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Abstract. Glutamic acid decarboxylase (GAD) is con-
sidered to be one of the strongest candidate autoantigens
involved in triggering b-cell-specific autoimmunity. The
majority of recent onset type 1 diabetes patients and pre-
diabetic subjects have anti-GAD antibodies in their sera,
as do nonobese diabetic (NOD) mice, one of the best an-
imal models for human type 1 diabetes. Immunization of
young NOD mice with GAD results in the prevention or
delay of the disease as a result of tolerizing autoreactive T
cells. Autoimmune diabetes can also be prevented by the
suppression of GAD expression in antisense GAD trans-
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genic mice backcrossed with NOD mice for seven gener-
ations. These results support the hypothesis that GAD
plays an important role in the development of T-cell-me-
diated autoimmune diabetes. However, there is some con-
troversy regarding the role of GAD in the pathogenesis of
diabetes. Whether GAD truly plays a key role in the initi-
ation of this disease remains to be determined. The ex-
amination of the development of insulitis and diabetes in
b-cell-specific GAD knockout NOD mice will answer this
remaining question.

Introduction

Diabetes mellitus is a common, serious metabolic disor-
der characterized by hyperglycemia. The disease can be
divided into two major subclasses: insulin-dependent di-
abetes mellitus or type 1 diabetes mellitus (T1DM) and
non-insulin-dependent diabetes mellitus or type 2 dia-
betes. T1DM results from insulin deficiency caused by the
loss of insulin-producing pancreatic b cells, generally de-
velops in the young [1–3] and accounts for ~10% of the
diabetic population worldwide. In contrast, type 2 diabetes
results from a variable combination of insulin resistance
and insulin deficiency, generally develops in adults [4, 5]
and accounts for ~ 90% of the diabetic population world-

wide. Both types can cause microvascular and macrovas-
cular complications, resulting in increases in morbidity
and mortality.
Considerable evidence shows that T1DM is the conse-
quence of progressive b cell destruction during an
asymptomatic period often extending over many years.
Genetic susceptibility is believed to be a prerequisite for
the development of T1DM [6, 7]. However, the concor-
dance rate for monozygotic twins to develop type 1 dia-
betes is only about 40% [8], suggesting that environmen-
tal factors such as viruses, diet, toxins and stress also play
an important role in the initiation and progression of b cell
destruction [9]. The hypothesis that T1DM is an autoim-
mune disease has been strengthened by study of animal
models such as the BioBreeding (BB) rat and the
nonobese diabetic (NOD) mouse. Both of these animals* Corresponding author.
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spontaneously develop T1DM, and their syndromes share
many pathological features with human T1DM.
Identification and characterization of b-cell target au-
toantigens in T1DM may be indispensable for under-
standing the initiation of b-cell-specific autoimmunity
and antigen-specific T cell responses in the development
of T1DM. Autoantibodies to b cell antigens can be pre-
dictive markers, and the identified autoantigens can be
used for the development of therapeutic intervention by
modulating the immune response to these autoantigens.
Much research has focused on identifying pancreatic b-
cell autoantigens that may be involved in the primary im-
munological event of the b cell-specific autoimmune
process. Islet cell autoantigens that are targets of autoim-
mune attack in T1DM have been studied largely by in-
vestigating the specificities of circulating autoantibodies
present in the sera of T1DM patients and also in diabetic
animals. 
Since the first reports of anti-islet cell autoantibodies in
1974 [10], many autoantigens in humans, NOD mice and
BB rats have been identified, including an islet cell au-
toantigen with properties of sialic acid containing glycol-
ipid [11], insulin [12], the insulin receptor [13], a 52-kDa
protein [14, 15], a 69-kDa protein [16, 17], glutamic acid
decarboxylase (GAD) [18], tyrosine phosphatase-2 (IA-2)
[19, 20], heat shock protein 65 (HSP65) [21, 22], car-
boxypeptidase H (CPH) [23], the glucose transporter [24],
a 38-kDa autoantigen [25, 26], a retroviral antigen [27]
and sex-determining region Y-related protein [28]. Among
these autoantigens, GAD has been extensively studied
with regard to its pathogenic role in the development of
T1DM. 

