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Abstract. We prove that the maximum number of geometric permutations, induced by
line transversals to a collection ofn pairwise disjoint balls inRd, is2(nd−1). This improves
substantially the upper bound ofO(n2d−2) known for general convex sets [9].

We show that the maximum number of geometric permutations of a sufficiently large
collection of pairwise disjoint unit disks in the plane is two, improving the previous upper
bound of three given in [5].
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1. Introduction

Let A be a family of bodies inRd. A line ` is said to be atransversalfor A if it
intersects every member ofA. If A consists of pairwise disjoint convex bodies, then
a line transversal forA induces two linear orderings onA—the orders in which the
members ofA are met bỳ , corresponding to the two orientations of`. Katchalski et
al. [4] were the first to study such orderings and called themgeometric permutations.

Let gd(n) denote the maximum number of geometric permutations, where the max-
imum is taken over all such familiesA of sizen. The following asymptotic bounds are
known ongd(n).

1. g2(n) = 2n− 2 (see [3]).
2. gd(n) =Ä(nd−1) (see [6]).
3. gd(n) = O(n2d−2) (see [9]).

It has been conjectured thatgd(n) is O(nd−1).
In 1985 Katchalski et al. [7] constructed a family ofn ≥ 4 pairwise disjoint convex sets

inR2 that has 2n−2 geometric permutations; see Fig. 1. Five years later, Edelsbrunner and
Sharir [3] showed that 2n−2 is the maximum possible number of geometric permutations
in the plane.

In 1992 Katchalski et al. [6] generalized their lower bound construction and showed
that there exist familiesA of n pairwise disjoint convex sets inRd admittingÄ(nd−1)

Fig. 1. An example ofn convex sets admitting 2n− 2 geometric permutations (taken from [7]).
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geometric permutations. In this work we show that this lower-bound holds even for
collections of balls ind dimensions.

The only known general upper bound for the number of geometric permutations of
collections of pairwise disjoint convex sets inRd is O(n2d−2), and is due to Wenger
[9]. Hence, ford ≥ 3 there still exists a wide gap between the known upper and lower
bounds.

In this work we close this gap for families of balls. Specifically, we show that the
maximum number of geometric permutations for collections ofn pairwise disjoint balls
in Rd is 2(nd−1). The upper bound is a consequence of the following main technical
result of the paper: A collectionA of n pairwise disjoint balls inRd admits a familyH of
at mostcdn hyperplanes, such that every pair of balls inA is separated by a hyperplane
in H .

An interesting special case of the problem is when all the balls inA are congruent
(say, unit balls). It is conjectured that if|A| is sufficiently large, then it can have only
O(1) geometric permutations, with the bound depending ond. This conjecture is open
for d ≥ 3. In the plane it is known [5] that a collection ofn pairwise disjoint translates of
any convex body admits at most three geometric permutations, assumingn is sufficiently
large, and this bound is tight in the worst case.

In this paper we show that the maximum number of geometric permutations for
sufficiently many pairwise disjoint unit disks in the plane is only two. An independent
(and different) proof of the same bound has recently been obtained by Katchalski and
Asinowski (private communication; see [2]).

2. Geometric Preliminaries

In this section we develop a few technical concepts that we use in subsequent sections.
We also generalize the notion of aseparation setused by Wenger (see [9]).

Definition 2.1. Let S be a family of pairwise disjoint convex sets inRd, and letP be
a set of hyperplanes inRd passing through the origin. We say thatP is aseparation set
for S if for each pairsi , sj ∈ S there exists a hyperplaneH , parallel to a hyperplane in
P, such thatsi andsj are contained in different open half-spaces bounded byH .

For a family S of pairwise disjoint convex sets, letG P(S) denote the number of
geometric permutations ofS.

Lemma 2.2(see [8] and [9]). Let S be a collection of pairwise disjoint convex sets in
Rd and let P be a separation set for S. Then G P(S) = O(|P|d−1).

