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Abstract. In this paper we consider coverings of the plane by circles of two different
sizes. We establish a sufficient condition for such a covering to be solid in the sense of L.
Fejes Tóth [6]. As an application of this general theorem we prove that there exist infinitely
many solid coverings of this kind.

1. Introduction

A set of open (closed) circles is said to form apacking(covering) of the Euclidean plane
if each point of the plane belongs to at most (at least) one circle of the set. Packings and
coverings of the plane with incongruent circles are the subject of several papers (see,
e.g., [5] and [9]–[11]) and of the comprehensive monograph [7]. One of the results is that
the density of any packing (covering) with circles of not too different radii is not greater
(not less) than the maximum (minimum) density of packings (coverings) with congruent
circles. This is a nonpublished result of K. B¨oröczky (for ref. see p. 194 of [7]). It was
independently established and published by Blind [2] and is contained in a more general
theorem of G. Fejes T´oth [3]. The upper and lower bounds for the packing and covering
densities of the arrangements consisting of circles with radii selected from a given
bounded interval are in some cases very close to each other. In this connection, many
interesting packings and coverings with circles of different sizes have been suggested (see
[16]). However, none of them—with the exception of B¨oröczky’s and Blind’s results—
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Fig. 1

could be proved to be extremal amongall packings or coverings by circles with radii
selected from a given interval.

On the other hand, Florian [12] considered coverings involving two types of circles
of radius 1 andp < 1, respectively. He found an arrangement of minimal density for
p = p1 = 0.2483. . . , and for p = p2 = 0.5023. . . (see Figs. 1 and 2). Recently, it
has been shown that any covering of the plane with two kinds of circles has a density
≥ 1.01895. . . [5]. There are coverings of the plane with two kinds of circles whose
densities are arbitrarily close to this constant.

The investigation gained fresh impetus when L. Fejes T´oth introduced the notion
of solidity. A packing (covering) of disks is said to besolid if no finitenumber of its
members can be rearranged so as to form, together with the rest of the members, a packing
(covering)not congruentto the original one. Solid sets of circles were investigated by
several authors [6], [4], [1], [8], [15]. Some promising configurations, e.g., the set of
incircles of the Archimedean tiling(4,8,8), resisted for a long time all attempts to prove
them to be solid. Recently, Heppes [14] succeeded in proving the solidity of a number
of packings consisting of two or three kinds of circles, including the case(4,8,8).

In this paper we combine the methods employed by the two authors to investigate the
solidity of coverings. The coverings considered here consist of circles of two different

Fig. 2
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sizes, e.g., of radius 1 andp < 1. A sufficient condition for the solidity of such coverings
is established. As an application of this general theorem we prove the existence of
infinitely many solid coverings of this kind. More precisely, there exist two intervals for
p (i.e., the radius of the smaller circle), one containing the previously mentioned value
p1 = 0.2483. . . , and another containingp2 = 0.5023. . . , such that for each value
inside these intervals a solid covering can be found.

2. A General Theorem

In order to state our main result, we introduce some notions referring to coverings of the
plane with circles.

Throughout this paper it is assumed that the covering isirreducible, i.e., none of the
circles is superfluous (to each circle there exists a point in the plane that is covered only
by the circle in question). A covering containing superfluous circles is clearly nonsolid.
We consider an irreducible covering with circles of radii from a given interval [a,b],
wherea > 0, and make the additional assumption that each circle of the plane contains
only a finite number of their centers. Again, a covering that fails to satisfy this condition
is nonsolid, as there would be a bounded region containing infinitely many circles of the
covering, while a finite number of them could be arranged so as to cover this region.

The covering generates aDelaunay triangulationof the plane, as described in [9].
We obtain an edge-to-edge tiling, whose faces are triangles and whose vertices are the
centers of the circles. The three circles centered at the vertices of the same triangle have
a point in common (this implies that their union covers the triangle). We mark each tile
by assigning to each vertex the radius of the circle of the covering centered at this vertex.
In this sense we say that a covering with circles generates amarked tiling(see [13]).

Let t be a triangle spanned by the centersO1,O2,O3 of three circles with radii
r1, r2, r3, respectively. We assign apositive weightw(ri ) to the circle of radiusri and
define the function

δ =
∑3

i=1 r 2
i αiw(ri )

21
, (1)

whereαi is the angle oft at Oi (i = 1,2,3) and1 denotes the area oft . It is reasonable
to callδ the “weighted density” of the three circles int , or, in short, thedensity in t(see
[14]). Note that we do not require the sectors of the circles to lie completely int .

Let R be a set of radii, and let a positive weight be assigned to each element ofR. We
denote the set of these assigned weights byW. A circle whose radius belongs toR is
said to beadmissible. For a given setR and an assigned setW, we consider all triangles
whose vertices are centers of admissible circles having a point in common. The triangles
of minimal density (in the above sense) are calledlight trianglesdefined by the setsR
andW. Observe that there can be several types of light triangles, as the solution of this
extremum problem is possibly not unique (see [14]). IfR is a finite set (as in the theorem
below), then light triangles do exist.

A marked tiling consisting of light triangles is said to besolid if, for any replacement
of afinite numberof its tiles by a finite number of light triangles which leads to aproperly
markedtiling, the set of the marked vertices is the same. In our case, the term “properly



228 A. Florian and A. Heppes

marked” means that the circular sectors associated with the angles of the tiles fit together
to form complete circles (or, in other words, all corners of tiles meeting at a point bear
identical marks).

