
DOI: 10.1007/s004549910018

Discrete Comput Geom 23:273–291 (2000) Discrete & Computational

Geometry
© 2000 Springer-Verlag New York Inc.

Efficient Algorithms for Approximating Polygonal Chains ∗

P. K. Agarwal1 and K. R. Varadarajan2

1 Center for Geometric Computing,
Department of Computer Science, Duke University,
Durham, NC 27708-0129, USA
pankaj@cs.duke.edu

2 DIMACS, Rutgers University,
Piscataway, NJ 08854, USA
krv@dimacs.rutgers.edu

Abstract. We consider the problem of approximating a polygonal chainC by another
polygonal chainC′ whose vertices are constrained to be a subset of the set of vertices ofC.
The goal is to minimize the number of vertices needed in the approximationC′. Based on
a framework introduced by Imai and Iri [25], we define an error criterion for measuring the
quality of an approximation. We consider two problems. (1) Given a polygonal chainC and a
parameterε ≥ 0, compute an approximation ofC, among all approximations whose error is
at mostε, that has the smallest number of vertices. We present anO(n4/3+δ)-time algorithm
to solve this problem, for anyδ > 0; the constant of proportionality in the running time
depends onδ. (2) Given a polygonal chainC and an integerk, compute an approximation
of C with at mostk vertices whose error is the smallest among all approximations with at
mostk vertices. We present a simple randomized algorithm, with expected running time
O(n4/3+δ), to solve this problem.

1. Introduction

LetC = 〈p1, . . . , pn〉denote a polygonal chain whose vertices arep1, . . . , pn and whose
edges arep1 p2, p2 p3, . . . , pn−1 pn. A polygonal chainC′ = 〈pi1 = p1, . . . , pik = pn〉
is anapproximationof C if i1 < · · · < i k (Fig. 1).

∗ Work on this paper has been supported by an NSF Grant CCR-93-01259, an Army Research Office
MURI Grant DAAH04-96-1-0013, an NYI award, and matching funds from the Xerox Corporation.

274 P. K. Agarwal and K. R. Varadarajan

Fig. 1. A polygonal chain (in bold) and its approximation (dashed); the error, under the Euclidean metric, of
segmentpi pj is α.

Let d(·, ·) be a distance function defined on points in the plane. We define theerror
of a line segment pi pj connecting two points ofC, wherei < j , to be

1(pi pj) = max
i≤k≤ j

d(pk, pi pj),

where the distance between a pointp and a segmente is d(p,e) = minq∈e d(p,q). The
error of an approximation C′ of C is

1C(C
′) = max

1≤ j<k
1(pi j pi j+1),

the maximum of the errors of each of the edges ofC′. We will omit the subscript for1
when the chainC that is being approximated is clear from the context. We callC′ an
ε-approximation ofC if 1C(C′) ≤ ε. We consider two problems:

1. Min- # problem: Given a polygonal chainC and a real numberε ≥ 0, compute
anε-approximation ofC that uses the the smallest number of vertices among all
ε-approximations ofC.

2. Min- ε problem: Given a polygonal chainC and an integerk, compute an approxi-
mation ofC with at mostk vertices that minimizes the error over all approximations
of C that have at mostk vertices.

1.1. Motivation and Previous Results

Polygonal curves are often used to represent boundaries of planar objects in cartography,
computer graphics, pattern recognition, etc. The general problem of approximating a
polygonal curve by a coarser one is of fundamental importance, and has been studied
in disciplines such as geographic information systems [7], [11], [15], [21], [29], [31],
digital image analysis [5], [24], [28], and computational geometry [8], [16], [18], [19],
[25], [33], [35]. The problems considered fall in one of two categories, depending on
whether the vertices of the approximating chain are required to be a subset of the vertices
of the input chain. Within each category, min-# and min-ε problems have been studied
under different error criteria.

We first mention some of the algorithms that compute approximations whose vertices
are not restricted to being on the input chain. A well-studied problem in this category is
to compute a piecewise-linear function approximating ann-point planar data set, using

Efficient Algorithms for Approximating Polygonal Chains 275

the uniform metric to measure the error. This is in fact a special case of a whole class
of problems in approximation theory that seek to fit a set of data using a spline function
under some metric. (See texts discussing approximation theory such as [6], [9], [12], and
[14].) Hakimi and Schmeichel [20] give anO(n)-time algorithm for the min-# version
of the problem and anO(n2 logn)-time algorithm for the min-ε version. Goodrich [18]
gives an improvedO(n logn)-time algorithm for the min-ε version. The min-# problems
in this category closely resemble the problem of computing a minimum link path in a
polygonal domain, which has been studied extensively; see [3], [19], [22], and [25] for
a sample. Hershberger and Snoeyink [22] give an efficient algorithm for computing a
minimum link path of a given homotopy. In this problem we are given two pointss and
t in a polygonal regionR, which may have holes, and a representative pathπ between
s andt in R, and we want to compute a minimum-link path inR betweens andt that is
homotopictoπ . Homotopy considerations are important when polygonal approximation
occurs in the context of other features; see the paper by de Berg et al. [13]. Sometimes,
we also want the approximation of a given polygonal chain to besimple, that is, non-
self-intersecting. This requirement seems to make the problems intractable. Guibas et
al. [19] show that the problem of computing a minimum-link simple approximation of
a simple polygon is NP-hard (for a particular error criterion). They also show that a
version of the problem of approximating a polygonal subdivision (as opposed to just a
single polygonal chain) is NP-hard.

We now turn to the methods for computing approximations whose vertices are re-
stricted to being a subset of the vertices of the input chain. This is the class to which this
paper belongs. The restricted case is important because in many applications, attributes
such as color are associated with the vertices of the input chain. Moreover, in the unre-
stricted case, we have to deal with the issue of the precision needed to represent vertices
in the approximation (see [26]). One of the oldest and most popular algorithms in car-
tography is the Douglas–Peucker algorithm [15], a heuristical approach that computes
an approximation within a prespecified error. Hershberger and Snoeyink [23] showed
that the Douglas–Peucker algorithm can be implemented inO(n log∗ n) time, where
log∗ is the iterated logarithm function [10]. Imai and Iri [25] present a unified approach
to polygonal approximation problems by formulating them in terms of graph theory,
and present algorithms for approximating simple polygonal chains under a number of
error criteria. Algorithms with the same flavor are also described by Chan and Chin [8],
Melkman and O’Rourke [33], and Toussaint [36]. Most of these algorithms run inÄ(n2)

time. It appears as though the problems in this category become intractable if we require
the approximation to be simple, or to be homotopic to the original chain; see [13] for a
discussion.

1.2. Our Results

In this paper we study the min-# and min-ε problems under theL1 and uniform (also
known as Chebyshev) metric. Recall that the distance between two pointsp = (px, py)

andq = (qx,qy) in theL1 metric is

d(p,q) = |px − qx| + |py − qy|,

276 P. K. Agarwal and K. R. Varadarajan

and the distance under the uniform metric is

d(p,q) =
{|py − qy| if px = qx,

∞ otherwise.