Proof. Consider the arrangement,A(P), of the great spheres inSd−1 associated with
the hyperplanes inP (i.e., each of these great spheres consists of all orientations parallel
to some hyperplane inP). The arrangement partitions the unit sphere intoO(|P|d−1)

connected components (i.e., open(d − 1)-dimensional cells of the arrangement). Fix
a connected componentC and a pair of setssi , sj ∈ S. There exists a hyperplaneH
that separatessi andsj ; H corresponds to one of the great spheres in the arrangement
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A(P), with C lying in one of the two corresponding hemispheres. This means that every
oriented line that intersects bothsi andsj with orientation inC, must intersect the sets
in a fixed order. This is true for every pair of sets inS. Therefore every line transversal
to S with orientation inC induces the same order onS. Thus the number of geometric
permutations forS is at most the number of connected components in the arrange-
ment A(P), implying the asserted bound. (Note that we can ignore lower-dimensional
faces of A(P), because no line with orientation in such a face can be a transversal
of S.)

Corollary 2.3 (see [9]). gd(n) = O(n2d−2).

Proof. For any setS of n pairwise disjoint convex sets inRd there exists a separation
set of size

(n
2

)
: separate each pair of sets inSby a different hyperplane. The corollary is

now immediate from Lemma 2.2.

3. Geometric Permutations of Pairwise Disjoint Unit Disks

In this section we study the case of families of pairwise disjoint unit disks in the
plane. We show that, forn sufficiently large, such a family admits at most two geo-
metric permutations. The case of pairwise disjoint unit disks is a special case of disjoint
translates of a convex body. Geometric permutations of disjoint translates of a convex
set were studied by Katchalski et al. in [5] and [6], where the following result was
proved.

Theorem 3.1. The maximum number of geometric permutations for finite families of
disjoint translates of a convex body inR2 is three.

For a construction that achieves this bound (for unit disks), see Fig. 2. Asinowski and
Katchalski (see [2]) gave an example of a family of more than three translates admitting
three geometric permutations; see Fig. 3. This construction can be generalized to any
number of translates of the same fixed body.

However, we show that if the convex bodys is a disk, there exists a constantc such
that for any setSof more thanc pairwise disjoint translates ofs, the number of geometric

Fig. 2. An example of three unit disks admitting three geometric permutations.
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Fig. 3. An example of five translates admitting three geometric permutations.

permutations forS is at most two. This proof is inspired by that of [8], but is simpler.
Asinowski and Katchalski (see [2]) have an independent proof for this result. We begin
the proof with some observations:

Lemma 3.2. Let S be a collection of n pairwise disjoint unit disks in the plane, such
that S admits at least one line transversal. There exist two disks such that the distance
between their centers is at leastπn/4− 2.

Proof. If ` is a line transversal ofS, then all disks inSare contained in a strip of width
4 about̀ . Denote byt the distance between the center of the first disk crossed by` and
the center of the last disk crossed by`. Since the sum of areas of the disks is less than the
area of the smallest rectangle bounding the disks with an edge in direction`, we have
(t + 2) · 4≥ nπ , which implies the above inequality.

Claim 3.3. Let a and b be two disjoint unit disks in the plane, and letwab denote
the double wedge that contains a and b and is bounded by the two separating common
tangents of a and b. Then the set of orientations of the line transversals to a and b consists
of a pair of antipodal arcs on the circle of orientations delimited by the orientations of
these two separating tangents and consisting of orientations of lines that cross both
wedges ofwab. (See Fig. 4 for an illustration.)

As a result of Lemma 3.2 and Claim 3.3, and using the fact that the angle between the
two separating tangents is proportional to sin−1(1/t), wheret is the distance between
the first and last stabbed disks, we can assume that all orientations of line transversals to

Fig. 4. A transversal̀ for two disks must cross the double wedge defined by the two common tangents.
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a collectionS of pairwise disjoint unit disks lie in anε-neighborhood (more precisely,
in the union of two antipodalε-neighborhoods) on the unit circle of directions, for
ε = O(1/n). We can thus makeε as small as we wish by increasing the number of
disks.

