Discrete Comput Geom 23:273-291 (2000)

Discrete & Computational
DOI: 10.1007s004549910018 G e O m et ry

© 2000 Springer-Verlag New York Inc.

Efficient Algorithms for Approximating Polygonal Chains *

P. K. Agarwat and K. R. Varadarajén

1 Center for Geometric Computing,

Department of Computer Science, Duke University,
Durham, NC 27708-0129, USA
pankaj@cs.duke.edu

2 DIMACS, Rutgers University,
Piscataway, NJ 08854, USA
krv@dimacs.rutgers.edu

Abstract. We consider the problem of approximating a polygonal cl@aiby another
polygonal chairC’ whose vertices are constrained to be a subset of the set of vertiCes of
The goal is to minimize the number of vertices needed in the approxim@tiddased on

a framework introduced by Imai and Iri [25], we define an error criterion for measuring the
quality of an approximation. We consider two problems. (1) Given a polygonal Chetiral a
parametee > 0, compute an approximation 6f among all approximations whose error is

at moste, that has the smallest number of vertices. We prese@t(afy**+?)-time algorithm

to solve this problem, for an§ > 0; the constant of proportionality in the running time
depends on. (2) Given a polygonal chai@ and an integek, compute an approximation

of C with at mostk vertices whose error is the smallest among all approximations with at
mostk vertices. We present a simple randomized algorithm, with expected running time
O(n“3+%), to solve this problem.

1. Introduction
LetC = (py, ..., pn) denote a polygonal chain whose vertices@re . ., p, and whose

edges ar@; Pz, P2Ps, - - -, Pa—1Pn- A polygonal chairlC’ = (pi, = p1, ..., Pi. = Pn)
is anapproximationof C if i; < --- < i (Fig. 1).

* Work on this paper has been supported by an NSF Grant CCR-93-01259, an Army Research Office
MURI Grant DAAH04-96-1-0013, an NYI award, and matching funds from the Xerox Corporation.
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Fig. 1. A polygonal chain (in bold) and its approximation (dashed); the error, under the Euclidean metric, of
segmenty; pj isa.

Letd(., -) be a distance function defined on points in the plane. We definertbe
of a line segment;p; connecting two points of, wherei < j, to be

A(pip) = iTka<)j(d(pk’ pip;),

where the distance between a pgirand a segmergis d(p, €) = mingee d(p, g). The
error of an approximation Cof C is

Ac(C) = 1rpja<>§A(pij Pij.1),

the maximum of the errors of each of the edge€0fwe will omit the subscript forx
when the chairC that is being approximated is clear from the context. We €akhn
g-approximation ofC if Ac(C’) < ¢. We consider two problems:

1. Min-# problem: Given a polygonal chai€ and a real number > 0, compute
ang-approximation ofC that uses the the smallest number of vertices among all
g-approximations o€C.

2. Min- ¢ problem: Given a polygonal chai@ and an integek, compute an approxi-
mation ofC with at mosk vertices that minimizes the error over all approximations
of C that have at mosk vertices.

1.1. Motivation and Previous Results

Polygonal curves are often used to represent boundaries of planar objects in cartography,
computer graphics, pattern recognition, etc. The general problem of approximating a
polygonal curve by a coarser one is of fundamental importance, and has been studied
in disciplines such as geographic information systems [7], [11], [15], [21], [29], [31],
digital image analysis [5], [24], [28], and computational geometry [8], [16], [18], [19],
[25], [33], [35]. The problems considered fall in one of two categories, depending on
whether the vertices of the approximating chain are required to be a subset of the vertices
of the input chain. Within each category, min-# and miproblems have been studied
under different error criteria.

We first mention some of the algorithms that compute approximations whose vertices
are not restricted to being on the input chain. A well-studied problem in this category is
to compute a piecewise-linear function approximatingngint planar data set, using
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the uniform metric to measure the error. This is in fact a special case of a whole class
of problems in approximation theory that seek to fit a set of data using a spline function
under some metric. (See texts discussing approximation theory such as [6], [9], [12], and
[14].) Hakimi and Schmeichel [20] give & (n)-time algorithm for the min-# version

of the problem and a®(n? log n)-time algorithm for the mire version. Goodrich [18]

gives an improve®® (n log n)-time algorithm for the mire version. The min-# problems

in this category closely resemble the problem of computing a minimum link path in a
polygonal domain, which has been studied extensively; see [3], [19], [22], and [25] for
a sample. Hershberger and Snoeyink [22] give an efficient algorithm for computing a
minimum link path of a given homotopy. In this problem we are given two paiisd

t in a polygonal regiorR, which may have holes, and a representative palietween
sandt in R, and we want to compute a minimum-link pathRrbetweers andt that is
homotopido . Homotopy considerations are important when polygonal approximation
occurs in the context of other features; see the paper by de Berg et al. [13]. Sometimes,
we also want the approximation of a given polygonal chain tsib®le that is, non-
self-intersecting. This requirement seems to make the problems intractable. Guibas et
al. [19] show that the problem of computing a minimum-link simple approximation of

a simple polygon is NP-hard (for a particular error criterion). They also show that a
version of the problem of approximating a polygonal subdivision (as opposed to just a
single polygonal chain) is NP-hard.

