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Abstract. In this note we prove that if a simplicial compl&can be embedded geomet-
rically in R™, then a certain linear system of equations associatedivjtbhssesses a small
integral solution.

1. Introduction

Inthis note we obtain several necessary conditions on a simplicial complex for possessing
a geometric embedding iR™. We start by briefly describing the motivation for the
problem.

Let K be ann-dimensional simplicial complex. It is well known that any sucttan
be embedded (even geometrically)R3"*1. On the other hand not ati-dimensional
complexes are embeddableRA". Works of van Kampen [14], Flores [6], Shapiro [13],
and Wu [15] provide the necessary conditions fonagimensional simplicial complex
to possess a piecewise-linear embeddingRTfor n < m < 2n. These conditions
are also sufficient for the case = 2n, n # 2. (Forn = 1, m = 2 the sufficiency
follows easily from Kuratowski’s criterion for planarity of graphs. Foe= 2, m = 4
Freedman et al. constructed a two-dimensional simplicial complex for which the van
Kampen—Flores conditions hold but which does not admit an embeddinB1r#.) A
famous consequence of these conditions is that-thenensional skeleton of@n + 2)-
dimensional simplex cannot be embeddedRffi. For related results see also [11] and
[12].

The question we are interested in is when a simplicial complex which is P.L. embed-
dable inR™ admits a geometric embeddingRT".
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Definition 1.1. Let f be an embedding of a simplicial compl&xin R™. f is said to
be a geometric embedding iff the image of any simptex K is a geometric simplex
in R™.

Itis known that embeddability of a complex does not, in general, imply its geometric
embeddability. For example, there is a triangulatezbMs$ strip constructed by Brehm
[3] which possesses no geometric embeddingin(not even an embedding in which
all edges are straight line segments). For higher-dimensional examples of this kind
see [4]. There is also a three-dimensional manifold constructed by Freedman which
is topologically embeddable iR*, but has no triangulation which is geometrically
embeddable iiR*. The most recent result in this area is a closed triangulated orientable
two-dimensional manifold of genus 6 with 12 vertices found by Bokowski and Guedes de
Oliveira [2] that has no geometric embeddingRA. Moreover, Bokowski and Guedes
de Oliveira showed that this manifold possesses no geometric embeddRigeiven
after deleting one specific triangle, thus solving the problehether for every g there
exists a triangulated closed orientalemanifold of genus g which has no geometric
embedding irR® (see [1] and [8]), fog > 6.

The famous Heawood conjecture settled by Ringel and Youngs [10] asserts that for
anyintegen > 7 such thag = (n—3)(n—4)/12 € Z there is atriangulation of a closed
orientable two-dimensional manifold of gengisvhose 1-skeleton is a complete graph
onn vertices. One of the open conjectures states thatdfsufficiently large, then such
two-dimensional complexes do not admit a geometric embeddifRf.ilNote that for
these manifolds = O(g'/?). On the other hand, the construction due to McMullen et
al. [9] shows that for ang there exists a triangulated two-dimensional closed manifold
of genusg onn = O(g/log g) vertices which is geometrically embeddableRh

In this note we associate with every simplicial compkexand integem a certain
linear system of equations. It follows from the result of van Kampen, Flores, Shapiro, and
Wu that if K is P.L. embeddable iR™, then this system possesses an integral solution.
We show that if, in additionK can be embedded geometricallyRf, then this linear
system possesses a small integral solution. The central idea of the proof is that in the
case of geometric embeddability the intersection numbers involved in the van Kampen—
Flores conditions cannot be arbitrary, but are ratherintegers with small absolute values. At
present, we have no application of this result (even with some computer experimentation),
but we hope that it can be useful in attacking the above and similar problems.

The rest of the note is organized as follows: in Section 2 we review the necessary
background on obstructions for P.L. embeddability and in Section 3 we state and prove
obstructions for geometric embeddability.

2. Obstructions for P.L. Embeddability

In this section we review the necessary background on obstructions for P.L. embeddabil-
ity. The presentation here relies mostly on Wu'’s book [15].

Let K be ann-dimensional simplicial complex on the vertex $at, ..., ay}. (We
assume that the simplexeskfare oriented by listing the vertices in increasing order).
Two simplexes oK are said to b@ondiagonidf they have no vertices in common. The
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deleted product of KK * K, is a subcomplex ok x K consisting of products of pairs
of nondiagonic simplexes.