Immunopathogenesis of T1DM

Extensive studies on the immunopathogenesis of T1DM
revealed that b cell autoantigens, macrophages, dendritic
cells, B lymphocytes and T lymphocytes are clearly in-
volved in the b-cell-specific autoimmune process
[29–33]. Histologic analysis of the pancreas from patients
with recent-onset type 1 diabetes revealed an infiltration
of the islets of Langerhans by mononuclear cells [34]. The
infiltrating immunocytes were identified as T and B lym-
phocytes, monocytes/macrophages and natural killer
(NK) cells [35, 36]. Detection of circulating islet-reactive
autoantibodies [12, 37] and islet-reactive T cells in ani-
mals with T1DM [38–41] has indicated that autoimmu-
nity is involved in b cell destruction. 
One of the most common immunological abnormalities of
humans and animals with autoimmune diabetes is the
presence of autoantibodies directed against islet cell anti-
gens. The presence of autoantibodies to these b cell anti-
gens is the first detectable marker of ongoing b cell de-
struction. The risk for developing diabetes is strongly

related to the number of autoantibody markers; that is, the
presence of two or more autoantibodies gives a higher
probability of developing the disease than the presence of
a single autoantibody. Ninety percent of first-degree rel-
atives of T1DM patients who had antibodies to IA-2,
GAD or insulin eventually developed diabetes within sev-
eral years after the detection of the antibodies [42, 43].
While these autoantibodies are indicators of ongoing b
cell destruction, they do not seem to be directly involved
in the destruction of b cells. 
Macrophages as well as dendritic cells are among the first
cell types to infiltrate the pancreatic islets during the dis-
ease process [44–47]. Inactivation of macrophages in
NOD mice or BB rats significantly prevented the devel-
opment of diabetes [48–50]. Further studies in NOD mice
found that macrophages are required for the creation of a
suitable microenvironment wherein T cells can differenti-
ate into b cell-cytotoxic T cells [50]. Macrophages, along
with dendritic cells and B lymphocytes play a role as anti-
gen-presenting cells [51]. They produce cytotoxic sub-
stances such as interleukin (IL)-1b, tumor necrosis factor
(TNF)-a, interferon (IFN)-g and free radicals such as ni-
tric oxide, which are toxic to b cells and contribute to b
cell damage [52–54]. 
Converging data suggest that B cells play a critical role as
antigen-presenting cells of b cell autoantigens in NOD
mice. T lymphocytes from diabetic NOD mice transfer di-
abetes to neonatal recipients in the absence of B cells, in-
dicating that B cells are not required for the destruction of
b cells after diabetogenic effector T cells are generated.
Further studies demonstrated that B cells are critical anti-
gen-presenting cells for the initiation of T-cell-mediated
autoimmune diabetes in NOD mice [55, 56]. Whereas B
cells appear to be required during the initiation of au-
toimmune diabetes, a recent study showed that their pres-
ence can mitigate b cell destruction. B-cell-specific I-Ag7-
deficient NOD mice showed peri-insulitis, but converted
to destructive insulitis after cyclophosphamide treatment.
This result suggests that I-Ag7-mediated b cell autoantigen
presentation by B cells is critical in overcoming a check-
point in T cell tolerance to pancreatic b cells after their ini-
tial targeting has occurred [57]. 
Cumulative evidence indicates that T cells play a critical
role in the pathogenesis of autoimmune T1DM. In the
NOD mouse, it is clear that both CD4+ and CD8+ T cells
are involved in the development of diabetes [58]. Athymic
NOD mice and NOD.severe combined immunodeficiency
(scid) mice do not develop insulitis or diabetes [59, 60]. In
addition, treatment of NOD mice with anti-CD3 antibod-
ies inhibits the development of diabetes [61]. Although
some uncertainty remains with regard to the precise role
of CD4+ and CD8+ T cells in the pathogenesis of autoim-
mune T1DM, it appears that CD8+ T cells are the major
final effectors of b cell damage in animal models. In hu-
mans, most of the immunocytes infiltrating the pancreatic



ovaries, thymus and stomach [71–74]. There is a strong
variation in the expression of the two isoforms of GAD in
islets depending on the species [74, 75]. Both human and
rat islets predominantly express GAD65, whereas GAD67
is the major GAD isoform in mouse islets [75].