Now we can state the following

Theorem 1. Let C be an irreducible covering consisting of circles with radii r1 > 0
and r2 > 0. ThenC is solid if the following two conditions are satisfied:

(i) Positive weightsw1 andw2 can be assigned to the circles of radius r1 and r2,
respectively, in such a way that the marked tiling generated byC consists of light
triangles defined by the sets{r1, r2} and{w1, w2}.

(ii) The marked tiling generated byC is solid.

3. Preliminaries

In this section we establish some properties of light triangles in the case where there are
only two types of admissible circles.

Let C1,C2,C3 be three circles with radiir1, r2, r3 centered at the vertices of the
trianglet = O1O2O3, and we assume that the circles have a pointP in common. IfP
is outsidet , then the point oft nearest toP belongs also toC1 ∩ C2 ∩ C3. Thus we can
assume thatP ∈ t . If the intersection of the three circles has an interior point, thent can
be enlarged, and thus the weighted density can be decreased while the circles continue
to have a point in common. Therefore, in a light triangle the circles have a single point in
common, and this point lies in the interior or on the boundary oft . This presupposition
is assumed in the following lemma.

Symmetry Lemma. Consider three circles with radii r1, r2 = r1, r3 centered at the
vertices of the triangle t= O1O2O3. Assume that the circles have a single point P
in common. Let r andw be positive numbers, and let {1, r } and {1, w} be the set of
admissible radii and assigned weights, respectively. If the triangle t is not isosceles
itself, with apex at O3 and P lying on the boundaries of all three circles, then there
exists an isosceles triangle t′ = O′1O′2O′3, with apex at O′3, such that the circles with
radii r 1, r2, r3, centered at O′1,O′2,O′3, have a single point in common, which lies on the
boundaries of all three circles, and the weighted density in t′ is smaller than that in t.

Proof. LetCi be the circle with centerOi (i = 1,2,3). If P is a single point in common,
then it lies on the boundaries of at least two of the circles. IfP lies in the interior of
the third circle, then—keepingα3, the angle atO3, fixed—this “loose” circle can be
moved (thereby increasing the area oft) until eitherP becomes a boundary point of the
third circle as well or the required symmetric position is reached. If the loose circle is
C1, then the center ofC1 will be moved away fromO3 on the half-lineO3O1 until P
reaches the boundary ofC1, and similarly for the loose circleC2. If the loose circle is
C3, thenO3 will be moved on the circumcircle oft away from the baseO1O2 until either
P becomes a boundary point ofC3 or the triangle becomes isosceles with apex atO3.
Since the weighted angle sum is constant in either case, the weighted density decreases.



Solid Coverings of the Euclidean Plane with Incongruent Circles 229

If C3 is still loose, then a further operation is applied: the isosceles triangle is replaced
by another one of heightr3 and unchanged base of length 2r1. If the base angles areα1,
the weighted density is

2r 2
1 α1w(r1)+ r 2

3α3w(r3)

2r 2
1 tanα1

= α1

tanα1
w(r1)+ π − 2α1

tanα1

r 2
3w(r3)

2r 2
1

,

which is the sum of two strictly decreasing functions ofα1. Hence the weighted density
strictly decreases again.

For the rest of the proof we can assume thatP is a single point common to and lying
on the boundaries of all three circles.

There are four possible cases, each of which corresponds to a choice of admissible
radii:

• Case(1,1,1): r1 = 1, r2 = 1, andr3 = 1.
• Case(1,1, r ): r1 = 1, r2 = 1, andr3 = r .
• Case(r, r,1): r1 = r, r2 = r , andr3 = 1.
• Case(r, r, r ): r1 = r, r2 = r , andr3 = r .

In Case (1,1,1) as well as in Case(r, r, r ) the three circles are congruent and the
weighted angle sum is constant. Therefore, the weighted density attains its minimum if
and only if O1O2O3 is an equilateral triangle.

The remaining two cases,(1,1, r ) and(r, r,1), are considered separately. One can
assume thatr < 1, since forr > 1 each of these cases is equivalent to the other for
r < 1.

Case(1,1, r ). Let O′1 = O1,O′2 = O2, andO′3 = Q, whereQ denotes that point of
the circumcircle ofO1O2O3 which is farthest fromO1O2 (Fig. 3). This transformation
increases the area oft ; it also leavesα3 (and thus the weighted angle sum) unchanged
and the pointP covered (becauser < 1). With another appropriate enlargement of the
triangle, the circles will have a single point in common.

Fig. 3
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Case(r, r,1). The weighted density of the three circles is

δ = (α1+ α2)wr 2+ α3

21
. (2)

If P is the common boundary point of the circles, we writeϕ1, ϕ2, andϕ3 for the angles
O2P O3, O3P O1, andO1P O2, respectively. Then

δ = πwr 2+ (1− wr 2)α3

r (sinϕ1+ sinϕ2)+ r 2 sinϕ3
, (3)

where 0< ϕi ≤ π (i = 1,2,3) andϕ1+ ϕ2+ ϕ3 = 2π . Forα3 we find

α3 = arc cot
1− r cosϕ1

r sinϕ1
+ arc cot

1− r cosϕ2

r sinϕ2
,

where 0< arc cotx < π .
In the following,ϕ3 is kept fixed,ϕ1 is variable, andϕ2 = 2π − ϕ1 − ϕ3. Making

use of

d

dϕ
arc cot

1− r cosϕ

r sinϕ
= − r 2− r cosϕ

1− 2r cosϕ + r 2

we find

dα3

dϕ1
= r (1− r 2)(cosϕ1− cosϕ2)

(1− 2r cosϕ1+ r 2)(1− 2r cosϕ2+ r 2)
.

