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Abstract. We prove that the maximum number of geometric permutations, induced by
line transversals to a collection mpairwise disjoint balls ilRY, is ® (n%~1). This improves
substantially the upper bound 6f(n?*-2) known for general convex sets [9].
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1. Introduction

Let A be a family of bodies ifRY. A line ¢ is said to be a@ransversalfor A if it
intersects every member of. If A consists of pairwise disjoint convex bodies, then
a line transversal ford induces two linear orderings ad—the orders in which the
members of4 are met by, corresponding to the two orientations &©fKatchalski et
al. [4] were the first to study such orderings and called tigeometric permutations

Let gq(n) denote the maximum number of geometric permutations, where the max-
imum is taken over all such familied of sizen. The following asymptotic bounds are
known ongy(n).

1. go(n) =2n — 2 (see [3)).
2. ga(n) = Q(n%1) (see [6]).
3. ga(n) = O(n?~2) (see [9]).

It has been conjectured thgf(n) is O(n9-1).

In 1985 Katchalski et al. [7] constructed a familyof 4 pairwise disjoint convex sets
inR? that has B—2 geometric permutations; see Fig. 1. Five years later, Edelsbrunner and
Sharir [3] showed thatr?— 2 is the maximum possible number of geometric permutations
in the plane.

In 1992 Katchalski et al. [6] generalized their lower bound construction and showed
that there exist families! of n pairwise disjoint convex sets R admitting (n®~1)

n — 2 segments

(n—-1,1,2,...,n—2,n)

(1,n,2,...,n—2,n-1)

(1,2,...,i,n—1,i+1,...,n)

Fig. 1. An example ofn convex sets admittingre— 2 geometric permutations (taken from [7]).
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geometric permutations. In this work we show that this lower-bound holds even for
collections of balls ird dimensions.

The only known general upper bound for the number of geometric permutations of
collections of pairwise disjoint convex setsTif is O(n?-?), and is due to Wenger
[9]. Hence, ford > 3 there still exists a wide gap between the known upper and lower
bounds.

In this work we close this gap for families of balls. Specifically, we show that the
maximum number of geometric permutations for collections p&irwise disjoint balls
in RY is ®(n-1). The upper bound is a consequence of the following main technical
result of the paper: A collectiod of n pairwise disjoint balls ifR¢ admits a familyH of
at mostcyn hyperplanes, such that every pair of ballsdns separated by a hyperplane
in H.

An interesting special case of the problem is when all the balld are congruent
(say, unit balls). It is conjectured that|ifl| is sufficiently large, then it can have only
O(1) geometric permutations, with the bound dependingl ofihis conjecture is open
ford > 3. Inthe plane itis known [5] that a collectionwpairwise disjoint translates of
any convex body admits at most three geometric permutations, assaisiggfficiently
large, and this bound is tight in the worst case.

In this paper we show that the maximum number of geometric permutations for
sufficiently many pairwise disjoint unit disks in the plane is only two. An independent
(and different) proof of the same bound has recently been obtained by Katchalski and
Asinowski (private communication; see [2]).

2. Geometric Preliminaries

In this section we develop a few technical concepts that we use in subsequent sections.
We also generalize the notion okaparation setised by Wenger (see [9]).

Definition 2.1. Let Sbe a family of pairwise disjoint convex setslitf, and letP be
a set of hyperplanes iRY passing through the origin. We say tiaiis aseparation set
for Sif for each pairs, s; € Sthere exists a hyperplart¢, parallel to a hyperplane in
P, such that ands; are contained in different open half-spaces boundeH by

For a family S of pairwise disjoint convex sets, & P(S) denote the number of
geometric permutations @&.

Lemma 2.2(see [8] and [9]). Let S be a collection of pairwise disjoint convex sets in
RY and let P be a separation set for Bhen GRS) = O(|P|?" ).

