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Abstract. Can the joint measures of quenched disordered lattice spin models (with finite
range) on the product of spin-space and disorder-space be represented as (suitably general-
ized) Gibbs measures of an “annealed system”? - We prove that there is always a potential
(depending on both spin and disorder variables) that converges absolutely on a set of full
measure w.r.t. the joint measure (“weak Gibbsianness”). This “positive” result is surprising
when contrasted with the results of a previous paper [K6], where we investigated the mea-
sure of the set of discontinuity points of the conditional expectations (investigation of “a.s.
Gibbsianness”). In particular we gave natural “negative” examples where this set is even of
measure one (including the random field Ising model). Further we discuss conditions giving
the convergence of vacuum potentials and conditions for the decay of the joint potential in
terms of the decay of the disorder average over certain quenched correlations. We apply them
to various examples. From this one typically expects the existence of a potential that decays
superpolynomially outside a set of measure zero. Our proof uses a martingale argument that
allows to cut (an infinite-volume analogue of) the quenched free energy into local pieces,
along with generalizations of Kozlov’s constructions.

1. Introduction

Consider the joint measure corresponding to a random infinite-volume Gibbs mea-
sure of a disordered lattice spin system. By this we mean the measure P(dη)

µ[η](dσ ) on the product space of disorder variables η and spin variables σ . Here
µ[η](dσ ) is a random Gibbs measure and P is the a-priori distribution of the dis-
order variables. Prototypical examples for such quenched random systems are the
random field Ising model or an Ising model with random couplings.

In this paper we investigate the question: When can these measures be under-
stood as Gibbs measures on the skew space, respectively suitable generalizations
thereof? More specifically, are there well-defined Hamiltonians, given in terms of
interaction potentials depending on both spin and disorder variables, that provide
an annealed description for such a system? The formal description of disordered
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systems in terms of such potentials was termed “Morita’s equilibrium ensemble
approach to disordered systems” (see e.g. [Ku1,2], [MKu], [Mo], [SW] and refer-
ences in [Ku2]) in the theoretical physics community. However, the existence of
such Hamiltonians was never investigated rigorously but taken for granted, and
various approximation schemes were based on the truncation of the corresponding
potentials. In this respect there is an analogy between the problems of the existence
of joint potentials and of the existence of “renormalized potentials” that are sup-
posed to give a Gibbsian description of a measure that appears as an image measure
of a Gibbs measure under a renormalization group transformation. There is a huge
literature about the latter ones but the present question has remained mathematically
neglected until recently ([EMSS], [K6]).

Now, mathematically, it turns out that the answer to our question is a some-
what complicated but interesting one. It depends on the kind of generalization of
the notion of Gibbsianness one is asking for and on the specific system. Therefore
such joint measures corresponding to quenched random systems provide a rich
class of examples to illustrate the subtleties of the different generalizations of the
notion of Gibbsianity. We believe that, while interesting in itself, the study of these
measures is also valuable for the understanding of the fine (and not always very
intuitive) distinctions that are necessary if one attempts to extend Gibbsian theory
to non-Gibbsian measures.

Recall that Gibbs measures of an infinite-volume lattice system are character-
ized by the fact that their conditional expectations (given the values of the variables
outside of a finite volume) can be written in terms of an absolutely convergent in-
teraction potential. Equivalently, they are the measures for which these conditional
expectations are continuous functions of the conditioning. (The less trivial part of
the equivalence, i.e. existence of a potential assuming continuity of conditional
expectations, is due to the construction of [Koz]). For general information about
scenarios of the failure of the Gibbsian property for lattice measures and possible
generalizations of Gibbsianness see e.g. [F], [E], [DS], [BKL], [MRM], [MRSM],
references therein, and the basic paper [EFS].

In the first mathematical paper [EMSS] which studied a joint measure of a
quenched random system it was shown that the joint measure resulting from the di-
luted Ising ferromagnet at low temperatures is not a Gibbs measure in the strict sense
described above: [EMSS] showed that there is a point of essential discontinuity in
the conditional expectations as a function of the conditioning. So, the measure does
not allow for a Hamiltonian constructed from an absolutely summable interaction
potential. However, the set of such discontinuities has zero measure in this example.
Measures with this property are commonly called “almost Gibbsian” measures. The
notion of “almost Gibbsianness” is a straightforward measure-theoretic attempt to
generalize the classical notion of Gibbsianness where the conditional expectations
are continuous everywhere.

In a recent paper [K6] we investigated the question of discontinuity of the con-
ditional expectations in the general setup of quenched lattice spin systems with
finite range quenched Hamiltonians depending on independent disorder variables.
In particular, we gave an example where the set of discontinuities was even a full
measure set. So, even worse, this measure even fails to be “almost Gibbsian”! The
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example was the random field Ising model in the phase transition regime. It is par-
ticularly illuminating because it shows in a transparent manner a more general fact:
The question of discontinuity of the conditional expectations is related to whether
a discontinuity can be felt on certain local expectations of the quenched measure
by varying the disorder variables arbitrarily far away. The local expectation under
consideration is just the magnetization for the random field Ising model; more gen-
erally this has to be replaced by the spin-observable conjugate to the independent
disorder variables. In [K6] we also discussed another interesting phenomenon: We
argued that whether the set of discontinuity points is of measure zero or one can
depend on the random Gibbs measure, for the same choice of the parameters. This
phenomenon should appear in the random bond ferromagnet at low temperatures,
weak disorder, and high dimensions: We argued that it is to be expected that the set
of discontinuities should be of measure zero for the ferromagnetic plus state while
it should be of measure one for the random Dobrushin state.

While we focused on “almost Gibbsianness” in [K6], the aim of the present
paper is to find out what can be said about “weak Gibbsianness”. The latter no-
tion is a different attempt to weaken (even more) the classical notion of Gibbs
measure. Here one requires only the existence of a potential that is convergent
(or even absolutely convergent) on a full measure set (and not necessarily every-
where). [MRM] noted that, in general, an almost Gibbsian measure always has a
potential that is convergent on a set of full measure. It is however not expected that
there is always an absolutely convergent potential in this situation. Also, [MRM]
gave an example of a measure having a convergent potential which was not almost
Gibbsian.

In this note we will give a completely general positive answer to the question
of weak Gibbsianness for our measures. That is, at least from the point of view of
weak Gibbsianness, the situation gets easier again. We will show:

The joint measures corresponding to a random infinite-volume Gibbs mea-
sure always possess a potential that converges absolutely on a full measure set.

For the specific example of the random field Ising model in the phase transition
regime this gives, together with the result of [K6] the following interesting state-
ment: The set of discontinuity points of the joint measure has full measure, but still
there is a potential that converges absolutely on a set of full measure.1 So, almost
Gibbsianness does not hold, but weak Gibbsianness does (even in a strong form).
In fact, we expect the convergence to be very fast on a set of measure one (see
Chapter V.)

Our existence result is true for any quenched lattice spin systems with finite
range quenched Hamiltonians depending on sitewise independent disorder vari-
ables. Observe that e.g. models with independent bond disorder are also included.
(Indeed, each bond on the lattice can be accociated to one of its vertices according
to some fixed prescription; then the ‘site variable’ at a given site is formed by the
collection of all bond variables that are associated to this site.)

1 Recently [Le] constructed an independent example of a lattice measure (not related to
random systems) to illustrate that this phenomenon can really occur.
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We stress here that no continuity assumptions at all are needed on the measures
involved. This may seem surprising and is a main non-trivial point. Let us describe
our results at first in words, before we put them down in precise formulas. They
will all have the following form: We construct a potential and explain its properties
and how it is related to the given “quenched potential” that is the starting point and
defines the system we are dealing with.

Now, to put the first result in perspective, we remark that in the case of
a general lattice measure, the existence of an a.s. convergent potential can be
obtained once there is at least one direction of (a.s.) continuity for the con-
ditional expectations (see [MRM]) using the corresponding vacuum potential.
Due to the special form of the joint measures we are considering here, we can
improve on this in our case (see Theorems 2.1, 2.3). For this we take advan-
tage of the specific form of the infinite-volume conditional expectations of the
joint measures derived in Chapter II. The trick to get the stronger result is to
use not a vacuum potential, but a different one; this will allow to conclude
convergence of the potential by a soft martingale argument. From this we can
get an existence result for an a.s. absolutely convergent potential generalizing
the one of [Koz]. We remark that also for this latter step we are again exploit-
ing the special nature of our measures; it would not work for a general lattice
measure.

Nevertheless, it is also interesting to see what can be said about the convergence
of vacuum potentials (see Theorem 2.2). For this we need in fact some continu-
ity, conveniently expressed in terms of the behavior of the corresponding infinite-
volume Gibbs state: One needs continuity of the corresponding infinite-volume
quenched Gibbs-expectation of the spin-observable conjugate to the independent
disorder variables, as a function of the quenched variables, in the direction of a
certain realization of the disorder. These are the same observables whose behavior
was crucial also for the question of “almost sure Gibbsianness”.

Next, if one would like to have more information about the decay of the po-
tential, one has to assume some information about the clustering properties of
the quenched random system. We relate the decay of a joint potential to the de-
cay of disorder-averages of certain quenched correlations in Theorem 2.4. These
correlations are taken between the spin-observables conjugate to the
independent disorder variables, the same ones as above. Physically, superpoly-
nomial decay of such averaged correlations is typically to be expected (off the
critical point). So, we should typically expect the existence of a potential that
decays superpolynomially outside of a set of measure zero. Of course, to prove
it, specific analysis of the system under consideration is needed, which can be
very hard.

The paper is organized as follows. In Chapter II we define the class of mod-
els we will treat and state our results in precise terms. In Chapter III we prove
the important formula for the infinite-volume conditional expectations of the joint
measure that is the starting point of the following. In Chapter IV we will prove
the theorems stated in Chapter II. In Chapter V we will discuss the examples of
the random field Ising model, Ising models with random couplings, and the diluted
Ising ferromagnet, including some heuristic considerations.
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2. The models and the results

Denote by � = �Zd

0 the space of spin-configurations σ = (σx)x∈Zd , where �0

is a finite set. Similarly we denote by H =HZd

0 the space of disorder variables
η = (ηx)x∈Zd entering the model, whereH0 is a finite set. Each copy ofH0 carries
a measure ν(dηx) and H carries the product-measure over the sites, P = ν⊗Zd .
We denote the corresponding expectation by E. The space of joint configurations
�̄ := �×H = (�0 ×H0)

Zd is called skew space. It is equipped with the product
topology and the corresponding Borel sigma algebra.

