general
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construction is the following: Denote by P the set of finite subsets of Z¢ and let
P =J, P, beadigoint unionst. (i) C4 := 4.4 p, A isfinitefor every a, and
(ii) there exists anet of finite sets AgcZ9 sit. limg Ag = 74 and: for dl finite A,
we have that, for sufficiently large Ag, for al ACAg st. AN A # ¢ there exists

ana with C,CAg st. A € P,. Then Ug’fe’gr(n), defined by

veeay = Y Ustm), LY :=0ifC # Cifordla  (4.10)
AACP,

iscalled theresummed potential corresponding to the given decomposition of P.
The reason for the complicated looking requirement (ii) isthat one has

a.fe,gr

Lemma4.2. Suppose that U (n) isaresummed potential obtained from the
o,fe

a-normalized free energy potential U~ (n) that converges absolutely for P-a.e.
n.ThenU (o, n) = U*" (o, n)+ U*®9 () generatesthe conditional expectations

for the joint measure K (for any annealed potential), if the «-normalized potential
does.

Proof. For any fixed A we have that, for any sufficiently large Ag,

fe,gr fe r
> ( U& e F (inzaa) - g (UA’lzd\A)>
C:CCAp,CNAF#YD

f f
= Z (Uﬁf' e(’?/lxﬁzd\/\) - Uy e(’?iﬂﬂ\;\)) (4.11)
A:ACAG ANAZD

This is clear, since, for every term in the right sum there is precisely one term
in the left sum containing its contribution, due to property (ii). Conversely, those
contributions on the |.h.s. coming from A’s that don’t intersect A cancel because
the field configurations agree outside of A. Thus, the |.h.s. converges to the r.h.s.
of (4.1) along the net Ag. By the hypothesis of absolute convergence thisimplies
convergence for any sequence A 1 oo, which provestheclaim, by Lemma4.1. O

The resummations used in the proofs of Theorem 2.3 and 2.4 were invented
already by [Koz] and used in various publications since then. They are of the fol-
lowing general form. Take < any total order of the lattice pointsin Z<. Let, for any
|attice point x € 79, an increasing sequence of finite subsets A, , C{y : y > x},
m=12 ... begvenst. |J, Axm ={y :y > x}. Put Ay ,,—0 = ¥ and define
Pem '={A 1 x € ACA;xm, AN (Ay, m\Ax m—1) # ¥}. The second condition for
thesumisempty form = 1. Then(J, ,, Px.m = P isadigoint unionand condition
(i) is satisfied. Indeed, to see (ii), consder the family A, = (U, cz¢ Ax,m, Where
m = (my),cz¢ iSaninteger vector s.t. only finitely many of them,'s are nonzero.

Proof of Theorem 2.3. By Lemma 4.2 it suffices to show a.s. summability of a
certain resummed potential. The proof of this statement essentially relies on an
L1-statement corresponding to the convergence result (4.8). In order to explain
why this ensures the existence of an a.s. summable potential, however, we have to
write down explicit formulas. Let x — #(x) denote a one-to-one map from Z¢ to
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the integers {1, 2, .. .}. (The reader may think of some spiraling order.) Then the
L1-martingal e convergence theorem gives us that

/P(dn)’/ P(dﬁ) |Og Qx(nm ﬁ)ﬁ ﬁ{y:lg#(y)<#(x)}77{y:#(x)<#(y)§r}ﬁ{y:#(y)>r})

P(dn)10g Qx (nx, fx, Niy:1<tt(y) <t} My#)>#0) | = €x(r) L 0
(4.12)

withr 1 oo, for any fixed x. Thisisclear, sincethefirst line of the expression under
the modulus is a martingale w.r.t. to the parameter r, for any fixed x and fixed »,.

Take some subsequence r(n) of the integers, to be defined below. For x > 1,
m > 1defineA, ,, := {z € 7%, #(x) < #(z) < r(#(x)+m)},putalsoA, ,—o = 9.
Starting from general «, let us define the resummed potential by the formula cor-
responding to (4.10), i.e.