Proof. Consider the arrangemem(P), of the great spheres i§°~! associated with

the hyperplanes iR (i.e., each of these great spheres consists of all orientations parallel
to some hyperplane iR). The arrangement partitions the unit sphere i@tgP|%~%)
connected components (i.e., op@h— 1)-dimensional cells of the arrangement). Fix

a connected componeft and a pair of sets, s € S. There exists a hyperplarté

that separates ands;; H corresponds to one of the great spheres in the arrangement
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A(P), with C lying in one of the two corresponding hemispheres. This means that every
oriented line that intersects baghands; with orientation inC, must intersect the sets

in a fixed order. This is true for every pair of setsSnTherefore every line transversal

to Swith orientation inC induces the same order & Thus the number of geometric
permutations forS is at most the number of connected components in the arrange-
ment A(P), implying the asserted bound. (Note that we can ignore lower-dimensional
faces of A(P), because no line with orientation in such a face can be a transversal
of S.) O

Corollary 2.3 (see [9]). gq(n) = O(n%-2),

Proof. For any seS of n pairwise disjoint convex sets iR? there exists a separation
set of size(g): separate each pair of setsSiby a different hyperplane. The corollary is
now immediate from Lemma 2.2. O

3. Geometric Permutations of Pairwise Disjoint Unit Disks

In this section we study the case of families of pairwise disjoint unit disks in the
plane. We show that, fon sufficiently large, such a family admits at most two geo-
metric permutations. The case of pairwise disjoint unit disks is a special case of disjoint
translates of a convex body. Geometric permutations of disjoint translates of a convex
set were studied by Katchalski et al. in [5] and [6], where the following result was
proved.

Theorem 3.1. The maximum number of geometric permutations for finite families of
disjoint translates of a convex bodyR? is three

For a construction that achieves this bound (for unit disks), see Fig. 2. Asinowski and
Katchalski (see [2]) gave an example of a family of more than three translates admitting
three geometric permutations; see Fig. 3. This construction can be generalized to any
number of translates of the same fixed body.

However, we show that if the convex bodys a disk, there exists a constanguch
that for any se§of more thart pairwise disjoint translates sf the number of geometric

Fig. 2. An example of three unit disks admitting three geometric permutations.
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Fig. 3. An example of five translates admitting three geometric permutations.

permutations foiSis at most two. This proof is inspired by that of [8], but is simpler.
Asinowski and Katchalski (see [2]) have an independent proof for this result. We begin
the proof with some observations:

Lemma 3.2. Let S be a collection of n pairwise disjoint unit disks in the plasueh
that S admits at least one line transversEhere exist two disks such that the distance
between their centers is at leash/4 — 2.

Proof. If ¢is aline transversal db, then all disks irSare contained in a strip of width

4 about¢. Denote byt the distance between the center of the first disk crosse/chiog

the center of the last disk crossedbsince the sum of areas of the disks is less than the
area of the smallest rectangle bounding the disks with an edge in diréctioz have

(t +2) - 4 > nxr, which implies the above inequality. O

Claim 3.3. Let a and b be two disjoint unit disks in the plamad letw,, denote

the double wedge that contains a and b and is bounded by the two separating common
tangents of a and.fihen the set of orientations of the line transversals to a and b consists
of a pair of antipodal arcs on the circle of orientations delimited by the orientations of
these two separating tangents and consisting of orientations of lines that cross both
wedges ofv,p. (See Fig4 for an illustration)

As aresult of Lemma 3.2 and Claim 3.3, and using the fact that the angle between the
two separating tangents is proportional to $ifi/t), wheret is the distance between
the first and last stabbed disks, we can assume that all orientations of line transversals to

Fig. 4. Atransversat for two disks must cross the double wedge defined by the two common tangents.
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a collectionS of pairwise disjoint unit disks lie in an-neighborhood (more precisely,
in the union of two antipodat-neighborhoods) on the unit circle of directions, for
¢ = O(1/n). We can thus make as small as we wish by increasing the number of
disks.