Note that the distance between a pointp and a segmente under the uniform metric
is the vertical distance betweenp ande if the x-projections ofp ande intersect, and
infinity otherwise. The two main results are the following:

• An O(n4/3+δ)-time deterministic algorithm, for anyδ > 0, for the min-# problem
under theL1 metric.
• An O(n4/3+δ) expected-time randomized algorithm, for anyδ > 0, for the min-ε

problem under theL1 metric.

Our techniques also generalize to certain other metrics that approximate the Euclidean
metric closely. Section 2 discusses preliminaries needed by our algorithms and the main
idea used. In order to present the techniques clearly, we describe in Section 3 the min-#
algorithm for anx-monotone chain under the uniform metric. In Section 4 we show how
the techniques used in Section 3 can be generalized to solve the min-# problem for any
polygonal chain under theL1 metric. In Section 5 we describe a simple randomized
algorithm for the min-ε problem under theL1 metric. We offer our conclusions in
Section 6.

2. Preliminaries

Imai and Iri’s Algorithm. Since our algorithm is based on Imai and Iri’s general frame-
work for polygonal chain approximation, we first describe their approach. LetC be the
polygonal chain〈p1, . . . , pn〉, and letε > 0 be a given error bound. Assume that we
have fixed a distance function on points in the plane. We define an unweighted, directed
graphGε(C) = (V, Eε), whereV = {p1, . . . , pn} and

Eε = {(pi , pj) | 1≤ i < j ≤ n, and1(pi pj) ≤ ε}.
Figure 2 illustrates this definition for anx-monotone chain under the uniform metric. We
sometimes denoteGε(C) by Gε when the underlying chainC is clear from the context.

An ε-approximation ofC corresponds to a path fromp1 to pn in Gε, and anε-
approximation with the minimum number of vertices corresponds to a shortest path

Fig. 2. The graphGε for anx-monotone chain under the uniform metric; solid segments are graph edges.

Efficient Algorithms for Approximating Polygonal Chains 277

from p1 to pn in Gε. The shortest path, which is the solution to the min-# problem, can
be found by a breadth first search inGε usingO(|Eε|) = O(n2) time. The min-ε problem
involves computing the smallest value ofε for which there is a path inGε from p1 to pn

consisting of at mostk vertices. Letε∗ denote this smallest value. Letε1 ≤ ε2 · · · be the
values of1(pi pj) for 1≤ i < j ≤ n. Note thatGε remains the same for allε ∈ [εi , εi+1).
Therefore, the min-ε problem reduces to finding the smallestεi for which Gεi contains
a path fromp1 to pn with at mostk vertices. SinceEεi ⊆ Eεi+1, ε

∗ can be computed by
a binary search on theεi ’s, using the min-# algorithm as the decision procedure.

Using Imai and Iri’s approach naively, any algorithm for the min-# problem takes
Ä(n2) time, as it needs to construct the graphGε, which can have2(n2) edges. Chan
and Chin [8], Imai and Iri [25], Melkman and O’Rourke [33], and Toussaint [36] give
quadratic or near-quadratic-time algorithms for constructingGε under various error
criteria. The running time for the min-ε problems is governed by the time it takes to
compute the errors1(pi pj) of the segments, and the time forO(logn) applications of
the min-# decision procedure. Hence, these algorithms also takeÄ(n2) time.

Compact Representation of Gε. If we are aiming for a subquadratic algorithm, we
cannot compute the graphGε explicitly. Instead, we construct a compact representation
of Gε. Let G = (V, E) be a directed graph, and let

G = {G1 = (V1, E1), . . . ,Gl = (Vl , El)}

be a family of subgraphs ofG. We say thatG is a clique coverof G if the following
conditions hold:

1. EachGi is a complete bipartite graph. IfVi1,Vi2 ⊆ Vi are the two vertex classes
of Gi , then every edge ofGi must be directed from a vertex inVi1 to a vertex in
Vi2.

2. E = E1 ∪ · · · ∪ El .
3. Ei ∩ Ej = ∅ for i 6= j .

Since eachGi is a bipartite clique, we can represent it compactly by specifying its
vertex classesVi1 andVi2; this takesO(|Vi |) space. The edges are now defined implicitly.
We define the size of the clique coverG, denoted by|G|, to be

∑l
i=1 |Vi |; this is the space

we require to representG compactly. The notion of “compressing” graphs using clique
covers is pursued by Feder and Motwani [17], who use clique covers of graphs to speed
up a number of graph algorithms.

Proposition 2.1. LetG = {G1, . . . ,Gl } be a clique cover of a directed graph G. Given
two vertices u andv in G, we can compute a shortest path between u andv in G in
O(|G| + |V |) time.

Proof. We define a new graphH whose vertex set isV ∪{g1, . . . , gl }, whereg1, . . . , gl

are additional vertices. If(u, v) is an edge inG, and if(u, v) belongs toGi , then we add
the edges(u, gi) and(gi , v) in H . There areO(|G| + |V |) vertices andO(|G|) edges in
H . We compute a shortest path betweenu andv in H . If the procedure returns the path
〈u1 = u, g1,u2, g2, . . . , gk,uk+1 = v〉 in H , then we return〈u1,u2, . . . ,uk+1〉 as the

278 P. K. Agarwal and K. R. Varadarajan

shortest path betweenu andv in G. The correctness of the procedure is straightforward.
This computation takes time proportional to|G| + |V |.

3. The Min-# Algorithm under the Uniform Metric

Let C = 〈p1, . . . , pn〉 be anx-monotone polygonal chain, and letε be a given error
bound. In this section we present an algorithm that solves the min-# problem forC under
the uniform metric. Our algorithm computes a shortest path betweenp1 and pn in the
graphGε defined above. In order to do this efficiently, we first compute a clique cover
of Gε, and then use Proposition 2.1 to compute a shortest path fromp1 to pn in Gε.

In the remainder of this section we describe anO(n4/3+δ)-time divide-and-conquer
algorithm for constructing a clique coverG of Gε = Gε(C). Let C1 be the chain
〈p1, . . . , pbn/2c〉 and letC2 be the chain〈pbn/2c+1, . . . , pn〉. Recall that1(pi pj) =
maxi≤k≤ j d(pk, pi pj), and that a pair(pi , pj) ∈ Eε if 1(pi pj) ≤ ε. Hence, if(pi , pj) ∈
Eε andpi , pj ∈ C1 (resp.pi , pj ∈ C2), then(pi , pj) is an edge inGε(C1) (resp.Gε(C2)).
We recursively compute clique coversG1, G2 of Gε(C1) andGε(C2), respectively. In the
merge step we compute a clique coverG12 of the edges

E12 = {(pi , pj) ∈ Gε(C) | pi ∈ C1, pj ∈ C2}.
That is,G12 is a clique cover of the edges ofGε(C), one of whose endpoints is inC1

and the other inC2. G1 ∪ G2 ∪ G12 is a clique cover ofGε(C). Before describing how to
computeG12, we need a few definitions and preliminary lemmas.

