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Abstract. In this paper we consider coverings of the plane by circles of two different
sizes. We establish a sufficient condition for such a covering to be solid in the sense of L.
Fejes Dth [6]. As an application of this general theorem we prove that there exist infinitely
many solid coverings of this kind.

1. Introduction

A set of open (closed) circles is said to formacking(covering of the Euclidean plane

if each point of the plane belongs to at most (at least) one circle of the set. Packings and
coverings of the plane with incongruent circles are the subject of several papers (see,
e.g., [5] and [9]-[11]) and of the comprehensive monograph [7]. One of the results is that
the density of any packing (covering) with circles of not too different radii is not greater
(not less) than the maximum (minimum) density of packings (coverings) with congruent
circles. This is a nonpublished result of KoB®t¢zky (for ref. see p. 194 of [7]). It was
independently established and published by Blind [2] and is contained in a more general
theorem of G. Fejesdth [3]. The upper and lower bounds for the packing and covering
densities of the arrangements consisting of circles with radii selected from a given
bounded interval are in some cases very close to each other. In this connection, many
interesting packings and coverings with circles of different sizes have been suggested (see
[16]). However, none of them—uwith the exception adBEzky’s and Blind’s results—

* The first author wishes to thank the Austrian and Hungarian Academies of Science for supporting a visit
to Budapest in May 1997.
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could be proved to be extremal amoally packings or coverings by circles with radii
selected from a given interval.

On the other hand, Florian [12] considered coverings involving two types of circles
of radius 1 andp < 1, respectively. He found an arrangement of minimal density for
p=p.=02483..., and forp = p, = 0.5023... (see Figs. 1 and 2). Recently, it
has been shown that any covering of the plane with two kinds of circles has a density
> 1.01895... [5]. There are coverings of the plane with two kinds of circles whose
densities are arbitrarily close to this constant.

The investigation gained fresh impetus when L. FejethTintroduced the notion
of solidity. A packing (covering) of disks is said to kelid if no finitenumber of its
members can be rearranged so as to form, together with the rest of the members, a packing
(covering)not congruento the original one. Solid sets of circles were investigated by
several authors [6], [4], [1], [8], [15]. Some promising configurations, e.g., the set of
incircles of the Archimedean tilingt, 8, 8), resisted for a long time all attempts to prove
them to be solid. Recently, Heppes [14] succeeded in proving the solidity of a number
of packings consisting of two or three kinds of circles, including the ¢4s& 8).

In this paper we combine the methods employed by the two authors to investigate the
solidity of coverings. The coverings considered here consist of circles of two different
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sizes, e.g., of radius 1 an< 1. A sufficient condition for the solidity of such coverings

is established. As an application of this general theorem we prove the existence of
infinitely many solid coverings of this kind. More precisely, there exist two intervals for

p (i.e., the radius of the smaller circle), one containing the previously mentioned value
p; = 0.2483..., and another containing, = 0.5023..., such that for each value
inside these intervals a solid covering can be found.

2. A General Theorem

In order to state our main result, we introduce some notions referring to coverings of the
plane with circles.

Throughout this paper it is assumed that the coverimigaducible, i.e., none of the
circles is superfluous (to each circle there exists a point in the plane that is covered only
by the circle in question). A covering containing superfluous circles is clearly nonsolid.
We consider an irreducible covering with circles of radii from a given interaabl],
wherea > 0, and make the additional assumption that each circle of the plane contains
only a finite number of their centers. Again, a covering that fails to satisfy this condition
is nonsolid, as there would be a bounded region containing infinitely many circles of the
covering, while a finite number of them could be arranged so as to cover this region.

The covering generatesZelaunay triangulatiorof the plane, as described in [9].

We obtain an edge-to-edge tiling, whose faces are triangles and whose vertices are the
centers of the circles. The three circles centered at the vertices of the same triangle have
a point in common (this implies that their union covers the triangle). We mark each tile
by assigning to each vertex the radius of the circle of the covering centered at this vertex.
In this sense we say that a covering with circles generatearked tiling(see [13]).

Let t be a triangle spanned by the cent@g O,, Oz of three circles with radii
ri, ra, ra, respectively. We assignpositive weightw(r;) to the circle of radius; and
define the function

_ Yiarfew(r)
N 2A

whereq; isthe angle of atO; (i = 1, 2, 3) andA denotes the area bflt is reasonable
to call s the “weighted density” of the three circlestinor, in short, thelensity in t(see
[14]). Note that we do not require the sectors of the circles to lie completely in

Let R be a set of radii, and let a positive weight be assigned to each elemni\
denote the set of these assigned weight§\byA circle whose radius belongs R is
said to beadmissible For a given seR and an assigned s@f, we consider all triangles
whose vertices are centers of admissible circles having a pointin common. The triangles
of minimal density (in the above sense) are callgtt trianglesdefined by the setR
andW. Observe that there can be several types of light triangles, as the solution of this
extremum problem is possibly not unique (see [14]R If a finite set (as in the theorem
below), then light triangles do exist.