We now turn to the methods for computing approximations whose vertices are re-
stricted to being a subset of the vertices of the input chain. This is the class to which this
paper belongs. The restricted case is important because in many applications, attributes
such as color are associated with the vertices of the input chain. Moreover, in the unre-
stricted case, we have to deal with the issue of the precision needed to represent vertices
in the approximation (see [26]). One of the oldest and most popular algorithms in car-
tography is the Douglas—Peucker algorithm [15], a heuristical approach that computes
an approximation within a prespecified error. Hershberger and Snoeyink [23] showed
that the Douglas—Peucker algorithm can be implemented @mlog* n) time, where
log* is the iterated logarithm function [10]. Imai and Iri [25] present a unified approach
to polygonal approximation problems by formulating them in terms of graph theory,
and present algorithms for approximating simple polygonal chains under a number of
error criteria. Algorithms with the same flavor are also described by Chan and Chin [8],
Melkman and O’Rourke [33], and Toussaint [36]. Most of these algorithms re(ig)
time. It appears as though the problems in this category become intractable if we require
the approximation to be simple, or to be homotopic to the original chain; see [13] for a
discussion.

1.2. Our Results
In this paper we study the min-# and mirproblems under th&; and uniform (also
known as Chebyshev) metric. Recall that the distance between two jpoiaty, py)

andq = (dx, gy) in the L metric is

d(p»Q) = |px _QX| + |py_qy|’
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and the distance under the uniform metric is

_Jipy—ayl if pe=ax,
d(p. @) = {oo otherwise.
Note that the distance between a pgindnd a segmerd under the uniform metric
is the vertical distance betwegnande if the x-projections ofp ande intersect, and
infinity otherwise. The two main results are the following:

e An O(n*3*+%)-time deterministic algorithm, for any/> 0, for the min-# problem
under thel; metric.

e An O(n*/3+%) expected-time randomized algorithm, for ahy 0, for the mine
problem under thé. ; metric.

Our techniques also generalize to certain other metrics that approximate the Euclidean
metric closely. Section 2 discusses preliminaries needed by our algorithms and the main
idea used. In order to present the techniques clearly, we describe in Section 3 the min-#
algorithm for arx-monotone chain under the uniform metric. In Section 4 we show how
the technigues used in Section 3 can be generalized to solve the min-# problem for any
polygonal chain under the; metric. In Section 5 we describe a simple randomized
algorithm for the mine problem under thd ; metric. We offer our conclusions in
Section 6.

2. Preliminaries

Imai and Iri's Algorithm  Since our algorithm is based on Imai and Iri's general frame-
work for polygonal chain approximation, we first describe their approachClist the
polygonal chair{ps, ..., pn), and lete > O be a given error bound. Assume that we
have fixed a distance function on points in the plane. We define an unweighted, directed
graphG.(C) = (V, E,), whereV = {py, ..., pn} and

E.={(p,p)|1=<i<j=<n, andA(pip;) < ¢}.

Figure 2 illustrates this definition for atmonotone chain under the uniform metric. We
sometimes denoté, (C) by G, when the underlying chai@ is clear from the context.

An g-approximation ofC corresponds to a path frop to p, in G,, and ane-
approximation with the minimum number of vertices corresponds to a shortest path

Fig. 2. The graphG, for anx-monotone chain under the uniform metric; solid segments are graph edges.
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from p; to p, in G,. The shortest path, which is the solution to the min-# problem, can
be found by a breadth first searchGp usingO(|E.|) = O(n?) time. The mine problem
involves computing the smallest valuesofor which there is a path its, from p; to p,
consisting of at most vertices. Let* denote this smallest value. Let < ¢, - - - be the
valuesofA(p; pj) forl <i < j < n.NotethalG, remains the samefor alle [e;, & 41).
Therefore, the mir-problem reduces to finding the smallestor which G, contains

a path fromp; to p, with at mostk vertices. Sincé&,, € E,, ., ¢* can be computed by

a binary search on thg’s, using the min-# algorithm as the decision procedure.

Using Imai and Iri’'s approach naively, any algorithm for the min-# problem takes
Q(n?) time, as it needs to construct the graph, which can haved (n?) edges. Chan
and Chin [8], Imai and Iri [25], Melkman and O’Rourke [33], and Toussaint [36] give
guadratic or near-quadratic-time algorithms for constructigunder various error
criteria. The running time for the mia{problems is governed by the time it takes to
compute the errora (p; p;) of the segments, and the time fOrlogn) applications of
the min-# decision procedure. Hence, these algorithms alsqak® time.

Compact Representation of,G If we are aiming for a subquadratic algorithm, we
cannot compute the grafh. explicitly. Instead, we construct a compact representation
of G,. LetG = (V, E) be a directed graph, and let

G={G1=(Vi,Ep,...,G =WV, B}

be a family of subgraphs d&. We say thayj is aclique coverof G if the following
conditions hold:

1. EachG; is a complete bipartite graph. \,, Vi, € V; are the two vertex classes
of Gi, then every edge db; must be directed from a vertex W, to a vertex in
V.

2. E=EU---UE.

3. ENE; =0@fori #j.

Since eaclG; is a bipartite clique, we can represent it compactly by specifying its
vertex classey;, andV,,; this takesO(|V; |) space. The edges are now defined implicitly.
We define the size of the cliqgue covgrdenoted byg|, to beZ!zl |Vi|; this is the space
we require to represef@ compactly. The notion of “compressing” graphs using clique
covers is pursued by Feder and Motwani [17], who use clique covers of graphs to speed
up a number of graph algorithms.