Let ε be the angle between the two separating common tangents of the farthest pair of
disks inS. All line transversal orientations should lie in the unionI of the two antipodal
ε-neighborhoods of orientations mentioned above. Moreover, a line transversal toSis, in
particular, a transversal to all pairs of disks inSand therefore must lie in the intersection
of all of the corresponding unions of antipodal intervals, one pair for each pair of disks
in S. The only case in which each of theε-neighborhoods inI can be broken into more
than one connected component is that in which a pair of disks is close enough so that
their common tangents define an antipodal pair of intervals of admissible orientations
whose sizes are close toπ and such that they both cross the two antipodal intervals of
I . See Fig. 5 for an illustration. In that case, simple trigonometry shows that the two
corresponding disks must be very close to one another (the distance between their centers
is at most 2+ O(ε2) = 2+ O(1/n2) ), and that the two disks in such a pair must be
adjacent in any geometric permutation. Moreover, the line connecting the centers of such
a pair of disks must be almost perpendicular to any line transversal ofS. This implies
that a disk can belong to at most one such pair. Also, pairs of disks that are not as close
to each other appear in the same order in any geometric permutation.

Fig. 5. The intersection of the antipodal arcsI (corresponding to disksa andb) with another pair of antipodal
arcsI ′ (corresponding to disksa′ andb′) can break each interval ofI into two connected components.
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We use the following lemma, which was proved in [5]:

Lemma 3.4. Let S= {a,b, c,d} be a set of four pairwise disjoint convex bodies in
the plane. If (a,b, c,d) is a geometric permutation of S, then(b,a,d, c) cannot be a
geometric permutation of S.

It follows immediately that any two geometric permutations differ in a single pair of
consecutive disks, whose order is interchanged between the two permutations. This in
turn implies that there exists at most one pair(a,b) of disks such that any two geometric
permutations are obtained from each other by interchanginga andb, implying thatS
admits at most two geometric permutations. To see this last claim, assume to the contrary
that there are two pairs(a,b) and(c,d) that consist of four distinct disks such that there
are at least three geometric permutations in which, without loss of generality, both pairs
appear in the following possible orders:

• π1 = (. . . ,a,b, . . . , c,d, . . .),
• π2 = (. . . ,b,a, . . . , c,d, . . .),
• π3 = (. . . ,a,b, . . . ,d, c, . . .);

that is,π2 is obtained fromπ1 by interchanginga andb andπ3 is obtained fromπ1 by
interchangingc andd. However, this is a contradiction sinceπ2 andπ3 are two geometric
permutations that contradict Lemma 3.4.

We have proved:

Theorem 3.5. There exists a constant c such that any family of more than c pairwise
disjoint congruent disks in the plane admits at most two geometric permutations.

Remark 3.6. As we will show in Section 4.2, this result does not hold when the disks
are not congruent. In this case there are examples withÄ(n) geometric permutations.
However, in these examples the ratio between the largest and the smallest radii is un-
bounded (the ratio depends onn). We conjecture that Theorem 3.5 continues to hold
when this ratio is bounded. (Recall that the theorem may fail for translates of a fixed
convex set, as depicted in Fig. 3.)

4. Geometric Permutations of Pairwise Disjoint Balls inRd

4.1. Upper Bounds

Let S be a given set ofn pairwise disjoint (closed) balls inRd. We prove thatgd(S) =
O(nd−1). The main step of the proof is to show thatS admits a separation set of size
O(n). As a matter of fact, we prove the stronger result that there exists a setH of O(n)
hyperplanes such that each pair of balls inS is separated by a hyperplane inH , rather
than a hyperplane parallel to one inH .
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Fig. 6. The construction ofhi,k.

Let S= {B1, . . . , Bn} be a set ofn pairwise disjoint balls inRd; ball Bi has radiusri

and centerbi . We assume, without loss of generality, thatr1 > r2 > · · · > rn. (If several
balls have the same radius, we slightly increase their radii, making them all distinct and
keeping the balls disjoint. This can only increasegd(S).)

Let Sd−1 be the unit sphere of directions. LetC = {C1, . . . ,CK } be a covering of
Sd−1 by a set ofK spherical patches of diameterδ, whereδ is chosen so that the angle
θ between any pair of unit vectorŝu, v̂ ∈ Ck is at most sin−1((

√
3− 1)/2) ≈ 0.375 (or

about 21.5◦). Each setCk determines a convex coneCk(p)with respect to any given apex
point p; this is the union of all rays emanating fromp and having orientations inCk.
Note that we can always coverSd−1 with aconstantnumber (depending on dimension)
of setsCk; i.e., K is a constant, depending (exponentially) ond.