A marked tiling consisting of light triangles is said to &aid if, for any replacement
of afinite numbeofits tiles by a finite number of light triangles which leads fmraperly
markedtiling, the set of the marked vertices is the same. In our case, the term “properly

) , @
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marked” means that the circular sectors associated with the angles of the tiles fit together
to form complete circles (or, in other words, all corners of tiles meeting at a point bear
identical marks).

Now we can state the following

Theorem 1. LetC be an irreducible covering consisting of circles with radii = 0
and r, > 0. ThenC is solid if the following two conditions are satisfied

(i) Positive weightsv; and w, can be assigned to the circles of radiusand r,
respectivelyin such a way that the marked tiling generatedXgonsists of light
triangles defined by the sefis, r2} and {w1, wo}.

(i) The marked tiling generated layis solid

3. Preliminaries

In this section we establish some properties of light triangles in the case where there are
only two types of admissible circles.

Let C4, C,, C3 be three circles with radiiq, rp, r3 centered at the vertices of the
trianglet = O;0,03, and we assume that the circles have a pBimh common. IfP
is outsidet, then the point of nearest td® belongs also t&€; N C, N Cz. Thus we can
assume thaP e t. If the intersection of the three circles has an interior point, theam
be enlarged, and thus the weighted density can be decreased while the circles continue
to have a pointin common. Therefore, in a light triangle the circles have a single pointin
common, and this point lies in the interior or on the boundary. @his presupposition
is assumed in the following lemma.

Symmetry Lemma. Consider three circles with radiiy; ro = rq, r3 centered at the
vertices of the triangle = O;0,03. Assume that the circles have a single point P
in common Let r andw be positive numbersand let{1,r} and {1, w} be the set of
admissible radii and assigned weightsspectivelylf the triangle t is not isosceles
itself, with apex at @ and P lying on the boundaries of all three circlében there
exists an isosceles trianglé £ O] 0503, with apex at @, such that the circles with
radiirq, rp, rs, centered at @, O;, O3, have a single point in commpwhich lies on the
boundaries of all three circlesnd the weighted density ihis smaller than that in t

Proof. LetC; be the circle with cented; (i = 1, 2, 3). If Pisasingle pointincommon,

then it lies on the boundaries of at least two of the circle® Ifes in the interior of

the third circle, then—Kkeepings, the angle aOs, fixed—this “loose” circle can be
moved (thereby increasing the ared)fintil either P becomes a boundary point of the

third circle as well or the required symmetric position is reached. If the loose circle is
Ci, then the center of; will be moved away fronO3 on the half-lineO3;0; until P

reaches the boundary 6%, and similarly for the loose circl€,. If the loose circle is

C3, thenO3 will be moved on the circumcircle afaway from the bas®; O, until either

P becomes a boundary point 6§ or the triangle becomes isosceles with ape©at

Since the weighted angle sum is constant in either case, the weighted density decreases.
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If Czis still loose, then a further operation is applied: the isosceles triangle is replaced
by another one of heiglng and unchanged base of length .Af the base angles atg,

the weighted density is

T — 200 r32w(r3)

2r12a1w(r12) + r2o3w(rs) _ Wit + 1),
2ritanay tano; tanoy 2rs

which is the sum of two strictly decreasing functionsxef Hence the weighted density
strictly decreases again.

For the rest of the proof we can assume tRas$ a single point common to and lying
on the boundaries of all three circles.

There are four possible cases, each of which corresponds to a choice of admissible
radii:

Case(1,1,1):r;=1r,=1,andrz3 = 1.
Case(1,1,r).ri=1rp,=1andrz=r.
Case(r,r,):ry=r,rp=r,andrz = 1.
Case(r,r,r):ry=r,rp=r,andrz =r.

In Case (1,1,1) as well as in Cager, r) the three circles are congruent and the
weighted angle sum is constant. Therefore, the weighted density attains its minimum if
and only if O; 0,03 is an equilateral triangle.

The remaining two case$l, 1,r) and(r, r, 1), are considered separately. One can
assume that < 1, since forr > 1 each of these cases is equivalent to the other for
r < 1.

Case(1,1,r). LetO; = O, O; = Oy, andO; = Q, whereQ denotes that point of
the circumcircle ofO; O, 03 which is farthest fronD; O, (Fig. 3). This transformation
increases the area tifit also leavesys (and thus the weighted angle sum) unchanged
and the pointP covered (because < 1). With another appropriate enlargement of the
triangle, the circles will have a single point in common.