Proposition 2.1. LetG = {Gy, ..., G} be aclique cover of a directed graph Given
two vertices u and in G, we can compute a shortest path between u afa G in
O(Ig] + [V]) time

Proof. We define a new grapH whose vertexseti U{gs, ..., g}, whereg,, ..., g
are additional vertices. [iu, v) is an edge irG, and if (u, v) belongs tdG;, then we add
the edgesu, gj) and(g;, v) in H. There aréD (|G| + |V]) vertices andD(|G|) edges in
H. We compute a shortest path betweesgndv in H. If the procedure returns the path
(Up = U, 01, Uz, 0o, ..., 0k U1 = v) in H, then we returnuy, uy, ..., Uk 1) as the
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shortest path betweenandv in G. The correctness of the procedure is straightforward.
This computation takes time proportional|td + |V |. O

3. The Min-# Algorithm under the Uniform Metric

LetC = (p1,..., pn) be anx-monotone polygonal chain, and letbe a given error
bound. In this section we present an algorithm that solves the min-# problé&fuder
the uniform metric. Our algorithm computes a shortest path betyweemd p, in the
graphG, defined above. In order to do this efficiently, we first compute a clique cover
of G, and then use Proposition 2.1 to compute a shortest pathfidmp, in G,.

In the remainder of this section we describe@m*3+%)-time divide-and-conquer
algorithm for constructing a clique coveér of G, = G,.(C). Let C; be the chain
(P1, ..., Piny2y) and letC, be the chain{pn/2j+1, ..., pn). Recall thatA(pip;) =
max <k<j d(pPk, pi pj), and thata paifp;, pj) € E. if A(pipj) < e.Hence, if(p;, pj) €
E. andp;, p; € Ci (resp.pi, pj € Cy), then(p;, pj) isanedge i, (Cy) (resp.G.(Cy)).
We recursively compute clique covegs, G, of G, (C;) andG,(Cy,), respectively. In the
merge step we compute a cliqgue codes of the edges

Ewo={(pi, pj) € Go(C) | pi € Cq, pj € Cy).

That is,Gs» is a clique cover of the edges &, (C), one of whose endpoints is @,
and the other itC,. G1 U G, U Gy2 is a clique cover o6, (C). Before describing how to
computegi,, we need a few definitions and preliminary lemmas.

If (x;, yi) denotes the coordinates pf, let p;” be the pointx;, yi —¢), and letp;" be
the point(x;, yi + ¢). Itis easy to see thap;, p;) is an edge 06, (C) if and only if for
everyk,i <k < j, the vertical segment, p; intersects the segmepitp;. Forp; € Cy,
we definecond p;) to be the following subset of rightward directed rays emanating from
pi: arayp belongs taong p)) if p intersectsp, pe, for everyi < k < |n/2]. (Figure 3
illustrates the definition ofong p;).) We regarccond p;) not only as a set of rays, but
as a set of points as well. Note that the interiocofig p;) does not contain ang;_, py,
foranyi < k < [n/2], and for any rayp € congp;), d(px, p) < ¢, fori <k < [n/2].
Symmetrically, for a vertex; of C;, we definecond p;) to be the following collection
of leftward directed rays emanating fropp: a ray e belongs tacong p;) if it intersects
PP, forn/2] +1<k<j.

Fig. 3. congp;) andcondpj); the edge(p;, pj) is in G, because; € congp;) andp; € congp;j)
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The boundary of a convex polygdd can be divided into twx-monotone convex
chains at its leftmost and rightmost vertices. The chain lying above (resp. below) the
line through thex-extremal vertices is called thgper(resp.lower) boundary ofQ. Let
L; denote the lower boundary of the convex hullef", ..., pﬁw} andU; the upper
boundary of the convex hull dfp”, ..., pj,,}. By definition ofcongpi), its top ray
is tangent toL; and its lower ray is tangent td;. Note thatcond p;) is empty if the
tangent toL; is below the tangent to); .

Lemma 3.1. We can compute conpy), for everyl < k < n,in O(nlogn) time

Proof. We only describe the computationadng py) for 1 < k < |n/2]; we can com-
putecong py) for [n/2] + 1 < k < n symmetrically. Suppose that we have inductively
computedcong py) fori < k < n/2. Suppose also that we have computedndU;.
We first computel; _; andU;_; from L; andU;, respectively, inO(logn) time using
standard techniques [32], [34]. We can then comput®{logn) time the tangents to
Li_; andU;_; from p;_;, and thusongp;_1). O

Using a standard duality transformation (that maps a ggairit) to the liney = ax+b,
and a liney = mx+ cto the point(—m, c)), we can map the line supporting any ray
to a pointp*. We refer to the poinp* as thedual of the rayp. Lety; denote the set of
points dual to the rays ioon&p;). y; is a line segment in the dual plane. Let

Fi={y|1<i=<|[n/2]}
and
Fo={y | In/2]+1<i<n}

The following lemma is obvious.

Lemma3.2. Let p (resp p;) be a vertex of € (resp Cy). Then p € congp;) and
pi € congpy) if and only ify; andy; intersect

Lemma 3.3. Let p (resp p;) be a vertex of €(resp C,). Then(p;, pj) € G, if and
only if y; andy; intersect

Proof. Suppose thay andy; intersect. By Lemma 3.2, it follows tha € congp;)
andp; € congp;). Thus the rayR(p;, p;) emanating fromp; and passing through;
is in cone ). Therefore, this ray intersects the segmpptp,’, fori < k < [n/2].
Since the chail€ is x-monotone, the line segmeptp; intersects the segmepf p;’,
fori <k < [n/2]. By a similar argument, we can conclude that the line segrpgmt
also intersects the segmemsp,’, for [n/2] + 1 < k < j. Thus, the line segmer p;
intersects all the segments p,", fori < k < j, which means thatpi, p;) € G..