LetCy(K «K) = P{Z (01 x 02): 01 x 02 € K*x K, dim(o1 x 02) = q} be a group of
g-dimensional chains df * K with coefficients inZ. The cells ofK * K are assumed
to be oriented as the product of oriented simplexes. Let

3(01 X 02) = 301 X 02 + (—=1)M%5; x oy
be the ordinary boundary operatar Cy(K * K) — Cq_1(K * K). Let
CY(K % K) = Homy (Cq(K % K), Z2)

be the group ofi-dimensional cochains df « K with coefficients inZ and lets be the
coboundary operator dual to

Note that there is an involutiott K * K — K x K defined byt(o; x 02) =
(—1)dimordimos (5, % 1), Using this involution, we can define the groumeflimensional
antisymmetric cochains df « K and the group ofj-dimensional symmetric cochains:

CI(K %K) = {» € CIU(K % K): t"A = -1},
CIK %K) = {r € CIU(K % K): t*A = A}.

Since the ordinary coboundary operatmommutes with*, we can define the groups of
cocyclesZd (K «K) andZJd(K %K), groups of coboundariegs (K % K) andBdJ (K %K),
and cohomology groupbls (K x K) and H&(K % K) in the usual way. Givem € N
define

HS(K  K) if mis even,

q —
Hp (K K) = {Hg(K xK)  if mis odd.

In the following we assume th&™ is endowed with a fixed orientation. Lét K —
R™be any P.L. map such thaio) N f (t) = @ foranyo x t € Skel,_1(K * K). Define
aspecial embedding m-cocyabe = ¢; (K) as follows:

@i (o1x02) =(=1)9M f (51). f(05)  foranym-cell o1x0s € K %K,

wheref (o1) - f (02) is theindex of intersectiofor, intersection numbéof simplexesr;
ando, in R™. (For the definition and basic properties of the intersection number the reader
is referred to Wu’s book [15], or, for more modern treatment, to [5]. Roughly speaking,
the index of intersection is the algebraic (i.e., including orientation) number of points of
intersection of two singular cells of complementary dimension in a Euclidean space. In
the special case when ando; intersect each other transversely and in at most a finite
number of points, we can assign to each intersection point (more precisely, to each point
(X,y) € o1 x 0, such thatf (x) = f(y)) a local index of intersectiorg(x, y) = +1,
which depends on the relative position bfVy) and f (Vy) in the orientedR™, where
Vy andVy are small oriented neighborhoodsyoin o1 andy in o, respectively. In this
case the (total) index of intersection is equal to the sum of local indices.)

The following theorem is a version of the van Kampen—Flores theorem (see [13] and
[15]).
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Theorem 2.1. For any simplicial complex Kg: (K) € Z/Tn(K * K), and sog; (K)
determines a cohomology clagss (K)], in H)! (K * K). Moreoverif K is embeddable
in R™, theng (K) € B! (K x K), thatiis [¢f (K)] = 0in HJ (K * K).

It turns out that the clas®f (K)] is independent of a P.L. map. Indeed, orienR™
andR™! by the ordered systems of coordinat&s, . . ., Xm) and(Xy, .. ., Xm, Xm+1),
respectively. Leg: K — R™ be another P.L. map such thgio) N g(tr) = ¥ for any
o x t € Skel,_1(K x K). Define

h: K| x 1 - R™x | (wherel = [0, 1])
by
h((x,t)) = tf(x) + (1 —t)g(x), 1) for xe|K|, tel.

By slightly perturbing the vertices df(K) andg(K), if necessary, we may suppose that
they are in general position. We can then define the coghaing;, by

¢(ocx1t)=h(oc x1)-h(zx1) forany(m—1)-cell oxt e K xK,

whereh(o x 1) -h(zr x 1) is the index of intersection of celts x | andt x | in R™1,
(We orientcello x | : o € K} by orientingl = [0, 1] from 0 to 1.) Then the following
holds (see p. 180 of [15]):

Proposition 2.1. ¢ € C;“m‘l(K * K) andd¢ = ¢g — ¢r, and thus the clasig:] € H}?
is independent of the choice of f

The following theorem is another (equivalent) version of the van Kampen—Flores theorem
(these versions are equivalent by Proposition 2.1).

Theorem 2.2[13], [15]. For a simplicial complex K define

S™(K) — {(1+t:) i@ ) X (@, 8,0} if m=2m,

A=t @, ... a&,) x @,...a,.)} if m=2m +1,
where summations ,, >, are computed over all possible sets of indi@eg ) such that
o< jo<iir<- - <imw<jw,and p <ig<j1 < -+ <imw < jmwiy1, respectively
Then®™(K) € Zgjn(K x K). Moreoverif K is embeddable ifR™, then the cohomology
class of®™(K), [®@™(K)], is equal to0 in H/’]n‘q(K * K).