Fig. 3
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Case(r,r,1). The weighted density of the three circles is

(a1 +aur?+as

8
2A

2

If Pisthe common boundary point of the circles, we wiitep,, andgs for the angles
O,P O3, O3P Oy, andO; P O, respectively. Then

5 — rwr?+ (1 —wrdag
~r(singy + sing,) +r2sings’

3

where O< ¢ <7 (i =1, 2, 3) andg; + @2 + @3 = 2. Foras we find

1—rcosy; 1—r cosy;
o3 = arc cot_isw + arc cot.i(p
r singy r sing,

where O< arccotx < 7.
In the following, ¢3 is kept fixed,p; is variable, andp, = 27 — @1 — @3. Making
use of

d 1—rco rZ—rco
— arccot _ % __ ¢
de r sing 1—2rcosp +r2
we find
das r(1—r?)(cosp; — COSyy)

dpr (1—2r cosgy +r2)(L— 2r cospy +r2)
To prove the lemma, we shall show tlsaty;) < 0 form — ¢3 < @1 < @2, wheres(¢;)
is given by (3). Straightforward calculation yields
[ (sings + singy) + r2sings]*8' (1) = I (COSP1 — COSpy) f (1)
with
A=r5HA—-wrd

(1—2r cosp; +12)(1—2r cosgp +r12)
— [nwr2 +1- wrz)ag]. 4)

f (1) = [r (singy + singy) + r2sing;]

If 1 —wr? < 0, thenf (¢1) < 0ands’(¢1) < 0forg; < ¢,. Henceforth we can assume
that

1—wr?>0.
From (4) it follows that
/(1) = [r(singy + singy) + r2sings](1 —r?)(1 — wr?)

o A sin((ey — ¢2)/2)[(1 + %) coslga/2) + 2 Cos(¢1 — ¢2)/2)]
(1 — 2r cosgy + r2)2(1 — 2r cosgp; + r2)? -
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Since both of the terms in square brackets are positive, we concludd 'thal <
0 for 91 < @, and thatf (¢,) attains its maximum if; is minimal, i.e., ifp; = 7 — @s.
Hence

r(l—r)(1—wr?sings
1+ 2r cospz + 2

flp1) < f(r —¢3) =

1+rcos
— [nwr2 + (1 —wr? arccotM} )
r sings
Denoting f (7 — ¢3) = g(¢3) we see that
lim g(g3) = lim g(g3) = —rwr? <O0. (5)
¢3—>0 Y37

From
r?(1—wr?) (1+cosps) (1—2r —r? — 2cosps)
(1+ 2r cospz +r2)?

9 (p3) =

we gather thag(gs) attains its maximum i3 = 0 andgs = 7. Combining this with
(5), we come to the conclusion thgps) < 0 for 0 < g3 < 7 and thatf (¢;) < 0. This
implies thats’(¢1) < 0 form — p3 < @1 < 2, as required. O

The following lemma refers to symmetric positions of two unit circles and a third
circle with arbitrary radius. A real functiofi is said to bequasi-convexn an interval
| if

fXx+ A —-21y) <maxf(x), f(y)

forall x,y €  and 0 < A < 1. Strict quasi-convexitys defined by requiring strict
inequality wherx £ vy.

Quasi-Convexity Lemma. Lett = O;0,03 be an isosceles triangle with area,
apex Q, and anglesx, = a; andasz. We assume that the circles centered at Oy,
and Q; with radii 1, 1,and r (r > 0) have one single point B t in common which is
a boundary point of all three circles et x be the distance of P from the segmenOg
(Fig. 4). We usqdw;, w3} to denote a set of positive weightsr any r > 0, the weighted
density in t

2 r?
5(X.T) = oW1 ;—Aagwg

is strictly quasi-convex i) < x < 1 and attains its minimum at exactly one point
O<x<1.

Proof. The proofis similar to that of Lemma 1 in [11]. From

S0x.1) = mw + 2(war? — wq) arctar(y/(x + r))’ ®
2y(X+r)
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KX

Fig. 4

wherey = +/1 — x2, it follows that

06
2y2(X 4+ 1)%—
y(+)8x

X+0? (X +r)(=x/y) — y]

= 2(wsr 2 — .
y(X+r)[ (war wl)y2+(x+r)2 )2

X
— [nwl + 2(war? — wy) arctan%} . [—;(x +r)+ y}

1+rx

= —2(war? — wy) (X + f)m

2x24+rx —1
++— |:71w1 + 2(war? — wy) arcta y } .
y X+r
Note that
Twi 4 2(war? — wy) arctan—— = 0
X+r
for all 0 < x < 1. Note also that 2 + rx — 1 has only one rootg in (0, 1) and that

2x2 +rx —1 < 0 or> 0, depending on whether€9 x < xo orxg < X < 1.
We distinguish three cases:

Casel: war? — w1 = 0. Inthis casé)s/dx and X? 4 rx — 1 have the same sign, so
thats is strictly quasi-convex and attains its minimunxat Xxo.