To prove the converse, assume th@at p;) € G.. Then the line segmen; p; inter-
sects all the segmengg py, fori < k < j. It follows that the rayR(p;, p;) emanating
from p; and passing through; intersects all the segmenpg py, fori < k < [n/2].
Thus the rayR(p;, pj) is incong p;), and sop; € congp;). By a similar argument, we
conclude thap; € congp;). Lemma 3.2 then implies that andy; intersect. |
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By Lemma 3.3, the problem of computiigy, reduces to computing a family

F={T11,T21), ..., T, T2}

so that the following conditions hold:

1. Ty CTy, Iy STy

2. each segment ifjj; intersects every segmentlit,; and

3. for every pair of intersecting segmemtse I'1, y» € I'> there is a unigque such
thaty; € I'yj andy, € Ty

We now describe a procedure to compute such a fagiilyWe construct the segment-
intersection-searching data structure [2] on thelsetvhich can report the set of seg-
ments ofl"; intersecting a query segment in the plane, as a union of few pairwise disjoint
subsets of ;. This segment-intersection-searching data structure is a multilevel partition
tree, each of whose nodes is associated with a so-aadleshical subseatf I',. The total

size of all canonical subsets in the treedsn*3+%). For a query segmemt the query
procedure select® (n%/3+) pairwise disjoint canonical subsets whose union consists
of exactly those segmenrs that intersece. Using this structure, we can construct the
family F as follows. We query the data structure with all segmentEofFor each
canonical subsdty of I';, letI'; € I'1 be the set of segments whose output contained
[y. If Ty # 0, we add the pai(ly;, ') to the family F.

The size of the resulting clique covéfi, of Eiz is Y ;(ITai| + IT'2i[), which is
O(n*3*+%), The running time for computing;, is dominated by the time to compute the
family 7, which isO(n%/3+%).

Let S(n) denote the size of the clique cover®f(C) computed by the entire algorithm.
Then we have the recurrence

S(n) < 2S(n/2) +cn*/3,

for some constartt This recurrence solves 8&n) = O(n*3+%). An identical argument
shows that the running time of the algorithmQgn?®/3+9),

Lemma 3.4. Foranys > 0,we can compute a clique cover of @) of size Qn*/3+%)
in O(n*3+%) time

From Proposition 2.1, it follows that we can compute a shortest path betpyeserd
Pn in G, in O(n*3+%) time. Thus, we have the following result.

Theorem 3.5. Foranys$ > 0,we can solve the mi#problem under the uniform metric
for an x-monotone chain with n vertices in(@/3+%) time

4. The Min-# Algorithm under the L; Metric

LetC = (p1, ..., pn) be a polygonal chain (which is not necessaxiynonotone), and

let ¢ be a given error bound. In this section we take the underlying metric to ble;the
metric, and show how we can efficiently compute a clique cover of the gsaplefined
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Fig. 4. Thel, disk of radiuse centered ap. ®(¢1) = ®({3) = —n/4 and®(£p) = ®(€a) = 7 /4. Any
line ¢, with —r/4 < ®(¢) < /4, that intersects the disk intersects the vertical segmpempt™.

onC. We then use Proposition 2.1 to compute a shortest path befwesrd p, in G,,
thus solving the min-# problem. Throughout this sectidq, -) denotes the distance
under thel ; metric.

We first give some definitions. We define géentationof a line ¢, which we denote
by ®(¢), to be the angle th@&tmakes with the positivg-axis in the rangefr /2, 7 /2].
We define the orientation of a line segmemg, which we denote byb (pq), to be the
orientation of the line containing the line segment. kép) (resp.y(p)) denote the
x-coordinate (respy-coordinate) of a poinp. The following two lemmas state useful
properties of thé; metric; see Figure 4.

Lemma4.1l. Let¢bealinesuchthatz/4 < ®(¢) < n/4.Foranypoint pd(p, £) <
¢ under the L-metric if and only if¢ intersects the vertical segment p~.

Lemma4.2. Letgr be aline segment such thatr/4 < ®(qr) < n/4,and assume
g lies to the left of r For any point p d(p, qr) < ¢ if and only if exactly one of the
following three conditions hold

(i) x(p) <x(q)and d(p,q) <.
(i) x(p) > x(r)yandd(p,r) <.
(i) x(q) < x(p) < x(r) and gr intersects the vertical segment p .

As in Section 3, we use a divide-and-conquer approach to compute a clique cover of
G,(C). LetCy be the chair{py, ..., pin/2)), and letC; be the chaif pjn/2j+1, - - ., Pn)-
We recursively compute the clique covérsandg, of G, (C;) andG,(C,), respectively.
The merge step computes a clique coyerof the set

Er={(p, p) € G. | pi € C1, pj € Ca}.
We will describe an algorithm for computing a clique cover of the set of edges
Hi = {(pi, ) € Ex2 | X(Pp1) < X(pj), —m/4 < O(pi pj) < w/4}.

By reversing the direction of theHx)-axis angor switching the role of the- andy-
axis, we can compute a clique cover of the remaining edg&g 0fOur approach will
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Fig.5. pig1,..., pn/2; are relevant fop;; py, ..., pin/2; are not relevant fop;.

be to do some *filtering” so that we can compute a clique covetgby essentially the
technique of Section 3. Lét;» denote the following collection of pairs:

Hiz = {(pi, pj) | Pi € C1, pj € Co, X(P1) < X(P)), —7/4 < O(pipj) < 7/4}.