Uy, )= > U, U™ = 0otherwise (4.13)

AxeACAx,m
AN(Ax,m\Ay - D#9

foral x € 74 and m > 1. Then we havefor m > 2

fe,ab
Uy o™ = ES ) —ES, D) —E4 )+ ES 0D

= / a(dnza)log
QAx,m (nA)r,m ) ﬁAx,m ) ﬁZ‘l\Ax_m ) QAx,m (nAx,mfl\x ﬁAx,m\(Ax,mfl\x) ’ ﬁAx,m ’ ﬁZ"\Ax,m)

QAx,m (nAx,mflﬁAx.m\Ax,mfl’ ﬁAx.m ’ ﬁZf’\Ax.m ) QAx,m (nAx,m\x ﬁx ’ ﬁAx,m ’ ﬁZd\Ax_m)
(4.14)

In the first line we have used the expression of the relative energiesin terms of the
potential. In the last line we have used the definition of the relative energies and
property (iii) for Q. Again, by (iii), this can be rewritten as

Ox (N, Nx, NAx m\x ﬁZu’\Ax,m)
Ox (N, Nx, NAx m—1\x ;]Zd\Ax,m—l)

U eds ) — f «(di) log (4.15)

The previousformulawastruefor any resummed potential starting from the a-nor-
malized free energy potential. Let us switch to @« = P and drop the subscript «.
Now we have from the convergence property (4.12) our main estimate:

[ e

Similar to (4.14), (4.15) we haveform = 1

afe abs

US| < 2¢, (r (#(x) +m — 1)) (4.16)

() = E3 () — E3 (D)
_ /a(dﬁ) log QAX,l(UAxyl» NAx 1> Uzd\Ax,l)

QAxﬁl(ﬂAx‘l\x Nxs ﬁAx,l’ ﬁzd\AX,l)
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- / ()10 0. (e s Ay ez . ) (4.17)

Thisisuniformly bounded in modulus by some constant Const. From thelast two
estimates one concludes that

> [ranlvEtam|= ¥ Y [pan vt
C:.C>x y#H(y)<#(x)m=1
< Constally, #(y) = #(0)|

+2 Y0 D 6@y +m—1) (418

VH#(y) <#(x) m=2

But, it is a simple matter to convince oneself that it is possible to choose a subse-
guencer (m) of theintegerssit. them-sumisfinitefor all y. (Infact, frome,(r) | O
one can find a subsequence r(n) st. even > o2 ; €y(r(n)) < oo for al y.) This
completes the definition of the potential and proves P-integrability and thus, in
particular, P-a.s. summability. O

The readers may check for themselves that one may rerun the proof for both
choices of o under the hypothesis of continuity of Q everywhere. This proves the
strengthened version of Theorem 2.3 promised after (2.9). One may however not
rerun the proof for o = §; without further assumptions other than the continuity
of O, inthedirection 7 with the hope to obtain an absolutely summable potential.
This is because the speed of convergence of the analogue of (4.12) (obtained by
replacing P by &5) may be nonuniformin » in this case.

Proof of Theorem 2.4. Thistime, denote A, = {z € 7% 7> x, |z — x| <m)}
and define the potential by the same formula (4.13), with the new A’s. Then (4.15)
and (4.17) stay true. (4.17) isuniformly bounded. The potential can be rewrittenin
terms of correlations. Introduce Q. <y = Lx m—1U{z € Ly ;u\Lxm—1;2 < y}.
Then, for m > 2 we have

U™

— Z (Ea(an,m,g)') _ Ea(an.m,<y) _ Ea(an,m,fy\x) + Ea(an,m,<y\x)>
YELx m\Lx,m-1
(4.19)
The term in brackets can be expressed as
— / a(dn)log

paf @xm<3\¥] (efAHu-n<mx,y)sﬁ{x,,vMQ"””‘-"\x

X
M[n Ox.m,<y \X] (E_AHX (M, 71x ,an.m,<y W

‘r)(xvy)))
a0)

—AH, "~v~ Ox,m,<y\x
Z).x)>M[an,m,<y\x] (6‘ vy iy )

ay

(4.20)
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where we have used the notation n4 := (174 174\ 4)- Notethat this gives a-depen-
dence for the a-integral. So we get that 5-expectation of the modulus of the I.h.s.
is bounded from above by