Humoral immune response to GAD in T1DM

Anti-64-kDa antibodies were detected in the sera of
T1DM patients [76], and it was found that the sera for
~ 85% of newly diagnosed T1DM patients contain these
antibodies [37]. In addition, ~ 80% of those in a category
at ‘high risk’ for developing T1DM [relatives of T1DM
patients who are also positive for either cytoplasmic islet
cell antibodies (ICA) or insulin autoantibodies (IAA) or
both] also have anti-64-kDa antibodies in their sera. In
contrast, those in a ‘low-risk’group (unrelated controls or
ICA-and IAA-negative relatives of T1DM patients) have
only a 0–2% frequency of anti-64-kDa antibodies in their
sera [77]. The anti-64-kDa antibody may appear as early
as 8 years before the clinical onset of T1DM [37]. The
presence of anti-64-kDa antibodies has also been reported
in the NOD mouse; 80% of weaning NOD mice and 87%
of newly diabetic NOD mice had anti-64-kDa antibodies
in their sera [78]. This 64-kDa autoantigen was later iden-
tified as GAD65 [18]. It is known that anti-GAD autoan-
tibodies in T1DM patients are predominantly directed to
a conformational epitope of GAD. In contrast, autoanti-
bodies from patients with another autoimmune disease
wherein anti-GAD antibodies are common, stiffman syn-
drome, recognized a combination of linear and confor-
mational epitopes of GAD [79, 80]. Although the two iso-
forms of GAD have high homology, the major antigenic
region in humans has been identified as the middle and
carboxyterminal region of GAD65 [81–83] (fig. 2).
The presence of anti-GAD65 antibodies along with anti-
IA-2 antibodies is a highly predictive marker for the de-
velopment of T1DM in humans. The cumulative incidence
of anti-GAD65 and anti-IA-2 antibodies is ~ 90% in
newly diagnosed T1DM patients and prediabetic individ-
uals [84]. However, a contradictory result has been re-
ported regarding the correlation between the presence of
anti-GAD antibodies and diabetes in NOD mice. One
study found that anti-GAD65 and anti-GAD67 antibodies
were detected at the early stage of the disease process 
(4 weeks of age) and before autoantibodies to other b cell
autoantigens developed, implying that GAD is the primary
antigen that may initiate b-cell-specific autoimmunity in
this model [85] However, another study found that anti-
GAD antibodies are not prerequisites for the development
of diabetes in NOD/Lt and NOD/Wehi mice, which have
a higher and lower incidence of diabetes than NOD mice,
respectively [86]. This study suggests that a strong hu-
moral response to GAD may actually be associated with
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islets at the time of T1DM diagnosis are CD8+ T cells,
suggesting that these cells are also the final effectors of 
b cell damage in humans.
Cytokines produced by immunocytes also play an impor-
tant role in the pathogenesis of autoimmune T1DM. In
general, Th1 cytokines (IL-2, IFN-g), which potentiate
cell-mediated immune responses, cause the development
of T1DM, while Th2 or Th3 cytokines (IL-4, IL-10, 
TGF-b) prevent the disease [62]. However, the interac-
tions of the many different cytokines in the immune sys-
tem are complicated, and the development of diabetes may
depend upon which way the finely tuned balance of im-
munoregulatory T cells is tipped. Pancreatic b cells may
be killed by cytotoxic T cells through the perforin [63] and
granzyme pathway as well as fas-fas ligand and TNF-
TNF receptor interaction [64–66]. Therefore, activated
macrophages and T cells as well as cytokines secreted by
these cells act synergistically to destroy b cells.

Biochemical characteristics of GAD

GAD catalyzes the a-decarboxylation of L-glutamic acid
to synthesize gamma-amino butyric acid (GABA), which
functions as an inhibitory neurotransmitter. Two distinct
forms of GAD, GAD67 (67 kDa) and GAD65 (65 kDa)
(table 1), have been identified and found to be encoded by
two different genes [67]. Amino acid sequence analysis
showed ~ 65% of the sequence of these two forms is iden-
tical [68] (fig. 1). Both isoforms of GAD are synthesized
within the cytoplasm as hydrophilic soluble molecules.
GAD65, but not GAD67, is posttranslationally modified
and anchored to the membrane [69]. Both isoforms of
GAD contain a pyridoxal phosphate binding site, which
acts as a cofactor for enzyme activity [70]. 
GAD is expressed not only in the central and peripheral
nervous systems, but also in the pancreatic islets, testes,

Table 1. Biochemical and molecular characteristics of human,
GAD65 and GAD67.

Characteristic GAD65 GAD67

Molecular weight 65,400 66,600 
(585 amino acids) (594 amino acids)

Amino acid sequence 65% homology 
homology with GAD65

Chromosome location 10p11.23 2q31

Pyrodoxal phosphate yes yes
binding site

Area of expression primarily pancreatic primarily brain
b cells

Subcellular location membrane anchored cytoplasmic
after posttrans-
lational modification
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less destructive pathology, as indicated by the negative
correlation between insulitis and anti-GAD antibody lev-
els found in these animals. This has also been the case in
studies on humans [87, 88].