To prove the lemma, we shall show thatδ′(ϕ1) < 0 for π − ϕ3 < ϕ1 < ϕ2, whereδ(ϕ1)

is given by (3). Straightforward calculation yields[
r (sinϕ1+ sinϕ2)+ r 2 sinϕ3

]2
δ′(ϕ1) = r (cosϕ1− cosϕ2) f (ϕ1)

with

f (ϕ1) = [r (sinϕ1+ sinϕ2)+ r 2 sinϕ3]
(1− r 2)(1− wr 2)

(1− 2r cosϕ1+ r 2)(1− 2r cosϕ2+ r 2)

− [πwr 2+ (1− wr 2)α3]. (4)

If 1−wr 2 ≤ 0, then f (ϕ1) < 0 andδ′(ϕ1) < 0 forϕ1 < ϕ2. Henceforth we can assume
that

1− wr 2 > 0.

From (4) it follows that

f ′(ϕ1) = [r (sinϕ1+ sinϕ2)+ r 2 sinϕ3](1− r 2)(1− wr 2)

× 4r sin((ϕ1− ϕ2)/2)[(1+ r 2) cos(ϕ3/2)+ 2r cos((ϕ1− ϕ2)/2)]

(1− 2r cosϕ1+ r 2)2(1− 2r cosϕ2+ r 2)2
.
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Since both of the terms in square brackets are positive, we conclude thatf ′(ϕ1) <

0 for ϕ1 < ϕ2 and thatf (ϕ1) attains its maximum ifϕ1 is minimal, i.e., ifϕ1 = π − ϕ3.
Hence

f (ϕ1) ≤ f (π − ϕ3) = r (1− r )(1− wr 2) sinϕ3

1+ 2r cosϕ3+ r 2

−
[
πwr 2+ (1− wr 2)arc cot

1+ r cosϕ3

r sinϕ3

]
.

Denoting f (π − ϕ3) = g(ϕ3) we see that

lim
ϕ3→0

g(ϕ3) = lim
ϕ3→π

g(ϕ3) = −πwr 2 < 0. (5)

From

g′(ϕ3) =
r 2
(
1− wr 2

)
(1+ cosϕ3)

(
1− 2r − r 2− 2 cosϕ3

)(
1+ 2r cosϕ3+ r 2

)2
we gather thatg(ϕ3) attains its maximum inϕ3 = 0 andϕ3 = π . Combining this with
(5), we come to the conclusion thatg(ϕ3) < 0 for 0≤ ϕ3 ≤ π and thatf (ϕ1) < 0. This
implies thatδ′(ϕ1) < 0 for π − ϕ3 < ϕ1 < ϕ2, as required.

The following lemma refers to symmetric positions of two unit circles and a third
circle with arbitrary radius. A real functionf is said to bequasi-convexon an interval
I if

f (λx + (1− λ)y) ≤ max{ f (x), f (y)}
for all x, y ∈ I and 0< λ < 1. Strict quasi-convexityis defined by requiring strict
inequality whenx 6= y.

Quasi-Convexity Lemma. Let t = O1O2O3 be an isosceles triangle with area1,
apex O3, and anglesα2 = α1 andα3. We assume that the circles centered at O1, O2,
and O3 with radii 1, 1,and r (r > 0) have one single point P∈ t in common which is
a boundary point of all three circles. Let x be the distance of P from the segment O1O2

(Fig. 4).We use{w1, w3} to denote a set of positive weights. For any r > 0, the weighted
density in t

δ(x, r ) = 2α1w1+ α3w3r 2

21

is strictly quasi-convex in0 ≤ x < 1 and attains its minimum at exactly one point
0< x < 1.

Proof. The proof is similar to that of Lemma 1 in [11]. From

δ(x, r ) = πw1+ 2(w3r 2− w1)arc tan(y/(x + r ))

2y(x + r )
, (6)
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Fig. 4

wherey = √1− x2, it follows that

2y2(x + r )2
∂δ

∂x

= y(x + r )

[
2(w3r

2− w1)
(x + r )2

y2+ (x + r )2
· (x + r )(−x/y)− y

(x + r )2

]
−
[
πw1+ 2(w3r

2− w1)arctan
y

x + r

]
·
[
−x

y
(x + r )+ y

]
= −2(w3r

2− w1)(x + r )
1+ r x

y2+ (x + r )2

+2x2+ r x − 1

y

[
πw1+ 2(w3r

2− w1)arctan
y

x + r

]
.

Note that

πw1+ 2(w3r
2− w1)arctan

y

x + r
> 0

for all 0 < x < 1. Note also that 2x2 + r x − 1 has only one rootx0 in (0,1) and that
2x2+ r x − 1< 0 or> 0, depending on whether 0≤ x < x0 or x0 < x < 1.

We distinguish three cases:

Case1:w3r 2 − w1 = 0. In this case∂δ/∂x and 2x2 + r x − 1 have the same sign, so
thatδ is strictly quasi-convex and attains its minimum atx = x0.