We construct a setH of O(n) hyperplanes as follows. Consider a ballBi and a
set Ck of directions, which define a cone,Ck(bi ), with apex atbi . If Ck(bi ) con-
tains the center of at least one ball that is larger thanBi , then we letBj ( j < i ) be
that ball with centerbj ∈ Ck(bi ) closest tobi , and we definehi,k to be the hyper-
plane supportingBi , orthogonal to the vectorbj − bi and separatingbi and bj ; see
Fig. 6. Clearly,hi,k separatesBi from Bj . We let H be the set of all such hyperplanes
hi,k; since K is a constant depending on dimension,|H | = O(n), for any fixed
dimensiond.

Theorem 4.1. H is a separating set for S.

Proof. We must show that for every choice ofBi , and j < i , there is a hyperplane in
H that separatesBi from Bj .

Our proof is by induction oni . The base of the induction is the trivial claim that
H contains hyperplanes separatingB1 from each ball that has larger radius (there are
none). We now make the following induction hypothesis (oni ): H contains a hyperplane
separating Bi from each Bj with j < i .

Suppose the hypothesis holds for alli ′ ≤ i , and consider ballB = Bi+1. Without
loss of generality, we can assume thatri+1 = 1 andbi+1 is the origin,O. Consider an
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arbitraryB′ = Bj , with j < i + 1, radiusr ′ = r j > 1, and centerv = bj lying in a cone
C = Ck(bi+1), for somek ∈ {1, . . . , K }.

By the construction ofH , sinceC contains the center of a larger ball, we know that
there exists a hyperplaneh = hi+1,k ∈ H separatingB from some ball,B′′, with radius
r ′′ > 1 and centeru ∈ C. (In fact, by construction,h is supportingB and is orthogonal to
u.) Our goal is to show thatH contains a hyperplane separatingB from B′. If B′ = B′′,
we are done. So, we assume thatB′ andB′′ are distinct.

By the induction hypothesis, there exists a hyperplaneh′ ∈ H that separatesB′

from B′′ (since each has radius larger than that ofB). If h already separatesB′ from
B, then we are done. So we assume that it does not, which means thatB′ inter-
sectsh.

We let θ be the angle betweenu andv. We letρ denote the ray containingu with
endpoint at the origin. We letp = h∩ B denote the point onρ whereh supportsB, and
we let p′ denote the point onρ, further fromp, at distance|v − p| from p. Finally, we
let θ ′ denote the angle between vectorv − p andρ. See Fig. 7 for an illustration.

Fig. 7. Illustration of the notation in the proof of Theorem 4.1. (The dotted loop surroundingB′ is meant to
convey the fact thatB′ is assumed to crossh, even though, for clarity, we have not drawn it large enough to
do so.)
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We will need the following technical lemma:

Lemma 4.2. 2 sin(θ ′/2) ≤ cosθ ′.

Proof. Referring to Fig. 7, we need to show that|vp′| ≤ |pp′′|, wherep′′ is the foot of
the perpendicular fromv to ρ. It is easily seen that this can be rewritten as

|v| sinθ

cos(θ ′/2)
≤ |v| cosθ − 1.

Sinceθ is acute and|v| > 2, it follows that∠Ovp < θ and henceθ ′ < 2θ . We thus have

|v| sinθ

cos(θ ′/2)
≤ |v| tanθ,

so it suffices to show that|v| tanθ ≤ |v| cosθ − 1; since|v| > 2, it suffices to show
that cosθ − tanθ > 1

2, or that 1− sin2 θ − sinθ ≥ 1
2 cosθ . By construction, we have

sinθ ≤ (
√

3− 1)/2, which implies that 1− sin2 θ − sinθ ≥ 1
2, thus completing the

proof of the lemma.