A potential on the joint variables is a familyU of real functionsUA : �̄→ R

where A runs over the finite subsets of Zd s.t. UA(ξ) depends only on ξA. We
consider disordered models whose finite volume Gibbs-measures can be written in
terms of a potential � = (�A)A⊂Zd on the joint variables. In this context we will
call� the disordered potential (or defining potential). We fix a realization of the
disorder η and define probability measures µσ

b.c.

� [η] on the spin space�, called the
quenched finite volume Gibbs measures, by

µσ
b.c.

� [η](σ ) := e
−∑

A:A∩� 
=∅�A(σ�σ b.c.
Zd \�,η)

∑
σ̃�
e
−∑

A:A∩� 
=∅�A(σ̃�σ b.c.
Zd \�,η)

1σ
Zd \�=σ b.c.

Zd \�
(2.1)

The finite-volume summation is over σ� ∈ ��0 . The symbol σ�σ b.c.
Zd\� denotes the

configuration in � that is given by σx for x ∈ � and by σ b.c.
x for x ∈ Zd\�. We

assume for simplicity finite range, i.e. that �A = 0 for diamA > r . This form is
really quite general. It is a simple matter to write the random field Ising model or
the random bond Ising model in the above form.

Next, we suppose from the beginning that we have the existence of a weak limit

lim
�↑Zd

µ
σ b.c.
∂�

� [η] = µ[η] (2.2)

for P-a.e. η ≡ ηZd with a nonrandom boundary condition σ b.c.. In ferromagnetic
examples like the random field Ising model this can be concluded by monotonic-
ity arguments. Note that there is however no general argument that would give
the existence of this limit – indeed it is expected to fail e.g. for low temperature
spinglasses.2

Assuming (2.2) it follows that µ∞[ηZd ] is an infinite-volume Gibbs measure
for P -a.e. η that depends measurably on η. We look at spins and disorder variables
at the same time and define joint spin variables ξx = (σx, ηx) ∈ �0 ×H0. The

2 Side-remark about the relation to “metastates”: It is this existence problem that led to the
introduction of the general notion of metastates, which are distributions of Gibbs-measures,
see e.g. [NS1]–[NS5], [K2]–[K5]. Also, more generally than in the present note, in large
parts of [K6] we did not assume the a.s. convergence of the random finite volume Gibbs
measures, but only the weaker property of convergence of the corresponding finite volume
joint measures. Assuming the existence of a corresponding metastate, such a measure K
is its barycenter. The case of the present note corresponds to the trivial metastate which is
supported only on a single state µ[η].
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central object of our study is the corresponding infinite-volume joint measure on
the skew space (�0 ×H0)

Zd defined by

K(dσ, dη) := P(dη)µ[η](dσ ) (2.3)

We say that a potentialU on the joint variables is a potential for the joint measure
K if U produces the correct conditional expectations for K , i.e.

e
−∑

A:A∩� 
=∅ UA(ξ)

∑
ξ̃�
e
−∑

A:A∩� 
=∅ UA(ξ̃�ξZd \�)
= K[ξ�|ξZd\�] (2.4)

for K-a.e. ξ . This work is about the existence of such a potential. It provides a
description of the joint measure as an “annealed system”. This notion should not
be confused with the following one.

We call a potentialU triv on the joint variables a trivial annealed potential con-
tribution if it is finite range and produces the “trivial annealed local specification”,
i.e.

e
−∑

A∩� 
=∅ UtrivA (σ�σ
b.c.
Zd \�,η�η

b.c.
Zd \�)

∑
σ̃�,η̃�

e
−∑

A∩� 
=∅ UtrivA (σ̃�σ
b.c.
Zd \�,η̃�η

b.c.
Zd \�)

= ν(η�)e
−∑

A∩� 
=∅�A(σ�σ b.c.
Zd \�,η�η

b.c.
Zd \�)

∑
σ̃�,η̃�

ν(η̃�)e
−∑

A∩� 
=∅�A(σ̃�σ b.c.
Zd \�,η̃�η

b.c.
Zd \�)

(2.5)

One such potential is UtrivA (σ, η) = �A(σ, η) − 1A={x} log ν(ηx); evidently it is
unique only up to “physical equivalence”. We remark that, of course, the problem
of classifying the equivalent potentials U for given ν,� is long solved and can be
found in [Geo], see paragraphs (2.3) and (2.4) therein. We call the local specifi-
cation on the r.h.s. “annealed” too because it describes a joint system given by an
Hamiltonian which is simply the quenched Hamiltonian and the logarithm of the a
priori measure given by the independent distribution P for the disorder variables.
Of course, its properties may differ completely from the quenched system. The
reason for the introduction of Utriv and its name is that it will appear as a ‘trivial’
part of the potentials of the joint measures that we are looking for.

Finally, a potential U is called summable for ξ if, for any �⊂Zd , we have
that the limit lim�↑Zd

∑
A:A∩�
=∅,A⊂� UA(ξ) =:

∑
A:A∩�
=∅ UA(ξ) exists and is

independent of the sequence of �’s. This is needed for the sums in (2.4) to make
sense. U is called absolutely summable for ξ if, for any �⊂Zd we have that
sup�⊂Zd

∑
A:A∩�
=∅,A⊂� |UA(ξ)| <∞.

Now, the most natural approach to find a potential for the joint measure is to
write down a formal vacuum potential on the joint space and ask what we can say
about its convergence (see Theorem 2.2). We remind the reader that a potential U
is called vacuum potential with vacuum ξ̂ , if UA(ξA\x ξ̂x) = 0 whenever x ∈ A.
However, it turns out that we get our strongest general existence result of Theorem
2.1 for a different potential. To this end, let α(dξ) be a product probability measure.
Then, a potentialU is called α-normalized if

∫
αx(dξ̃x)UA(ξA\x ξ̃x) = 0 whenever
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x ∈ A. Obviously, for α = δ
ξ̂
, an α-normalized potential is a vacuum potential with

vacuum ξ̂ . This notion was first introduced by Israel [I] but we use the terminology
of Georgii. α-normalized potentials (for suitably chosen α) can sometimes have
better convergence properties compared to those of vacuum potentials also in the
standard Gibbs formalism (see [Geo] example (2.38), [EFS] page 958).

In the following we assume that we are given a joint measure of the type (2.5)
corresponding to a quenched random lattice model defined by (2.1), (2.2). Then the
following statements hold.

Theorem 2.1 (Existence of a.s. summable potential). There exists a potentialU
forK that is summable forK-a.e. ξ . This is true under no further assumptions on the
continuity properties of µ[η]. This potential has the form U(σ, η) = Utriv(σ, η)+
U fe
µ (η). In this equationUtriv is an arbitrary representative of the “trivial annealed

potential contribution” (defined up to physical equivalence).
U fe
µ is a potential depending only on η which is convergent for P-a.e. η. As a

potential on the disorder space it is P-normalized. In general, two different mea-
surable infinite-volume Gibbs-states µ : η �→ µ[η] corresponding to the same
random local specification will yield different U fe

µ .

The notation U fe
µ (η) is meant to suggest to the reader, that this potential comes

from a decomposition into local terms of what in finite volume would be the disor-
der dependent free energies of the quenched system. This will become clear in the
proofs. An analogous finite volume quantity is called “disorder potential” in [Ku2].

To describe the kind of continuity we need for the existence of the vacuum
potential in detail we need some more notation. For a subset V⊂Zd , we call the
expression

�HV (σV , η
1
V , η

2
V , η∂V ) :=

∑
A:A∩V 
=∅

(
�A

(
σV , η

1
V η∂V

)
−�A

(
σV , η

2
V η∂V

))

(2.6)
the V -variation of the Hamiltonian w.r.t. the disorder variables. To denote the
corresponding function on the spin-variables obtained by fixing the disorder vari-
ables we will drop the spin-variableσ on the l.h.s. of (2.6). In particular, forV = {x},
the expression (2.6) is the observable conjugate to the independent disorder variable
ηx . We put

Qx(η
1
x, η

2
x, ηZd\x) := µ[η2

x, ηZd\x](e−�Hx(η
1
x ,η

2
x ,η∂x)) (2.7)

for its quenched expectation.

Theorem 2.2 (A.s. summability of vacuum potential). Suppose moreover that
there exists a direction η̂ of a.s. continuity for the quenched expectation of the
spin observable conjugate to the disorder variables, i.e.

lim
�↑Zd

Qx(η
1
x, η

2
x, η�\xη̂Zd\�) = Qx(η1

x, η
2
x, ηZd\x) (2.8)

for all x, η1
x , η2

x , for P-a.e. η. We assume that Q is defined by the weak limit (2.2)
and (2.7) and this weak limit exists for P-a.e. η. Here we have fixed a nonrandom
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boundary condition σ b.c. for those η that are not in the P-zero-set of η’s of the
form (η�η̂Zd\�). Moreover we assume that (2.2) also exists for η̂ (and thus for all
the countably many η’s of the form 3.1 (η�η̂Zd\�)), with some possibly different
boundary condition σ̂ b.c..

Then there is a vacuum potential V fe
µ (η) on the disorder space with vacuum η̂

s.t.U ′(σ, η) = Utriv(σ, η)+V fe
µ (η) is a potential for the joint measureK which is

summableK-a.s.. HereUtriv is an arbitrary representative of the “trivial annealed
potential contribution”, as in Theorem 2.1.

Note that our hypothesis is weaker than requiring a.s. continuity of µ[η] itself
in direction η̂ (by which one understands continuity of all probabilities µ[η](σ�)
in this direction.) Note that, in general, the same choices of boundary conditions
to construct the state µ[η̂], and the state µ[η] for typical η might yield a state of
different type. [In V(iii) (before the proof of Proposition 5.1 is given) we dis-
cuss the example of the dilute Ising model where a fixed “plus-minus” boundary
condition σ b.c. is expected to produce a symmetric linear combination of the plus
and the minus state for typical occupation numbers η, while it should produce an
interface-state (“Dobrushin-state”) for η̂ describing the fully occupied system), in
a certain parameter region.]

Now, in the situation of Theorem 2.2, fix any σ̂ . Then we can in particular
choose Utriv(σ, η) to be the unique vacuum potential for the annealed system with
vacuum (σ̂ , η̂).3 This gives the simple

Corollary 1. If η̂ is a direction of continuity for µ(η), for any σ̂ ∈ �, the formal
vacuum potential forK with vacuum ξ̂ = (σ̂ , η̂) is convergent forK-a.e ξ . Here we
have assumed thatµ[η] is defined by the weak limit (2.2) with boundary conditions
as in the hypothesis of Theorem 2.2.