Case2:w3r 2 − w1 < 0. If x0 ≤ x < 1, then∂δ/∂x > 0. Now let 0< x < x0. Then
we have

2y3(x + r )2
∂δ

∂x
= 2(w3r

2− w1)(2x2+ r x − 1) f (x, r ),

where

f (x, r ) = (x + r )(1+ r x)y

(1− r x − 2x2)
[
y2+ (x + r )2

] + arctan
y

x + r
+ π

2

w1

w3r 2− w1
. (7)
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Straightforward calculation then yields

(1− r x − 2x2)2
[
y2+ (x + r )2

]2 ∂ f

∂x
= (x + r )y(2r 3+ 4x + 8r 2x + 14r x2+ 4r 3x2+ 8r 2x3),

which shows that

∂ f

∂x
> 0 (8)

for x ∈ (0,1), x 6= x0. From

f (0, r ) = r

1+ r 2
+ arctan

1

r
+ π

2

w1

w3r 2− w1

we see that

lim
r→0

f (0, r ) = 0

and

d

dr
f (0, r ) = − 2r 2

(1+ r 2)2
− π w1w3r

(w3r 2− w1)2
< 0,

so that f (0, r ) < 0 for r > 0. Furthermore, sincef (x0 − 0, r ) = +∞, the inequality
∂ f/∂x > 0 implies that f (x, r ) and∂δ/∂x are negative in 0< x < x1, and positive
in x1 < x < x0, for somex1 ∈ (0, x0). Thus∂δ/∂x < 0 in 0 < x < x1 and> 0 in
x1 < x < 1, which proves the assertion.

Case3: w3r 2 − w1 > 0. If 0 < x ≤ x0, then 2x2 + r x − 1 ≤ 0 and∂δ/∂x < 0.
Let nowx0 < x < 1. In view of∂ f/∂x > 0, f (1, r ) = (π/2)(w1/(w3r 2 − w1)) > 0,
and f (x0 + 0, r ) = −∞, we find that f (x, r ) < 0 if x0 < x < x2, and f (x, r ) > 0 if
x2 < x ≤ 1, for somex2 ∈ (x0,1).

Hence,∂δ/∂x < 0 if 0 < x < x2, and∂δ/∂x > 0 if x2 < x < 1, as required.
This completes the proof of the Quasi-Convexity Lemma.

4. Proof of Theorem 1

Let C be an irreducible covering of the plane with circles satisfying condition (i) of
Theorem 1. LetS be an arbitrary, finite, and nonempty subset ofC. We removeS from
C and denote byH thehole, i.e., the open bounded set generated by the removal ofS.

We proceed by stating an extremum problem for weighted areas.
LetS ′′ be a finite set of admissible circles (of radiusr1 or r2) satisfying the following

conditions:

(a) The setS ′′ covers the holeH (such thatS ′′ together withC\S forms a covering
of the plane), and

(b) the total weighted area of the circles ofS ′′ is as small as possible.
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Note that neither the number nor the selection of the members ofS ′′ is restricted, so that
S ′′ need not be a rearrangement of the circles ofS. Such anS ′′ does indeed exist, since
there is a positive lower bound to the weighted areas of admissible circles.

By conditions (a) and (b), each circle ofS ′′ must cover a part of the holeH and is
therefore lying in the outer parallel domain ofH of distance max{2ri }. In the covering
formed byS ′′ together withC\S, no circle ofS ′′ is redundant, whereas some circles of
C\S might become superfluous. We denote the set of redundant circles byR. As C is
irreducible, every member ofR intersects some circle ofS ′′. Thus all circles ofS ′′ and
R are contained in the interior of the outer parallel domain ofH of distance max{4ri },
which we denote byHP. Observe that (for the given fixedS) the domainHP does not
depend on a special setS ′′ satisfying (a) and (b). By eliminating the elements ofR we
obtain an irreducible coveringC ′′ consisting of the circles ofS ′′ and a subset of the circles
of C\S.

From the very nature of the triangular decomposition associated with an irreducible
covering it follows that the tiling depends on the covering onlylocally, i.e., if the circles
of the covering are replaced by other ones so that the modification is limited to a certain
bounded domainD1, then there exists another bounded domainD2 ⊃ D1, depending
only onD1, such that outsideD2 the Delaunay tiling need not be changed. Consequently,
in our case there exists a bounded domainU , the union of a finite subset of the triangles
of the original decomposition generated byC, which not only covers the domainHP (for
the given fixedS), but has the additional property that the marked triangles of the new
coveringC ′′ and those ofC can be assumed to be identical outsideU .

We now consider the triangles of the original tiling that make upU . As all triangles
are light, the sum of the weighted areas of the sectors of circles fromC associated with
them is equal toδ∗· a(U ), whereδ∗ denotes the density in a light triangle, anda(U )
denotes the area ofU . SinceS is covered byU , one set of the sectors fit together to form
the complete circles ofS, while the other set belongs to circles ofC\S.

Now letS be replaced byS ′′, and letσ be the sum of the weighted areas of the circles
of S ′′ and of the sectors ofC\S mentioned before. In view of the minimum property of
S ′′ we have

σ ≤ δ∗· a(U ). (9)

By (a),S ′′ together withC\S forms a covering of the plane. By eliminating the setR
of unnecessary circles we obtain the irreducible coveringC ′′. We denote the sum of the
weighted areas of the circles ofS ′′ and of the remaining sectors ofC\S byσ ′ ≤ σ . Since
R is contained inU , the differenceσ − σ ′ gives the total weighted area of the circles
ofR.

The coveringC ′′ generates a new marked tiling consisting of triangles. According to
the choice ofU , the marked triangles outsideU are identical to those ofC. In the new
decomposition of the plane,U itself is the union of a finite set of new triangles, say
T1, . . . , Tn. EveryTi is associated with three sectors of circles fromC ′′, andT1, . . . , Tn

are joining properly. BecauseS ′′ is covered byU , one set of the sectors fits together to
constitute the complete circles ofS ′′, and the other set belongs to circles ofC\S. The
density in everyTi is not less thanδ∗, so that

σ ≥ σ ′ ≥ δ∗· a(U ). (10)
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Combining (9) and (10), we see that, in fact,

σ = σ ′ = δ∗· a(U ).