Cell-mediated immune response to GAD

In NOD mice, it was found that the initial immune re-
sponse against pancreatic islets is a Th1 response against
a confined region of GAD (peptides 509–528 and
524–543) and that later responses are directed against an-
other region of GAD and against other autoantigens, such
as HSP65 and insulin [89]. Therefore, prevention of this
early immune response could be achieved by immuniza-
tion with purified GAD65 protein, which tolerized the T-
cell-mediated immune response against other autoanti-

Figure 1. Comparison of the amino acid sequences of human GAD67 and GAD65. Only the amino acids in hGAD65 that are different from
hGAD67 are shown. (...) denotes missing amino acids.

Figure 2. Schematic diagram of human GAD65 showing the epi-
topes recognized by anti-GAD antibody and GAD-reactive T cells
in human IDDM. The conformational epitope region recognized by
antibodies from IDDM patients and the T cell epitope region rec-
ognized by CD4+ T cells and CD8+ cytotoxic T cells (CTL) from
IDDM patents are indicated with arrows. The hatched box represents
the region that is homologous to Coxsackie B4 viral antigen, and the
black box represents the pyridoxal phosphate binding site.
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gens such as HSP65 and CPH in pancreatic b cells and
prevented or delayed insulitis and diabetes in NOD mice
[89]. There is also direct evidence that GAD-reactive T
cells are diabetogenic in NOD mice. A CD4+ T cell line
that was generated from the splenocytes of a diabetic
NOD mouse adoptively transferred insulitis and diabetes
to NOD.scid mice. These T cells secreted IFN-g and TNF-
a/b, but not IL-4, suggesting a Th1 cell type, and showed
cytotoxic effects against NOD-derived hybridoma cells
expressing GAD65 [90]. In addition, it was recently re-
ported that Kd-restricted GAD-reactive CD8+ T cell lines
reactive to GAD65 peptides 206–214 (p206) or 546–554
(p 546) could lyse GAD65-expressing target cells, and p
546-specific T cells transferred insulitis to NOD.scid mice
[91], suggesting that GAD may play a central role in the
development of T1DM. However, some GAD-reactive T
cell clones do not have the ability to induce diabetes [92].
One study reported that the response to GAD65 peptides
524–543 was major histocompatibility complex (MHC)
class II restricted and that T cell responses to GAD-de-
rived peptides were observed in mice resistant to T1DM
[93]. Therefore, this study suggested that peripheral tol-
erance to GAD is not associated with protection from di-
abetes.
In humans, GAD-specific CD4+ T cells have also been ob-
served in recent-onset T1DM patients and in relatives of
T1DM patients at risk to develop diabetes [94–96]. GAD-
reactive T cells have been detected prior to the onset of hu-
man T1DM, and differences have been found between
T1DM patients and control subjects. GAD-reactive T cells
in T1DM patients responded primarily to two peptide re-
gions (amino acids 473–555 and 247–279) of GAD65,
whereas those from control subjects responded to the an-
other peptide (amino acids 161–243) [97, 98]. In addition
to CD4+ T cells, MHC class human lymphocyte antigen I
(HLA)-A*0201-restricted CD8+ cytotoxic T cells, specific
for a peptide region of GAD (amino acids 114–123) were
identified in recently diagnosed diabetic patients and in
high-risk subjects, but not in healthy control subjects ex-
pressing HLA-A*0201 [99] (fig. 2). These results suggest
that GAD may be a target autoantigen of T cells in human
T1DM. It was reported that transgenic mice bearing 
diabetes-susceptible haplotypes, HLA DR3 (HLA-
DRB1*0301/I-Ab0) or DQ8 (HLA-DQB1*0302/I-Ab0),
showed spontaneous T cell reactivity to GAD65 [100]. In
addition, a GAD peptide-specific, HLA-DQ8-restricted
(an allele linked with T1DM susceptibility in humans)
Th1–CD4+ T cell line generated from a humanized ani-
mal model, HLA-DQ8(+)/I-Ab0 transgenic mice, induced
severe insulitis after adoptive transfer of these cells into
transgene-positive, but not transgene-negative mice
treated with a subdiabetogenic dose of streptozotocin
[101]. This result suggests that GAD-reactive T cells may
play a direct pathogenic role in the destruction of pancre-
atic b cells in human T1DM.