Remark. IfK is translation-invariant, so are the potentials constructed in the proof
of Theorem 2.1 and Theorem 2.2. In general, they need not be absolutely summable.

The proof of Theorem 2.2 also gives

Corollary 2. The sum
∑
A:A∩�
=∅

∫
P(dη̃)V fe

µ;A(η̃) converges. HenceUtrivA (σ, η)+[
V fe
µ;A(η)−

∫
P(dη̃)V fe

µ;A(η̃)
]

is a potential for the joint measure which is summable

K-a.s., too.4

From Theorem 2.1 one can obtain an absolutely summable potential, if one
gives up translation invariance.

3 A clear proof of the existence of an α-normalized convergent potential in the case of
continuous conditional expectations can be found in [Geo] Theorem (2.30). Under our as-
sumptions of discrete joint spin space and finite range of the defining disordered potential
� this theorem shows in particular: For any α there exists a unique equivalent α-normalized
potential for the annealed system with the same range.

4 This proves general existence of potentials of the form generalizing the one that was
written down in finite volume in [Ku2 (32)] for the special case of the dilute Ising model,
where no proof of the infinite-volume limit was given (see also Chapter V).
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Theorem 2.3 (Existence of a.s. absolutely convergent potential). There exists
an a.s. absolutely summable potential U abs for the joint measure K of the form
U abs(σ, η) = Utriv(σ, η) + U fe,abs

µ (η). Here, as above, Utriv is an arbitrary rep-

resentative of the “trivial annealed potential contribution”. U fe,abs
µ is a potential

depending only on η which is absolutely convergent for P-a.e. η. U fe,abs
µ is not

necessarily translation invariant even if K is translation invariant. As in Theorem
2.1, this results holds under no further continuity assumptions on µ[η].

Remark. In fact the new ‘free energy’ potential U fe,abs
µ is even integrable w.r.t. K

(which is to say integrable w.r.t. P). There is no estimate on the speed of conver-
gence.
U fe,abs
µ (η) is supported on a very sparse system of subsets of Zd . It is ob-

tained by a resummation of the P-normalized ‘free energy’ potential U fe
µ from the

construction Kozlov used on the vacuum potential in the case of a measure with
continuous conditional expectations [Koz]. We remark that the same construction
can in general not be applied to the vacuum potential V fe

µ of Theorem 2.2, unless
there is additional information on its decay.

Remark. Let us also comment on the easy case, whenQ is continuous everywhere,
by which we mean that

lim
�↑Zd

sup
η̂

∣∣∣Qx(η1
x, η

2
x, η�\xη̂Zd\�)−Qx(η1

x, η
2
x, ηZd\x)

∣∣∣ = 0 (2.9)

for all η and all x, η1
x , η2

x . Then, the infinite volume conditional expectations of K
are continuous, and so K is a Gibbs measure. The “free energy potentials” U fe

µ (of

Theorem 2.1) and V fe
µ (of Theorem 2.2) are both convergent everywhere. Further-

more, the stronger version of Theorem 2.3 holds where “a.s. absolute summability”
is strengthened to “absolute summability everywhere”.

To get an absolutely summable potential for the joint measure that is also trans-
lation invariant, more information on the clustering properties of the quenched
system on the average is needed. Theorem 2.4 below describes the existence of an
a.s. absolutely summable potential that is translation invariant, if the measure K
is. Moreover it gives information about the decay of this potential.

Theorem 2.4 (A.s. absolutely summable translation invariant potential). As-
sume that the averaged quenched correlations satisfy the decay property∑∞
m=1m

2d−1c̄(m) < ∞ where c̄(m) := sup x,y:|x−y|=m
ηx ,ηy∈H0

∫
P(dη̃)

∣∣cx,y(ηx, ηy, η̃)∣∣
with

cx,y(ηx, ηy, η̃)

:= µ[η̃]

(
e
−�H{x,y}(η{x,y},η̃{x,y},η̃

∣∣
∂{x,y})

)

−µ[η̃]

(
e
−�Hx(ηx,η̃x ,η̃

∣∣
∂x
)

)
µ[η̃]

(
e
−�Hy(ηy,η̃y ,η̃

∣∣
∂y
)
)

(2.10)

Then there is an a.s. absolutely summable potential U fe,abs,inv
µ (η) on the disorder

space s.t. U abs,inv(σ, η) = Utriv(σ, η) + U fe,abs,inv
µ (η) is a potential for the joint
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measure K . Here, as above, Utriv is an arbitrary representative of the “trivial
annealed potential contribution”.

If K is translation invariant, then U fe,abs,inv
µ (η) is translation invariant, too.

Remark. Again, the potential is even integrable. Moreover, for any nonnegative
translation invariant function w(A) giving weight to a subset A⊂Zd we have the
following estimate on its decay

∑
A:A�x0

w(A)

∫
P(dη̃)

∣∣∣U fe,abs,inv
µ;A (η̃)

∣∣∣ ≤ C1 + C2

∞∑
m=2

m2d−1w̄(m)c̄(m) (2.11)

where w̄(m) := w ({z ∈ Zd; z ≥ 0, |z| ≤ m}) where ≥ denotes the lexicographic
order. The constants C1, C2 are related to a-priori bounds on �Hx .

Under the stronger condition that we have bounds of the same form on the
sup x,y:|x−y|=m

ηx ,ηy∈H0

supη̃
∣∣cx,y(ηx, ηy, η̃)∣∣ the absolute convergence is not only a.s. but

everywhere, and (2.11) holds for all realizations without the P-integral (with non-
random constants).

3. The infinite-volume conditional expectations

We start with a suitable representation of the infinite-volume conditional expecta-
tions of the joint measure.

We write ξ = (σ, η) here and below, so that, for any set A⊂Zd we have
ξA = (σA, ηA). Recall that r is the range of the defining potential �. We write
A = {y ∈ Zd , d(y,A) ≤ r} for the r-neighborhood of a setA, and put ∂A = A\A.

Proposition 3.1. Assume there is a set of realizations H0⊂H of P-measure one
such that the quenched infinite-volume Gibbs measure µ[η] is a weak limit (2.2)
of the quenched finite volume measures (2.1) for all η ∈ H0. Then, a version
of the infinite-volume conditional expectation of the corresponding joint measure
K(dσ, dη) = P(dη)µ[η](dσ ) is given by the formula

K
[
ξ�

∣∣ξZd\�] = µ
ann,ξ∂�
� (ξ�)∫

µ
ann,ξ∂�
� (dη̃�)Q�(η�, η̃�, ηZd\�)

(3.1)

Hereµann,ξ∂�� (ξ�) is the trivial annealed local specification given by (2.5), which
can be written in terms of the potentialUtrivA (σ, η) = �A(σ, η)−1A={x} log ν(ηx).

Further we have put

Q�(η
1
�, η

2
�, ηZd\�) := µ[η2

�ηZd\�](e−�H�(η
1
�,η

2
�,η∂�)) (3.2)

According to our assumption on the measurability on µ[η], Q� depends measur-
ably on ηZd\�. We note the following properties

(i)Q�(η1
�, η

2
�, ηZd\�) =

[
Q�(η

2
�, η

1
�, ηZd\�)

]−1

(ii) For any�⊃� we haveQ�(η1
�η�\�, η

2
�η�\�, ηZd\�) = Q�(η1

�, η
2
�, ηZd\�)
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(iii) For any η3
� we have

Q�(η
1
�,η

3
�,ηZd \�)

Q�(η
2
�,η

3
�,ηZd \�)

= Q�(η1
�, η

2
�, ηZd\�)

whenever η ∈H0.

Remark. Note that, by our assumption on the a.s. convergence of the infinite-vol-
ume Gibbs measures,Q� can be written in the form

Q�(η
1
�, η

2
�, ηZd\�) = lim

�N↑Zd
µ
σ b.c.
∂�N

�N
[η2η�N ]

(
e−�H�(η

1
�,η

2
�,η∂�)

)

= lim
�N↑Zd

Z
σ b.c.
∂�N

�N
[η1
�η�N\�]

Z
σ b.c.
∂�N

�N
[η2
�η�N\�]

(3.3)

with the quenched partition function

Z
σ b.c.
∂�

� [η�] =
∑
σ�

e
−∑

A:A∩� 
=∅�A(σ�σ b.c.
∂� ,η�) (3.4)

wheneverη ∈H0. Morally,Q� is thus a ratio of infinite-volume partition functions
whose disorder variables differ in the volume �.

Remark. We note that formulas for the finite volume conditional expectations have
appeared in [K6] [see Lemma 2.1, (2.4) therein]. They seem to look more com-
plicated than the infinite-volume expression (3.1). In that paper we wanted to be
able to deal also with the more general case in which we do not assume P-a.s. con-
vergence of the finite volume Gibbs measures, but only convergence of the finite
volume joint measures. Then (3.1) is not available.

Proof . Properties (i), (ii), (iii) are clear from (3.3).

To get (3.1) we will show at first that, for the measure K
σ b.c.
∂�N

�N
(σ�N , η�N ) :=

P(η�N )µ
σ b.c.
∂�N

�N
[η�N ](σ�N ) on��×H� we have, for finite�,�,�N with�⊂�

and �⊂�N , the formula

K
σ b.c.
∂�N

�N

[
ξ�

∣∣ξ�\�]
=

∫
K
σ b.c.
∂�N

�N

[
dσ̄�N\�dη̄�N\�

∣∣ξ�\�
]

× µ
ann,ξ∂�∩�ξ̄∂�\�
� (ξ�)

∫
µ
ann,ξ∂�∩�ξ̄∂�\�
� (dη̃�)

Z
σb.c.
∂�N
�N

[η�η�\�η̄�N \�]

Z
σb.c.
∂�N
�N

[η̃�η�\�η̄�N \�]

(3.5)

In particular the formula holds true for � = �. Now, (3.5) is just a computation.
Indeed, write

K
σ b.c.
∂�N

�N

[
ξ�

∣∣ξ�\�]



12 C. Külske

=
∫
K
σ b.c.
∂�N

�N

[
dσ̄�N\�dη̄�N\�

∣∣ξ�\�
]
K
σ b.c.
∂�N

�N

[
ξ�

∣∣ξ�\�σ̄�N\�η̄�N\�
]

(3.6)

and note that the term under the integral on the r.h.s. equals

K
σ b.c.
∂�N

�N

[
ξ�ξ�\�σ̄�N\�η̄�N\�

]
∑
ξ̃�
K
σ b.c.
∂�N

�N

[
ξ̃�ξ�\�σ̄�N\�η̄�N\�

]