Case2: war? — w1 < 0. If g < X < 1, thends/dx > 0. Now let 0< X < Xo. Then
we have

b
2y3(x + r)za = 2(war? — w)(2x° +rx — 1) f(x,r),

where

w1

1
X+rA+rx)y 1+ arctan y 4T

. 7
(1—rx—=2x3)[y?+ (x +1)?] X+r  2wsr?—w; ()

f(x,r) =
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Straightforward calculation then yields
2 of
aX
= (X +1)Y(2r3 4+ 4x 4 8r2x 4 14rx? + 4r3x? + 8r2x3),

(L—rx —2x2[y2+ (x +1)?]

which shows that
of
— >0 8
ax €))
for x € (0, 1), X # Xo. From
w1

f(O,r)= ' +arctan}+n
T 142 r 2wsr?2—w

we see that
lim f(O,r)y=0
r—0

and

2r2 wiwal
— -7
(1+r2)2 (war 2 — wy)?

so thatf(0,r) < O forr > 0. Furthermore, sincé (xo — 0, r) = +o0, the inequality
of/ox > 0 implies thatf (x,r) andds/dx are negative in O< X < X;, and positive
in X3 < X < X, for somex; € (0, Xg). Thusds/ox < 0in0 < X < xgand> 0 in
X1 < X < 1, which proves the assertion.

< 0,

d
af(o,r):

Case3: war? —w; > 0. If0 < x < Xg, then X? +rx — 1 < 0 andds/ax < O.
Let nowxy < X < 1. Inview of 3f/ax > 0, f(1,r) = (/2)(w1/(war? — wy)) > 0,
andf(Xg +0,r) = —oo, we find thatf (x,r) < 0if Xg < X < X, and f(x,r) > 0O if
X < X < 1, for somexs € (Xg, 1).

Hencedd/ox < 0if 0 < X < X, andds/ax > 0 if X, < X < 1, as required.

This completes the proof of the Quasi-Convexity Lemma. O

4. Proof of Theorem 1

Let C be an irreducible covering of the plane with circles satisfying condition (i) of
Theorem 1. LetS be an arbitrary, finite, and nonempty subsef ofVe removeS from
C and denote byH theholg i.e., the open bounded set generated by the remov&l of
We proceed by stating an extremum problem for weighted areas.
LetS” be a finite set of admissible circles (of radiyrr,) satisfying the following
conditions:

(a) The setS” covers the holéd (such thatS” together withC\S forms a covering
of the plane), and
(b) the total weighted area of the circles$f is as small as possible.
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Note that neither the number nor the selection of the membe&#$ isfrestricted, so that
S” need not be a rearrangement of the circle§ ocbuch anS” does indeed exist, since
there is a positive lower bound to the weighted areas of admissible circles.

By conditions (a) and (b), each circle 8f must cover a part of the holld and is
therefore lying in the outer parallel domain Hf of distance mafr;}. In the covering
formed byS” together withC\S, no circle ofS” is redundant, whereas some circles of
C\S might become superfluous. We denote the set of redundant circl®s Bg C is
irreducible, every member @ intersects some circle &. Thus all circles ofS” and
R are contained in the interior of the outer parallel domaitiodf distance mafdr;},
which we denote byHp. Observe that (for the given fixesl) the domainHp does not
depend on a special sét satisfying (a) and (b). By eliminating the elementgbive
obtain anirreducible covering’ consisting of the circles &” and a subset of the circles
of C\S.

From the very nature of the triangular decomposition associated with an irreducible
covering it follows that the tiling depends on the covering dabally, i.e., if the circles
of the covering are replaced by other ones so that the modification is limited to a certain
bounded domaimD;, then there exists another bounded donajn> D;, depending
only onD4, such that outsid®, the Delaunay tiling need not be changed. Consequently,
in our case there exists a bounded dontajrthe union of a finite subset of the triangles
of the original decomposition generated@ywhich not only covers the domaltp (for
the given fixedS), but has the additional property that the marked triangles of the new
coveringC” and those of can be assumed to be identical outditle

We now consider the triangles of the original tiling that makeupAs all triangles
are light, the sum of the weighted areas of the sectors of circlesdragsociated with
them is equal t&*- a(U), wheres* denotes the density in a light triangle, aafU)
denotes the area bf. SinceS is covered byJ, one set of the sectors fit together to form
the complete circles af, while the other set belongs to circles®fs.

Now letS be replaced by”, and leto be the sum of the weighted areas of the circles
of §” and of the sectors @f\S mentioned before. In view of the minimum property of
S” we have

o <& aU). 9

By (a), S” together withC\S forms a covering of the plane. By eliminating the &t
of unnecessary circles we obtain the irreducible covefihgMe denote the sum of the
weighted areas of the circles8f and of the remaining sectors@{S by o’ < ¢. Since

‘R is contained irlJ, the differences — ¢’ gives the total weighted area of the circles
of R.