This implies that

(A) S is a solution of the minimum problem;
(B) the union ofS ′′ andC\S does not contain an unnecessary circle, i.e.,R = ∅;
(C) all the trianglesT1 . . . , Tn are light.

Thus, the covering of the hole with admissible circles of minimal total weighted area
generates a (possibly different) subdivision ofU into light triangles. If there is onlyone
type of light triangles, then the new decomposition ofU arises from the original one by
rearranging the tiles. This will be the case with the examples discussed in Section 5.

The proof of Theorem 1 is quite straightforward now. LetC be a covering with circles
satisfying condition (i) of Theorem 1. LetS be an arbitrary finite subset ofC, and letS ′
be a rearrangement of the circles ofS that together with the restC\S of the covering
forms a new coveringC ′. The total weighted areas ofS andS ′ are the same. Thus, it
follows from (A) thatS ′ is also a solution of the extremum problem. This implies that
statements (B) and (C) hold forS ′.

If condition (ii) of Theorem 1 is satisfied as well, then the new subdivision ofU into
properly joining light triangles leads to the same marked vertices, i.e., the same centers
of weighted circles. Therefore,C andC ′ are congruent coverings.

This completes the proof of Theorem 1, which applies also to coverings with circles
of n different radii and assigned weights.

5. Applications

Letr1 = 1 andr2 = r > 0 be radii of admissible circles, and letw1 = 1 andw2 = w > 0
be assigned weights. Consider three admissible circles with radiiri , r j , andrk having
a point in common, and letDi jk denote the least possible weighted density of these
circles in the triangle spanned by their centers. The minimum of the four numbersD111,
D112, D122, andD222, i.e., the density in a light triangle, provides a lower bound to the
weighted density of covering of the plane by admissible circles. Clearly,D111= D1 and
D222 = wD1, whereD1 = 2π/

√
27 = 1.209. . . . For any giveni, j, k, the triple of

circles leading toDi jk is symmetrical and has exactly one point in common, which is a
common boundary point (Symmetry Lemma). The shape of the corresponding triangle
is uniquely determined, as the density has a single minimum (Quasi-Convexity Lemma).

The weighted density of three circles with radii 1,1, r is given by formula (6) (Fig. 4),
which we write in the form

δ(x, r, w) = π + 2(wr 2− 1)arctan(y/(x + r ))

2y(x + r )
, (11)

wherex is the distance ofP from O1O2, andy = √1− x2. We assume thatwr 2− 1 6=
0 (this will be satisfied in the examples discussed below). The minimum condition
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f (x, r ) = 0, with f (x, r ) as in (7), determinesx(r ) uniquely and reads in our notation

f (x, r, w) = (x + r )(1+ r x)y

(1− r x − 2x2)[y2+ (x + r )2]
+ arctan

y

x + r

+ π
2

1

wr 2− 1
= 0. (12)

Then

D112= δ (x(r ), r, w) . (13)

An expansion of the 122-configuration by the factor 1/r shows that

D122= wδ
(

x(r ),
1

r
,

1

w

)
, (14)

wherex satisfies the equation

f

(
x,

1

r
,

1

w

)
= 0 (15)

obtained from (12) by replacingx, r , andw by x, 1/r , and 1/w.
There exist two promising classes of coverings of the plane, where the Delaunay tiling

consists of congruent isosceles triangles. In both cases there are two unit circles at the
base and one with radiusr < 1 at the apex. The first class has hexagonal symmetry
(Fig. 1) with an angleα = 2π/3 at the apex of the tile, while the second has quadratic
symmetry (Fig. 2), and the angle at the apex isα = π/2. In either case we assign the
weightw = 1 to the unit circles and a weightw = w(r ) > 0 to the circles of radiusr .
The weightw is calculated so that the triangle of smallest density associated with two
unit circles and one of radiusr has the angleα = 2π/3 orα = π/2 at the apex. We give
the details of the calculation only for the quadratic arrangement, since the procedure for
the other arrangement is very similar. In either case, the condition

tan
α

2
= y

x + r
(16)

has to be satisfied.

Case1: α = π/2. From (16) we obtain

x =
√

2− r 2− r

2
= x(r ), (17)

where 0< x(r ) < 1, for r < 1. If we choosew = 1/r 2, then (17) does not satisfy
the minimum requirement on the density, i.e., 2x2 + r x − 1 = 0 (see the proof of the
Quasi-Convexity Lemma). Thus we may assume thatwr 2−1 6= 0, so that the minimum
condition is expressed by (12)

f (x(r ), r, w) = 0, (18)
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and this can be transformed into

wr 2 = 2
√

2− r 2− rπ

2
√

2− r 2+ rπ
. (19)

In order to satisfyw > 0, the radiusr has to be confined to

0< r <

√
8

π2+ 4
= 0.75947. . . . (20)

Now the weightw = w(r ) can be calculated from (19). This equation shows thatw(r )r 2

is a strictly decreasing function. In particular, we observe that

dw(r )

dr
< 0. (21)

By (11), (13), and (17) we get

D112= π

2

wr 2+ 1

1+ r
√

2− r 2
(22)

and
d D112(r )

dr
< 0. (23)