= P(η�)µ
σ b.c.
∂�N

�N
[η�η�\�η̄�N\�](σ�σ�\�σ̄�N\�)

∑
σ̃�,η̃�

P(η̃�)µ
σ b.c.
∂�N

�N
[η̃�η�\�η̄�N\�](σ̃�σ�\�σ̄�N\�)

(3.7)

Spelling out the quenched local specifications in terms of the random potential
� this can be rewritten in terms of the special annealed potential UtrivA (σ, η) =
�A(σ, η)− 1A={x} log ν(ηx) as

e
−∑

A:A∩� 
=∅ UtrivA (σ�σ�\�σ̄�N \�,η�η�\�η̄�N \�)

∑
σ̃�,η̃�

e
−∑

A:A∩� 
=∅ UtrivA (σ̃�σ�\�σ̄�N \�,η̃�η�\�η̄�N \�)
Z
σb.c.
∂�N
�N

[η�η�\�η̄�N \�]

Z
σb.c.
∂�N
�N

[η̃�η�\�η̄�N \�]

(3.8)

Note that, due to cancellations for �⊂�N , the U -sums do not depend on σ b.c..
Note that, for �⊂�, (3.8) does not depends on σ̄�N\�. In this case the
outer integral in (3.5) reduces to an integration over the disorder variables.
Note however that this is not a product integration! Finally, dividing both
numerator and denominator of (3.8) by the annealed partition function∑
σ̃�,η̃�

e
−∑

A:A∩� 
=∅ UtrivA (σ̃�σ�\�σ̄�N \�,η̃�η�\�η̄�N \�) we get the desired (3.5).
Next we claim that

K
[
ξ�

∣∣ξ�\�] =
∫
K

[
dξ̄Zd\�

∣∣ξ�\�]

× µ
ann,ξ∂�∩�ξ̄∂�\�
� (ξ�)∫

µ
ann,ξ∂�∩�ξ̄∂�\�
� (dη̃�)Q�(η�, η̃�, η�\�η̄Zd\�)

(3.9)

To see this, write down (3.5) explicitly in terms of the quenched local specifications
and (3.9) in terms of the infinite-volume Gibbs measure. Note that the dependence
on those measures is completely local- therefore (3.9) follows by the assumption of
P-a.s. local convergence of the finite volume Gibbs measures. But from (3.9) we
can conclude now, that what is under the integral on the r.h.s. must be the infinite-
volume conditional expectation. More precisely, (3.1) follows from the following
general measure-theoretic

Fact. Assume that ξZd is a random field with distribution K , ξx taking values in a
finite set, and K̃

[
ξ�

∣∣ξZd\�]
is a Borel probability kernel that satisfies

K
[
ξ�

∣∣ξ�\�] =
∫
K

[
dξ̄Zd\�

∣∣ξ�\�]
K̃

[
ξ�

∣∣ξ�\�ξ̄Zd\�]
(3.10)
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for all finite�⊃�, whereK
[
dξ̄Zd\�

∣∣ξ�\�]
is a version of the conditional expecta-

tion. Then K̃
[
ξ�

∣∣ξZd\�]
is a version of the infinite-volume conditional expectation

K
[
ξ�

∣∣ξZd\�]
.

We include a proof for the convenience of the reader:
K̃

[
ξ�

∣∣ξZd\�]
is assumed to be σ

(
ξZd\�

)
-measurable. So, to verify the def-

inition of the conditional expectation we have to show that, for all events C ∈
σ

(
ξZd\�

)
and A ∈ σ (

ξZd
)

we have that

∫
C

(∫
A

K̃
[
dξ�

∣∣ξ ′
Zd\�

]
⊗ δξ ′

Zd \�
(dξZd\�)

)
K(dξ ′

Zd\�) = K(A ∩ C) (3.11)

WritingA in the formA = ∑
ξ�

({ξ�} × Aξ�)
whereAξ� ∈ σ

(
ξZd\�

)
we see that

this is equivalent to
∑
ξ�

∫
C
K̃

[
ξ�

∣∣ξ ′
Zd\�

]
1ξ ′

Zd \�∈Aξ�
K(dξ ′

Zd\�)=
∑
ξ�
K({ξ�}×

(Aξ� ∩ C)). So, it suffices to show that, for any B ∈ σ (
ξZd\�

)
and any ξ�, we

have that ∫
B

K̃
[
ξ�

∣∣ξ ′
Zd\�

]
K(dξ ′

Zd\�) = K({ξ�} × B) (3.12)

To see this, we apply the standard Dynkin-class argument to show an equality for
all sets of a given σ -algebra, see e.g. [Co] Theorem 1.6.1 (which states that, for any
∩-stable set F of subsets, the smallest σ -algebra which contains F coincides with
the smallest Dynkin-class which contains F). First note that the system D of sets
B in σ

(
ξZd\�

)
for which this equality holds is a Dynkin class: That� ∈ D follows

from (3.10) for � = �; furthermore D is stable under formation of complements
and countable unions of pairwise disjoint sets, by the properties of the integral.

Thus we only need to prove (3.12) for the set of cylinder sets, since they form a
∩-stable generator of σ

(
ξZd\�

)
. It suffices to take sets of the formB = {ξ̃ , ξ̃�\� =

ξ�\�}. But note that in this case

∫
B

K̃
[
ξ�

∣∣ξ ′
Zd\�

]
K(dξ ′

Zd\�) =
∫
K̃

[
ξ�

∣∣ξ�\�ξ ′Zd\�
]
K(dξ ′

Zd\�|ξ�\�)K(ξ�\�)
= K [

ξ�
∣∣ξ�\�]

K(ξ�\�)
= K({ξ�} × B) (3.13)

where we have used the hypothesis in the second equality. This concludes the proof
of the “fact” and concludes the proof of the proposition. ��

4. Construction of potentials – proofs of the theorems

Starting from the formula of Proposition 3.1 for the infinite-volume conditional
expectations of the joint measure K we will prove Theorems 2.1 and 2.2 at the
same time. A little later we will prove Theorem 2.4.

As a first consequence of Proposition 3.1 we separate the potential for the joint
measures we are about to construct into an “annealed part” and a “free energy”
part. We have
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Lemma 4.1. Suppose thatUann(ξ) is a potential for the annealed system. Then we
have that U(σ, η) = Uann(σ, η) + U fe(η) generates the conditional expectations
for the joint measure K if U fe(η) is summable for P-a.e η and, P-a.s.,

lim
�↑Zd

∑
A:A⊂�,A∩�
=∅

(
U
fe
A (η

1
�ηZd\�)− UfeA (η2

�ηZd\�)
)
= logQ�(η

1
�, η

2
�, ηZd\�)

(4.1)

Proof . For finite �⊃� we write

e
−∑

A:A⊂�,A∩� 
=∅ UA(ξ)

∑
ξ̃�
e
−∑

A:A⊂�,A∩� 
=∅ UA(ξ̃�ξZd \�)

= e
−∑

A:A⊂�,A∩� 
=∅ UannA (ξ)

∑
ξ̃�
e
−∑

A:A⊂�,A∩� 
=∅ UannA (ξ̃�ξZd \�)e
−∑

A:A⊂�
(
U
fe
A (η̃�ηZd \�)−U

fe
A (η)

)

= µ
ann,ξ∂�
� (ξ�)∫

µ
ann,ξ∂�
� (dη̃�)e

−∑
A:A⊂�

(
U
fe
A (η̃�ηZd \�)−U

fe
A (η)

) (4.2)

Here the first equality is just a resummation of sums and the second follows
from normalizing by the annealed partition function. Now the claim follows from
formula (3.1) for the infinite-volume conditional expectations of K by the limit
� ↑ Zd . ��

Thus we are completely reduced to the investigation of the Q-part. Hence we
will define our potentials in terms of logarithms of Q�’s. This makes life much
easier and formulas much more transparent than dealing with the full conditional
probabilities of the joint measures themselves. The situation is especially nice here,
since the Q-part depends only on the disorder variables and the marginal of the
joint measures we consider on the disorder variables is just a product measure.

4.1. Proof of Theorems 2.1 and 2.2

Denote by α any product-measure on the disorder space. Later we will put either
α = P or α = δη̂ for a fixed realization of the disorder η̂, the first case correspond-
ing to the proof of Theorem 2.1, the second case corresponding to the proof of
Theorem 2.2. For the second case we assume that η̂ is in the set of realizations for
which the convergence (2.2) holds. From this follows: For all realizations which
are finite volume perturbations of η̂ the convergence (2.2) to an infinite-volume
Gibbs measure with the corresponding local specification holds, too. (This is seen
by splitting off the corresponding terms in the Hamiltonian and treating them as
local observables.) So the l.h.s. of (2.8) is uniquely defined.

We define the ‘relative energy’

Eα�(η�) :=
∫
α(dη̃) logQ�(η�, η̃�, η̃Zd\�)
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=
∫
α(dη̃) logµ[η̃](e−�H�(η�,η̃�,η̃∂�)) (4.3)

and define a potential by the inclusion-exclusion principle

U
fe,α
A (η) :=

∑
�:�⊂A

(−1)|A\�|Eα�(η�) so that

Eα�(η�) =
∑
A:A⊂�

U
fe,α
A (η) (4.4)

We remark that the application of the inclusion-exclusion principle to define a for-
mal potential is a classical thing that goes back even before [Koz]. Note that, by
choosing α = δη̂, (4.3) becomes an expectation w.r.t. a non-random system and
thus, for a suitable translation-invariant realization η̂, might even be amenable to
explicit computations in certain cases. Of course, for α = P, (4.3) involves the full
disorder-dependence of the random Gibbs measure and will hardly ever be suitable
for explicit computations.

Note that the family of random variables Eα�, indexed by finite subsets�⊂Zd ,
is a martingale w.r.t. the product measure α. This means that, for each �⊃�,

∫
α(dη̃)Eα�(η�η̃�\�) = Eα�(η�), Eα∅ :=

∫
α(dη̃)Eα�(η̃�) = 0 (4.5)

Indeed, we have by Proposition 3.1 (iii)

∫
α(dη̄)

∫
α(dη̃) logQ�(η�η̄�\�, η̃�, η̃Zd\�)

=
∫
α(dη̄)

∫
α(dη̃)

(
logQ�(η�η̄�\�, η̄�, η̃Zd\�)

+ logQ�(η̄�, η
′
�, η̃Zd\�)+ logQ�(η

′
�, η̃�, η̃Zd\�)

)
(4.6)

for any fixed η′. The last two terms cancel, due to Proposition 3.1 (i) and the first
term equals Eα�(η�), due to (ii), as desired. Note that this works also in the case
α = δη̂ since we assumed weak convergence for the point η̂!