If (xi , yi) denotes the coordinates ofpi , let p−i be the point(xi , yi − ε), and letp+i be
the point(xi , yi + ε). It is easy to see that(pi , pj) is an edge ofGε(C) if and only if for
everyk, i ≤ k ≤ j , the vertical segmentp−k p+k intersects the segmentpi pj . For pi ∈ C1,
we definecone(pi) to be the following subset of rightward directed rays emanating from
pi : a rayρ belongs tocone(pi) if ρ intersectsp−k p+k , for everyi ≤ k ≤ bn/2c. (Figure 3
illustrates the definition ofcone(pi).) We regardcone(pi) not only as a set of rays, but
as a set of points as well. Note that the interior ofcone(pi) does not contain anyp−k , p+k ,
for anyi ≤ k ≤ bn/2c, and for any rayρ ∈ cone(pi), d(pk, ρ) ≤ ε, for i ≤ k ≤ bn/2c.
Symmetrically, for a vertexpj of C2, we definecone(pj) to be the following collection
of leftward directed rays emanating frompj : a rayρ belongs tocone(pj) if it intersects
p−k p+k , for bn/2c + 1≤ k ≤ j .

Fig. 3. cone(pi) andcone(pj); the edge(pi , pj) is in Gε becausepj ∈ cone(pi) and pi ∈ cone(pj)

Efficient Algorithms for Approximating Polygonal Chains 279

The boundary of a convex polygonQ can be divided into twox-monotone convex
chains at its leftmost and rightmost vertices. The chain lying above (resp. below) the
line through thex-extremal vertices is called theupper(resp.lower) boundary ofQ. Let
Li denote the lower boundary of the convex hull of{p+i , . . . , p+bn/2c} andUi the upper
boundary of the convex hull of{p−i , . . . , p−bn/2c}. By definition ofcone(pi), its top ray
is tangent toLi and its lower ray is tangent toUi . Note thatcone(pi) is empty if the
tangent toLi is below the tangent toUi .

Lemma 3.1. We can compute cone(pk), for every1≤ k ≤ n, in O(n logn) time.

Proof. We only describe the computation ofcone(pk) for 1≤ k ≤ bn/2c; we can com-
putecone(pk) for bn/2c + 1≤ k ≤ n symmetrically. Suppose that we have inductively
computedcone(pk) for i ≤ k ≤ n/2. Suppose also that we have computedLi andUi .
We first computeLi−1 andUi−1 from Li andUi , respectively, inO(logn) time using
standard techniques [32], [34]. We can then compute inO(logn) time the tangents to
Li−1 andUi−1 from pi−1, and thuscone(pi−1).

Using a standard duality transformation (that maps a point(a,b) to the liney = ax+b,
and a liney = mx+ c to the point(−m, c)), we can map the line supporting any rayρ
to a pointρ∗. We refer to the pointρ∗ as thedual of the rayρ. Let γi denote the set of
points dual to the rays incone(pi). γi is a line segment in the dual plane. Let

01 = {γi | 1≤ i ≤ bn/2c}
and

02 = {γi | bn/2c + 1≤ i ≤ n}.
The following lemma is obvious.

Lemma 3.2. Let pi (resp. pj) be a vertex of C1 (resp. C2). Then pj ∈ cone(pi) and
pi ∈ cone(pj) if and only ifγi andγj intersect.

Lemma 3.3. Let pi (resp. pj) be a vertex of C1 (resp. C2). Then(pi , pj) ∈ Gε if and
only if γi andγj intersect.

Proof. Suppose thatγi andγj intersect. By Lemma 3.2, it follows thatpj ∈ cone(pi)

and pi ∈ cone(pj). Thus the rayR(pi , pj) emanating frompi and passing throughpj

is in cone(pi). Therefore, this ray intersects the segmentp−k p+k , for i ≤ k ≤ bn/2c.
Since the chainC is x-monotone, the line segmentpi pj intersects the segmentp−k p+k ,
for i ≤ k ≤ bn/2c. By a similar argument, we can conclude that the line segmentpi pj

also intersects the segmentsp−k p+k , for bn/2c+ 1≤ k ≤ j . Thus, the line segmentpi pj

intersects all the segmentsp−k p+k , for i ≤ k ≤ j , which means that(pi , pj) ∈ Gε.
To prove the converse, assume that(pi , pj) ∈ Gε. Then the line segmentpi pj inter-

sects all the segmentsp−k p+k , for i ≤ k ≤ j . It follows that the rayR(pi , pj) emanating
from pi and passing throughpj intersects all the segmentsp−k p+k , for i ≤ k ≤ bn/2c.
Thus the rayR(pi , pj) is in cone(pi), and sopj ∈ cone(pi). By a similar argument, we
conclude thatpi ∈ cone(pj). Lemma 3.2 then implies thatγi andγj intersect.

280 P. K. Agarwal and K. R. Varadarajan

By Lemma 3.3, the problem of computingG12 reduces to computing a family

F = {(011, 021), . . . , (01u, 02u)}
so that the following conditions hold:

1. 01i ⊆ 01, 02i ⊆ 02;
2. each segment in0i 1 intersects every segment in0i 2; and
3. for every pair of intersecting segmentsγ1 ∈ 01, γ2 ∈ 02 there is a uniquei such

thatγ1 ∈ 01i andγ2 ∈ 02i .

We now describe a procedure to compute such a familyF . We construct the segment-
intersection-searching data structure [2] on the set02, which can report the set of seg-
ments of02 intersecting a query segment in the plane, as a union of few pairwise disjoint
subsets of02. This segment-intersection-searching data structure is a multilevel partition
tree, each of whose nodes is associated with a so-calledcanonical subsetof 02. The total
size of all canonical subsets in the tree isO(n4/3+δ). For a query segmente, the query
procedure selectsO(n1/3+δ) pairwise disjoint canonical subsets whose union consists
of exactly those segments02 that intersecte. Using this structure, we can construct the
family F as follows. We query the data structure with all segments of01. For each
canonical subset02i of 02, let01i ⊆ 01 be the set of segments whose output contained
02i . If 01i 6= ∅, we add the pair(01i , 02i) to the familyF .

The size of the resulting clique coverG12 of E12 is
∑

i (|01i | + |02i |), which is
O(n4/3+δ). The running time for computingG12 is dominated by the time to compute the
family F , which isO(n4/3+δ).

LetS(n)denote the size of the clique cover ofGε(C)computed by the entire algorithm.
Then we have the recurrence

S(n) ≤ 2S(n/2)+ cn4/3+δ,

for some constantc. This recurrence solves toS(n) = O(n4/3+δ). An identical argument
shows that the running time of the algorithm isO(n4/3+δ).