Lete be the angle between the two separating common tangents of the farthest pair of
disks inS. All line transversal orientations should lie in the unioof the two antipodal
e-neighborhoods of orientations mentioned above. Moreover, a line transvesia) io
particular, a transversal to all pairs of disksSand therefore must lie in the intersection
of all of the corresponding unions of antipodal intervals, one pair for each pair of disks
in S. The only case in which each of theneighborhoods it can be broken into more
than one connected component is that in which a pair of disks is close enough so that
their common tangents define an antipodal pair of intervals of admissible orientations
whose sizes are close #oand such that they both cross the two antipodal intervals of
|. See Fig. 5 for an illustration. In that case, simple trigonometry shows that the two
corresponding disks must be very close to one another (the distance between their centers
is at most 2+ O(s?) = 2 + O(1/n?) ), and that the two disks in such a pair must be
adjacent in any geometric permutation. Moreover, the line connecting the centers of such
a pair of disks must be almost perpendicular to any line transversal This implies
that a disk can belong to at most one such pair. Also, pairs of disks that are not as close
to each other appear in the same order in any geometric permutation.

Fig.5. The intersection of the antipodal aflcécorresponding to disksandb) with another pair of antipodal
arcsl’ (corresponding to diska’ andb’) can break each interval ¢finto two connected components.
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We use the following lemma, which was proved in [5]:

Lemma 3.4. Let S= {a, b, c,d} be a set of four pairwise disjoint convex bodies in
the planelf (a, b, ¢, d) is a geometric permutation of, hen(b, a, d, ¢) cannot be a
geometric permutation of.S

It follows immediately that any two geometric permutations differ in a single pair of
consecutive disks, whose order is interchanged between the two permutations. This in
turn implies that there exists at most one gairb) of disks such that any two geometric
permutations are obtained from each other by interchangiagdb, implying thatS
admits at most two geometric permutations. To see this last claim, assume to the contrary
that there are two pair®, b) and(c, d) that consist of four distinct disks such that there
are at least three geometric permutations in which, without loss of generality, both pairs
appear in the following possible orders:

em=¢(..,ab,...,cd, ..),
e mo=(..,ba,...,cd,...),
e 13=(...,a,b,...,d,c, ...);

that is, 5 is obtained fromr; by interchanging andb andx is obtained fromr; by
interchanging andd. However, this is a contradiction singe andr; are two geometric
permutations that contradict Lemma 3.4.

We have proved:

Theorem 3.5. There exists a constant ¢ such that any family of more than ¢ pairwise
disjoint congruent disks in the plane admits at most two geometric permutations

Remark 3.6. As we will show in Section 4.2, this result does not hold when the disks
are not congruent. In this case there are examples@thh) geometric permutations.
However, in these examples the ratio between the largest and the smallest radii is un-
bounded (the ratio depends ah We conjecture that Theorem 3.5 continues to hold
when this ratio is bounded. (Recall that the theorem may fail for translates of a fixed
convex set, as depicted in Fig. 3.)

4. Geometric Permutations of Pairwise Disjoint Balls inR?
4.1. Upper Bounds

Let Sbe a given set of pairwise disjoint (closed) balls &Y. We prove thaty(S) =
O(n%-1). The main step of the proof is to show tHaadmits a separation set of size
O(n). As a matter of fact, we prove the stronger result that there existsth sBO(n)
hyperplanes such that each pair of ballsSSirs separated by a hyperplanehh rather
than a hyperplane parallel to oneth
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Cr(bs)

Fig. 6. The construction ofj k.

LetS= {By, ..., B,} be a set of pairwise disjoint balls irRY; ball B; has radius;
and centeb;. We assume, without loss of generality, that- r, > - .- > r. (If several
balls have the same radius, we slightly increase their radii, making them all distinct and
keeping the balls disjoint. This can only incre@ges).)