From this it follows easily from the usual play with signed sums that, in
fact, the potential U fe,α is α-normalized as a potential on the disorder space, i.e.∫
αx(dη̃x)U

f e,α
A (ηA\xη̃x) = 0 whenever x ∈ A.

Next, to prove that the potential converges, write

∑
A:A⊂�,A∩�
=∅

U
fe,α
A (η) =

∑
A:A⊂�

U
fe,α
A (η)−

∑
A:A⊂�\�

U
α,f e
A (η)

= Eα�(η)− Eα�\�(η)
=

∫
α(dη̃) log

Q�(η�, η̃�, η̃Zd\�)
Q�(η̃�η�\�, η̃�, η̃Zd\�)

=
∫
α(dη̃) logQ�(η�, η̃�, η�\�η̃Zd\�) (4.7)
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The second equality is (4.4) and for the next two equalities we have used properties
(ii) and (iii) forQ. The important point that exploits the nature of α being a product
measure is the convergence statement

lim
�↑Zd

∫
α(dη̃) logQ�(η

1
�, η

2
�, η�\�η̃Zd\�)

= logQ�(η
1
�, η

2
�, ηZd\�) for α-a.e. η (4.8)

This follows by the martingale convergence theorem, since, for any fixed finite
�⊂Zd and fixed η1

�, η
2
� the expression under the limit on the l.h.s indexed by finite

subsets �⊂Zd s.t. �⊃�, is a martingale w.r.t. the distribution given by α.

Proof of Theorem 2.1. We put α = P. Then we see from (4.7) and (4.8) that the
potential converges with� ↑ Zd for P-a.e. η. Since P is the marginal of K on the
disorder-space, this is exactly what we want.

Proof of Theorem 2.2. We put α = δη̂ where η̂ is the assumed direction of continu-
ity. In this case the r.h.s. of (4.7) is just Q�(η�, η̂�, η�\�η̂Zd\�). Using property
(iii) for Q� we may rewrite this as a telescoping sum

∑
x∈�Q�(η�≤x , η�<x ,

η�\�η̂Zd\�). Here we have put the lexicographic order on Zd and written �≤x =
{z ∈ �; z ≤ x} (and the analogous notation for “<”). Thus we see that (2.7) really
implies convergence of the potential with � ↑ Zd .

Next we prove that the potential generates the infinite-volume conditional ex-
pectations of the joint measure K . We must verify hypothesis (4.1) of Lemma 4.1.
We have ∑

A:A⊂�

(
U
fe
A (η

1
�ηZd\�)− UfeA (η2

�ηZd\�)
)

= Eα�(η1
�η�\�)− Eα�(η2

�η�\�)

=
∫
α(dη̃Zd ) log

Q�(η
1
�η�\�, η̃�, η̃Zd\�)

Q�(η
2
�η�\�, η̃�, η̃Zd\�)

=
∫
α(dη̃Zd ) logQ�(η

1
�, η

2
�, η�\�η̃Zd\�) (4.9)

But, recalling (4.8), the proof of (4.1) is the same as that of the convergence of
the potential, in the respective cases of Theorem 2.1 and Theorem 2.2.
This concludes the proof of Theorems 2.1 and 2.2. The convergence statement
of Corollary 2 follows from (4.7) by integration over η w.r.t. P. In fact, we see
that

∑
A:A∩�
=∅

∫
P(dη̃)V fe

µ;A(η̃) equals the finite quantity
∫

P(dη̃)

logQ�(η̃�, η̂�, η̃Zd\�). Finally we also note that, assuming continuity of Q ev-
erywhere, we have even pointwise convergence of (4.8) for both choices of α. This
proves the first convergence statement after (2.9). ��

4.2. A general remark about resummed potentials

The potentials used in the proofs of Theorem 2.3 and Theorem 2.4 are obtained
by resumming the supports of the α-normalized potential Uα,feA (η). The general
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construction is the following: Denote by P the set of finite subsets of Zd and let
P = ⋃

a Pa be a disjoint union s.t. (i) Ca := ⋃
A:A⊂Pa A is finite for every a, and

(ii) there exists a net of finite sets �β⊂Zd s.t. limβ �β = Zd and: for all finite �,
we have that, for sufficiently large �β , for all A⊂�β s.t. A ∩ � 
= ∅ there exists

an a with Ca⊂�β s.t. A ∈ Pa . Then Uα,fe,gr
C (η), defined by

U
α,fe,gr
Ca

(η) :=
∑

A:A⊂Pa
U
α,fe
C (η), U

α,gr
C (η) := 0 if C 
= Ca for all a (4.10)

is called the resummed potential corresponding to the given decomposition of P .
The reason for the complicated looking requirement (ii) is that one has

Lemma 4.2. Suppose that Uα,fe,gr
C (η) is a resummed potential obtained from the

α-normalized free energy potential Uα,feC (η) that converges absolutely for P-a.e.
η. ThenU(σ, η) = Uann(σ, η)+Uα,fe,gr(η) generates the conditional expectations
for the joint measureK (for any annealed potential), if the α-normalized potential
does.

Proof . For any fixed � we have that, for any sufficiently large �β ,

∑
C:C⊂�β,C∩�
=∅

(
U
α,fe,gr
C (η1

�ηZd\�)− Uα,fe,gr
C (η2

�ηZd\�)
)

=
∑

A:A⊂�β,A∩�
=∅

(
U
α,fe
A (η1

�ηZd\�)− Uα,feA (η2
�ηZd\�)

)
(4.11)

This is clear, since, for every term in the right sum there is precisely one term
in the left sum containing its contribution, due to property (ii). Conversely, those
contributions on the l.h.s. coming from A’s that don’t intersect � cancel because
the field configurations agree outside of �. Thus, the l.h.s. converges to the r.h.s.
of (4.1) along the net �β . By the hypothesis of absolute convergence this implies
convergence for any sequence� ↑ ∞, which proves the claim, by Lemma 4.1. ��

The resummations used in the proofs of Theorem 2.3 and 2.4 were invented
already by [Koz] and used in various publications since then. They are of the fol-
lowing general form. Take≤ any total order of the lattice points in Zd . Let, for any
lattice point x ∈ Zd , an increasing sequence of finite subsets Ax,m⊂{y : y ≥ x},
m = 1, 2, . . . be given s.t.

⋃
m Ax,m = {y : y ≥ x}. Put Ax,m=0 = ∅ and define

Px,m := {A : x ∈ A⊂Ax,m,A ∩ (Ax,m\Ax,m−1) 
= ∅}. The second condition for
the sum is empty form = 1. Then

⋃
x,m Px,m = P is a disjoint union and condition

(i) is satisfied. Indeed, to see (ii), consider the family �m =
⋃
x∈Zd

Ax,mx where
m = (mx)x∈Zd is an integer vector s.t. only finitely many of themx’s are nonzero.

Proof of Theorem 2.3. By Lemma 4.2 it suffices to show a.s. summability of a
certain resummed potential. The proof of this statement essentially relies on an
L1-statement corresponding to the convergence result (4.8). In order to explain
why this ensures the existence of an a.s. summable potential, however, we have to
write down explicit formulas. Let x �→ #(x) denote a one-to-one map from Zd to
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the integers {1, 2, . . .}. (The reader may think of some spiraling order.) Then the
L1-martingale convergence theorem gives us that

∫
P(dη)

∣∣∣
∫

P(dη̃) logQx(ηx, η̃x, η̃{y:1≤#(y)<#(x)}η{y:#(x)<#(y)≤r}η̃{y:#(y)>r})

−
∫

P(dη̃) logQx(ηx, η̃x, η̃{y:1≤#(y)<#(x)}η{y:#(y)>#(x)})
∣∣∣ =: εx(r) ↓ 0

(4.12)

with r ↑ ∞, for any fixed x. This is clear, since the first line of the expression under
the modulus is a martingale w.r.t. to the parameter r, for any fixed x and fixed ηx .

Take some subsequence r(n) of the integers, to be defined below. For x ≥ 1,
m ≥ 1 defineAx,m := {z ∈ Zd , #(x) ≤ #(z) ≤ r(#(x)+m)}, put alsoAx,m=0 = ∅.
Starting from general α, let us define the resummed potential by the formula cor-
responding to (4.10), i.e.

U
α,fe,abs
Ax,m

(η) :=
∑

A:x∈A⊂Ax,m
A∩(Ax,m\Ax,m−1) 
=∅

U
α,fe
A (η), U

α,fe,abs
C (η) = 0 otherwise (4.13)

for all x ∈ Zd and m ≥ 1. Then we have for m ≥ 2

U
α,fe,abs
Ax,m

(η) = EαAx,m(η)− EαAx,m−1
(η)− EαAx,m\x(η)+ EαAx,m−1\x(η)

=
∫
α(dη̃Zd ) log

×QAx,m(ηAx,m, η̃Ax,m, η̃Zd\Ax,m)QAx,m(ηAx,m−1\xη̃Ax,m\(Ax,m−1\x), η̃Ax,m, η̃Zd\Ax,m)
QAx,m(ηAx,m−1 η̃Ax,m\Ax,m−1 , η̃Ax,m, η̃Zd\Ax,m)QAx,m(ηAx,m\xη̃x, η̃Ax,m, η̃Zd\Ax,m)

(4.14)

In the first line we have used the expression of the relative energies in terms of the
potential. In the last line we have used the definition of the relative energies and
property (iii) forQ. Again, by (iii), this can be rewritten as

U
α,fe,abs
Ax,m

(η) =
∫
α(dη̃) log

Qx(ηx, η̃x, ηAx,m\xη̃Zd\Ax,m)
Qx(ηx, η̃x, ηAx,m−1\xη̃Zd\Ax,m−1

)
(4.15)

The previous formula was true for any resummed potential starting from the α-nor-
malized free energy potential. Let us switch to α = P and drop the subscript α.
Now we have from the convergence property (4.12) our main estimate:

∫
P(dη̃)

∣∣∣U fe,abs
Ax,m

(η̃)

∣∣∣ ≤ 2εx(r(#(x)+m− 1)) (4.16)

Similar to (4.14), (4.15) we have for m = 1

U
α,fe,abs
Ax,1

(η) = EαAx,1(η)− EαAx,1\x(η)

=
∫
α(dη̃) log

QAx,1(ηAx,1 , η̃Ax,1 , η̃Zd\Ax,1)
QAx,1(ηAx,1\xη̃x, η̃Ax,1 , η̃Zd\Ax,1)
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=
∫
α(dη̃) logQx(ηx, η̃x, ηAx,1\xη̃Zd\Ax,1) (4.17)

This is uniformly bounded in modulus by some constantConst1. From the last two
estimates one concludes that

∑
C:C�x

∫
P(dη̃)

∣∣∣U fe,abs
C (η̃)

∣∣∣ ≤ ∑
y:#(y)≤#(x)

∞∑
m=1

∫
P(dη̃)

∣∣∣U fe,abs
Ax,m

(η̃)

∣∣∣
≤ Const1|{y, #(y) ≤ #(x)}|

+2
∑

y:#(y)≤#(x)

∞∑
m=2

εy(r(#(y)+m− 1)) (4.18)

But, it is a simple matter to convince oneself that it is possible to choose a subse-
quence r(m) of the integers s.t. them-sum is finite for all y. (In fact, from εx(r) ↓ 0
one can find a subsequence r(n) s.t. even

∑∞
n=1 εy(r(n)) < ∞ for all y.) This

completes the definition of the potential and proves P-integrability and thus, in
particular, P-a.s. summability. ��

The readers may check for themselves that one may rerun the proof for both
choices of α under the hypothesis of continuity of Q everywhere. This proves the
strengthened version of Theorem 2.3 promised after (2.9). One may however not
rerun the proof for α = δη̂ without further assumptions other than the continuity
ofQx in the direction η̂ with the hope to obtain an absolutely summable potential.
This is because the speed of convergence of the analogue of (4.12) (obtained by
replacing P by δη̂) may be nonuniform in η in this case.