Lemma 3.4. For anyδ > 0,we can compute a clique cover of Gε(C) of size O(n4/3+δ)
in O(n4/3+δ) time.

From Proposition 2.1, it follows that we can compute a shortest path betweenp1 and
pn in Gε in O(n4/3+δ) time. Thus, we have the following result.

Theorem 3.5. For anyδ > 0,we can solve the min-#problem under the uniform metric
for an x-monotone chain with n vertices in O(n4/3+δ) time.

4. The Min-# Algorithm under the L1 Metric

Let C = 〈p1, . . . , pn〉 be a polygonal chain (which is not necessarilyx-monotone), and
let ε be a given error bound. In this section we take the underlying metric to be theL1

metric, and show how we can efficiently compute a clique cover of the graphGε defined

Efficient Algorithms for Approximating Polygonal Chains 281

Fig. 4. The L1 disk of radiusε centered atp. 8(`1) = 8(`3) = −π/4 and8(`2) = 8(`4) = π/4. Any
line `, with−π/4≤ 8(`) ≤ π/4, that intersects the disk intersects the vertical segmentp− p+.

onC. We then use Proposition 2.1 to compute a shortest path betweenp1 andpn in Gε,
thus solving the min-# problem. Throughout this section,d(·, ·) denotes the distance
under theL1 metric.

We first give some definitions. We define theorientationof a line`, which we denote
by8(`), to be the angle that̀makes with the positivex-axis in the range [−π/2, π/2].
We define the orientation of a line segmentpq, which we denote by8(pq), to be the
orientation of the line containing the line segment. Letx(p) (resp.y(p)) denote the
x-coordinate (resp.y-coordinate) of a pointp. The following two lemmas state useful
properties of theL1 metric; see Figure 4.

Lemma 4.1. Let` be a line such that−π/4≤ 8(`) ≤ π/4.For any point p, d(p, `) ≤
ε under the L1-metric if and only if̀ intersects the vertical segment p+p−.

Lemma 4.2. Let qr be a line segment such that−π/4 ≤ 8(qr) ≤ π/4, and assume
q lies to the left of r. For any point p, d(p,qr) ≤ ε if and only if exactly one of the
following three conditions hold:

(i) x(p) < x(q) and d(p,q) ≤ ε.
(ii) x(p) > x(r) and d(p, r) ≤ ε.

(iii) x(q) ≤ x(p) ≤ x(r) and qr intersects the vertical segment p+p−.

As in Section 3, we use a divide-and-conquer approach to compute a clique cover of
Gε(C). Let C1 be the chain〈p1, . . . , pbn/2c〉, and letC2 be the chain〈pbn/2c+1, . . . , pn〉.
We recursively compute the clique coversG1 andG2 of Gε(C1) andGε(C2), respectively.
The merge step computes a clique coverG12 of the set

E12 = {(pi , pj) ∈ Gε | pi ∈ C1, pj ∈ C2}.
We will describe an algorithm for computing a clique cover of the set of edges

H12 = {(pi , pj) ∈ E12 | x(pi) ≤ x(pj), −π/4≤ 8(pi pj) ≤ π/4}.
By reversing the direction of the (+x)-axis and/or switching the role of thex- andy-
axis, we can compute a clique cover of the remaining edges ofE12. Our approach will

282 P. K. Agarwal and K. R. Varadarajan

Fig. 5. pi+1, . . . , pbn/2c are relevant forpj ; p1, . . . , pbn/2c are not relevant forpj .

be to do some “filtering” so that we can compute a clique cover ofH12 by essentially the
technique of Section 3. Let̄H12 denote the following collection of pairs:

H̄12 = {(pi , pj) | pi ∈ C1, pj ∈ C2, x(pi) ≤ x(pj), −π/4≤ 8(pi pj) ≤ π/4}.

By definition, H12 ⊆ H̄12. We first compute a clique cover of̄H12, and then use that to
compute a clique cover ofH12.

Definition 4.3. Let pi ∈ C1 and pj ∈ C2. We say thatpi is relevant for pj , if for all
pk, i ≤ k ≤ bn/2c, such thatx(pk) > x(pj), d(pk, pj) ≤ ε. Similarly, we say thatpj is
relevant for pi if for all pk, bn/2c+ 1≤ k ≤ j , such thatx(pk) < x(pi), d(pk, pi) ≤ ε
(Fig. 5).

Definition 4.4. For pi ∈ C1, we definecone(pi) to be the following cone of rightward
directed rays emanating frompi : a rayρ belongs tocone(pi) if −π/4 ≤ 8(ρ) ≤ π/4
andd(pk, ρ) ≤ ε, for i ≤ k ≤ bn/2c.

Symmetrically, we definecone(pj), for pj ∈ C2, to be the following cone of leftward
directed rays emanating frompj : a rayρ belongs tocone(pj) if −π/4 ≤ 8(ρ) ≤ π/4
andd(pk, ρ) ≤ ε, for bn/2c + 1≤ k ≤ j .

By Lemma 4.2, a rightward directed rayρ originating atpi belongs tocone(pi) if
and only if−π/4≤ 8(ρ) ≤ π/4, and, for everyi ≤ k ≤ bn/2c,

(i) if x(pk) < x(pi), thend(pk, pi) ≤ ε, and
(ii) if x(pk) ≥ x(pi), thenρ intersects the vertical segmentp−k p+k .

Similarly, a leftward directed rayρ originating atpj belongs tocone(pj) if and only if
−π/4≤ 8(ρ) ≤ π/4, and, for everybn/2c + 1≤ k ≤ j ,

(i) if x(pk) > x(pj), thend(pk, pj) ≤ ε, and
(ii) if x(pk) ≤ x(pj), thenρ intersects the vertical segmentp−k p+k .

The following lemma lays the foundation for our algorithm.

Efficient Algorithms for Approximating Polygonal Chains 283

Lemma 4.5. For any(pi , pj) ∈ H̄12, (pi , pj) ∈ H12 if and only if

(1) pi is relevant for pj and pj is relevant for pi , and
(2) pj ∈ cone(pi) and pi ∈ cone(pj).

Proof. Let (pi , pj) ∈ H̄12, and assume that conditions (1) and (2) hold. To show that
(pi , pj) ∈ H12, we will show that(pi , pj) ∈ Gε by proving that for anyk, i ≤ k ≤ j ,
d(pk, pi pj) ≤ ε. We consider three cases:

1. x(pk) < x(pi). If pk ∈ C1, it must be the case thatd(pk, pi) ≤ ε, for otherwise
cone(pi) would be empty. Ifpk ∈ C2, it follows from the fact thatpj is relevant
for pi thatd(pk, pi) ≤ ε. In either case,d(pk, pi pj) ≤ ε.