The coveringC” generates a new marked tiling consisting of triangles. According to
the choice olJ, the marked triangles outsidé are identical to those df. In the new
decomposition of the plané] itself is the union of a finite set of new triangles, say
Ti1, ..., Th. EveryT,; is associated with three sectors of circles fr@mandTy, ..., T,
are joining properly. Becaus®’ is covered byJ, one set of the sectors fits together to
constitute the complete circles 8f', and the other set belongs to circles@fS. The
density in everyT; is not less thai*, so that

o >0 >8%a). (10)
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Combining (9) and (10), we see that, in fact,
o =0 =8§"a).

This implies that

(A) S is a solution of the minimum problem;
(B) the union ofS” andC\S does not contain an unnecessary circle, fRe= ¢;
(C) all the triangled; ..., T, are light.

Thus, the covering of the hole with admissible circles of minimal total weighted area
generates a (possibly different) subdivisiorlbinto light triangles. If there is onlpne

type of light triangles, then the new decompositiotJoérises from the original one by
rearranging the tiles. This will be the case with the examples discussed in Section 5.

The proof of Theorem 1 is quite straightforward now. Cdte a covering with circles
satisfying condition (i) of Theorem 1. L& be an arbitrary finite subset 6f and letS’
be a rearrangement of the circles®that together with the rest\S of the covering
forms a new covering’. The total weighted areas &f andS’ are the same. Thus, it
follows from (A) thatS’ is also a solution of the extremum problem. This implies that
statements (B) and (C) hold fer.

If condition (ii) of Theorem 1 is satisfied as well, then the new subdivisidd aito
properly joining light triangles leads to the same marked vertices, i.e., the same centers
of weighted circles. Therefor€,andC’ are congruent coverings.

This completes the proof of Theorem 1, which applies also to coverings with circles
of n different radii and assigned weights. O

5. Applications

Letr; = 1andr, =r > 0be radii of admissible circles,and et = 1 andw, = w > 0

be assigned weights. Consider three admissible circles withmadji, andr having

a point in common, and leD;j, denote the least possible weighted density of these

circles in the triangle spanned by their centers. The minimum of the four nurbhers

D112, D122, @and Doy, i.€., the density in a light triangle, provides a lower bound to the

weighted density of covering of the plane by admissible circles. Cleaghy, = D; and

D2y = wD1, whereD; = 27/+/27 = 1.209. ... For any giveni, |, k, the triple of

circles leading tdD;jk is symmetrical and has exactly one point in common, which is a

common boundary point (Symmetry Lemma). The shape of the corresponding triangle

is uniguely determined, as the density has a single minimum (Quasi-Convexity Lemma).
The weighted density of three circles with radiillr is given by formula (6) (Fig. 4),

which we write in the form

2 _
SO w) = T+ 2(wr 1) arctanty/(x + r))’ (11
2y(X+7r)

wherex is the distance oP from O;0,, andy = /1 — x2. We assume thabr? — 1 #
0 (this will be satisfied in the examples discussed below). The minimum condition
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f(x,r) =0, with f(x,r) asin (7), determines(r) uniquely and reads in our notation

B X +1)(L+rX)y y
fx,r,w) = A=tx = 2002+ (X +1)7] +arctan_—~—
T 1
i 0. (12)
Then
D]_]_z =4 (x(r), r, w) . (13)

An expansion of the 122-configuration by the factgr $hows that
11
D122 = wé <7(f), -, —) ) (14
rw

whereX satisfies the equation
11
f (Y,F,—> =0 (15

obtained from (12) by replacing, r, andw by X, 1/r, and Y w.

There exist two promising classes of coverings of the plane, where the Delaunay tiling
consists of congruent isosceles triangles. In both cases there are two unit circles at the
base and one with radius < 1 at the apex. The first class has hexagonal symmetry
(Fig. 1) with an angler = 27 /3 at the apex of the tile, while the second has quadratic
symmetry (Fig. 2), and the angle at the apew is- 7/2. In either case we assign the
weightw = 1 to the unit circles and a weight = w(r) > 0 to the circles of radius.