Proof of Theorem 2.4. This time, denote Ax,m := {z ∈ Zd; z ≥ x, |z − x| ≤ m}
and define the potential by the same formula (4.13), with the new A’s. Then (4.15)
and (4.17) stay true. (4.17) is uniformly bounded. The potential can be rewritten in
terms of correlations. IntroduceQx,m,≤y := Lx,m−1 ∪ {z ∈ Lx,m\Lx,m−1; z ≤ y}.
Then, for m ≥ 2 we have

U
fe,abs,inv
Lx,m

(η)

=
∑

y∈Lx,m\Lx,m−1

(
Eα(ηQx,m,≤y )− Eα(ηQx,m,<y )− Eα(ηQx,m,≤y\x)+ Eα(ηQx,m,<y\x)

)

(4.19)

The term in brackets can be expressed as

−
∫
α(dη̃) log

×
µ[ηQx,m,<y\x]

(
e
−�H{x,y}(η{x,y},η̃{x,y},ηQx,m,<y\x

∣∣
∂{x,y})

)

µ[ηQx,m,<y\x]
(
e
−�Hx(ηx,η̃x ,ηQx,m,<y\x

∣∣
∂x
)
)
µ[ηQx,m,<y\x]

(
e
−�Hy(ηy,η̃y ,ηQx,m,<y\x

∣∣
∂y
)
)

(4.20)
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where we have used the notation ηA := (ηAη̃Zd\A). Note that this gives a η̃-depen-
dence for the α-integral. So we get that η-expectation of the modulus of the l.h.s.
is bounded from above by
∫
α(dη)

∣∣∣Eα(ηQx,m,≤y )− Eα(ηQx,m,<y )− Eα(ηQx,m,≤y\x)+ Eα(ηQx,m,<y\x)
∣∣∣

≤ Const
∫
α(dη)

∣∣∣∣∣
∫
α(dη̃)µ[ηQx,m,<y\x]

(
e
−�H{x,y}(η{x,y},η̃{x,y},ηQx,m,<y\x

∣∣
∂{x,y})

)

−
∫
α(dη̃)µ[ηQx,m,<y\x]

(
e
−�Hx(ηx,η̃x ,ηQx,m,<y\x

∣∣
∂x
)

)

×µ[ηQx,m,<y\x]

(
e
−�Hy(ηy,η̃y ,ηQx,m,<y\x

∣∣
∂y
)
)∣∣∣∣∣ (4.21)

where, as always, we have used that �Hx is uniformly bounded to drop the loga-
rithm. Let us now switch to the case α = P. We use the inequality | ∫ f | ≤ ∫ |f |
for the η̃-integration to see that the r.h.s. is bounded from above byConst

∫
P(dη̃)∣∣cx,y(ηx, ηy, η̃)∣∣, the latter quantity being defined in (2.10). Recalling c̄(m) :=

sup x,y:|x−y|=m
ηx ,ηy∈H0

∫
P(dη̃)

∣∣cx,y(ηx, ηy, η̃)∣∣ we have from this and (4.21) that

∫
P(dη)

∣∣∣U fe,abs,inv
Lx,m

(η)

∣∣∣ ≤ Const ∣∣Lx,m\Lx,m−1
∣∣ c̄(m) ≤ Const ′md−1c̄(m)

(4.22)
But this gives

∑
A:A�x0

w(A)

∫
P(dη̃)

∣∣∣U fe,abs,inv
A (η̃)

∣∣∣

≤
∞∑
m=1

∑
y:|y−x0|≤m

w(Ay,m)

∫
P(dη̃)

∣∣∣U fe,abs,inv
Ay,m

(η̃)

∣∣∣

≤ Const1 + Const2
∞∑
m=2

m2d−1w(A0,m)c̄(m) (4.23)

which finishes the proof. ��
We remark that the trick to relate some formal potential to expectations of cer-

tain observables by a telescoping [as in (4.19), (4.20)] was used in various papers
before. Observe e.g. the analogy to the recent [MRSM] where a.s. strongly decay-
ing potentials for renormalized measures of low temperature spin systems were
constructed.

5. Examples

The results of Theorems 2.1 and 2.3 are general existence results that always
apply. Let us however also see what the more specific assumptions needed for the
convergence of the vacuum potential and the strengthenings of Theorems 2.1, 2.3
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given after (2.9) and in Theorem 2.4 mean in the examples of the (i) random field
Ising model, (ii) Ising models with random couplings, and the (iii) diluted Ising
ferromagnet. These examples were discussed already in [K6] w.r.t the question of
almost Gibbsianness.

(i) The random-field Ising model

The single spin space for the variables σx is �0 = {−1, 1}. The disorder vari-
ables are given by the random fields ηx that are i.i.d. with single-site distribution
ν that is supported on a finite set H0 and assumed to be symmetric. The defin-
ing potential �(σ, η) is given by �{x,y}(σ, η) = −Jσxσy for nearest neighbors

x, y ∈ Zd , �{x}(σ, η) = −hηxσx , and �A = 0 else. Note that e−�Hx(σx,η1
x ,η

2
x) =

eh(η
1
x−η2

x)σx = eh(η2
x−η1

x)+ 2 sinh h(η1
x − η2

x) 1σx=1. Then, treating this exponential
as an observable and using the ‘finite volume perturbation formula’ as in [K6] we
see the following. Condition (2.8) (giving the convergence of the vacuum potential)
holds if and only if

lim
�↑Zd

µ[η�η̂Zd\�](σ̃x = 1) = µ[η](σ̃x = 1) (5.1)

for ηx , for all x, for P-a.e. η. (Here, as always, we used the notation that spins that
are integrated are decorated with tildes.) This is true for any measurable infinite-
volume Gibbs measure µ[η] which is obtained as a weak limit with a non-random
boundary condition. We note that whether (5.1) holds is independent of ηx . Sim-
ilarly, condition (2.9) (giving continuity of the conditional expectations) holds,
whenever

lim
�↑Zd

sup
η̂

∣∣µ[η�η̂Zd\�](σ̃x = 1)− µ[η](σ̃x = 1)
∣∣ = 0 (5.2)

From this we have

Corollary to Theorem 2.2. For any choice of the parameters of the model, the
joint measure corresponding to the ferromagnetic plus-state has an a.s. convergent
vacuum potential with vacuum (η+, σ ). Here η+ is the configuration taking the
maximum of the possible values of the magnetic field for all sites x and σ is an
arbitrary spin-configuration.

Corollary to Theorems 2.1 and 2.3. Suppose that lim�↑Zd µ
+
�[η�](σ̃x = 1) =

lim�↑Zd µ
−
�[η�](σ̃x = 1) for all choices of the magnetic fields η ∈ H. Here

the expressions under the limit refer to the finite volume Gibbs-measures with +
(resp. −) boundary condition.

Then the corresponding (unique) joint measure is Gibbs and the potentials of
Theorems 2.1 and 2.2 are both convergent everywhere. There is also a potential of
the form announced in Theorem 2.3 that is absolutely convergent everywhere.

Proof of Corollaries. It is known that the limit µ+[η] = lim�↑Zd µ
+
�[η�] exists

for any choice of the parameters and any configuration of the quenched random
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fields ηx , due to monotonicity reasons. To prove the first Corollary we show that
(5.1) holds for µ+ and η̂ = η+ and any η. To see this use the fact that the function
(η, σ bc) �→ µσ

bc

� [η�] (σ̃x = 1) is monotone (w.r.t. the partial order of its arguments
obtained by site-wise comparison.) From this we have

µ+[η](σ̃x = 1) = lim sup
�↑Zd

µ+�[η�](σ̃x = 1) ≥ lim sup
�↑Zd

µ+[η�η
+
Zd\�](σ̃x = 1)

(5.3)
for any η where inequality under the limsup follows from the DLR-equation and
the monotonicity. Additionally we have the converse estimate that follows from

µ+[η](σ̃x = 1) = lim
�2↑Zd

µ+�2
[η�2 ](σ̃x = 1) ≤ lim

�2↑Zd
µ+�2

[η�η
+
�2\�](σ̃x = 1)

= µ+[η�η
+
Zd\�](σ̃x = 1) (5.4)

by taking the lim inf over �. This proves the claim. The other Corollary follows
from the remark after (2.9) and the fact that (5.2) follows from the hypothesis by
µ−�[η�](σ̃x = 1) ≤ µ[η�η̂Zd\�](σ̃x = 1) ≤ µ+�[η�](σ̃x = 1) for any η̂. ��

Next we discuss the hypothesis of Theorem 2.4 giving decay of a translation
invariant potential. Again, using the special form of the single-site perturbation of
the Hamiltonian, it is not difficult to see that we have

c̄(m) ≤ Const sup
x,y:|x−y|=m

∫
P(dη̃)

∣∣µ[η̃](σ̃x σ̃y)− µ[η̃](σ̃x)µ[η̃](σ̃y)
∣∣ (5.5)

for m ≥ 1. (Here the sup over the possible different choices of ηx and ηy was ab-
sorbed in the constant. To see this we used the ‘finite volume perturbation formula’
as in [K6] Chapter III.1)

Now, let us assume that we are in the interesting region of the parameter space
where existence of ferromagnetic order is proved. I.e, let us assume that we are in
dimensions d ≥ 3 and we have small disorder and large temperature, i.e. J > 0
sufficiently large and h/J is sufficiently small. Then, a refined analysis of the renor-
malization group proof of Bricmont and Kupiainen should lead to the fact that (5.5)
decays faster than any power withm ↑ ∞ for the plus-state µ+[η]. [Unfortunately
this does not follow directly from the (related) statement (2.6) given under [BK]
Theorem (2.1) which asserts that the quenched correlation under the P-integral
decays like Const (η̃)e−const |x−y|, since Const (η̃) is unbounded.] This has to be
contrasted with the fact that in this region the system was already proved to be
not almost Gibbsian in [K6]. (The set of “bad configurations” of η even has full
measure. The reason for this is that the magnetization µ+[η](σ̃x) can be made to
jump for typical η by varying the signs of the field η in a large annulus arbitrarily
far away from x. So, (5.2) does certainly not hold.)