2. x(pk) > x(pj). This case is symmetric to the earlier one.
3. x(pi) ≤ x(pk) ≤ x(pj). Assume thatpk ∈ C1; the case wherepk ∈ C2 is

symmetric. Sincepj ∈ cone(pi), the rayR(pi , pj) emanating frompi and passing
throughpj is in cone(pi). By the definition ofcone(pi), it must be the case that
d(pk, R(pi , pj)) ≤ ε. Sincex(pk) ≥ x(pi), it follows from Lemma 4.2 that
R(pi , pj) intersects the vertical segmentp−k p+k . Moreover, sincex(pk) ≤ x(pj),
we can conclude that the segmentpi pj intersects the vertical segmentp−k p+k . Thus,
d(pk, pi pj) ≤ ε.

Now we establish the other half of the lemma. Assume that(pi , pj) ∈ H12. We argue
that (1)pj is relevant forpi , and (2) the rayR(pi , pj) lies incone(pi). By symmetrical
arguments, we can also show thatpi is relevant forpj and the rayR(pj , pi) lies in
cone(pj).

Consider anypk for bn/2c+1≤ k ≤ j such thatx(pk) < x(pi). Since(pi , pj) ∈ Gε,
d(pk, pi pj) ≤ ε. Lemma 4.2 tells us that this can only happen ifd(pk, pi) ≤ ε. (Here
we are using the fact that(pi , pj) ∈ H̄12, and so−π/4≤ 8(pi pj) ≤ π/4.) We conclude
that pj is relevant forpi .

Consider anypk such thati ≤ k ≤ bn/2c. Since(pi , pj) ∈ Gε, it follows that
d(pk, pi pj) ≤ ε, and henced(pk, R(pi , pj)) ≤ ε. On the other hand,(pi , pj) ∈ H̄12,
which imples thatR(pi , pj) is rightward directed and−π/4 ≤ 8(R(pi , pj)) ≤ π/4.
We conclude thatR(pi , pj) ∈ cone(pi). This completes the proof of the second half of
the lemma.

In view of Lemma 4.5, we compute a clique cover forH12 in four steps.

Step1. We compute a clique cover of the edges inH̄12.

Step2. For each bipartite clique(A1, A2) computed in Step 2, we compute a clique
cover of the pairs(pi , pj) ∈ A1 × A2 such thatpi is relevant forpj and pj is relevant
for pi .

Step3. For eachpi ∈ C1, we computecone(pi); for each pj ∈ C2, we compute
cone(pj).

Step4. For each bipartite clique(B1, B2) computed in Step 3, we compute a clique
cover of the pairs(pi , pj) ∈ B1 × B2 such thatpj ∈ cone(pi) and pi ∈ cone(pj). This
is done by taking the segments dual to the cones and proceeding exactly as in Section 3.

284 P. K. Agarwal and K. R. Varadarajan

The algorithms for Steps 1, 2, and 3 are described in Lemmas 4.7, 4.8, and 4.9,
respectively. As described in Section 3, the procedure in Step 4 for a single bipartite clique
(B1, B2) can be implemented inO((|B1|+|B2|)4/3+δ). We conclude that we can compute
a clique cover ofH12 of sizeO(n4/3+δ) in O(n4/3+δ) time. Putting everything together,
we get an algorithm that computes a clique cover ofGε whose size isO(n4/3+δ). The
running time of the algorithm is alsoO(n4/3+δ). We then use Proposition 2.1 to compute
a shortest path betweenp1 and pn in Gε(C), obtaining the main result of this section.

Theorem 4.6. For anyδ > 0, we can solve the min-# problem under the L1 metric for
a (possibly) nonmonotone polygonal chain in O(n4/3+δ) time.

In the rest of this section we describe the procedures for Steps 1, 2, and 3 in detail.

Lemma 4.7. We can compute, in O(n log2 n) time, a clique cover ofH̄12 of size
O(n log2 n).

Proof. For a pointp in the plane, let

Wed(p) = {q ∈ R2 | |y(p)− y(q)| ≤ x(q)− x(p)},
that is, Wed(p) is the wedge that is bounded by the two rightward directed rays emanating
from p with orientations+π/4 and−π/4. By definition ofH̄12, (pi , pj) ∈ H̄12 if and
only if pj ∈ Wed(pi). We preprocessC2 into a data structure to answer queries of the
following form efficiently: Given a pointp, report all pointsq ∈ C2 that lie in Wed(p).

The data structure we construct is a range-tree [34] onC2, which can report the points
in C2 that lie in a query wedge Wed(p) as a union ofO(log2 n) disjoint canonical subsets
of C2. The total size of all the canonical subsets in the range tree isO(n logn). With this
data structure, we proceed as in Section 3 to construct a clique cover ofH̄12. That is,
we query the data structure with all pointsp ∈ C1. For each canonical subsetBi in the
range tree, letAi ⊆ C1 be the set of query points whose output containsBi . If Ai 6= ∅,
we include(Ai , Bi) as a bipartite clique of the clique cover. The size of the clique cover
is O(n log2 n), and the running time is alsoO(n log2 n).

Lemma 4.8. Let A⊆ C1 and B⊆ C2, and let|A|+ |B| = m. LetRel(A, B) ⊆ A× B
denote the collection of ordered pairs(pi , pj) such that pi is relevant for pj and pj

is relevant for pi . We can compute a clique cover ofRel(A, B) of size O(m log2 m) in
O(m log6 m) time.

Proof. We proceed in two stages. In the first stage we compute a clique coverG ′ for the
ordered pairs(pi , pj) ∈ A× B such thatpi is relevant forpj . We assume thatA is given
as a sequence ordered according toC1; that is, pi ∈ A occurs beforepk ∈ A if i < k.
For pj ∈ B, let α(pj) be the last point in the sequenceA such thatx(α(pj)) > x(pj)

andd(α(pj), pj) > ε. Observe that the points in the sequenceA after α(pj) are the
ones that are relevent forpj . Thus the set of points inA that are relevant for a given
pj ∈ B forms a suffix of the sequenceA. Exploiting this observation, we can compute,

Efficient Algorithms for Approximating Polygonal Chains 285

in a straightforward fashion, a collection of canonical subsets ofA, whose total size
is O(m logm), so that, for anypj ∈ B, the set of points inA that are relevant forpj

can be returned as a disjoint union ofO(logm) canonical sets. With this data structure,
we proceed as in the proof of Lemma 4.7 to construct a clique coverG ′ whose size is
O(m logm). The time for computing the clique cover is governed by the time needed
to computeα(pj) for eachpj ∈ B; combining binary search with a data structure based
on range trees [34], this can be done in a total ofO(m log5 m) time.

In the second stage we take each bipartite clique(A′, B′) of G1, and compute a clique
cover of the set of ordered pairs(pi , pj) ∈ A′ × B′ such thatpj is relevant forpi . We do
this in a manner completely similar and symmetric to the first stage. If|A′| + |B′| = m′,
the second stage applied to(A′, B′) produces a clique cover of sizeO(m′ logm′).