Proof. Leta,,...,ay be the vertices oK. Let C(m, N) be anm-dimensional cyclic
polytope withN verticescy, ...,cy € R™ (that is,c; = X(t1),...,cny = X(ty) are
the points on the moment curvet) = (t,t%, ..., t™ andt; < t, < --- < ty),

and letg: K — R™ be linear on each simplex &€ which maps the vertices df
to the corresponding vertices @f(m, N). It is well known (and easy to check) that
pg(K) = £0™(K), and so the theorem follows from Theorem 2.1. O
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3. Obstructions for Geometric Embeddability

In this section we prove that if a simplicial compl&xcan be embedded geometrically
in R™, then, in addition to Theorem 2.2, the following holds.

Theorem 3.1. If K can be embedded geometricallyRT, then there exists a cochain
A € CIY(K « K) such thats(n) = ™ and

m
[L(o1x07)| < {E-‘ forall (m—1)-cells o1x0; € K * K.

Proof. Letf: K — R™beageometricembeddingkfin R™andletoy, ..., by € R™
be the vertices of (K). LetC(m, N) be a cyclic polytope with verticeas, ..., cy € R™,
and letg: K — R™ map all vertices oK to the corresponding vertices 6f(m, N)
and be linear on all simplexes d&€. Since slight perturbations of vertices do not
change the combinatorics of intersections, we can assume without loss of generality
thatby, ..., by, Cy, ..., Cy @re generic.

Defineh = h(f, g) and¢y, as in Section 2:

h: K| x1 - R™"x I,
h((x,t)) = tf(xX) + (1 —1t)g(x), 1) for xe|K|, tel;

on(c’ x TY=h(o'x1)-h(z'x1) for o'xt' € KxK, dim(c’'xt)=m—-1.

By Proposition 2.1¢y, € Cgr‘nfl(K x K). Moreover, since is an embedding, the special
embedding cocycle of, ¢, is equal to 0, and so Proposition 2.1 implies that

8(¢n) = g — ¢f = £PM —0=+p™M

Thus, setting

3 = {(Ph if  8(¢n) = @™,
T —on otherwise

to complete the proof, it is sufficient to show that
’ ! m ! /
lh(c"x 1)-h(z'x )| < (f] forany(m—1)-cell o'x1’' € K %K.
The proof of this fact relies on two lemmas. The first lemma estimates the number of
intersection points dfi(c’” x 1) with h(z” x ), and the second lemma computes the sign

of the (local) index of intersection at each such point.

Lemma 3.1. Forany(m— 1)-cello’ x 7’ € K % K the number of pairs

((X,9), (Y. 1) € (0" x ) x (z x 1),

such that tix, s) = h(y, t) is not greater than m
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Proof. Lete, e, ..., en be the standard basis Bf". Given two simplexes

o' = (8, 8, ...,a) and t'= @, ...,a&,)

choose an affine transformatigh= A, . R™ x R - R™ x R which maps

(C|07 0)7 (Cll’ 0)7 MR (C|m9 O)’ (blo’ 1) tO (07 O)? (e].? O)’ (e27 0)7 AR (em’ 0)’ (O’ l)?

respectively. Ther is a bijective map which preserv® x {0} andR™ x {1}. Thus,
it is sufficient to show that

H((X,9), (Y, 1)) € (6" x 1) x (' x 1): Aoh(x,s) = Aoh(y,t)}| <m.

Let{(0, 1), (dy, 1), (d2, 1), ..., (dk, D} and{(dks1, 1), ..., (dn, 1)} be the vertices of
Ao h(c’ x {1}) and Ao h(z’ x {1}), respectively (herg; = (di1, ..., dm) € RM).
Since the vertices dAo h(c’ x {0}) andAoh(z’ x {0}) are{(0, 0), (e, 0), ..., (&, 0)}
and{(&.1,0), ..., (em, 0)}, respectively, we obtain that i o h(x,s) = Ao h(y,t),
thens =t (0 < s < 1) and the barycentric coordinates»fn ¢’ and ofy in 7/ (we
denote them by, a1, ..., ax andBk.1, . .., Bm, respectively; her& = dimo”’) satisfy
the following equation:

SZa.d —i—(l—s)Za.a =5 Z Bid + (1—59) Z Bisg. (1)

j=k+1 j=k+1
Letu =1— 1/s. We can rewrite (1) as
Zal(d. —ue) — Z Bi (g — ug) = )
j=k+1
(whererm:kJrl Bi =1, sincefy,1, ..., Bm are barycentric coordinates). Hencés an

eigenvalue of matrix

D=(d)T",....dm)")

and(ay, ..., ak, —Brs1. - --» —Bm) | IS its eigenvector.