In the opposite “high temperature” case where the coupling J is sufficiently
small, one gets exponential decay c̄(m) ≤ Const e−const |x−y|. In fact, stronger
than that, one has an exponential bound on the random correlations in (5.5), uni-
formly in all realizations of the field. For small J this can be seen by a standard
expansion of the nonrandom interaction term eJ1σx=σy = eJ1σx=σy − 1+ 1. Indeed,
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summation over the spins w.r.t. the independent measures ν(dσx)ehηxσx then pro-
duces an η-dependent polymer model that has exponential decay of correlations,
uniformly in η. Of course, exponential decay of quenched correlations, uniformly
in the realization of the fields, always holds in one dimension. This can be seen
(e.g.) by disagreement percolation arguments. By the remark after Theorem 2.4
this implies that the joint measure is Gibbsian with an interaction potential that is
superpolynomially decaying everywhere.

(ii) Ising models with random nearest neighbor couplings: random bond, EA-spin-
glass

The single spin space is again �0 = {−1, 1}. Denote by E := {(1, 0, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} the set of nearest neighbor vectors pointing in
‘positive directions’. The disorder variables (random couplings) Jx,e take finitely
many values, independently over the ‘bonds’ x, e. We put ηx = (Jx,e)e∈E. The
joint spin at the site x is then ξx = (σx, ηx) = (σx, (Jx,e)e∈E). The defining po-
tential�(σ, η) is given by�{x,y}(σ, η) = −Jx,eσxσy if y = x+ e for some e ∈ E,
and �A = 0 else. Specific distributions of interest are a) Jx,e takes values strictly
bigger than zero (random bond ferromagnet); b) Jx,e is symmetrically distributed
(EA-spinglass).

Now, the crucial observable is the correlation between nearest neighbors. We
use the special form of the single site perturbation of the Hamiltonian w.r.t. ηx and
similar arguments as for the random field Ising model (see [K6] chapter III.3). In
this way we see that: (2.8) holds if

lim
�∗↑(Zd )∗

µ∞[J�∗ Ĵ(Zd )∗\�∗ ](σ̃x σ̃y) = µ∞[J(Zd )∗ ](σ̃x σ̃y) (5.6)

for any nearest neighbor pair x, y. Here we have written (Zd)∗ for the lattice of
bonds of Zd . Also, the condition (2.9) giving continuity of the conditional expec-
tation holds if

lim
�∗↑(Zd )∗

sup
Ĵ

∣∣∣µ∞[J�∗ Ĵ(Zd )∗\�∗ ](σ̃x σ̃y)− µ∞[J(Zd )∗ ](σ̃x σ̃y)
∣∣∣ = 0 (5.7)

for nearest neighbors. Finally, the quantity crucial for the decay of the potential is

c̄(m) ≤ Const sup
x,y:|x−y|=m
e,e′∈E

∫
P(dJ )

∣∣∣∣∣µ[J ](σ̃x σ̃x+eσ̃y σ̃y+e′)

−µ[J ](σ̃x σ̃x+e)µ[J ](σ̃y σ̃y+e′)

∣∣∣∣∣ (5.8)

for m big enough s.t. {x, x + e} ∩ {y, y + e′} is always empty. (Again the sup over
the possible different choices of ηx and ηy was absorbed in the constant.) This
quantity could be called the quenched average of the ‘energy-energy’- correlation
function.
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We expect this to decay faster than any power in a very general situation. Ex-
ponential decay of the quantity under the modulus, uniformly in J , holds of course
in a high-temperature regime where the maximum of the possible values of |Jx,e|
is sufficiently small. If this value is small enough, this can be seen by a usual
high-temperature cluster expansion. This results in the existence of a translation
invariant potential, whose sup-norm decays according to the remark after Theorem
2.4.

In [K6] we gave a heuristic discussion of the example of a joint measure cor-
responding to a random Dobrushin state for a random ferromagnet describing a
stable interface between the plus and the minus state. Such states are believed to
exist in d ≥ 4 for low temperature, and weak disorder, though this is only proved in
the solid-on-solid approximation (see [BoK1]). We argued that the corresponding
joint measure should not be almost Gibbsian, if the set of possible values of the
couplings contains a value that is small enough such that the corresponding homo-
geneous system is in the high temperature phase. Indeed, choosing this coupling
in a large annulus one can decouple the inside of the system from the outside. So,
the inside of the system should be in a mixture of the ferromagnetic plus resp. mi-
nus state rather than the Dobrushin state, a difference that can be observed on the
nearest neighbor correlations. Nevertheless, we expect fast decay of the averaged
correlations (5.8).

So, as for the random field Ising model in the phase transition regime, we should
have another example of a joint measure that is not almost Gibbsian, but has an
interaction potential that decays faster than any power outside of a set of measure
zero, and is translation-invariant w.r.t. the shifts that preserve the joint measure (i.e.
the horizontal shifts in the direction of the interface).

This potential should not be translation-invariant w.r.t. to shifts orthogonal to
the interface. In fact, the almost surely convergent P-normalized potential for the
Dobrushin state should not be translation-invariant. To see this look at the explicit
formula for the single site-contribution to the potential at the site x obtained by (4.3)
and (4.4). It can be rewritten in terms of an integral w.r.t. the couplings J̃ of some
function of the µ[J̃ ](σ̃x σ̃x+e)’s and local terms. Here µ[J̃ ] is the Dobrushin-state.
Hence, the resulting expression depends explicitly on x.

This following example appears in the physical literature [Ku1,2], [MKu] and
was first rigorously discussed by [EMMS] below the percolation threshold. We are
a little more explicit in the discussion than in our previous examples.

(iii) The diluted random ferromagnet (‘GriSing field’)

The single spin space for the variables σx is again�0 = {−1, 1}. The disorder vari-
ables are given by the occupation numbers ηx taking values in {0, 1}, independently
w.r.t. x with density P[ηx = 1] = p. The disordered potential �(σ, η) is given by
�{x,y}(σ, η) = −Jηxσxηyσy for nearest neighbors x, y ∈ Zd and �A = 0 else.
So the one-site variation of the Hamiltonian is �Hx(σx, η1

x, η
2
x, η∂x) = −J (η1

x −
η2
x)σx

∑
y:d(y,x)=1 ηyσy .

By the results of [EMSS] and [K6] we know that, for any p, for sufficiently
large J , any weak limit of the joint measures of the GriSing random field is non-
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Gibbs. [EMSS] noted that, for p below pc, the percolation threshold for ordinary
site percolation, one easily obtains a potential for the joint measure by putting
UA(η) = logZ0

A\∂(Ac) for the free energy potential ifA\∂(Ac) is a connected com-

ponent of {x, ηx = 1} andUA(η) = 0 else. (HereZ0
B is the partition function of the

ordinary fully occupied Ising model on the set B with open boundary conditions
on ∂B.) It is well-defined on the full-measure set of configurations where there is
no infinite cluster and (trivially) absolutely summable on this set.

On the other hand, by the general result Theorem 2.1, we know that there
is a P-normalized potential which is convergent for P-a.e. η for any value of
p, 0 < p < 1. By Theorem 2.3 we know that there is a (suitably regrouped)
potential constructed from this potential that converges even absolutely for P-
a.e η. To be a little more specific: It is easy to see that in this case a P-nor-
malized potential on the disorder space can be written in the form U fe

µ;A(η) =
cA(J, p)

∏
x∈A(ηx−p). From the proof of Theorem 2.1 we see that, for a given mea-

surable Gibbs measureµ[η], the parameters cA(J, p) of the corresponding free en-
ergy potential are to be determined from the equations (4.3) and (4.4). Convergence
of

∑
A:A�x cA(J, p)

∏
y∈A(ηy−p) for P-a.e.η is guaranteed by Theorem 2.1. Note,

on the other hand, that we certainly have that
∑
A:A�x |cA(J, p)|(1 − p)|A| = ∞

for p ≤ 1
2 and

∑
A:A�x |cA(J, p)|p|A| = ∞ for p ≥ 1

2 for J sufficiently large.
This is clear because the above sums are just the sums over the sup-norms of the
interactions and otherwise the potentials would be absolutely uniformly summable.

It is however also interesting to discuss the vacuum potentials and check the hy-
pothesis of Theorem 2.2. We start with the potential corresponding to the ‘empty’
vacuum η̂

(0)
x ≡ 0. It has the form V fe

µ;A(η) = c
(0)
A (J )

∏
y∈A ηy (corresponding

to [Ku2(31)]). Note that the definition of the constants c(0)A (J ) by (4.3) and (4.4)
involves only expectations w.r.t. µ[η̂(0)] which is just an infinite product over sym-
metric Bernoulli measures. Trivially, the weak convergence (2.2) holds, and is
independent of the boundary condition. So, the constants are explicitly comput-
able up to any desired magnitude of |A|. In particular, they do not depend on p.
Corollary 2 states that, under the hypothesis of Theorem 2.2, also the potential of

the form c
(0)
A (J )

(∏
y∈A ηy − p|A|

)
(which corresponds to [Ku2(32)]) is an a.s.

convergent potential for the joint system. The vacuum potential with ‘occupied’
vacuum η̂

(1)
x ≡ 1 has the form V fe

µ;A(η) = c(1)A (J )
∏
y∈A(ηy − 1). By (4.3), (4.4)

the constants are expressed in terms of averages w.r.t. µ[η̂(1)] (obtained as weak
limit with suitably chosen boundary condition.) We note that these constants must
be such that

∑
A:A�x |c(0)A (J )| = ∞ and

∑
A:A�x |c(1)A (J )| = ∞, because µ[η]

would be a Gibbs-measure else, as above.
p < pc (easy case): There is a unique quenched Gibbs measure P-a.s. which is
just the independent product over the connected components of the occupied sites
(which are all finite, P-a.s.). Assuming that η is such that all connected compo-
nents of occupied sites are finite, one has (2.8) for any η̂. From this follows that
the vacuum free energy potential converges, for any vacuum η̂. In particular one
has, for the empty (resp. the full) vacuum that

∑
A:x∈A⊂{y∈Zd ,ηy=1} c

(0)
A (J ) (resp.
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∑
A:x∈A⊂{y∈Zd ,ηy=0}(−1)|A|c(1)A (J )) converge. For the vacuum potential V (0)A with

empty vacuum the situation is particularly simple: We see by (4.3) and (4.4) that
V
(0)
A (η) = 0 unless A is a subset of a connected component of {x ∈ Zd , ηx = 1}.