We return the union of all the clique covers computed after the second stage as the
clique cover of Rel(A, B). The size of the clique cover isO(m log2 m), and the overall
running time isO(m log6 m).

Lemma 4.9. We can compute cone(pi), for 1≤ i ≤ n, in O(n log3 n) time.

Proof. We only describe the computation ofcone(pi) for pi ∈ C1. Let left(pi) (resp.
right(pi)) be the set of pointspk, i ≤ k ≤ bn/2c, such thatx(pk) < x(pi) (resp.x(pk) ≥
x(pi)). To computecone(pi), we first test ifd(pi , p) ≤ ε, for everyp ∈ left(pi). If, for
any p ∈ left(pi), d(pi , p) > ε, we stop and declarecone(pi) to be empty. Otherwise,
we compute the cone of rightward directed rays emanating frompi consisting of all rays
ρ such thatρ intersects the vertical segmentp−p+, for everyp ∈ right(pi). We clip this
cone so that all rays of this cone have orientation between−π/4 andπ/4, and return the
clipped cone ascone(pi).

In order to do all this efficiently, we preprocessC1 into a data structure that returns
left(pi) (or right(pi)), for any pi ∈ C1 as a union ofO(log2 n) canonical subsets. This
data structure is simply the two-dimensional range tree in which the points are ordered
in one dimension according to theirx-coordinates, and in the other dimension according
to their occurrence in the chainC1 (that is,p1, . . . , pbn/2c). With each canonical subset
S of the data structure, we store the regionreg(S) = {q | d(q, p) ≤ ε, for all p ∈ S}.
It is easy to see thatreg(S) is a rectangle. We also store the upper boundaryU (S) of
the convex hull of the points{p−|p ∈ S} and the lower boundaryL(S) of the points
{p+|p ∈ S}. The data structure can be built inO(n log3 n) time.

With these data structures set up, we can computecone(pi), for any pi ∈ C1, as
follows. We query the data structure and findO(log2 n) canonical subsets{S1, . . . , Sl }
whose union is left(pi). For eachSk, we check whetherpi ∈ reg(Sk); if, for any Sk,
pi /∈ Sk, we stop and declarecone(pi) to be empty. Otherwise, we query the data structure
to find O(log2 n) canonical{S1, . . . , Sl } subsets whose union is right(pi). For eachSk,
we compute the cone of rightward directed rays emanating frompi that is bounded on
the top by the ray frompi tangent toL(Sk), and on the bottom by the ray frompi tangent
to U (Sk). We compute the intersection of the cones computed for eachSk. Finally, we
clip this cone to one whose rays have orientation between−π/4 andπ/4.

Using this procedure, we can computecone(pi) for any pi ∈ C1 in O(log3 n) time.
Hence, the overall algorithm for computing all the cones runs inO(n log3 n) time.

286 P. K. Agarwal and K. R. Varadarajan

5. The Min-ε Algorithm under the L1 Metric

In the min-ε problem we are given a polygonal chainC = 〈p1 · · · pn〉 and an integer
k ≤ n, and we want to find an approximation ofC that minimizes the error over all
approximations that use at mostk vertices. In this section we present a randomized
algorithm to solve the min-ε problem for a polygonal chainC under theL1 metric. As
mentioned in Section 2, the min-ε problem reduces to finding the smallest value ofε,
for which there is a path inGε betweenp1 and pn consisting of at mostk vertices; we
let ε∗ denote this smallest value. Recall thatε∗ = 1(pi pj), the error of some segment
pi , pj . Given anε, we can use the min-# algorithm as adecision procedureto determine
whetherε∗ ≤ ε or ε∗ > ε. Hence, we can use the decision procedure to binary search the
errors corresponding to each of the2(n2) segmentspi pj . However, we cannot explicitly
enumerate these errors if we are aiming for a subquadratic algorithm. Instead, we use
a variant of therandom halvingtechnique [30] to do the search. Our algorithm can be
made deterministic using the expander based approach by Katz and Sharir [27]. We first
describe some primitives that our algorithm uses.

Lemma 5.1. For any givenε ≥ 0, we can preprocess the polygonal chain C into a
data structure in O(n4/3+δ) time, for any δ > 0, so that we can select with uniform
probability a random segment pi pj whose error is at mostε. The selection procedure
takes O(logn) time.

Proof. For simplicity, we assume that we have access to a random number generator
that can generate a random number in the range(0,1] with uniform probability. We first
compute a clique coverG = {G1 = (V1, E1), . . . ,Gl = (Vl , El)} of the graphGε in
O(n4/3+δ) time. Let Ai andBi denote the vertex classes ofVi . Let

w =
∑

1≤i≤l

|Ai | ∗ |Bi |

denote the total number of segments with error at mostε. We first describe how we can
select a bipartite cliqueGi with probabilitywi = |Ai ||Bi |/w. We divide the interval
(0,1] into intervalsI1, . . . , Il , where

I j =
(∑

1≤k≤ j−1

wk,
∑

1≤k≤ j

wk

]
.

To generate a random bipartite clique, we first generate a random numberr ∈ (0,1]. We
do a binary search on the intervalsI1, . . . , Il to locate the intervalI j containingr , and
returnGj .

For eachAi (resp.Bi), we build a similar structure that will allow us to generate an
elementa ∈ Ai (resp.b ∈ Bi) with probability 1/|Ai | (resp. 1/|Bi |). To pick a random
segmentpi pj with error at mostε, we first pick a random bipartite clique as above; if
Gk is picked, we pick random elementsa ∈ Ak andb ∈ Bk, and return(a,b).

The preprocessing time of this scheme isO(n4/3+δ), and the time for generating a
random segment isO(logn). If 1(pi pj) ≤ ε, and(pi , pj) ∈ Ak × Bk, the probability
of picking (pi , pj) is

wk ∗ 1/|Ak| ∗ 1/|Bk| = 1/w.

Efficient Algorithms for Approximating Polygonal Chains 287

Using clique covers, the following lemma is easily established.

Lemma 5.2. For any givenε ≥ 0, we cancount,in O(n4/3+δ) time, for any δ > 0,
the number of segments pi pj whose error is at mostε. As a corollary, we can count in
O(n4/3+δ) time the number of segments pi pj whose error lies in a given range(ε1, ε2].

Proof. We compute a clique coverG = {G1 = (V1, E1), . . . ,Gl = (Vl , El)} of the
graphGε. Let Ai and Bi denote the vertex classes ofVi . Then the total number of
segments with error at mostε is ∑

1≤i≤l

|Ai | ∗ |Bi |.

The number of segments whose error lies in the range(ε1, ε2] is the number of
segments whose error is at mostε2 minus the number of segments whose error is at
mostε1.

We will also need the following lemma.