Sinceb, ..., by, Cy, ..., Cy are generic, all eigenvalues bBfare simple, and so for
each real eigenvalue &, the dimension of the corresponding eigenspace is equal to 1.
Therefore, for each real eigenvalue @fthere is at most one eigenvectos, . . ., ax,
—Bk+1, - --» —Pm) | satisfyingd_ Bj = 1. Sincex € ¢’ andy € ¢’ are uniquely deter-
mined byas, ..., ax andBxi1, - - ., Bm, respectively, ang = t is uniquely determined
by u, we obtain that the number of paif&x, s), (y, t)) such thath(x,s) = h(x,t) is
not larger than the total number of eigenvaluesyok m matrix D, which is equal
tom. O

Notation.

1. LetD(u) = D—uly, (wherel, [s the identity matrix and is the same matrixasin
Lemma 3.1). LetPp (u) = detD(u) be the value of the Crlaracteristic polynomial
of D atu, and letD{" (i =1, ..., m) be theith column ofD(u).
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2. Given matrixB, denote byB_; the matrix obtained fronB by deleting the th
row, and byB_; _; the matrix obtained fronB by deleting theth row and thejth
column.

Leto’, v/, andA = A, . beasin Lemma3.1 and let=1— 1/s.

Lemma 3.2. For a fixed orientation oR™*! there exist$ = ¢(o’, ') € {1} such
that for each point(x, s), (Y, S)) € (o’ x 1) x (z' x I') satisfying Ah(x, s) = Aoh(y, s)
the index of intersection of x | andz’ x | at this point has the same sign asPj (u)
(where R (u) is the derivative of Patu=1—1/s).

Proof If (x,t) € o’ x | and(&, &1, .. ., &) are the barycentric coordinatesyoin ¢”,
then(x, t) is uniquely determined b, ..., &, t. In these coordinates, the restriction
of the mapAohtoo’ x | (we denote this map by), is given by

K K
(61,.... &, 1) > (tz&di +(1—t)Z§ie|, t)-
i1 i—1

Similarly, if (y,t) € v/ x | and (uky1, ..., um) are the barycentric coordinates pf
in 7/, then(y, t) is uniquely determined byk.1, ..., um—1, t. In these coordinates, the
restriction of the majA o hto t’ x | (we denote this map by) is given by

(/’Lk+1’ ey Um=1, t)

m-1 m—1
Al (t ( > i —dm)+dm>+(l—t) ( > u (q—em)+em>, t) :
j=k+1 j=k+1
SinceU and V are smooth maps, there existse {+1} such that for each point
(a1, ..., 0k ), (Bksts - - -» Bm-1, S)) satisfyingU (a,s) = V(B,s), the sign of the
index of intersection at this point is equal to the sign of

(au)T (au>T (au>T( VvV )T ( Vv )T <8V)
€det —_— g e ey ~— 5 L 5 9 e e ey ) Tae )
081 08k ot 0 fkt1 Ofm—1 ot
3
where the firsk + 1 derivatives are calculated @ty, . . ., ax, S) and the lasi — k are
calculated atBk;1, ..., Bm-1,9S).
Letfm=1- Z;“:j(il Bj and letu = 1 — 1/s. A straightforward calculation shows

that

au T DY av o _ \' DUY— DU Vi1
v _ i _ j m _

and

U GAVA K m
ST @9-—@9 = (Zai(di—a)— > ﬂ,—(d.——q),O)
T ot —

j=k+1

1
= _g (al5'-~7ak7 _ﬂk+ls-°~s_ﬂm50)-
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Substituting these results in (3), and using the properties of determinant (together with

the fact thas € (0, 1), and sas > 0), we obtain that the sign of the index of intersection
at((@, s), (8, 9)) is equal to the sign of

auU AUNT faUu  av\' / av \' Vv
¢ - det 3 , 3— y E—W s 3 s e 3
31 &k Hk+1 Hm-1) )

= (=Dke (Z( 1)'e; detB_; + Z( 1)l (—B;) detB_ ) 4)

j=kt1

whereB is an(m — 1) x mmatrix (D{, ..., D¢, Di,; — Dy, ..., Dy_; — D).
SinceU (@, S) = V (B, s), the numbers, oy, . .., ax, Bt - - » ﬂm satlsfy (2). Using
the fact thatZ}“=k +1 B =1, we can rewrite (2) as