By definition, Hy» € Hi,. We first compute a clique cover &f;,, and then use that to
compute a clique cover dfl;,.

Definition 4.3. Let p; € C; andp; € C,. We say thatp; is relevant for p, if for all
Pr.i < k < [n/2], suchthak(pc) > x(pj), d(px, p;) < e. Similarly, we say thap; is
relevant for pif for all py, [n/2] +1 <k < j, such thak(px) < xX(p), d(p«, pi) < ¢
(Fig. 5).

Definition 4.4. For p; € C4, we definecond p;) to be the following cone of rightward
directed rays emanating from: a rayp belongs tacond py) if —7/4 < ®(p) < 7 /4
andd(pg, p) < e, fori <k < [n/2].

Symmetrically, we defineondg p;), for p; € Cy, to be the following cone of leftward
directed rays emanating from): a rayp belongs tacon&p;) if —7/4 < ®(p) < /4
andd(px, p) < ¢, for [n/2] +1<k < |.

By Lemma 4.2, a rightward directed rayoriginating atp; belongs tocon&p;) if
and only if—m /4 < ®(p) < /4, and, for every <k < [n/2],

(i) if x(px) < x(pi), thend(pk, pi) < ¢, and
(i) if x(p) > X(pi), thenp intersects the vertical segmepyt p;’ .

Similarly, a leftward directed ray originating atp; belongs tccone p;) if and only if
—n/4 < ®(p) < m/4,and, forevenin/2] +1 <k < j,

(i) if X(p) > x(p)), thend(px, pj) < &, and
(i) if x(p) < X(p;), thenp intersects the vertical segmepg p;’ .

The following lemma lays the foundation for our algorithm.
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Lemma4.5. Forany(pi, pj) € Hio, (Pi, p;) € Hioif and only if

(1) piisrelevantfor pand g is relevant for p, and
(2) p; € congp) and p € congp;).

Proof. Let(pi, pj) € Hi,, and assume that conditions (1) and (2) hold. To show that
(pi, Pj) € Hiz, we will show that(p;, pj) € G, by proving that for ank, i <k < j,
d(px, pi pj) < e. We consider three cases:

1. x(px) < X(pi)- If px € Cy, it must be the case thd(pk, pi) < ¢, for otherwise
cong p;) would be empty. Ifpe € C,, it follows from the fact thatp; is relevant
for p; thatd(px, pi) < ¢. In either cased(px, pi p;) < e.

. X(p) > X(py). This case is symmetric to the earlier one.

3. X(p) < x(p) < x(pj). Assume thatpy € Cy; the case whergy € C; is
symmetric. Sincep; € cond p;), the rayR(p;, p;) emanating fronp; and passing
throughp; is in congp;). By the definition ofcong p;), it must be the case that
d(px, R(pi, pj)) < e. Sincex(px) > X(pi), it follows from Lemma 4.2 that
R(pi, pj) intersects the vertical segmepf p, . Moreover, sincex(px) < X(p)),
we can conclude that the segmenp; intersects the vertical segmept p; . Thus,

d(px, pip;) <e.

Now we establish the other half of the lemma. Assumedpatp;) € Hio. We argue
that (1) p; is relevant forp;, and (2) the rayR(pi, p;) lies incong p;). By symmetrical
arguments, we can also show thatis relevant forp; and the rayR(p;, p) lies in
congp;).

Consider anyy for [n/2]+1 < k < j suchthak(px) < x(pi). Since(p;, pj) € G,
d(pk. pip;) < e. Lemma 4.2 tells us that this can only happed(px, pi) < e. (Here
we are using the factthap;, p;) Hio, and so-7r/4 < d(p; pj) < m/4.) We conclude
that p; is relevant forp; .

Consider anypy such thati < k < |n/2]. Since(p;, p;) € G, it follows that
d(pk. pip;) < ¢, and henca(px, R(pi, p;)) < &. On the other hand,p;, pj) € Hiz,
which imples thatR(pi, p;) is rightward directed and-7/4 < ®(R(pi, pj)) < 7/4.
We conclude thaR(p;, p;) € congp;). This completes the proof of the second half of
the lemma. O

N

In view of Lemma 4.5, we compute a clique cover féf in four steps.
Stepl. We compute a clique cover of the edgesiin.

Step2. For each bipartite cliqueA;, A;) computed in Step 2, we compute a clique
cover of the pairgp;, p;) € A; x Az such thatp; is relevant forp; and p; is relevant
for p;.

Step3. For eachp; € C;, we computecondg p;); for eachp; € C,, we compute
cong p).

Step4. For each bipartite cliquéB,, B,) computed in Step 3, we compute a clique
cover of the pairgp;, p;) € By x By such thatp; € congp;) andp; € congp;). This
is done by taking the segments dual to the cones and proceeding exactly as in Section 3.
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The algorithms for Steps 1, 2, and 3 are described in Lemmas 4.7, 4.8, and 4.9,
respectively. As described in Section 3, the procedure in Step 4 for a single bipartite clique
(B, By) can be implemented i@ ((| By |+|Ba|)*3*%). We conclude that we can compute
a clique cover oHy, of sizeO(n*3+%) in O(n*3+%) time. Putting everything together,
we get an algorithm that computes a clique coveGofwhose size iO(n*3+%). The
running time of the algorithm is algd (n*3+?). We then use Proposition 2.1 to compute
a shortest path betwegn and p, in G.(C), obtaining the main result of this section.