Note that Lemma 4.2 trivially implies thatθ ′ ≤ π/4.
First, we claim thatB′ intersectsρ in an interval that lies afteru (i.e., an interval of

points that are farther from the origin than is the pointu); thus,h′ separates the origin
(andB′′) from B′. We argue as follows. Sinceθ ′ ≤ π/4, we know that pointv is at least as
close to rayρ as it is to hyperplaneh; thus,B′ intersects rayρ. By Lemma 4.2,v is in fact
closer to pointp′ than to any point onh; thus,B′ contains pointp′. Now, by construction
of H , |u| ≤ |v|, which implies that|u− p| = |u| − 1 ≤ |v| − 1 ≤ |v − p| = |p′ − p|.
Thus, rayρ intersectsB′ after B′′. Sinceh′ separatesB′ andB′′, rayρ must intersectB
beforeB′′ beforeh′ beforeB′.

Second, we claim thath′ does not intersectB; thus,h′ separatesB from B′. To see
this claim, consider for eachq ∈ B the rayρq that is parallel toρ, with apexq. SinceB′′

is larger thanB, each rayρq must intersectB′′. Now rayρ intersectsB beforeB′′ before
h′, so, by continuity, each rayρq must also intersectB beforeB′′ beforeh′. This shows
thath′ cannot intersectB, since every pointq ∈ B is the apex of a ray that intersectsh′

only after passing throughB′′ (which is disjoint fromh′).
Since we have shown thath′ separatesB and B′, this completes the induction step

and thus concludes the proof of the theorem.

As a result of Lemma 2.2 and Theorem 4.1 we have:

Theorem 4.3. The number of geometric permutations of a set of n pairwise disjoint
balls inRd is O(nd−1).

Remark 4.4. For general pairwise disjoint convex sets inR3, the size of a separating
set can be2(n2). For example, in the standard construction of a Voronoi diagram inR3
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with2(n2) complexity, one needs2(n2) different plane orientations to separate all pairs
of cells. Hence the current proof of Theorem 4.3 does not extend to families of general
convex sets.

4.2. Lower Bounds

In this subsection we prove that the lower bound ofÄ(nd−1) for gd(n) can be attained
by a family ofn pairwise disjoint balls inRd.

Theorem 4.5. There exists a set S of n pairwise disjoint balls inRd that admitsÄ(nd−1)

geometric permutations.

Proof. For simplicity we start withR2. We construct a family ofn pairwise dis-
joint disks in the plane admittingbn/2c geometric permutations. We then extend this
construction to obtain a family ofn pairwise disjoint balls inRd admittingÄ(nd−1)

geometric permutations. The constructions are inspired by those of Agarwal et al.
[1].

Consider a linè through the originO in R2. Let ε be a small quantity to be fixed
later and letR1 > 0. Place two disks of radiusR1 tangent tò at O from the oppo-
site sides of̀ , and then move them apart slightly, perpendicular to`, such that any
line that passes throughO and makes an angle larger thanε with ` is a transver-
sal for this pair of disks. Denote the resulting two disks byD1

l and D2
l . Note that

no line transversal for{D1
l , D2

l } is parallel to`. Note that the distanceρ, between
D1

l and D2
l can be made arbitrarily large ifR1 is sufficiently large, whileε is kept

fixed.
Assume, without loss of generality, thatn is even. Consider a set ofn/2 distinct

lines {l1, . . . , ln/2} passing through the origin. We construct the setS = {D1
l i
, D2

l i
|

i = 1, . . . ,n/2} by induction. Suppose we have already constructed the set of pair-
wise disjoint disksSj = {D1

lk
, D2

lk
| k = 1, . . . , j }, for some j ≥ 0 We chooseRj+1

sufficiently large such that it is possible to place two disksD1
l j+1
, D2

l j+1
of radiusRj+1

outside the convex hull of the union of the disks inSj , so that the line connecting their
centers passes throughO and is orthogonal tol j+1, as above, and so that every line
that passes throughO and makes an angle larger thanε with line l j+1 is a transver-
sal for {D1

l j+1
, D2

l j+1
} and no line transversal for{D1

l j+1
, D2

l j+1
} is parallel tol j+1. We

proceed in this manner until the whole setS is constructed. We claim that if 2ε is
smaller than the smallest angle between any pairl i , l j of our lines, thenG P(S) consists
of n/2 geometric permutations. Indeed, fix one of the linesl i . No line that makes an
angle less thanε with line l i is a transversal for{D1