/a(dn) E(x(an.m,g)-) _ Ea(an.m.<y) _ Ed(an_méy\X) + E‘x(nQX.m,<y\x)
_ P oy Qxm,<y\x
< CO”S[/O{(dT]) ‘/\Ol(dﬁ),u[an'me\x] <€ AHp yy (ix,y) e,y 7 Y 3(',(1).))>

- / a(diu[n@rm=r\] (e_AH"(""’ﬁ*'”QX""'<“'\X|ax)>
(4.21)

«')y)>

where, as aways, we have used that A H, is uniformly bounded to drop the loga-
rithm. Let us now switch to the case o = P. We use theinequality | [ f| < [ | f]
for the 77-integration to see that ther.h.s. isbounded from above by Const [ P(d7)
|cx,y(nx, my, 7)|, the latter quantity being defined in (2.10). Recalling ¢(m) :=
SUPyiti—vi=m [ P(d7) |ex,y(nx, 1y, 7)| we have from this and (4.21) that

nx.Ny€H g

— n Ox, ,<_'\X
XM[nQ,\am.<y\X] <€ AH}’(UY'n)"n =y

/P(dn) ‘U{f"jnb3~i”v(n)‘ < Const |Lym\Lym_1|&0m) < Const'm*2&(m)

(4.22)
But this gives
> wi) [ e |ult
A:A>xp
w .
=Y X wi [ P VR
m=1y:|y—xo|<m
oo
< Consty1 + Consty Z mdelw(Ao,m)E(m) (4.23)
m=2
which finishes the proof. ]

We remark that the trick to relate some formal potential to expectations of cer-
tain observables by atelescoping [asin (4.19), (4.20)] was used in various papers
before. Observe e.g. the analogy to the recent [MRSM] where a.s. strongly decay-
ing potentials for renormalized measures of low temperature spin systems were
constructed.

5. Examples
The results of Theorems 2.1 and 2.3 are general existence results that always

apply. Let us however also see what the more specific assumptions needed for the
convergence of the vacuum potential and the strengthenings of Theorems 2.1, 2.3
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given after (2.9) and in Theorem 2.4 mean in the examples of the (i) random field
Ising model, (ii) Ising models with random couplings, and the (iii) diluted Ising
ferromagnet. These examples were discussed already in [K6] w.r.t the question of
almost Gibbsianness.

(i) The random-field Ising model

The single spin space for the variables o, is Qo = {—1, 1}. The disorder vari-
ables are given by the random fields n, that arei.i.d. with single-site distribution
v that is supported on a finite set o and assumed to be symmetric. The defin-
ing potential ® (o, n) is given by &y, (o, n) = —Joo, for nearest neighbors
x,yeZ4 ®yy1(0, n) = —hnyoy, and @4 = 0 else. Note that e~ DH@omnd) =
hx=nDor = hF=10) 4 25inhh(nt — n2) 1y, —1. Then, treating this exponential
as an observable and using the *finite volume perturbation formula’ asin [K6] we
seethefollowing. Condition (2.8) (giving the convergence of the vacuum potential)
holdsif and only if

Hm u[nafzaz]1(6x = 1) = u[n](Gx = 1) (5.1)
A Z4

for ny, for al x, for P-ae. n. (Here, as always, we used the notation that spins that
are integrated are decorated with tildes.) This is true for any measurable infinite-
volume Gibbs measure [n] which is obtained as aweak limit with a non-random
boundary condition. We note that whether (5.1) holds is independent of 7,. Sim-
ilarly, condition (2.9) (giving continuity of the conditional expectations) holds,
whenever

lim sup|ulnafiza 416 =1) — uln] G = 1)| =0 (5.2)
A Z4 A
From this we have

Corollary to Theorem 2.2. For any choice of the parameters of the model, the
joint measure corresponding to the ferromagnetic plus-state has an a.s. conver gent
vacuum potential with vacuum (n*, o). Here n* is the configuration taking the
maximum of the possible values of the magnetic field for all sites x and o is an
arbitrary spin-configuration.