Let S4_1 be the unit sphere of directions. Lét= {Cg, ..., Cx} be a covering of
Sq-1 by a set ofK spherical patches of diamet&rwheres is chosen so that the angle
6 between any pair of unit vectofs o e Cy is at most sint((+/3 — 1)/2) ~ 0.375 (or
about 215°). Each se€Cy determines a convex co@g (p) with respect to any given apex
point p; this is the union of all rays emanating fromand having orientations iGy.
Note that we can always cov8g_; with aconstantnumber (depending on dimension)
of setsCy; i.e., K is a constant, depending (exponentially)dn

We construct a seH of O(n) hyperplanes as follows. Consider a bBJl and a
set Cy of directions, which define a con€x(b;), with apex ath;. If Cy(b;) con-
tains the center of at least one ball that is larger tBanthen we letB; (j < i) be
that ball with centelb; € Cy(bj) closest tob;, and we defineh; x to be the hyper-
plane supportind3;, orthogonal to the vectdn; — b; and separatindy; andb;; see
Fig. 6. Clearlyh; x separateds; from B;. We letH be the set of all such hyperplanes
hi ; since K is a constant depending on dimensighl] = O(n), for any fixed
dimensiond.

Theorem 4.1. H is a separating set for.S

Proof. We must show that for every choice Bf, andj < i, there is a hyperplane in
H that separateB; from B;.

Our proof is by induction on. The base of the induction is the trivial claim that
H contains hyperplanes separatiBg from each ball that has larger radius (there are
none). We now make the following induction hypothesisi(ot contains a hyperplane
separating Bfrom each Bwith j <.

Suppose the hypothesis holds foridll< i, and consider balB = B; ;. Without
loss of generality, we can assume that = 1 andb;; is the origin,O. Consider an
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arbitraryB’ = By, with j <i + 1, radius’ =r; > 1, and centev = by; lying in a cone
C = Ci(bjy1), forsomek € {1, ..., K}.

By the construction of, sinceC contains the center of a larger ball, we know that
there exists a hyperplate= h;.1x € H separating® from some ballB”, with radius
r” > 1and centeun € C. (Infact, by constructiorj is supportingB and is orthogonal to
u.) Our goal is to show thatl contains a hyperplane separatiBdgrom B'. If B = B”,
we are done. So, we assume tBaiandB” are distinct.

By the induction hypothesis, there exists a hyperplahe H that separate8’
from B” (since each has radius larger than thaB)f If h already separate®’ from
B, then we are done. So we assume that it does not, which mean®'thater-
sectsh.

We letd be the angle betweamandv. We letp denote the ray containing with
endpoint at the origin. We lgt = h N B denote the point op whereh supportsB, and
we let p’ denote the point op, further fromp, at distancév — p| from p. Finally, we
let 9’ denote the angle between vector p andp. See Fig. 7 for an illustration.

Fig. 7. lllustration of the notation in the proof of Theorem 4.1. (The dotted loop surrouriliigmeant to
convey the fact thaB’ is assumed to cross even though, for clarity, we have not drawn it large enough to
do so.)
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We will need the following technical lemma:

Lemma4.2. 2sin6’/2) < cosh’.

Proof. Referring to Fig. 7, we need to show thap’| < |pp’|, wherep” is the foot of
the perpendicular from to p. It is easily seen that this can be rewritten as

|v| sinf
—— < |v|]cosh — 1.
cog6’/2)

Sinced is acute and| > 2, it follows thatZOvp < 6 and henc®’ < 20. We thus have

|v]| sing

—— < |v|tand,
cog0’/2)

so it suffices to show thgb|tand < |v|cosd — 1; since|v| > 2, it suffices to show
that co® —tand > 1, or that 1— si 6 — sing >  coss. By construction, we have
sind < (v/3 - 1)/2, which implies that 1- sirf 6 — sind > 1, thus completing the
proof of the lemma. O

Note that Lemma 4.2 trivially implies that < = /4.