The densityD122 given by (11) and (14) can be written in the form

D122= πw + 2(1/r 2− w)arctan(
√

1− x2/(1/r + x))

2
√

1− x2 (1/r + x)
. (24)

We first examine the functionx(r ), i.e., the solution of (15)

F (x, r ) ≡ f

(
x,

1

r
,

1

w(r )

)
= 0,

or, explicitly,

(x + 1/r )(1+ x/r )y(
1− x/r − 2x2) [y2+ (x + 1/r )2]

+ arctan
y

x + 1/r

+
√

2− r 2

2r
− π

4
= 0, (25)

wherey =
√

1− x2. Straightforward calculation yields

∂F

∂r
= 2y3(x + 1/r )

r 2(1− x/r − 2x2)2(1+ 2(x/r )+ 1/r 2)2

×
[

1

r

(
1− x

r
− 2x2

)
− x

(
1+ 2

x

r
+ 1

r 2

)]
− 1

r 2
√

2− r 2
. (26)
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Since
√

2− r 2

2r
− π

4
> 0

for r satisfying (20), (25) implies that 1− x/r − 2x2 < 0, so that, by (26),

∂F

∂r
< 0,

while, by (8),

∂F

∂x
> 0.

Hence

dx(r )

dr
> 0. (27)

We shall give an interval ofr such that for every point of the interval the densityD112

is smaller thanD111, D122, andD222.
Many careful calculations based on formulae (19), (22), (24), and (25) suggest that

for all r from the interval

I : 0.48770≤ r ≤ 0.50287 (28)

the densityD112 is smaller than the otherDi jk . A selection of the results is reproduced
in the respective columns of Table 1. Observe thatD112 > D111 for ri = 0.48768, and
D112 > D122 for ri = 0.50290. By (21) and (23), the functionsD112(r ) andD222(r ) =
wD111are strictly decreasing. An examination of Table 1 shows that indeedD112< D111

and D112 < D222, for r ∈ I . The numerical results make it very likely thatD122(r ) is
also a decreasing function ofr . However, this appears difficult to prove, asx(r ) is
the root of the rather complicated equation (25). The following proof of the inequality
D112(r ) < D122(r ) for all r ∈ I avoids this difficulty.

Let [ri , rk] be any subinterval ofI , and letx(ri ) = xi , x(rk) = xk, andw(rk) = wk.
By (21) and (19), the functionsw(r ) and

1

r 2
− w(r ) = 2π

2r
√

2− r 2+ r 2π

are strictly decreasing, while by (27) the functionx(r ) is strictly increasing. Thus (24)
implies the estimate

D122(r ) ≥
πwk + 2(1/r 2

k − wk)arctan(
√

1− x2
k/(1/ri + xk))

2
√

1− x2
i (1/ri + xk)

≡ L(ri , rk) (29)
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Table 1

r i D111 D112(r i ) D122(r i ) D222(r i ) L(r i , r i+1)

0.48768 1.209200 1.209217 1.255676 1.363456 1.256187
0.48770 1.209200 1.209180 1.255575 1.363234 1.209228
0.49302 1.209200 1.199279 1.228977 1.305457 1.199322
0.49648 1.209200 1.192905 1.212013 1.269106 1.192929
0.49873 1.209200 1.188788 1.201119 1.245969 1.188819
0.50019 1.209200 1.186127 1.194107 1.231162 1.186139
0.50114 1.209200 1.184401 1.189569 1.221614 1.184467
0.50175 1.209200 1.183294 1.186664 1.215518 1.183325
0.50215 1.209200 1.182569 1.184764 1.211536 1.182596
0.50241 1.209200 1.182099 1.183531 1.208954 1.182114
0.50258 1.209200 1.181791 1.182725 1.207269 1.181809
0.50269 1.209200 1.181592 1.182204 1.206179 1.181621
0.50276 1.209200 1.181465 1.181873 1.205486 1.181540
0.50280 1.209200 1.181393 1.181683 1.205090 1.181434
0.50283 1.209200 1.181339 1.181541 1.204794 1.181375
0.50285 1.209200 1.181303 1.181447 1.204596 1.181363
0.50286 1.209200 1.181285 1.181399 1.204497 1.181316
0.50287 1.209200 1.181267 1.181352 1.204398
0.50290 1.209200 1.181212 1.181210 1.204102

∗0.502385 1.209200 1.182143 1.183648 1.209200

for all r ∈ [ri , rk]. Making the assumption that

L(ri , rk) > D112(ri ) (30)

it follows, by (23), that

D122(r ) > D112(r ) (31)

for all r ∈ [ri , rk]. The valuesri in Table 1 are selected so that they divide the intervalI
into a finite number of subintervals [ri , ri+1], each of which satisfies (30). Thus inequality
(31) is proved for everyr ∈ I , and D112 is smaller thanD111, D122, and D222, as
required. Consequently, the Delaunay triangles associated with the covering are light
(condition (i) of the theorem). In the considered class of coverings, all Delaunay tiles
are congruent right-angled isosceles triangles, and it is easy to show that the marked
tilings satisfy condition (ii) of the theorem. Thus, forr ∈ I , each of these coverings is
solid.