Corollary to Theorems 2.1 and 2.3. Suppose that limy ; 7« uj([nA](&x =1 =
limy 474 x[nal(6x = 1) for all choices of the magnetic fields n € . Here
the expressions under the limit refer to the finite volume Gibbs-measures with +
(resp. —) boundary condition.

Then the corresponding (unique) joint measure is Gibbs and the potentials of
Theorems 2.1 and 2.2 are both convergent everywhere. Thereis also a potential of
the form announced in Theorem 2.3 that is absolutely convergent everywhere.

Proof of Corollaries. It isknown that the limit u*[n] = limy 4+ 7 uj{[n,\] exists
for any choice of the parameters and any configuration of the quenched random
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fields n,, due to monotonicity reasons. To prove the first Corollary we show that
(5.1) holdsfor 4™ and 7 = n* and any 5. To see this use the fact that the function
(1, %) > u‘j\bc[n Al (6x = 1) ismonotone (w.r.t. the partial order of itsarguments
obtained by site-wise comparison.) From this we have

p Gy = 1) = limsup i [nal@x = 1) = limsup ™ [an}, ,1@Ex = 1)
At Zd At Zd
(5.3)

for any n where inequality under the limsup follows from the DLR-equation and
the monotonicity. Additionally we have the converse estimate that follows from

ol — 1) — i + = _ i + + = _
nnlex =1 = Alzlgd ma,lnasle: =1) < Allergd Ha,lnanypal(@x = 1)
= 1 [nange )6 =1) (5.4)

by taking the liminf over A. This proves the claim. The other Corollary follows
from the remark after (2.9) and the fact that (5.2) follows from the hypothesis by

palnal@x =1 < plnanzaal(Gx =1) < MX[”A](5X = 1) for any 7. o

Next we discuss the hypothesis of Theorem 2.4 giving decay of atranslation
invariant potential. Again, using the special form of the single-site perturbation of
the Hamiltonian, it is not difficult to see that we have

“n) = Const  sip / P |17 Gxy) — nlil GoulilGy)|  (55)
X,y:lx—y|l=m

for m > 1. (Here the sup over the possible different choices of . and », was ab-
sorbed in the constant. To see thiswe used the *finite volume perturbation formula
asin [K6] Chapter I11.1)

Now, let us assume that we are in the interesting region of the parameter space
where existence of ferromagnetic order is proved. |.e, let us assume that we arein
dimensions d > 3 and we have small disorder and large temperature, i.e. J > 0
sufficiently largeand 2/ J issufficiently small. Then, arefined analysis of therenor-
malization group proof of Bricmont and Kupiainen should lead to the fact that (5.5)
decays faster than any power withm 4 oo for the plus-state . [1]. [Unfortunately
this does not follow directly from the (related) statement (2.6) given under [BK]
Theorem (2.1) which asserts that the quenched correlation under the P-integral
decays like Const (i7)e<"* ¥=YI 'since Const (77) is unbounded.] This has to be
contrasted with the fact that in this region the system was aready proved to be
not amost Gibbsian in [K6]. (The set of “bad configurations’ of n even has full
measure. The reason for this is that the magnetization ©*[n](5,) can be made to
jump for typica n by varying the signs of the field » in alarge annulus arbitrarily
far away from x. So, (5.2) does certainly not hold.)

In the opposite “high temperature” case where the coupling J is sufficiently
small, one gets exponential decay ¢(m) < Const e=°"!*=¥I In fact, stronger
than that, one has an exponential bound on the random correlations in (5.5), uni-
formly in all realizations of the field. For small J this can be seen by a standard
expansion of the nonrandom interaction term e’ ov=oy = ¢/%ox=0y — 14 1. Indeed,
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summation over the spins w.r.t. the independent measures v(do, )= then pro-
duces an n-dependent polymer model that has exponential decay of correlations,
uniformly in 5. Of course, exponential decay of quenched correlations, uniformly
in the redlization of the fields, always holds in one dimension. This can be seen
(e.g.) by disagreement percolation arguments. By the remark after Theorem 2.4
thisimplies that the joint measure is Gibbsian with an interaction potential that is
superpolynomially decaying everywhere.