Molecular mimicry between GAD and viral antigens

Molecular mimicry between GAD and Coxsackie B4
virus has been hypothesized for the development of
T1DM, as there is similarity between a region of GAD
(amino acids 250–274) and the sequence of the P-2C
antigen, with high homology in GAD residues 260–265
(PEVKEK) (fig. 2), and Coxsackie B4 virus has been
shown to be associated with the development of T1DM in
humans [102]. Splenic T cells in NOD mice also showed
a high proliferative response to the GAD peptide homol-
ogous to the Coxsackie B4 sequence [89]. Human data are
more inconsistent, however; some reports support this hy-
pothesis [98, 103–105], but others do not. One study re-
ported the detection of a T cell response to larger epitopes
containing the homologous region in T1DM patients [98],
whereas another study reported that the T cell response to
this region was low in approximately one-half of the pa-
tients studied [106]. Another study reported that T cell re-
activity to a GAD peptide that is homologous with P-2C
is frequently observed in healthy controls, first-degree rel-
atives of T1DM patients and post-onset T1DM patients,
but less frequently in recent-onset T1DM patients [107]. 
With regard to cross-reactivity with other viruses, it was
recently found that a T cell clone specific for GAD pep-
tides isolated from a T1DM patient cross-reacted with
rubella virus antigen, and the cross-reacting epitopes
shared similar peptide binding motifs with HLA-
DR3/DR4 [108]. In addition, a CD4+ GAD-reactive T cell
clone isolated from a prediabetic patient cross-reacted
with a peptide sequence of human cytomegalovirus [109].
These results imply that molecular mimicry between
GAD and rubella virus or cytomegalovirus may be in-
volved in the development of T1DM. 

Studies on the role of GAD in the pathogenesis 
of diabetes using transgenic mouse models

To investigate the role of GAD in the pathogenesis of au-
toimmune diabetes, several lines of transgenic mice have
been established in which the expression of GAD has been
manipulated (table 2). Studies using two transgenic NOD
mouse lines that hyperexpress human GAD65 in b cells
found that one line showed a lower incidence of T1DM,
whereas the other line showed no difference in the inci-
dence of the disease as compared with nontransgenic con-
trol NOD mice. A quantitative difference in the expression
of GAD between the two lines might account for the pre-
vention of diabetes in only one transgenic mouse line
[110]. To induce immunological tolerance to GAD65, a
transgenic NOD mouse line that expresses GAD65 in all
tissues was established. However, instead of preventing di-
abetes, these mice showed an accelerated onset and in-
crease in the incidence of diabetes compared with control
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NOD mice [111]. This may have been due to the defect in
central tolerance in NOD mice. Therefore, it is difficult to
draw any definite conclusions about the role of GAD in
the development of autoimmune diabetes from this study. 
Another strategy is the creation of transgenic mice in
which GAD expression is absent. Interestingly, b-cell-spe-
cific suppression of GAD65 and -67 expression prevented
insulitis and diabetes in antisense GAD transgenic mice
back-crossed with NOD mice for seven generations [112].
These results suggest that the expression of GAD in pan-
creatic b cells is involved in the modulation of b-cell-spe-
cific autoimmunity. However, the possibility exists that a
diabetes-resistant gene from the strain of origin might
have been transmitted to the transgenic offspring, as these
antisense GAD transgenic mice were produced using eggs
from (SJL ¥ C57BL/6) F2 mice, which are diabetes resis-
tant [113, 114]. In another study, systemic GAD65 knock-
out mice back-crossed with NOD mice for four genera-
tions still developed diabetes and insulitis similar to
wild-type NOD mice [115]. However, it is difficult to
draw any definite conclusions from this study, as mouse b
cells predominantly express GAD67 and very low levels
of GAD65, and these GAD65 knockout mice still express
GAD67. Systemic GAD67 knockout mice die within the
1st day of neonatal life and cannot be studied further.
Therefore, b-cell-specific conditional GAD65/67 knock-
out NOD mice are essential to find whether the expression
of GAD in b cells truly plays a critical role in the initia-
tion of b-cell-specific autoimmune diabetes. 