Lemma 5.3. We can preprocess the polygonal chain C in O(n log2 n) time so that
given a query segment pi pj , its error can be computed in O(log3 n) time.

Proof. We only describe the data structure for query segmentspi pj that belong to

H̄ = {pi pj |x(pi) ≤ x(pj),−π/4≤ 8(pi pj) ≤ π/4}.
Let

left(pi , pj) = {pk | i ≤ k ≤ j, x(pk) < x(pi)},
right(pi , pj) = {pk | i ≤ k ≤ j, x(pk) > x(pj)}, and

between(pi , pj) = {pk | i ≤ k ≤ j, x(pi) ≤ x(pk) ≤ x(pj)}.
We preprocess the points{p1, . . . , pn} in O(n logn) time into a data structure so that
given any(pi , pj), left(pi , pj), right(pi , pj), and between(pi , pj) can be returned as a
union ofO(log2 n) canonical subsets. This data structure is simply the two-dimensional
range tree in which the points are ordered in one dimension according to theirx-
coordinates, and in the other dimension according to their occurrence in the chainC
(that is, p1, . . . , pn). For each canonical setS ⊆ C of the data structure, we store
conv(S), the convex hull ofS. We also store extr(S), the four “L1-extremal” points of
S; for any pointp in the plane, the point inS that maximizes theL1 distance top is one
of these four points.

This completes the description of our data structure for query segments inH̄ . Recall
that1(pi pj) = maxi≤k≤ j d(pk, pi pj). For pi pj ∈ H̄ , d(pk, pi pj) equalsd(pk, pi)

(resp.d(pk, pj)) for pk ∈ left(pi , pj) (resp. for pk ∈ right(pi , pj)), and equals the
vertical distance betweenpk and the linè throughpi and pj for pk ∈ between(pi , pj)

because−π/4 ≤ 8(pi pj) ≤ π/4. It follows that1(pi pj) is determined by either the
pointq1 in left(pi , pj) that maximizes the distance topi , or the pointq2 in right(pi , pj)

288 P. K. Agarwal and K. R. Varadarajan

that maximizes the distance topj , or the point inq3 between(pi , pj) that maximizes the
vertical distance to the linè.

Our query procedure for computing1(pi pj) computesq1, q2, andq3 as follows. We
first query the above data structure to find theO(log2 n) canonical sets whose union is
left(pi , pj). For each canonical setS, we find the point inS maximizing the distance
to pi by looking at the fourL1-extremal points ofS. Thus, we can determineq1 in
O(log2 n) time. By a symmetric scheme, we can also determineq2 in O(log2 n) time. To
determineq3, we query the above data structure to findO(log2 n) canonical sets whose
union is between(pi , pj). For each canonical setS, we find the point inS maximizing
the vertical distance tòby doing a binary search over the convex hull conv(S) of S. The
binary search finds the two lines`′ and`′′ that are parallel tò and tangent to conv(S).
If p′ ∈ S (resp.p′′ ∈ S) is the point through which̀′ (resp.̀ ′′) passes, then eitherp′ or
p′′ maximizes the vertical distance fromS to `. Thus, we can determineq3 in O(log3 n)
time. The time for the overall query procedure is alsoO(log3 n).

The Algorithm. The min-ε algorithm maintains a working intervalI = (ε1, ε2] con-
tainingε∗. We refer to the segments(pi , pj) whose errors lie in the working interval as
thecandidate segments, and the corresponding errors as thecandidate values. Our algo-
rithm operates in two phases. In the first phase we repeatedly shrink the working interval
containingε∗ until it contains at mostt = bn2/3c candidate values. In the second phase
we expicitly enumerate all the segments whose errors lie in the working interval, and
binary search the errors to findε∗. We can afford to do the explicit enumeration because
the working interval does not contain too many candidate values. We now describe the
phases in detail.

The First Phase. The first phase works in stages. Suppose that at the beginning of the
i th stage, we have a working intervalI i−1 = (ε1, ε2] that containsε∗. (Before beginning
the first stage, we check whetherε∗ = 0 using the decision procedure. Ifε∗ > 0, we set
I 0 = (0,∞].)

1. Let Ni−1 denote the set of the candidate values contained inI i−1. We check
whether|Ni−1| ≤ t using the algorithm of Lemma 5.2. If|Ni−1| ≤ t , the first
phase ends and we proceed to the second phase. Otherwise, we shrink the working
interval, as described below, to an intervalI i such that|Ni | ≤ |Ni−1|/3.

2. We run the preprocessing algorithm of Lemma 5.1 that will allow us to generate
a random segmentpi pj whose error lies in the range(0, ε2].

3. We generate, inO(logn) time, a random segmentpi pj whose error lies in the range
(0, ε2]. We compute its errorε′ = 1(pi pj) in O(log3 n) time using Lemma 5.3.
If ε′ does not lie in the working intervalIi−1 (i.e.,ε′ < ε1), we repeat this step.

4. Otherwise (ε′ ∈ Ii−1), we check ifε′ lies in the middle third of the values inNi−1.
We do this inO(n4/3+δ) time by using the algorithm of Lemma 5.2 to count the
number of candidate values in the intervals(ε1, ε

′] and (ε′, ε2]. If ε′ does not lie
in the middle third, we go back to Step 3.

5. We use the min-# algorithm to decide ifε∗ > ε′, or ε∗ ≤ ε′. If ε∗ > ε′, we let the
working interval for the next stage beI i = (ε′, ε2]; otherwise we letI i = (ε1, ε

′].

Efficient Algorithms for Approximating Polygonal Chains 289

Clearly, a random candidate value in the intervalIi−1 lies in the middle third of the
values inNi−1 with probability at least 1/3. SinceNi−1 contains at leastt values, a random
segmentpi pj generated in Step 3 lies inIi−1 with probability at leastt/n2 ≈ 1/n4/3.
Using these observations, it is easy to see that with high probability (probability at least
1−1/nc, for some constantc), there areO(n4/3 logn) iterations of Step 3 andO(logn)
iterations of Step 4 in thei th stage. We can conclude that the time taken to execute the
i th stage isO(n4/3+δ), with high probability. Since, during each stage, the number of
candidate values in the working interval decreases by a constant fraction, there are only
a logarithmic number of stages. Therefore, the overall running time of the first phase is
O(n4/3+δ), with high probability.