(ii) 1sing model s with random nearest neighbor couplings: random bond, EA-spin-
glass

The single spin space is again Qo = {—1, 1}. Denote by & := {(1,0,0,...,0),
(0,1,0,...,0),...,(0,0,...,1)} the set of nearest neighbor vectors pointing in
‘positive directions'. The disorder variables (random couplings) J . take finitely
many values, independently over the ‘bonds’ x, e. We put n, = (Jx,e)ecs- The
joint spin at the site x isthen &, = (oy, Nx) = (O, (Jx.e)ecs). The defining po-
tential @ (o, n) isgivenby i, y1(0, n) = —Jy c0x0y if y = x +eforsomee € &,
and &4 = 0 else. Specific distributions of interest are @) J; . takes values strictly
bigger than zero (random bond ferromagnet); b) J; . is symmetrically distributed
(EA-spinglass).

Now, the crucial observable is the correlation between nearest neighbors. We
use the special form of the single site perturbation of the Hamiltonian w.r.t. n, and
similar arguments as for the random field Ising model (see [K6] chapter 111.3). In
thisway we seethat: (2.8) holds if

A*lTi(I?J)* Mool Ja j(zd)*\A*](5x5y) = MOO[J(Zd)*](&x&y) (5.6)
for any nearest neighbor pair x, y. Here we have written (Z%)* for the lattice of
bonds of Z4. Also, the condition (2.9) giving continuity of the conditional expec-
tation holds if

A*ITi(r;z]d)* sup Moo[]A*j(Zd)*\A*](5x5y) — Mool J(zd)x](GxGy)| = O (5.7
J

for nearest neighbors. Finally, the quantity crucial for the decay of the potential is

c(m) < Const  sSup P@dJ)
x,y:lx=yl=m
eeled

ul[J1(Gx 6x+e&y &y+e’)

_M[J](&x&x+e)M[J](5y'5y+e’) (5.8)

for m big enough st. {x, x + e} N {y, y + ¢’} isaways empty. (Again the sup over
the possible different choices of n, and n, was absorbed in the constant.) This
quantity could be called the quenched average of the ‘energy-energy’ - correlation
function.
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We expect this to decay faster than any power in a very general situation. Ex-
ponential decay of the quantity under the modulus, uniformly in J, holds of course
in a high-temperature regime where the maximum of the possible values of |Jy .|
is sufficiently small. If this value is small enough, this can be seen by a usual
high-temperature cluster expansion. This results in the existence of a tranglation
invariant potential, whose sup-norm decays according to the remark after Theorem
24.

In [K6] we gave a heuristic discussion of the example of ajoint measure cor-
responding to a random Daobrushin state for a random ferromagnet describing a
stable interface between the plus and the minus state. Such states are believed to
existind > 4for low temperature, and weak disorder, though thisisonly provedin
the solid-on-solid approximation (see [BoK 1]). We argued that the corresponding
joint measure should not be ailmost Gibbsian, if the set of possible values of the
couplings contains avalue that is small enough such that the corresponding homo-
geneous system is in the high temperature phase. Indeed, choosing this coupling
in alarge annulus one can decouple the inside of the system from the outside. So,
the inside of the system should be in a mixture of the ferromagnetic plus resp. mi-
nus state rather than the Dobrushin state, a difference that can be observed on the
nearest neighbor correlations. Nevertheless, we expect fast decay of the averaged
correlations (5.8).

So, asfor therandom field I sing model in the phasetransition regime, we should
have another example of ajoint measure that is not almost Gibbsian, but has an
interaction potential that decays faster than any power outside of a set of measure
zero, and istranglation-invariant w.r.t. the shiftsthat preservethejoint measure (i.e.
the horizontal shiftsin the direction of the interface).