Theorem 4.6. Foranyé$ > 0, we can solve the mi#problem under the L metric for
a (possibly nonmonotone polygonal chain in(@/3+%) time

In the rest of this section we describe the procedures for Steps 1, 2, and 3 in detail.

Lemma4.7. We can computdn O(nlog?n) time, a clique cover ofHi, of size
O(nlog?n).

Proof. For a pointp in the plane, let

Wed(p) = {g € R?||y(p) — y(@)| < x(Q) — X(P)},

thatis, Wedp) is the wedge that is bounded by the two rightward directed rays emanating
from p with orientations+/4 and—rn /4. By definition ofHi, (pi, p;) € Hiz if and
only if pj € Wed(p;). We preproces€; into a data structure to answer queries of the
following form efficiently: Given a poinp, report all pointg) € C, that lie in Wed p).

The data structure we construct is a range-tree [34}gavhich can report the points
in C, that lie in a query wedge Weg) as a union oD (log? n) disjoint canonical subsets
of C,. The total size of all the canonical subsets in the range tr@gridog n). With this
data structure, we proceed as in Section 3 to construct a clique covp.oThat is,
we query the data structure with all pointse C;. For each canonical subsBt in the
range tree, lef\; C C; be the set of query points whose output cont&ndf A; # 0,
we include( A, B;) as a bipartite clique of the clique cover. The size of the clique cover
is O(nlog?n), and the running time is alsd (n log? n). O

Lemma4.8. Let AC Ciand BC C,,andlet|A|+|B] = m. LetRel(A, B) € Ax B
denote the collection of ordered pai(g;, p;) such that pis relevant for p and p
is relevant for p. We can compute a clique coverReél(A, B) of size Qmlog?m) in
O(mlog® m) time,

Proof. We proceed in two stages. In the first stage we compute a clique oigeithe
ordered pairgp;, p;) € Ax B such thatp; is relevant forp;. We assume thah is given
as a sequence ordered accordingiothat is, p € A occurs beforgy € Aif i < k.
For p; € B, leta(p;) be the last point in the sequengesuch thatx(«(p;)) > X(p;)
andd(a(pj), pj) > ¢. Observe that the points in the sequercafter «(p;) are the
ones that are relevent fqs;. Thus the set of points iv\ that are relevant for a given
p; € B forms a suffix of the sequend& Exploiting this observation, we can compute,
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in a straightforward fashion, a collection of canonical subseté,ofvhose total size
is O(mlogm), so that, for anyp; € B, the set of points imA that are relevant fop;
can be returned as a disjoint union@flog m) canonical sets. With this data structure,
we proceed as in the proof of Lemma 4.7 to construct a clique g@vehose size is
O(mlogm). The time for computing the clique cover is governed by the time needed
to computex(p;) for eachp; € B; combining binary search with a data structure based
on range trees [34], this can be done in a totaDofm log® m) time.

In the second stage we take each bipartite clighie B) of G;, and compute a clique
cover of the set of ordered paifp;, pj) € A’ x B’ such thatp; is relevant forp;. We do
this in a manner completely similar and symmetric to the first stagé\ |If- |B'| = n,
the second stage applied(&’, B’) produces a clique cover of sizg(m’ logm’).

We return the union of all the cliqgue covers computed after the second stage as the
clique cover of RdlA, B). The size of the clique cover ®(mlog® m), and the overall
running time isO(mlog® m). O

Lemma 4.9. We can compute cofg), for 1 <i < n, in O(nlog®n) time

Proof. We only describe the computation@adng p;) for p; € C;. Let left(p;) (resp.
right(p;)) be the set of pointpy,i < k < |n/2], suchthak(px) < x(p;) (respx(px) >
X(p;i)). To computecong p;), we first test ifd(p;, p) < e, for everyp € left(p;). If, for
any p € left(p), d(pi, p) > ¢, we stop and declaeong p;) to be empty. Otherwise,
we compute the cone of rightward directed rays emanating fsooonsisting of all rays
p such thap intersects the vertical segmaut p*, for everyp € right(p;). We clip this
cone so that all rays of this cone have orientation betweerfd andr /4, and return the
clipped cone asond ;).

In order to do all this efficiently, we preproce8s into a data structure that returns
left(pi) (or right(p;)), for any p; € C; as a union ofO(log? n) canonical subsets. This
data structure is simply the two-dimensional range tree in which the points are ordered
in one dimension according to theircoordinates, and in the other dimension according
to their occurrence in the chai@y (thatis, ps, ..., pin/2)). With each canonical subset
S of the data structure, we store the regreg(S) = {q | d(q, p) < ¢, forall p € S}.

It is easy to see thatg(S) is a rectangle. We also store the upper bounda¢$) of
the convex hull of the pointgp~|p € S} and the lower boundarl (S) of the points
{p*|p € S}. The data structure can be built@(n log® n) time.

With these data structures set up, we can compatefp;), for any p; € Cq, as
follows. We query the data structure and fi@dlog? n) canonical subsetsS,, ..., S}
whose union is leftp;). For eachS,, we check whethep; € reg(S); if, for any &,
pi ¢ S, we stop and declamng p;) to be empty. Otherwise, we query the data structure
to find O(log? n) canonicallS,, ..., S} subsets whose union is rigig ). For eachS,
we compute the cone of rightward directed rays emanating fopthat is bounded on
the top by the ray fronp; tangent td_ (&), and on the bottom by the ray fropy tangent
to U (). We compute the intersection of the cones computed for &adhinally, we
clip this cone to one whose rays have orientation betwee andr /4.