The Second Phase. Assume that we enter the second phase with the working interval
I = (ε1, ε2]. We first compute a superset of such segments and then discard those whose
values do not lie inI . We compute the candidate segments and values that lie inI as
follows. We compute the clique covers ofGε1 andGε2, and use them to find the in-degree
and out-degree of each vertex inGε1 andGε2; this takesO(n4/3+δ) time. We then find
the setS1 (resp.S2) of all verticespi (resp.pj) of C for which there is somepj (resp.pi),
with i < j , such that the error of segmentpi pj lies in I . A vertexpi belongs toS1 (resp.
S2) if its out-degree (resp. in-degree) inGε1 is strictly smaller than its out-degree (resp.
in-degree) inGε2. Hence, we can findS1 (resp.S2) by comparing the out-degrees (resp.
in-degrees) of each vertex inGε1 andGε2. Clearly,S1 andS2 contain at mostt vertices.
Using Lemma 5.3, we compute the error of each(pi , pj) ∈ S1 × S2, and discard the
segments whose errors do not lie inI . We are left with the segments whose errors lie in
I . Finally, we perform a binary search over theO(n2/3) candidate values inI , using the
min-# algorithm as a decision procedure, to computeε∗. The overall running time of the
second phase is also bounded byO(n4/3+δ). Hence, we can conclude:

Theorem 5.4. For any δ > 0, we can solve the min-ε problem under the L1 metric
using a randomized algorithm with expected running time O(n4/3+δ).

6. Conclusions

We have presented efficient algorithms that exploit the structure of the graph of short-cuts
Gε. This brings us to an extremely interesting question: What happens when other error
criteria are used? (See [25].) An interesting case is when the Euclidean distance is used
to define the error. We have not been able to extend the techniques used in this paper to
compute a compact representation of the graphGε in this case.

Another interesting problem is to find near-linear-time algorithms for the problems
solved in this paper.

References

1. P. K. Agarwal, N. Alon, B. Aronov, and S. Suri. Can visibility graphs be represented compactly?Discrete
Comput. Geom., 12:347–365, 1994.

2. P. K. Agarwal and M. Sharir. Applications of a new space-partitioning technique.Discrete Comput. Geom.,
9:11–38, 1993.

290 P. K. Agarwal and K. R. Varadarajan

3. A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C. K. Yap. Finding minimal convex nested polygons.
Inform. Comput., 83(1):98–110, Oct. 1989.

4. N. Alon and J. Spencer.The Probabilistic Method. Wiley, New York, 1993.
5. T. Asano and N. Katoh. Number theory helps line detection in digital images. InProc. 4th Annual

International Symposium on Algorithms and Computing, volume 762 of Lecture Notes in Computer
Science, pages 313–322. Springer-Verlag, Berlin, 1993.

6. R. E. Bellman and R. S. Roth.Methods in Approximation: Techniques for Mathematical Modelling. Reidel,
Boston, MA, 1986.

7. B. Buttenfield. Treatment of the cartographic line.Cartographica, 22:1–26, 1985.
8. W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line segments. In

Proc. 3rd Annual International Symposium on Algorithms and Computing, volume 650 of Lecture Notes
in Computer Science, pages 378–387. Springer-Verlag, Berlin, 1992.

9. S. D. Conte and C. de Boor.Elementary Numerical Analysis: An Algorithmic Approach, 3rd edn. McGraw-
Hill, New York, 1980.

10. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge, MA,
1990.

11. R. G. Cromley. A vertex substitution approach to numerical line simplification. InProc. 3rd International
Symposium Spatial Data Handling, pages 57–64, 1988.

12. P. J. Davis.Interpolation and Approximation. Blaisdell, New York, 1963.
13. M. de Berg, M. van Kreveld, and S. Schirra. A new approach to subdivision simplification. InProc. 12th

International Symposium on Computer-Assisted Cartography, pages 79–88, 1995.
14. P. Dierckx.Curve and Surface Fitting with Splines. Clarendon Press, New York, 1993.
15. D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent

a digitized line or its caricature.Canad. Cartog., 10(2):112–122, Dec. 1973.
16. D. Eu and G. T. Toussaint. On approximating polygonal curves in two and three dimensions.CVGIP:

Graph. Models Image Process., 56(3):231–246, May 1994.
17. T. Feder and R. Motwani. Clique partitions, graph compression, and speeding up algoithms. InProc. 27th

Annual ACM Symposium on Theory of Computing, pages 123–133, 1991.
18. M. T. Goodrich. Efficient piecewise-linear function approximation using the uniform metric.Discrete

Comput. Geom., 14:445–462, 1995.
19. L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating polygons and

subdivisions with minimum link paths.Internat. J. Comput. Geom. Appl., 3(4):383–415, Dec. 1993.
20. S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points in the plane.CVGIP:

Graph. Models Image Process., 53(2):132–136, 1991.
21. J. Hershberger and J. Snoeyink. Speeding up the Douglas–Peucker line simplification algorithm. InProc.

5th International Symposium on Spatial Data Handling, pages 134–143, 1992.
22. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class.Comput.

Geom. Theory Appl., 4:63–98, 1994.
23. J. Hershberger and J. Snoeyink. Cartographic line simplification and polygon CSG formulae inO(n log∗ n)

time. In Proc. 5th International Workshop on Algorithms and Data Structures, volume 1272 of Lecture
Notes in Computer Science, pages 93–103. Springer-Verlag, Berlin, 1997.

24. J. D. Hobby. Polygonal approximations that minimize the number of inflections. InProc. 4th ACM–SIAM
Symposium on Discrete Algorithms, pages 93–102, 1993.

25. H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In G. T. Toussaint,
editor,Computational Morphology, pages 71–86. North-Holland, Amsterdam, 1988.

26. S. Kahan and J. Snoeyink. On the bit complexity of minimum link paths: superquadratic algorithms for
problems solvable in linear time. InProc. 12th Annual ACM Symposium on Computational Geometry,
pages 151–158, 1996.

27. M. J. Katz and M. Sharir. An expander-based approach to geometric optimization.SIAM J. Comput.,
26:1384–1408, 1997.

28. Y. Kurozumi and W. A. Davis. Polygonal approximation by the minimax method.Comput. Graph. Image
Process., 19:248–264, 1982.

29. Z. Li and S. Openshaw. Algorithms for automated line generalization based on a natural principle of
objective generalization.Internat. J. Geogr. Inform. Systems, 6:373–389, 1992.

30. J. Matouˇsek. Randomized optimal algorithm for slope selection.Inform. Process. Lett., 39:183–187, 1991.

Efficient Algorithms for Approximating Polygonal Chains 291

31. R. B. McMaster. Automated line generation.Cartographica, 24(2):74–111, 1987.
32. A. Melkman. On-line construction of the convex hull of a simple polyline.Inform.Process.Lett., 25:11–12,

1987.
33. A. Melkman and J. O’Rourke. On polygonal chain approximation. In G. T. Toussaint, editor,Computational

Morphology, pages 87–95. North-Holland, Amsterdam, 1988.
34. F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York,

1985.
35. S. Suri. A linear time algorithm for minimum link paths inside a simple polygon.Comput. Vision Graph.

Image Process., 35:99–110, 1986.
36. G. T. Toussaint. On the complexity of approximating polygonal curves in the plane. InProc. IASTED,

International Symposium on Robotics and Automation, 1985.

Received September17, 1998,and in revised form July8, 1999.