Therapeutic uses of GAD

Immune therapy using specific target autoantigens has
been attempted as a method to prevent autoimmune dis-
ease. It has been reported that administration of purified
GAD protein or peptide or insulin protein or peptide to
NOD mice by various routes can tolerize the T-cell-medi-
ated immune response against pancreatic b cells, resulting

in the prevention or delay of the development of insulitis
and diabetes. In many cases, the preventive effect was
found to be associated with a Th2 shift [116]. 
Immunization with purified GAD65 protein at an early
age either intrathymically or intravenously can tolerize the
T-cell-mediated immune response against pancreatic b
cells in NOD mice, thus preventing insulitis and diabetes
[85, 89]. Moreover, tolerization with GAD65 could pre-
vent the development of other immune reactions that usu-
ally occur in NOD mice, such as those against HSP65 and
CPH. In contrast, immunization with HSP65 only par-
tially decreased the T cell responses to other b cell au-
toantigens and insulitis [89]. These results suggest that
GAD is critical in the initiation of the autoimmune re-
sponse against pancreatic b cells in NOD mice. Similarly,
intraperitoneal immunization of 4-week-old NOD mice
with GAD67 significantly prevented the development of
diabetes as compared with controls [117]. In addition, oral
administration of GAD-expressing transgenic plants
[118], nasal administration of a mixture of GAD peptides
[p17 (247–266), NMYAMMIARFKMFPEVKEKG; 
p34 (509–528), IPPSLRYLEDNEERMSLRLSK; p35
(524–543), SRLSKVAPVIKARMMEYGTT; and p36
(539–558), EYGTTMVSYQPLGDKVNFFR] [119] or
administration of recombinant vaccinia virus expressing
GAD [120] also prevented autoimmune diabetes in NOD
mice by inducing Th2 immune responses. Furthermore,
GAD65 immunization of NOD mice at the stage after the
onset of insulitis could inhibit the progression of diabetes
[121]. However, in some cases, intrathymic immunization
of young NOD mice with GAD65 peptides such as p34
and p35 provoked diabetes [122], probably due to the ac-
tivation of diabetogenic T cells reactive to the GAD65
protein. As well, immunization of NOD mice with GAD
did not completely prevent diabetes, but only delayed the
development of disease [123]. 
Intramuscular injection of plasmid-encoding GAD65 re-
sulted in the prevention of diabetes [124, 125]. However,
other studies showed that injection of a plasmid-encoding

Table 2.  Studies on the role of GAD using transgenic mouse models.

Expression of GAD cDNA/promoter Development of diabetes in NOD background mice

b-cell-specific expression of GAD65 GAD65 cDNA one line showed no difference in the incidence of diabetes.
under rat insulin promoter The other line showed a lower incidence of diabetes [110]

Widespread expression of GAD65 GAD65 cDNA increased incidence of diabetes [111]
under MHC class I promoter

b-cell-specific suppression of Antisense GAD65 and 67 cDNA prevention of insulitis and diabetes [112]
GAD65 and 67 under rat insulin promoter

Systemic knockout of GAD65
no difference in the incidence of diabetes compared with 
transgene-negative animals [115]

Systemic knockout of GAD67 died 1 day after birth [115]



GAD65 alone was ineffective [126–128], but was effec-
tive if the plasmid also contained DNA encoding IL-4
[126, 128]. Therefore, the therapeutic effect of GAD may
be different depending on the route of administration, ex-
perimental conditions or quality of antigens.

Conclusions and future directions

Among the various b cell autoantigens identified, GAD
has been suggested to be one of the strongest candidates
as a triggering antigen for T1DM for both humans and
NOD mice. There has been significant research progress
in understanding the role of anti-GAD immunity in the
pathogenesis of T1DM. The presence of anti-GAD anti-
bodies, along with anti-IA2 and anti-insulin autoantibod-
ies is a reliable predictive marker for the development of
T1DM. GAD-reactive T cells are present in diabetic pa-
tients and T1DM animal models, indicating that GAD is
clearly a target antigen in T1DM. Immunization of young
NOD mice with GAD results in the prevention of au-
toimmune diabetes as a result of tolerizing autoreactive T
cells in NOD mice. The suppression of GAD expression
in b cells results in the prevention of diabetes in antisense
GAD transgenic mice back-crossed with NOD mice for
seven generations. Although there are still some contro-
versies regarding the role of GAD, most data support the
hypothesis that GAD plays an important role in the patho-
genesis of T1DM, however, whether it truly plays a criti-
cal role in the initiation of b-cell-specific autoimmunity
leading to diabetes remains to be answered. The produc-
tion of b-cell-specific GAD65/67 knockout NOD mice
will definitely help to answer this remaining question.
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