Using this procedure, we can competng p;) for any p; € C; in O(log®n) time.
Hence, the overall algorithm for computing all the cones rur@(nlog®n) time. O
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5. The Min-e Algorithm under the L; Metric

In the mine problem we are given a polygonal chd&h= (p;--- p,) and an integer

k < n, and we want to find an approximation ©f that minimizes the error over all
approximations that use at mdstvertices. In this section we present a randomized
algorithm to solve the mir-problem for a polygonal chai@ under theL ; metric. As
mentioned in Section 2, the minproblem reduces to finding the smallest value of

for which there is a path i5, betweenp; and p, consisting of at most vertices; we

let ¢* denote this smallest value. Recall thhat= A(p; p;), the error of some segment

pi, pj. Given arg, we can use the min-# algorithm adecision proceduréo determine
whethers* < ¢ ore* > ¢. Hence, we can use the decision procedure to binary search the
errors corresponding to each of tB¢n?) segmentg; p;. However, we cannot explicitly
enumerate these errors if we are aiming for a subquadratic algorithm. Instead, we use
a variant of theandom halvingechnique [30] to do the search. Our algorithm can be
made deterministic using the expander based approach by Katz and Sharir [27]. We first
describe some primitives that our algorithm uses.

Lemmab5.1. For any givens > 0, we can preprocess the polygonal chain C into a
data structure in @n%3+%) timg, for any s > 0, so that we can select with uniform
probability a random segment; p; whose error is at most. The selection procedure
takes Qlogn) time

Proof. For simplicity, we assume that we have access to a random number generator
that can generate a random number in the rgfAg&] with uniform probability. We first
compute a clique covey = {G1 = (V1, E1), ..., G = (M, E))} of the graphG, in
O(n*3+%) time. Let A; andB; denote the vertex classes\if Let

w= Y |Alx|B
1<i<l
denote the total number of segments with error at mo¥ie first describe how we can
select a bipartite cliqué&; with probability w; = |A||Bi|/w. We divide the interval
(0, 1] into intervalsly, ..., I;, where

|j=< Z Wk, Zwk].

1<k<j-1 1<k<]j

To generate a random bipartite clique, we first generate a random nurab@ 1]. We
do a binary search on the intervals . . ., |, to locate the interval; containingr, and
returnG,;.

For eachA; (resp.B;), we build a similar structure that will allow us to generate an
elementa € A (resp.b € B;) with probability 1/| A;| (resp. ¥|B;|). To pick a random
segmentp; p; with error at mosk, we first pick a random bipartite clique as above; if
Gy is picked, we pick random elemerds=s Ax andb € By, and return(a, b).

The preprocessing time of this schemedgn*3+%), and the time for generating a
random segment i®(logn). If A(pipj) < &, and(p;, pj) € A« x By, the probability
of picking (pi, p)) is

wic % 1/] Al % 1/|By| = 1/w. O
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Using clique covers, the following lemma is easily established.

Lemma5.2. For any givens > 0, we cancount,in O(n*3+%) time, for anys > 0,
the number of segmentspp whose error is at most. As a corollary we can count in
O(n*3+%) time the number of segmentsppwhose error lies in a given range, «2].

Proof. We compute a clique cov€l = {G1 = (V1, E1), ..., G = (M, E)} of the
graphG,. Let A; and B; denote the vertex classes @f. Then the total number of
segments with error at mostis

> IA Bl

1<i<l

The number of segments whose error lies in the rafages,] is the number of
segments whose error is at mestminus the number of segments whose error is at
moste;. O

We will also need the following lemma.

Lemma5.3. We can preprocess the polygonal chain C irin@g? n) time so that
given a query segment g, its error can be computed in @gn) time

Proof. We only describe the data structure for query segmpisthat belong to

H = {ppjIX(p) < X(pj), —7/4 < ®(pi pj) < /4}.

Let
left(pi, pj) = {pc i <k <j, X(pe) < x(pi)},
right(pi, pj) = {px |1 <k <], x(p) > x(pj)}, and
betweerip, pj) = {p |1 <K < j, X(P) < X(Pe) < X(p))}.
We preprocess the point®y, ..., pn} in O(nlogn) time into a data structure so that

given any(pi, p;), left(p;, p)), right(p;, p;), and betweefp;, p;) can be returned as a
union of O(log? n) canonical subsets. This data structure is simply the two-dimensional
range tree in which the points are ordered in one dimension according toxtheir
coordinates, and in the other dimension according to their occurrence in the@hain
(that is, py, ..., pn). For each canonical s& C C of the data structure, we store
conuS), the convex hull ofS. We also store extf), the four “Li-extremal” points of

S, for any pointp in the plane, the point i that maximizes thé ; distance top is one

of these four points.