First, we claim thaB’ intersectso in an interval that lies afteu (i.e., an interval of
points that are farther from the origin than is the paihitthus,h’ separates the origin
(andB”) from B’. We argue as follows. Sinéé < = /4, we know that point is at least as
closetoray asitis to hyperplank; thus,B’ intersects ray. By Lemma 4.2y is in fact
closer to pointp’ than to any point oh; thus,B’ contains poinp’. Now, by construction
of H, |u] < |v|, which impliesthatu — p|=|ul—1<|v|—-1<|v—p|=|p — pl.
Thus, rayp intersectsB’ after B”. Sinceh’ separate®’ andB”, ray p must intersecB
beforeB” beforeh’ beforeB’.

Second, we claim thdt’ does not intersedB; thus,h’ separate® from B’. To see
this claim, consider for eadi € B the raypq that is parallel tg, with apexq. SinceB”
is larger tharB, each raypy must intersecB”. Now ray p intersectB beforeB” before
', so, by continuity, each raygg must also intersed® beforeB” beforeh'. This shows
thath’ cannot intersecdB, since every poingl € B is the apex of a ray that intersetts
only after passing througB” (which is disjoint fromh’).

Since we have shown thht separate® and B’, this completes the induction step
and thus concludes the proof of the theorem. O

As a result of Lemma 2.2 and Theorem 4.1 we have:

Theorem 4.3. The number of geometric permutations of a set of n pairwise disjoint
balls inRY is O(n%-1).

Remark 4.4. For general pairwise disjoint convex setsRA, the size of a separating
set can b (n?). For example, in the standard construction of a Voronoi diagraR¥in
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with ® (n?) complexity, one need (n?) different plane orientations to separate all pairs
of cells. Hence the current proof of Theorem 4.3 does not extend to families of general
convex sets.

4.2. Lower Bounds

In this subsection we prove that the lower boundxgh®-1) for g4(n) can be attained
by a family ofn pairwise disjoint balls ifRY.

Theorem 4.5. There exists aset S of n pairwise disjoint ball®frthat admits2 (n9-1)
geometric permutations

Proof. For simplicity we start withR?. We construct a family oh pairwise dis-
joint disks in the plane admittingn/2] geometric permutations. We then extend this
construction to obtain a family af pairwise disjoint balls ifR¢ admitting €2(n9-1)
geometric permutations. The constructions are inspired by those of Agarwal et al.
[1].

Consider a lingl through the originO in R?. Let ¢ be a small quantity to be fixed
later and letR; > 0. Place two disks of radiuR; tangent to¢ at O from the oppo-
site sides oft, and then move them apart slightly, perpendiculaf,.tgsuch that any
line that passes throug® and makes an angle larger tharwith ¢ is a transver-
sal for this pair of disks. Denote the resulting two disks By and D?. Note that
no line transversal fofD}', D?} is parallel to¢. Note that the distance, between
D! and D? can be made arbitrarily large R, is sufficiently large, whiles is kept
fixed.

Assume, without loss of generality, thatis even. Consider a set of/2 distinct

lines {l1,....ln2} passing through the origin. We construct the Set= {D}, D} |
i = 1,...,n/2} by induction. Suppose we have already constructed the set of pair-
wise disjoint disks§ = {Dllk, D2 | k=1,...,]j} forsomej > 0 We chooseR;;1

sufficiently large such that it is pOSS|bIe to place two dlﬂ{'s DI ,, of radius R4,
outside the convex hull of the union of the disks§n so that ‘the line connecting their
centers passes through and is orthogonal td;.1, as above, and so that every line
that passes throug and makes an angle larger tharwith line I, is a transver-
sal for {D1 D2 .} and no line transversal fo{lD1 D2 \} is parallel tolj,;. We
proceed in thls manner until the whole s&fis constructed We claim that ife2is
smaller than the smallest angle between anylpdir of our lines, therG P(S) consists