The weightw is calculated so that the triangle of smallest density associated with two
unit circles and one of radiushas the angle = 27 /3 ora = /2 at the apex. We give

the details of the calculation only for the quadratic arrangement, since the procedure for
the other arrangement is very similar. In either case, the condition

od y
tan— = 16
2 X+4r 19
has to be satisfied.
Casel:a = /2. From (16) we obtain
/2 _r2 _
x=2"00 o, (17)

2

where 0< x(r) < 1, forr < 1. If we choosew = 1/r?, then (17) does not satisfy
the minimum requirement on the density, i.ex?2-rx — 1 = 0 (see the proof of the
Quasi-Convexity Lemma). Thus we may assume tivét— 1 0, so that the minimum
condition is expressed by (12)

f(x(),r,w) =0, (18)
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and this can be transformed into
2J2 —r2 —
2 r rm ( )

wré=-"—“"———
2V2—r24rn

In order to satisfyw > 0, the radiug has to be confined to

8
O<r <,/ —— =0.75947.... (20)
w2 +4

Now the weightw = w(r) can be calculated from (19). This equation shows &h@apr 2
is a strictly decreasing function. In particular, we observe that

dw(r)
ar < 0. (21

By (11), (13), and (17) we get
2
wrc+1 22

T
Dip= 2~ 2 T2
T2 14212

and
dDi1a(r)
The densityD;,, given by (11) and (14) can be written in the form
mw 4 2(1/r2 — w) arctay/1 — X?/(1/r + X)) 24

D12 =
2V1—-X2(1/r +X)

We first examine the functior(r), i.e., the solution of (15)

FXr)y=f (7,},i>=0,
rw()

or, explicitly,
X+1/nA+X/1)y + arctan—.
(L—%/r —2x%) [y2 + (X +1/1)7] X
J2-r2 g
_—— = 2
T 7=° -

wherey = /1 — X2. Straightforward calculation yields
F 2y3(X +1/r)
I r2(L—=x/r — 2x52(1 4 2(X/r) +1/r?)2
X [} (1— X —272> —7<1+25 + %)}
r r ror

! (26)
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Since

j
N

—r2

0
2r -

for r satisfying (20), (25) implies that4 X/r — 2x* < 0, so that, by (26),

ﬁ <0,
ar
while, by (8),
oF
0X
Hence
dx(r)
0. 2
a (27

We shall give an interval of such that for every point of the interval the dendity »
is smaller tharD]_]_]_, D122, and Dyoo.

Many careful calculations based on formulae (19), (22), (24), and (25) suggest that
for all r from the interval

I: 0.48770<r < 0.50287 (28)

the densityD15 is smaller than the othdD;jk. A selection of the results is reproduced
in the respective columns of Table 1. Observe Daf, > D11 forrj = 0.48768, and
D112 > Digpforri = 0.50290. By (21) and (23), the functiom3y12(r) and Dogo(r) =
w D111 are strictly decreasing. An examination of Table 1 shows thatinBeed< Di1;
and D112 < Dy, forr e I. The numerical results make it very likely thBt,o(r) is
also a decreasing function of However, this appears difficult to prove, &8§) is
the root of the rather complicated equation (25). The following proof of the inequality
D112(r) < Da1go(r) for all r € | avoids this difficulty.

Let [ri, r¢] be any subinterval of, and letX(rj) = X;, X(rx) = Xk, andw(ry) = w.
By (21) and (19), the functions(r) and

r_z_w(r)zz—n

22 —r24r2g

are strictly decreasing, while by (27) the functi®() is strictly increasing. Thus (24)
implies the estimate

mwy + 2(1/r2 — wy) arctan,/1 — X2/ (/i + X))
Dioa(r) = =Lri,ng (29
2,/1—X2(1/r; +Xk)
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Table 1

ri D111 D112(r) D12o(r) Da2o(ri) L(ri,riy1)

0.48768 1.209200 1.209217 1.255676 1.363456 1.256187
0.48770 1.209200 1.209180 1.255575 1.363234 1.209228
0.49302 1.209200 1.199279 1.228977 1.305457 1.199322
0.49648 1.209200 1.192905 1.212013 1.269106 1.192929
0.49873 1.209200 1.188788 1.201119 1.245969 1.188819
0.50019 1.209200 1.186127 1.194107 1.231162 1.186139
0.50114 1.209200 1.184401 1.189569 1.221614 1.184467
0.50175 1.209200 1.183294 1.186664 1.215518 1.183325
0.50215 1.209200 1.182569 1.184764 1.211536 1.182596
0.50241 1.209200 1.182099 1.183531 1.208954 1.182114
0.50258 1.209200 1.181791 1.182725 1.207269 1.181809
0.50269 1.209200 1.181592 1.182204 1.206179 1.181621
0.50276 1.209200 1.181465 1.181873 1.205486 1.181540
0.50280 1.209200 1.181393 1.181683 1.205090 1.181434
0.50283 1.209200 1.181339 1.181541 1.204794 1.181375
0.50285 1.209200 1.181303 1.181447 1.204596 1.181363
0.50286 1.209200 1.181285 1.181399 1.204497 1.181316
0.50287 1.209200 1.181267 1.181352 1.204398