This potential should not be translation-invariant w.r.t. to shifts orthogonal to
the interface. In fact, the almost surely convergent P-normalized potential for the
Dobrushin state should not be trandlation-invariant. To seethislook at the explicit
formulafor the single site-contribution to the potential at the sitex obtained by (4.3)
and (4.4). It can be rewritten in terms of an integral w.r.t. the couplings J of some
function of the ;[ J](6¢6x4.)'sand local terms. Here uu[ J] isthe Dobrushin-state.
Hence, the resulting expression depends explicitly on x.

This following example appears in the physical literature [Kul,2], [MKu] and
wasfirst rigorously discussed by [EMMS] bel ow the percolation threshold. We are
alittle more explicit in the discussion than in our previous examples.

(iii) The diluted random ferromagnet (' GriSing field’)

Thesingle spin spacefor thevariableso, isagain Q¢ = {—1, 1}. Thedisorder vari-
ablesare given by the occupation numbersn, taking valuesin {0, 1}, independently
w.r.t. x with density P[5, = 1] = p. The disordered potential ® (o, ) isgiven by
®y.y1(0, ) = —Jncoynyoy for nearest neighbors x, y € 7¢ and &4 = 0 else.
So the one-site variation of the Hamiltonian is A H, (o, nt, n2, nax) = —J (it —
nf)dx Zy:d(y,x):l NyOy-

By the results of [EMSS] and [K6] we know that, for any p, for sufficiently
large J, any weak limit of the joint measures of the GriSing random field is non-
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Gibbs. [EMSS] noted that, for p below p,, the percolation threshold for ordinary
site percolation, one easily obtains a potential for the joint measure by putting
Ua(n) = log Zg\a(m‘) for thefree energy potential if A\d(A¢) isaconnected com-

ponent of {x, n, = 1} and U (n) = Oelse. (Here Z% isthe partition function of the
ordinary fully occupied Ising model on the set B with open boundary conditions
on dB.) It iswell-defined on the full-measure set of configurations where thereis
no infinite cluster and (trivially) absolutely summable on this set.

On the other hand, by the general result Theorem 2.1, we know that there
is a P-normalized potential which is convergent for P-a.e. n for any vaue of
p, 0 < p < 1. By Theorem 2.3 we know that there is a (suitably regrouped)
potential constructed from this potential that converges even absolutely for P-
a.e n. To be a little more specific: It is easy to see that in this case a P-nor-
malized potential on the disorder space can be written in the form Ulff A(n) =
ca(J, p) [ 1 ea(nx—p). Fromtheproof of Theorem 2.1 weseethat, for agiven mea-
surable Gibbs measure w[n], the parametersc 4 (J, p) of the corresponding free en-
ergy potential areto be determined from the equations (4.3) and (4.4). Convergence
of > a.asx €a(J, ) [[yea(ny—p) for P-ae. nisguaranteed by Theorem2.1. Note,
on the other hand, that we certainly havethat 3° 4.5, lca(J, p)|(1 — p)lAl = oo
for p < 2and ", 45, lea(J, p)Ip!Al = oo for p > 3 for J sufficiently large.
Thisis clear because the above sums are just the sums over the sup-norms of the
interactions and otherwise the potential swould be absolutely uniformly summable.

Itishowever also interesting to discussthe vacuum potentials and check the hy-
pothesis of Theorem 2.2. We start with the potential corresponding to the *empty’

vacuum f;)(co) = 0. It has the form V;?A(n) = cﬁf”(])]‘[yE 4 1y (corresponding

to [Ku2(31)]). Note that the definition of the constants ¢ (/) by (4.3) and (4.4)
involves only expectationsw.r.t. 1[7(?] whichisjust an infinite product over sym-
metric Bernoulli measures. Trivialy, the weak convergence (2.2) holds, and is
independent of the boundary condition. So, the constants are explicitly comput-
able up to any desired magnitude of |A|. In particular, they do not depend on p.