This completes the description of our data structure for query segmeldtsRecall
that A(pi pj) = maX<k<j d(pk. pi pj)- For pip; € H, d(pk, pi pj) equalsd(pg, pi)
(resp.d(pk, pj)) for pc € left(pi, pj) (resp. forpx e right(pi, p;)), and equals the
vertical distance betweepy and the line throughp; and p; for py € betweeiip;, p;)
because-m/4 < ®(p; p;j) < m/4. It follows thatA(p; p;) is determined by either the
pointay in left(p;, pj) that maximizes the distance pp, or the point in right(p;, p;)
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that maximizes the distance [, or the point ing; betweerip;, p;) that maximizes the
vertical distance to the liné

Our query procedure for computirzg p; pj) computesy, 0z, andgs as follows. We
first query the above data structure to find édog? n) canonical sets whose union is
left(pi, pj). For each canonical s& we find the point inS maximizing the distance
to p; by looking at the fourlLi-extremal points ofS. Thus, we can determing in
O(log? n) time. By a symmetric scheme, we can also deterrgitie O(log? n) time. To
determinegs, we query the above data structure to fiddog? n) canonical sets whose
union is betweefp;, p;). For each canonical s& we find the point inS maximizing
the vertical distance toby doing a binary search over the convex hull cg@\of S. The
binary search finds the two linésand¢” that are parallel té@ and tangent to cor®).
If p’ € S(resp.p” € S)is the point through whicld’ (resp.¢”) passes, then eithg¥ or
p” maximizes the vertical distance fro8to ¢. Thus, we can determirgg in O(log®n)
time. The time for the overall query procedure is a3dog® n). O

The Algorithm The ming algorithm maintains a working interval = (g4, £,] con-
taininge*. We refer to the segmengg;, p;) whose errors lie in the working interval as
thecandidate segmentand the corresponding errors as thadidate valueOur algo-

rithm operates in two phases. In the first phase we repeatedly shrink the working interval
containinge* until it contains at most = |n%3| candidate values. In the second phase
we expicitly enumerate all the segments whose errors lie in the working interval, and
binary search the errors to fird. We can afford to do the explicit enumeration because
the working interval does not contain too many candidate values. We now describe the
phases in detalil.

The First Phase The first phase works in stages. Suppose that at the beginning of the
ith stage, we have a working intendaf™* = (g4, &5] that containg*. (Before beginning

the first stage, we check wheth&r= 0 using the decision procedureslf > 0, we set

19= (0, o0].)

1. Let N'-1 denote the set of the candidate values containet h. We check
whether|N'~1| < t using the algorithm of Lemma 5.2. IN'-1| < t, the first
phase ends and we proceed to the second phase. Otherwise, we shrink the working
interval, as described below, to an intervakuch thafN'| < |[N'~1|/3.

2. We run the preprocessing algorithm of Lemma 5.1 that will allow us to generate
a random segmeg; p; whose error lies in the rang®, ¢>].

3. Wegenerate, i@ (logn) time, arandom segmeptp; whose error liesin the range
(0, &2]. We compute its errog’ = A(pi p;) in O(log® n) time using Lemma 5.3.

If ¢’ does not lie in the working intervadj_; (i.e.,&’ < ¢1), we repeat this step.

4. Otherwised’ € li_1), we check if¢’ lies in the middle third of the values ' 2.

We do this inO(n*3*+%) time by using the algorithm of Lemma 5.2 to count the
number of candidate values in the intervalsg, '] and (¢', ¢;]. If ¢ does not lie
in the middle third, we go back to Step 3.

5. We use the min-# algorithm to decidesif > ¢/, ore* < ¢’. If £* > ¢/, we let the

working interval for the next stage bé = (¢’, &,]; otherwise we let’ = (g1, £'].
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Clearly, a random candidate value in the interiya} lies in the middle third of the
values inN;_; with probability at least 23. Sincel; _; contains atleastvalues, arandom
segmentp; p; generated in Step 3 lies in_; with probability at least/n? ~ 1/n%3.

Using these observations, it is easy to see that with high probability (probability at least
1—1/n¢, for some constard), there areD (n*3logn) iterations of Step 3 an® (logn)
iterations of Step 4 in thih stage. We can conclude that the time taken to execute the
ith stage isO(n*3*%), with high probability. Since, during each stage, the number of
candidate values in the working interval decreases by a constant fraction, there are only
a logarithmic number of stages. Therefore, the overall running time of the first phase is
O(n*3+%), with high probability.

The Second Phase Assume that we enter the second phase with the working interval
| = (&1, &2]. We first compute a superset of such segments and then discard those whose
values do not lie in. We compute the candidate segments and values that liafm
follows. We compute the clique covers®f, andG,,, and use them to find the in-degree
and out-degree of each vertex®, andG,,; this takesO(n*3+%) time. We then find

the setS; (resp.S) of all verticesp; (resp.p;) of C for which there is some; (resp.p;),
withi < j, such that the error of segmemtp; lies in|. A vertex p; belongs taS; (resp.

S) if its out-degree (resp. in-degree) @y, is strictly smaller than its out-degree (resp.
in-degree) inG,,. Hence, we can fin&,; (resp.S) by comparing the out-degrees (resp.
in-degrees) of each vertex B, andG,,. Clearly, S and S, contain at most vertices.
Using Lemma 5.3, we compute the error of edgh pj) € S x $, and discard the
segments whose errors do not lielinWe are left with the segments whose errors lie in
. Finally, we perform a binary search over t®¢n%?) candidate values ih, using the
min-# algorithm as a decision procedure, to comptitd he overall running time of the
second phase is also bounded®gn*/3+%). Hence, we can conclude:

Theorem 5.4. For anyé > 0, we can solve the min-problem under the L metric
using a randomized algorithm with expected running tim@5+?).

6. Conclusions

We have presented efficient algorithms that exploit the structure of the graph of short-cuts
G.. This brings us to an extremely interesting question: What happens when other error
criteria are used? (See [25].) An interesting case is when the Euclidean distance is used
to define the error. We have not been able to extend the techniques used in this paper to
compute a compact representation of the gr@plin this case.

Another interesting problem is to find near-linear-time algorithms for the problems
solved in this paper.
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