0.50290 1.209200 1.181212 1.181210 1.204102

+0.502385 1.209200 1.182143 1.183648 1.209200

forallr € [r;, r¢]. Making the assumption that

L(ri, re) > Daga(ri) (30)
it follows, by (23), that

Da22(r) > Da12(r) (31

forallr € [rj, rg]. The values; in Table 1 are selected so that they divide the intefval

into a finite number of subintervals [ ri 1], each of which satisfies (30). Thus inequality

(31) is proved for every e |, and Dy;2 is smaller thanDi11, D12o, and Dygp, as
required. Consequently, the Delaunay triangles associated with the covering are light
(condition (i) of the theorem). In the considered class of coverings, all Delaunay tiles
are congruent right-angled isosceles triangles, and it is easy to show that the marked
tilings satisfy condition (ii) of the theorem. Thus, fore |, each of these coverings is
solid.

Case2:« = 27/3. This case requires only some modifications to the calculations for
a = /2. From (16) we obtain

/A _3r2 _
X = # = X(r), a7

where 0< x(r) < 1, forr < 1/+/3 = 0.577.... Equations (19), (20), and (22) must
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be replaced by
2 BV3—m)V/4—3r2—3rx
wr? =

= , 19
2r +3V3)VA—3r2+6rm (19)
0<r <0.40788..., (20)

2
A 2wr<+1 22)

D112 = .

YT 3/B2—r2qr/a-ar?

Inequalities (21) and (23) as well as equality (24) hold unchanged, while in (25) the
term+/2 —r2/2r — /4 must be replaced by

BV3—m)VA—3r2—-3rx
18 +6v4—3r2
In particular, we remark that inequality (27) continues to hold.

Some results of numerical calculations are collected in Table 2. They suggest that for
allr from the interval

"2 0.19194<r < 0.25024 (32

the densityD11 is smaller tharD111, D12, and D22,. This can be proved in a similar
way as in the case = n/2. Again, values of; are selected so that (30) is satisfied
for every subintervalrf, ri .1]. All tiles are congruent isosceles triangles with the angle
27 /3 at the apex. As before, it is easy to show that the tilings are solid. Therefore, the
coverings are also solid for alle 1".

The rows in Tables 1 and 2 marked by an asterighéfer to the weightv = 1 (i.e.,
the case where the weighted density and common density coincide). These rows indicate
the valueg, and p; mentioned in the Introduction. This means that, in a way, our result
could be considered an extension of the result in [12].

The ratio of the circumradii of the faces of the Archimedean til{4g8, 8) isr =

V1—(1/4/2) = 05411..., and that of the Archimedean tilin(3, 12, 12) isr =

V(2—+/3)/3 =0.2988. ... Unfortunately, both ratios are outside the above-mentioned
intervalsl andl’, respectively.

6. Nonsolid Coverings

LetC be a covering of the plane by circles with radii = 1, ..., n), and letK (R) be
a circle with cente©O and radiusR. Let A (R) denote the number of those circlestof
which have radius; and intersecK (R). In all the cases we consider, the limit
AR
R!Enoo 7 R2

exists and is called theumber-densityf the circles ofC having the radius;. The
(ordinary) density ot with respect to the whole plane is

dC) =m Y drl. (34)
i=1
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Table 2
ri D111 D112(r) D12o(r) Da2o(ri) L(ri,riy1)

0.19193 1.209200 1.209212 1.489166 2.804185 1.488955
0.19194 1.209200 1.209195 1.489086 2.803751 1.209351
0.20694 1.209200 1.184446 1.376972 2.230355 1.184505
0.21818 1.209200 1.166550 1.301730 1.885592 1.166607
0.22655 1.209200 1.153570 1.249811 1.666135 1.153613
0.23276 1.209200 1.144125 1.213300 1.520681 1.144243
0.23735 1.209200 1.137244 1.187321 1.421598 1.137371
0.24074 1.209200 1.132215 1.168650 1.352633 1.132362
0.24324 1.209200 1.128535 1.155150 1.303925 1.128588
0.24509 1.209200 1.125827 1.145301 1.269005 1.125928
0.24645 1.209200 1.123845 1.138137 1.243922 1.123973
0.24745 1.209200 1.122393 1.132909 1.225790 1.122472
0.24819 1.209200 1.121320 1.129061 1.212538 1.121468
0.24873 1.209200 1.120539 1.126265 1.202956 1.120653
0.24913 1.209200 1.119960 1.124200 1.195906 1.119998
0.24943 1.209200 1.119527 1.122655 1.190645 1.119577
0.24965 1.209200 1.119210 1.121523 1.186801 1.119287
0.24981 1.209200 1.118979 1.120702 1.184012 1.119026
0.24993 1.209200 1.118806 1.120086 1.181925 1.118829
0.25002 1.209200 1.118676 1.119624 1.180363 1.118787
0.25008 1.209200 1.118590 1.119317 1.179322 1.118619
0.25013 1.209200 1.118518 1.119060 1.178455 1.118642
0.25016 1.209200 1.118475 1.118907 1.177935 1.118488
0.25019 1.209200 1.118431 1.118753 1.177416 1.118474
0.25021 1.209200 1.118403 1.118651 1.177070 1.118511
0.25022 1.209200 1.118388 1.118599 1.176897 1.118460
0.25023 1.209200 1.118374 1.118548 1.176724 1.118409
0.25024 1.209200 1.118359 1.118497 1.176551
0.25028 1.209200 1.118302 1.118292 1.175859