Case2:α = 2π/3. This case requires only some modifications to the calculations for
α = π/2. From (16) we obtain

x =
√

4− 3r 2− 3r

4
= x(r ), (17′)

where 0< x(r ) < 1, for r < 1/
√

3 = 0.577. . . . Equations (19), (20), and (22) must
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be replaced by

wr 2 = (3
√

3− π)√4− 3r 2− 3rπ

(2π + 3
√

3)
√

4− 3r 2+ 6rπ
, (19′)

0< r < 0.40788. . . , (20′)

D112= 4π

3
√

3

2wr 2+ 1

2− r 2+ r
√

4− 3r 2
. (22′)

Inequalities (21) and (23) as well as equality (24) hold unchanged, while in (25) the
term
√

2− r 2/2r − π/4 must be replaced by

(3
√

3− π)√4− 3r 2− 3rπ

18r + 6
√

4− 3r 2
.

In particular, we remark that inequality (27) continues to hold.
Some results of numerical calculations are collected in Table 2. They suggest that for

all r from the interval

I ′: 0.19194≤ r ≤ 0.25024 (32)

the densityD112 is smaller thanD111, D122, andD222. This can be proved in a similar
way as in the caseα = π/2. Again, values ofri are selected so that (30) is satisfied
for every subinterval [ri , ri+1]. All tiles are congruent isosceles triangles with the angle
2π/3 at the apex. As before, it is easy to show that the tilings are solid. Therefore, the
coverings are also solid for allr ∈ I ′.

The rows in Tables 1 and 2 marked by an asterisk (∗) refer to the weightw = 1 (i.e.,
the case where the weighted density and common density coincide). These rows indicate
the valuesp2 andp1 mentioned in the Introduction. This means that, in a way, our result
could be considered an extension of the result in [12].

The ratio of the circumradii of the faces of the Archimedean tiling(4,8,8) is r =√
1− (1/√2) = 0.5411. . . , and that of the Archimedean tiling(3,12,12) is r =√
(2−√3)/3= 0.2988. . . .Unfortunately, both ratios are outside the above-mentioned

intervalsI and I ′, respectively.

6. Nonsolid Coverings

Let C be a covering of the plane by circles with radiiri (i = 1, . . . ,n), and letK (R) be
a circle with centerO and radiusR. Let Ai (R) denote the number of those circles ofC
which have radiusri and intersectK (R). In all the cases we consider, the limit

lim
R→∞

Ai (R)

πR2
= di (1≤ i ≤ n) (33)

exists and is called thenumber-densityof the circles ofC having the radiusri . The
(ordinary) density ofC with respect to the whole plane is

d(C) = π
n∑

i=1

di r
2
i . (34)
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Table 2

r i D111 D112(r i ) D122(r i ) D222(r i ) L(r i , r i+1)

0.19193 1.209200 1.209212 1.489166 2.804185 1.488955
0.19194 1.209200 1.209195 1.489086 2.803751 1.209351
0.20694 1.209200 1.184446 1.376972 2.230355 1.184505
0.21818 1.209200 1.166550 1.301730 1.885592 1.166607
0.22655 1.209200 1.153570 1.249811 1.666135 1.153613
0.23276 1.209200 1.144125 1.213300 1.520681 1.144243
0.23735 1.209200 1.137244 1.187321 1.421598 1.137371
0.24074 1.209200 1.132215 1.168650 1.352633 1.132362
0.24324 1.209200 1.128535 1.155150 1.303925 1.128588
0.24509 1.209200 1.125827 1.145301 1.269005 1.125928
0.24645 1.209200 1.123845 1.138137 1.243922 1.123973
0.24745 1.209200 1.122393 1.132909 1.225790 1.122472
0.24819 1.209200 1.121320 1.129061 1.212538 1.121468
0.24873 1.209200 1.120539 1.126265 1.202956 1.120653
0.24913 1.209200 1.119960 1.124200 1.195906 1.119998
0.24943 1.209200 1.119527 1.122655 1.190645 1.119577
0.24965 1.209200 1.119210 1.121523 1.186801 1.119287
0.24981 1.209200 1.118979 1.120702 1.184012 1.119026
0.24993 1.209200 1.118806 1.120086 1.181925 1.118829
0.25002 1.209200 1.118676 1.119624 1.180363 1.118787
0.25008 1.209200 1.118590 1.119317 1.179322 1.118619
0.25013 1.209200 1.118518 1.119060 1.178455 1.118642
0.25016 1.209200 1.118475 1.118907 1.177935 1.118488
0.25019 1.209200 1.118431 1.118753 1.177416 1.118474
0.25021 1.209200 1.118403 1.118651 1.177070 1.118511
0.25022 1.209200 1.118388 1.118599 1.176897 1.118460
0.25023 1.209200 1.118374 1.118548 1.176724 1.118409
0.25024 1.209200 1.118359 1.118497 1.176551
0.25028 1.209200 1.118302 1.118292 1.175859

∗0.248378 1.209200 1.121048 1.128088 1.209200

Let C ′ be an alternative covering of the plane with circles of the same radiir1, . . . , rn

and number-densitiesd1
′, . . . ,dn

′ defined as in (33). Suppose thatC ′ satisfies the two
conditions

d′1: · · · : d′n = d1: · · · : dn (35)

and

d(C ′) < d(C). (36)

Let d′i /di = q (i = 1, . . . ,n). Then (36) implies

d(C ′) = π
n∑

i=1

d′i r
2
i = πq

n∑
i=1

di r
2
i < π

n∑
i=1

di r
2
i ,
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whenceq < 1 and
d′i < di (i = 1, . . . ,n). (37)

Observe that

d′i = lim
R→∞

A′i (R)
πR2

= lim
R→∞

A′i (R+max 2rk)

πR2
. (38)

From (33), (37), and (38) we deduce that

A′i (R+max 2rk) < Ai (R) (39)

for sufficiently largeR andi = 1, . . . ,n. Now we remove the setS of all circles ofC
intersectingK (R). Then (39) shows that a proper subset ofS is sufficient for covering
the “hole” produced by the removal process. ThereforeC is nonsolid.