Corollary 2 states that, under the hypothesis of Theorem 2.2, also the potential of

the form cff)(.]) (]_[yeA Ny — p“”) (which corresponds to [Ku2(32)]) is an as.

convergent potential for the joint system. The vacuum potential with ‘occupied’
vacuum 7{” = 1 hasthe form V1¢, (n) = ¢(/) [Tyes(ny — D). By (4.3), (44)
the constants are expressed in terms of averages w.r.t. u[#P] (obtained as weak
limit with suitably chosen boundary condition.) We note that these constants must
be such that 3", o, 1¢P ()] = oo and 3 445, ¢ ()] = o0, because u[]
would be a Gibbs-measure else, as above.

p < p. (easy case): Thereis a unique quenched Gibbs measure P-a.s. which is
just the independent product over the connected components of the occupied sites
(which are dl finite, P-a.s.). Assuming that » is such that al connected compo-
nents of occupied sites are finite, one has (2.8) for any 7. From this follows that
the vacuum free energy potential converges, for any vacuum 7. In particular one
has, for the empty (resp. the full) vacuum that ZA:XEAC{yezd,nyzl} cgo) (J) (resp.
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D ArxeAc(yezd =0} (—1)141¢D (1)) converge. For the vacuum potential V? with
empty vacuum the situation is particularly simple: We see by (4.3) and (4.4) that
Vjo)(r;) = O unless A is asubset of a connected component of {x € 74, 5, = 1}.
[Because: (4.3) decomposes into a sum over the connected components of the oc-
cupied sitesin A, i.e. Eﬁ\o)(n) = > ;log Z%A (o T Ca where By ;(n) are the
connected components of {x € A, n, = 1} and C, does not depend on 5]. This
impliesthat cff) = Ounless A isconnected. So, v/§°> (n) isjust obtained by the de-
composition of theindividual logs of partition functions over all subsets A of those
connected components of occupied sitesand isthus a‘refinement’ of the potential
given just by the logs. Consequently > ,. - Vgo)(n) contains only finitely many
termsfor all n such that cluster of occupied sites containing x isfinite.

p > pc: Thereisaninfinite cluster of occupied siteswith probability one. One may
have different Gibbs measures on thisinfinite cluster, including the ferromagnetic
ones, and also, in sufficiently high dimensions, for p sufficiently closeto one, and
low temperature, Dobrushin type interface states (the latter is only partially proved
[BoK1]).

Let us assume at first that p, J are such that we have a ferromagnetic plus
state u[n] for P-ae. n. We look at the vacuum potential with empty vacuum,
given by the same p-independent formulas asfor the p < p. casein terms of cou-
pling constants Cgo> for connected subsets AcZ¢. Next we assume that 7 is such
that the finite volume Gibbs-measures with open boundary conditions converge to
the symmetric mixture 3 (. *[n] + " [n]). But, this means that u[n,\ﬁgd\A] —

2 (#*[n] + 1~ [n]), because, on A, thel.h.s. isnothing but thefinite volume Gibbs
measure with open boundary conditionson A N {x € 74, n, = 1}. Thus, ther.h.s.
differs from the plus state as a measure, so there is no continuity on the level
of measures. However, since the observable conjugate to the disorder variablesis
symmetric in o, the corresponding expectations are the same for the plus and the
minus state and we have (2.8), i.e. continuity on the level of the Q’s. Assuming
that the set of »’s with the above property is full measure, the vacuum potential
converges P-a.s. and the corresponding joint potential describes the joint measure
corresponding to theferromagnetic plus state (and al so the minus state). Conversely
we have

Proposition 5.1. Consider the dilutelsing ferrogmanet, at any fixed J > 0. Assume
that there is a convergent free energy vacuum potential with empty vacuum, = 0
for all x for the joint measure corresponding to a given Gibbs-measure u[n] of the
form

Uil = [ m (5.9)

xeA

where A isrunning over the connected subsets of Z¢. Then we must have

0
0 Z
=3 (—1)‘/‘\‘\|I0g—2|1‘\‘| (5.10)
AIACA
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where, as above, Zg isthe partition function of the fully occupied model in A with
zero boundary conditions. In particular, if two (possibly different) Gibbs-measures
corresponding to the same J both have a potential of the form (5.9), it must be the
same.