[Because: (4.3) decomposes into a sum over the connected components of the oc-
cupied sites in �, i.e. E(0)� (η) =

∑
i logZ0

B�,i (η)
+ C� where B�,i(η) are the

connected components of {x ∈ �, ηx = 1} and C� does not depend on η]. This
implies that c(0)A = 0 unless A is connected. So, V (0)A (η) is just obtained by the de-
composition of the individual logs of partition functions over all subsetsA of those
connected components of occupied sites and is thus a ‘refinement’ of the potential
given just by the logs. Consequently

∑
A:A�x V

(0)
A (η) contains only finitely many

terms for all η such that cluster of occupied sites containing x is finite.
p > pc: There is an infinite cluster of occupied sites with probability one. One may
have different Gibbs measures on this infinite cluster, including the ferromagnetic
ones, and also, in sufficiently high dimensions, for p sufficiently close to one, and
low temperature, Dobrushin type interface states (the latter is only partially proved
[BoK1]).

Let us assume at first that p, J are such that we have a ferromagnetic plus
state µ+[η] for P-a.e. η. We look at the vacuum potential with empty vacuum,
given by the same p-independent formulas as for the p < pc case in terms of cou-
pling constants c(0)A for connected subsets A⊂Zd . Next we assume that η is such
that the finite volume Gibbs-measures with open boundary conditions converge to
the symmetric mixture 1

2

(
µ+[η]+ µ−[η]

)
. But, this means that µ[η�η̂0

Zd\�] →
1
2

(
µ+[η]+ µ−[η]

)
, because, on�, the l.h.s. is nothing but the finite volume Gibbs

measure with open boundary conditions on � ∩ {x ∈ Zd , ηx = 1}. Thus, the r.h.s.
differs from the plus state as a measure, so there is no continuity on the level
of measures. However, since the observable conjugate to the disorder variables is
symmetric in σ , the corresponding expectations are the same for the plus and the
minus state and we have (2.8), i.e. continuity on the level of the Q’s. Assuming
that the set of η’s with the above property is full measure, the vacuum potential
converges P-a.s. and the corresponding joint potential describes the joint measure
corresponding to the ferromagnetic plus state (and also the minus state). Conversely
we have

Proposition 5.1. Consider the dilute Ising ferrogmanet, at any fixed J > 0. Assume
that there is a convergent free energy vacuum potential with empty vacuum η̂x = 0
for all x for the joint measure corresponding to a given Gibbs-measure µ[η] of the
form

U
fe,0
A (η) := c(0)A

∏
x∈A

ηx (5.9)

where A is running over the connected subsets of Zd . Then we must have

c
(0)
A =

∑
�:�⊂A

(−1)|A\�| log
Z0
�

2|�|
(5.10)
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where, as above, Z0
� is the partition function of the fully occupied model in� with

zero boundary conditions. In particular, if two (possibly different) Gibbs-measures
corresponding to the same J both have a potential of the form (5.9), it must be the
same.

The proof is given below. Applying the proposition to the random Dobrushin
(interface) state we see that we expect a different scenario for the corresponding
joint measure. Assuming that there is a free energy potential of the form (5.9) it is
the same as for the joint measure of the plus state. This is the potential constructed
from (4.3) in a straightforward way. From (3.1) we see however that the conditional
expectations in the infinite-volume will be different in plus-state and Dobrushin-
state, because: Equality of the l.h.s. of (3.1) for different µ[η] implies equality of
Qx for different µ[η] (by varying the boundary condition ξ∂x). The corresponding
Qx in turn are essentially given in terms of nearest neighbor correlations and these
will differ in interface states and ordered states. So, both states cannot have the
same potential. This provides an example of a convergent potential constructed in
a natural way that produces the wrong measure.

Finally we look at the vacuum potential with the fully occupied vacuum. We
discuss again the joint measure corresponding to the ferromagnetic plus state and
the Dobrushin state. If these states do exist a.s. then they also exist for the fully
occupied system. So we can construct the state µ[η̂], and the state µ[η] for typical
η with the same type of boundary conditions, in both cases. Also, in both cases,
we expect that µ[η�η̂1

Zd\�] → µ[η] which, in particular, implies (2.8). So the
corresponding vacuum potential converges and yields the right conditional prob-
abilities. Observe, that in a situation where a typical realization of the disorder
destroys the Dobrushin state that is present for η̂(1), a weak limit of finite volume
Gibbs measures with plus/minus boundary condition σb.c. will yield a symmetric
mixture of plus and minus state. Thus, to get a correct potential, we should of course
choose the corresponding µ[η̂(1)] to be (say) the plus state (which yields the same
free energy potential as the symmetric mixture). It can be constructed e.g. with
the different all-plus boundary condition σ̂ b.c.. The Dobrushin state in the ordered
system which will result from plus/minus boundary conditions will give a wrong
potential. This explains the formulation of Theorem 2.2. where we allowed for a
boundary condition σ̂ b.c. for the construction of the stateµ[η̂] that is different from
the boundary condition σb.c. for the construction of the state µ[η] for typical η.

It remains to give the

Proof of Proposition 5.1. We claim that in order that the conditional expectations
be the correct ones we must have that

lim
�↑Zd

∑
A:A⊂�,A�x

(
U
fe
A (η

1
xηZd\x)− UfeA (η2

xηZd\x)
)
= logQx(η

1
x, η

2
x, ηZd\x)

(5.11)

for P-a.e. η, for all η1
x and η2

x . This follows from the fact that the �-limit of (4.2)
(which is assumed to exist) and (3.1) must coincide, P-a.e., which is equivalent to
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∫
µann,ξ∂xx (dη̃x)e

−∑
A:A�x

(
U
fe
A (η̃xηZd \x)−U

fe
A (η)

)
=

∫
µann,ξ∂xx (dη̃x)Qx(ηx, η̃x, ηZd\x)

(5.12)
A simple computation shows that the one-site annealed distribution is given by
µ
ann,ξ∂x
x (ηx = 1)/µann,ξ∂xx (ηx = 0) = cosh(J

∑
y∈∂x ηyσy). Thus, by writing

(5.12) for different values of ξ∂� corresponding to different values for the expres-
sion in the cosh we can conclude that (5.12) really implies (5.11). Next, we note
that (5.11) implies that, for any finite �⊂Zd and x ∈ � we have that

∑
A:A⊂�,A�x

U
f e,0
A (η) = log

Z0
�(ηxη�\x)
Z0
�(η̂xη�\x)

(5.13)

which is seen as follows: µ[η] satisfies the DLR-equation for P-a.e. η and so we
have thatµ[η�η̂∂�ηZd\�](σ�) = µ0

�[η�](σ�), for P-a.e. η
Zd\�. So we have from

(5.11) (putting η1
x = ηx , η2

x = η̂x)

lim
�↑Zd

∑
A:A⊂�,A�x

U
f e,0
A (η�η̂∂�ηZd\�) = logQx(ηx, η̂x, η�\xη̂∂�ηZd\�)

= log
Z0
�(ηxη�\x)
Z0
�(η̂xη�\x)

(5.14)

for P-a.e. η
Zd\� whenever x ∈ �. But the l.h.s. of (5.14) equals the l.h.s. of (5.13),

due to the assumption on the form of the potential involving only connected A’s.
Finally, from (5.13) one sees by telescoping over the sites in � that∑
A:A⊂� c

(0)
A = ∑

A:A⊂� U
fe,0
A (1A) = logZ0

�/2
|�| which, by the inclusion-

exclusion formula gives the desired (5.10). ��
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[MRM] Maes, C., Redig, F., Van Moffaert, A.: Almost Gibbsian versus Weakly
Gibbsian measures, Stoch.Proc.Appl., 79(1) 1, 1–15 (1999), also available at
http://www.ma.utexas.edu/mp arc/, preprint 98-193. Erratum, to appear in Stoch.
Proc. Appl.

[MRSM] Maes, C., Redig, F., Shlosman, S., Van Moffaert, A.: Percolation, Path Large De-
viations and Weak Gibbsianity, Comm. Math. Phys. 209, no. 2, 517–545 (2000)

[N] Newman, C.M.: Topics in disordered systems, Lectures in Mathematics ETH
Zürich. Birkhäuser Verlag, Basel, (1997)

[NS1] Newman, C.M., Stein, D.L.: Spatial Inhomogeneity and thermodynamic chaos,
Phys. Rev. Lett., 76, No 25, 4821 (1996)

[NS2] Newman, C.M., Stein, D.L.: Metastate approach to thermodynamic chaos., Phys.
Rev. E., 3, 55, no. 5, part A, 5194–5211 (1997)

[NS3] Newman, C.M., Stein, D.L.: Simplicity of state and overlap structure in finite-vol-
ume realistic spin glasses, Phys. Rev. E, 3, 57, no. 2, part A, 1356–1366 (1998)

[NS4] Newman, C.M., Stein, D.L.: Thermodynamic chaos and the structure of short-
range spin glasses, in: Mathematical aspects of spin glasses and neural networks,
243–287, Progr. Probab., 41, Bovier, Picco (Eds.), Birkhäuser, Boston, Boston,
MA (1998)

[S] Schonmann, R.H.: Projections of Gibbs measures may be non-Gibbsian, Comm.
Math. Phys., 124, 1–7 (1989)

[Se] Seppäläinen, T.: Entropy, limit theorems, and variational principles for disordered
lattice systems, Commun. Math. Phys, 171, 233–277 (1995)

[Su] Sullivan, W.G.: Potentials for almost Markovian Random Fields, Comm. Math.
Phys., 33, 61–74 (1973)

[SW] Sobotta, G., Wagner, D.: Comment on the statistical mechanics of quenched ran-
dom systems, Z. Phys. B, 33(3), 271–274 (1979)