A similar statement concerning packings of circles can be proved.
We denote the covering of the plane by circles with radii 1 andr < 1 in a quadratic

and in a hexagonal arrangement byQ(r ) andH(r ), respectively (see Figs. 2 and 1). In
the preceding section these coverings were proved to be solid in the small intervalsI and
I ′. Although our method works only inI andI ′, there is hardly any doubt thatQ(r ) and
H(r ) are solid in larger intervals as well. However, there are intervals ofr whereQ(r )
(or H(r )) is definitely nonsolid. To show this, it will be sufficient to construct alternative
coverings of the plane with the same admissible circles satisfying conditions (35) and
(36). For this purpose we consider two different structures.

In the first system the circles of different sizes are separated. One sector of the plane
with angleα is covered by unit circles in a regular hexagonal arrangement, the other
sector with angle 2π − α is covered in a similar way by circles of radiusr , the density
in both sectors being 2π/

√
27. The area-densities of these coverings in the respective

sectors are

lim
R→∞

A′1(R)π
1
2 R2α

= 2d′1π
2

α

and

lim
R→∞

A′2(R)πr 2

1
2 R2(2π − α) =

2d′2π
2r 2

2π − α ,

whered′1 andd′2 are the number-densities of the two types of circles. Since the area
densities in both sectors are the same, we have

d′2
d′1
= 2π − α

α
r−2.

Thus condition (35) is satisfied when

2π − α
α

= d2

d1
r 2, (40)

whered1 andd2 are the number-densities in the original covering. The resulting arrange-
ment forms a covering of the plane with the density

d(C ′) = 2π√
27
. (41)
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The coveringQ(r ) contains the same number of small and large circles, namely,d2/d1 =
1. The fundamental domain is a square with area

t4 = (r +
√

2− r 2)2, (42)

and the density ofQ(r ) is

δ4(r ) = (1+ r 2)π

t4
. (43)

It is easy to show that

δ4(r ) >
2π√
27
,

whenr ≤ 0.3 or r ≥ 0.6030. HenceQ(r ) is nonsolid for such values ofr .
The coveringH(r ) contains twice as many small circles as large ones, namely,

d2/d1 = 2. The fundamental domain is a rhomb consisting of two equilateral trian-
gles with side-length

√
3(r +√4− 3r 2)/2 and area

t6 = 3
√

3(r +√4− 3r 2)2

8
. (44)

The density ofH(r ) is

δ6(r ) = (1+ 2r 2)π

t6
. (45)

Again, an easy calculation shows that

δ6(r ) >
2π√
27
,

whenr ≥ 0.38.

Remark 1. The coveringQ(r ) is nonsolid forr ≤ 0.3 and forr ≥ 0.6030. The
coveringH(r ) is nonsolid forr ≥ 0.38.

We proceed to find another (and, for small values ofr , more efficient) system to be
compared withQ(r ). Let one sector with angleα be covered by unit circles in a regular
hexagonal arrangement, i.e., with density 2π/

√
27. For the other sector (with angle

2π − α), we use a covering of typeH(r ), i.e., with densityδ6(r ). To satisfy condition
(35), which requires the ratio of the total number-densities of large and small circles to
be 1 : 1, we choose the angleα so that

2π − α
α

= 2√
27

t6.

The density of the combined covering of the plane is

δ06(r ) = 2(1+ r 2)π

t6+
√

27/2
,
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where the subscripts 0 and 6 refer to the types of covering in the two sectors. It can be
shown that

δ4(r ) > δ06(r ) (46)

for r ≤ 0.34612.
In a similar way we can construct a combined covering of the plane to be com-

pared withH(r ). For one sector we use a covering of typeQ(r ), i.e., with density
δ4(r ), while the complementary sector is covered by circles of radiusr in the regular
hexagonal arrangement (i.e., with density 2π/

√
27). Condition (35) requires that the

ratio of the total number-densities of large and small circles is 1 : 2. Again, this can
be satisfied by an appropriate choice of angles. The density of the combined cover-
ing is

δ04(r ) = (1+ 2r 2)π

t4+ (
√

27/2)r 2
.

Comparing this withδ6(r ), we find that

δ6(r ) > δ04(r ) (47)

for r ≥ 0.3591.
The results are summarized in the following remark.

Remark 2. The coveringQ(r ) is nonsolid for 0< r ≤ 0.3461 and for 0.6030≤ r ≤ 1,
andH(r ) is nonsolid for 0.3591≤ r ≤ 1.

The results concerning solidity/nonsolidity of Q(r ) and H(r ) are collected in
Theorem 2.

Theorem 2. The covering Q(r ) is solid for0.48770≤ r ≤ 0.50287,and nonsolid for
0 < r ≤ 0.3461and0.6030≤ r ≤ 1. The covering H(r ) is solid for0.19194≤ r ≤
0.25024and nonsolid for0.3591≤ r ≤ 1.

The incircles of the Archimedean tilings(4,8,8), (3,12,12), and(4,6,12) form
solid packings (see [14]), but it remains open whether the circumcircles form solid
coverings. An argument similar to the one employed above shows that the incircles and
circumcircles of the other Archimedean tilings(3,6,3,6), (3,4,6,4), (3,3,4,3,4),
(3,3,3,4,4), and(3,3,3,3,6) are nonsolid sets.
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