The proof is given below. Applying the proposition to the random Dobrushin
(interface) state we see that we expect a different scenario for the corresponding
joint measure. Assuming that there is afree energy potential of the form (5.9) itis
the same as for the joint measure of the plus state. Thisisthe potential constructed
from (4.3) in astraightforward way. From (3.1) we see however that the conditional
expectations in the infinite-volume will be different in plus-state and Dobrushin-
state, because: Equality of the I.h.s. of (3.1) for different w[n] implies equality of
Q. for different u[n] (by varying the boundary condition &;, ). The corresponding
Q. inturn are essentially given in terms of nearest neighbor correlations and these
will differ in interface states and ordered states. So, both states cannot have the
same potential. This provides an example of a convergent potential constructed in
anatural way that produces the wrong measure.

Finally we look at the vacuum potential with the fully occupied vacuum. We
discuss again the joint measure corresponding to the ferromagnetic plus state and
the Dobrushin state. If these states do exist a.s. then they also exist for the fully
occupied system. So we can construct the state u[7], and the state [n] for typical
n with the same type of boundary conditions, in both cases. Also, in both cases,
we expect that M[nAﬁ}d\A] — u[n] which, in particular, implies (2.8). So the
corresponding vacuum potential converges and yields the right conditional prob-
abilities. Observe, that in a situation where a typical realization of the disorder
destroys the Dobrushin state that is present for 71, aweak limit of finite volume
Gibbs measures with plus/minus boundary condition o®- will yield a symmetric
mixture of plusand minusstate. Thus, to get acorrect potential, we should of course
choose the corresponding 1] to be (say) the plus state (which yields the same
free energy potential as the symmetric mixture). It can be constructed e.g. with
the different all-plus boundary condition 6-¢-. The Dobrushin state in the ordered
system which will result from plus/minus boundary conditions will give a wrong
potential. This explains the formulation of Theorem 2.2. where we allowed for a
boundary condition 6%+ for the construction of the state [ 7] that is different from
the boundary condition o?-¢- for the construction of the state 1[5] for typical 7.

It remainsto give the

Proof of Proposition 5.1. We claim that in order that the conditional expectations
be the correct ones we must have that

Iimd Z (U‘,{e(ninzd\x) - Uj;e(n)%ﬂzd\x)) = |Og Qx(’?ia 77)%, nZd\x)
Atz A:ACA,A>x
(5.11)

for P-ae. n, for al n! and n)%. This follows from the fact that the A-limit of (4.2)
(which isassumed to exist) and (3.1) must coincide, P-a.e., whichiseguivaent to
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e =S (UL Gienya ) —UTE o .
/‘Minn,éax (dny)e ZA'ABX( a @ WZI\X) A (n))Z/Mz””fax dnx) Ox My, Nxs Uzd\x)
(5.12)
A simple computation shows that the one-site annealed distribution is given by

Mznn,gax iy = 1)/Minn’§“x (ny = 0) = cosh(J Zyegx nyoy). Thus, by writing
(5.12) for different values of &5, corresponding to different values for the expres-
sion in the cosh we can conclude that (5.12) really implies (5.11). Next, we note
that (5.11) impliesthat, for any finite AcZ? and x € A we havethat

. ZO
Y U = tog 24 (5.13)
AIACA, Asx Z; (Mxnav)

which is seen as follows: u[n] satisfies the DLR-equation for P-a.e. n and so we
havethat u[nafiaanzaz1(0a) = 1] [nal(@a), for P-ae. 14 5. Sowehavefrom

(5.11) (putting nt = 1., n? = ;)

. ,0 ~ ~ ~
lim Z Uf;e (manaanzax) =109 Qx (x, flx, NA\xNaAN7a\ )
A 74
AACA,A>x
Z(/)\ (nan\x)
Z?\ (ﬁan\x)

for P-ae. Nza\x whenever x € A. Butthel.h.s. of (5.14) equalsthel.h.s. of (5.13),
due to the assumption on the form of the potential involving only connected A’s.
Finaly, from (5.13) one sees by telescoping over the sites in A that
Yoaacn € = Y aca UL%La) = logz8 /2141 which, by the inclusion-
exclusion formula gives the desired (5.10). O

=log (5.14)
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