l i
, D2

l i
}. Hence no line with orien-

tation that lies in anε-neighborhood of the orientationαi of l i (or in a neighborhood
of αi + π ) is a transversal forS. Moreover, every line through the origin whose orien-
tation is in the complement of the union of allε-neighborhoods ofαi , and ofαi + π
for i = 1, . . . ,n/2, must be a transversal forS since it intersectsD1

l i
andD2

l i
for every

i = 1, . . . ,n/2. Thus takingε to be sufficiently small, as prescribed above, we get
n pairwise disjoint intervals on the circle of directionsS1 and any orientation in the



258 S. Smorodinsky, J. S. B. Mitchell, and M. Sharir

Fig. 8. The setS2 consists of four pairwise disjoint disks and admits two geometric permutations.

complement of the union of these intervals is the orientation of some line transversal
for S. This complement consists ofn connected components that come inn/2 antipodal
pairs, and any pair of nonantipodal components gives rise to different geometric per-
mutations, since the order of at least one pairD1

l i
, D2

l i
is reversed. It is easily seen that

orientations in the same component of the complement give rise to the same geomet-
ric permutation. We thus getn/2 different geometric permutations. See Fig. 8 for an
illustration.

We modify the above construction, to get a setS of n pairwise disjoint balls inRd

admittingÄ(nd−1) geometric permutations, in the following manner. Instead of lines
we placen/2 distinct hyperplanes{π1, . . . , πn/2} passing through the origin, such that
no d hyperplanes pass through the same line. The pairs of balls are constructed in an
analogous manner; i.e., for each hyperplaneπi in turn, we place two congruent balls
outside the convex hull of all the balls{B1

j , B2
j | j = 1, . . . , i − 1} such that every line

that passes through the origin and makes an angle larger thanε with hyperplaneπi is
a transversal for{B1

i , B2
i } and no line parallel to hyperplaneπi is a transversal for this

pair of balls. LetSd−1 denote the (unit-radius) sphere of directions inRd, centered at
the origin; each direction ind-space can be represented as a point onSd−1. The locus
of orientations of lines parallel toπi is a great(d − 2)-sphere onSd−1, and then/2
great spheres{C1, . . . ,Cn/2}, in general position, corresponding to then/2 hyperplanes
{π1, . . . , πn/2} induce an arrangementA on Sd−1 with 2(nd−1) cells. To finish the
argument it is sufficient to show that each such cell contains at least one line orientation
corresponding to a transversal forS. Indeed, any line passing throughO and making an
angle larger thanε with each hyperplaneπi is a transversal forS. Therefore every point
on Sd−1 outside of each of the bands of half-widthε centered around each of then/2
great spheresCi is the orientation of a line transversal forS throughO. Pickingε small
enough (as a function ofn) we can assure that the bands are sufficiently narrow so that
every cell ofA contains a point outside of the bands. It is easy to see that two lines with
orientations that belong to different nonantipodal cells in this arrangement induce two
different linear orderings on the balls, since at least two ballsB1

i , B2
i change their order

in these two orderings. This completes the construction of a family of balls admitting
Ä(nd−1) linear orderings. Since each geometric permutation is counted at most twice in
these linear orderings, we haveÄ(nd−1) geometric permutations.
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5. Open Problems

In conclusion, we mention a few open problems suggested by the results of this paper:

1. Although Remark 4.4 shows that separation sets may have quadratic size in general,
we conjecture thatO(n) orientations suffice to separate all pairs of sets that are
adjacent in some geometric permutation of the given collection, for any collection
of n pairwise disjoint convex sets inRd. If true, this conjecture would imply an
O(nd−1) bound on the maximum number of geometric permutations for families
of pairwise disjoint convex sets inRd.

2. If the balls inS are all congruent, we conjecture (as noted in the Introduction)
that the number of geometric permutations ofS is O(1). As far as we know, this
problem is open already ford = 3.

3. Is O(nd−1) also a bound on the maximum number of geometric permutations for
families of pairwise disjoint convex sets inRd?
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