Za.D + Z( B)(Dj' — D) = Dy, (5)
i=k+1

Deleting the th row from this system and solving the remaining system using Cramer’s
rule we conclude that

o detB_;
=det(Df, ..., D" 1, Dg, DIUH_, ..., D{, DIL<J+1_ Dy ..., Di 1 — Drl:q)_i

=(—1)m—i—1det(D(u)_i,_i) for i=1,...k (6)

— B detB; = (—1)m*i*1det(5(u),i,,i) for i=k+1....m—1 (7

and (deleting thenth row)

BmdetB_n
m—1 m—1 ) B
= (1 -y ,3i> detB_p = detBp + (—l)m"‘ldet<D(u)_m__i)
i=k+1 i=k+1
—det(D}, ..., D}, D,y — DY, ..., D%, — DY) __
m—1
+ > (-D)™''det(Df,....Dy,.... D}' 4, DYy, ... D)
i=k+1
= det(DY,..., DY ) = det(ﬁ(u)_m,_m) . 8)

(The penultimate equality follows from the multilinearity of determinant). Substituting
(6)—(8) in (4) we obtain that the sign of the index of intersection@t s), (8, s)) is
equal to the sign of

(~Dfmie . Y det(f)(u)_i,_i) — (—DF Mg . PL(U) = & - P, (u). O

i=1
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To complete the proof of Theorem 3.1 note that for any two consecutive real roots
u’, u” of the polynomialPp (u), the numberd], (u’) and P, (u”) have opposite signs.
Therefore, it follows from Lemmas 3.1 and 3.2 that among the pixs s), (y, 1)) €
(o’ x 1) x (' x 1): h(x, s) = h(y, t)} there are at mogm/2] points at which the index
of intersection is equal t&-1 and at mosfm/2] points at which the index of intersection
is equal to—1. Thus, the (total) index of intersection

#n(o’ x Tl = Iho’ x 1) -he@’ x D = [Z]. 0

We now present alternative statements of Theorems 2.2 and 3.1. Given a simplicial
complexK on the vertex sedy, . .., ay and an integem, we can associate witk and
m the following linear system of equations: for evény— 1)-cello’ x 7’ € K % K there
is a variablex,, . and an equation

Xg’ o= (_1)(d|ma/+1)(d|mr’+1)xr/ o (9)
and for everym-cello x v € K« K, 0 = (&, ...,8,), T = (@4, ..., &, ) With
k <m—k,ork =m—kand(y, ...,ik) <iex (jo,---» jmk) there is an equatioA,, .:

k m—k
| R k I —~
;(_1) X(ao....,a,-l,...,a,-k),r + (=1 ;(_l) Xa,(ajo ..... 1@y )
1 if m=2k and i0<j0<-~'<ik<jk,
=11 if m=2k+1 and jop<ip<jr<---<ik < jk+1, (10)
0 otherwise.

In terms of this linear system Theorems 2.2 and 3.1 are equivalent to:

Corollary 3.1. Let K be a simplicial complex

1. If K is embeddable iR™, then the linear system associated with K and m has an
integral solution

2. If K is geometrically embeddable R™, then the linear system associated with
K and m has an integral solution with all variables having the absolute value of
less thanfm/2] + 1.

Remarks. 1. Note that if we renumber the vertices of a simplicial complex, then in
general we will obtain another system of linear equations. While the existence of an
integral solution for one of these systems does imply the existence of an integral solution
for the other (as follows from Proposition 2.1), we do not know whether the existence of
asmallintegral solution for one of these systems implies the existence of a small integral
solution for the other as well.

2. In order to prove that a certain complex K is geometrically nonembeddable in
R™, using the criterion of Corollary 3.1, one has to show that the corresponding linear
system has no solution if0, 1, ..., =[m/2]}. In particular, in the case oh = 3,
one should check whether there are solutiongOnt-1, +£2}. Lutz executed such a
computer check for two complexes known to be geometrically nonembeddaRfe in
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Brehm’s Moabius strip [3] and the triangulated closed two-dimensional manifold of genus

6 [2]. Unfortunately, it turned out that in both of these cases the corresponding linear

systems possess a solution{(h +1, +2}. Thus our criterion fails to prove geometric

nonembeddability in these cases (at least, using one particular numbering of vertices.)
3. Itis interesting to note that the same proof as in Theorem 3.1 shows khé gny

simplicial complex (embeddable or not embeddablR, then there exists a cochain

A € CM (K x K) such tha (1) = 2¢™ and

- m
[M(o1x09)| < (E—I forany(m—1)-cell o3x07 € K K.

In other words, ifAx = b is the linear system associated wikhandm, then the system
Ax = 2b does possess a small integral solution.
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