of n/2 geometric permutations. Indeed, fix one of the lihedNo line that makes an
angle less thaa with line |; is a transversal fofle, Df}. Hence no line with orien-
tation that lies in are-neighborhood of the orientatian of I; (or in a neighborhood
of o; 4+ ) is a transversal fo. Moreover, every line through the origin whose orien-
tation is in the complement of the union of alneighborhoods o#;, and ofa; + 7
fori =1,...,n/2, must be a transversal f@since it intersect®! and D? for every

i = 1,...,n/2. Thus takinge to be sufficiently small, as prescribed above, we get
n pairwise disjoint intervals on the circle of directioss and any orientation in the
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Fig. 8. The setS; consists of four pairwise disjoint disks and admits two geometric permutations.

complement of the union of these intervals is the orientation of some line transversal
for S. This complement consists nfconnected components that comeji2 antipodal

pairs, and any pair of nonantipodal components gives rise to different geometric per-
mutations, since the order of at least one p}ﬂl: D,f is reversed. It is easily seen that
orientations in the same component of the complement give rise to the same geomet-
ric permutation. We thus get/2 different geometric permutations. See Fig. 8 for an
illustration.

We modify the above construction, to get a Saif n pairwise disjoint balls ifR¢
admitting 2 (n~1) geometric permutations, in the following manner. Instead of lines
we placen/2 distinct hyperplanegr, .. ., mn/2} passing through the origin, such that
no d hyperplanes pass through the same line. The pairs of balls are constructed in an
analogous manner; i.e., for each hyperplanén turn, we place two congruent balls
outside the convex hull of all the ball8!, B | j = 1,...,i — 1} such that every line
that passes through the origin and makes an angle largee théh hyperplaner; is
a transversal fofB?, B2} and no line parallel to hyperplang is a transversal for this
pair of balls. LetSy_; denote the (unit-radius) sphere of directiongRity, centered at
the origin; each direction id-space can be represented as a poinsgn. The locus
of orientations of lines parallel ta; is a great(d — 2)-sphere onSy_1, and then/2
great spherefCy, ..., Cy/2}, in general position, corresponding to thg2 hyperplanes
{1, ..., 2} induce an arrangement on Sq_;1 with ®(n%1) cells. To finish the
argument it is sufficient to show that each such cell contains at least one line orientation
corresponding to a transversal ferindeed, any line passing throughand making an
angle larger than with each hyperplang; is a transversal foB. Therefore every point
on Sy_1 outside of each of the bands of half-widttcentered around each of th¢2
great sphere€§; is the orientation of a line transversal f8throughO. Pickinge small
enough (as a function of) we can assure that the bands are sufficiently narrow so that
every cell of.A contains a point outside of the bands. It is easy to see that two lines with
orientations that belong to different nonantipodal cells in this arrangement induce two
different linear orderings on the balls, since at least two [2#isB? change their order
in these two orderings. This completes the construction of a family of balls admitting
Q(n91) linear orderings. Since each geometric permutation is counted at most twice in
these linear orderings, we haggn®-') geometric permutations. |
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5. Open Problems

In conclusion, we mention a few open problems suggested by the results of this paper:

1. Although Remark 4.4 shows that separation sets may have quadratic size in general,
we conjecture tha®©(n) orientations suffice to separate all pairs of sets that are
adjacent in some geometric permutation of the given collection, for any collection
of n pairwise disjoint convex sets IR¢. If true, this conjecture would imply an
O(n-1) bound on the maximum number of geometric permutations for families
of pairwise disjoint convex sets .

2. If the balls inS are all congruent, we conjecture (as noted in the Introduction)
that the number of geometric permutationsSas O(1). As far as we know, this
problem is open already far = 3.

3. IsO(n%1) also a bound on the maximum number of geometric permutations for
families of pairwise disjoint convex setsf'?
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