%0.248378 1.209200 1.121048 1.128088 1.209200

Let C’' be an alternative covering of the plane with circles of the same radii., rp
and number-densitiedy, . . ., dy defined as in (33). Suppose tl@tsatisfies the two

conditions

and

dézdl: <ot dy

d(C") < d(©).

Letd//di =q (i =1,...,n). Then (36) implies

n n n
dC)=n Zdi/riz =mnq Zdiriz < Zdiriz,
i—1 i=1 i—1

(39

(36)

241
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whenceq < 1 and

d <d (i=1...,n). (37)
Observe that
From (33), (37), and (38) we deduce that
A (R+ max2y) < A (R) (39)
for sufficiently largeR andi = 1, ..., n. Now we remove the se&f of all circles ofC

intersectingK (R). Then (39) shows that a proper subseSaé sufficient for covering
the “hole” produced by the removal process. Theretbig nonsolid.

A similar statement concerning packings of circles can be proved.

We denote the covering of the plane by circles with radii 1 ard 1 in a quadratic
and in a hexagonal arrangement®yr) andH (r), respectively (see Figs. 2 and 1). In
the preceding section these coverings were proved to be solid in the small inteawals
I”. Although our method works only ihandl’, there is hardly any doubt th&(r) and
H(r) are solid in larger intervals as well. However, there are intervatsvdiereQ(r)

(or H(r)) is definitely nonsolid. To show this, it will be sufficient to construct alternative
coverings of the plane with the same admissible circles satisfying conditions (35) and
(36). For this purpose we consider two different structures.

In the first system the circles of different sizes are separated. One sector of the plane
with angle« is covered by unit circles in a regular hexagonal arrangement, the other
sector with angle 2 — « is covered in a similar way by circles of radiusthe density
in both sectors being2/+/27. The area-densities of these coverings in the respective
sectors are

im A;l(R)n _ Zdinz
R—o0 5 R2¢ o

and
A/Z(R)TL'I’Z _ 2dén2r2
R—>OO%R2(27T—OI) 21 —a’

whered; andd, are the number-densities of the two types of circles. Since the area
densities in both sectors are the same, we have

d, 27— o 2
d; o« '
Thus condition (35) is satisfied when

2T —« d22

40
a d1 (40
whered; andd, are the number-densities in the original covering. The resulting arrange-
ment forms a covering of the plane with the density

2T

de) = 2= 41
(&) Nera (43
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The coveringQ(r) contains the same number of small and large circles, naoh¢ly, =
1. The fundamental domain is a square with area

ta=(r +v2-r2?2 (42

and the density 0Q(r) is

ta
It is easy to show that
Sa(r) = 2,
27

whenr < 0.3 orr > 0.6030. HenceQ(r) is nonsolid for such values of

The coveringH (r) contains twice as many small circles as large ones, namely,
d>/d; = 2. The fundamental domain is a rhomb consisting of two equilateral trian-
gles with side-length/3(r + +/4 — 3r2)/2 and area

—2r2)2
t623\/§(r+g4 R s
The density oH (r) is
14 2r2
Se(r) = %_ (45)

Again, an easy calculation shows that

2
86(r) >

V27
whenr > 0.38.

Remark 1. The coveringQ(r) is nonsolid forr < 0.3 and forr > 0.6030. The
coveringH (r) is nonsolid for > 0.38.

We proceed to find another (and, for small values,ahore efficient) system to be
compared withQ(r). Let one sector with angke be covered by unit circles in a regular
hexagonal arrangement, i.e., with density/2/27. For the other sector (with angle
27w — ), we use a covering of typH (r), i.e., with densitydg(r). To satisfy condition
(35), which requires the ratio of the total number-densities of large and small circles to
be 1: 1, we choose the angleso that

2t —« 2

= ——Tts.
o J27°

The density of the combined covering of the plane is

2(1+r?x

Sos(r) = =~ T
o) ts + +/27/2
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where the subscripts 0 and 6 refer to the types of covering in the two sectors. It can be
shown that

8a(r) > 8os(r) (46)

forr <0.34612.

In a similar way we can construct a combined covering of the plane to be com-
pared withH (r). For one sector we use a covering of tyQer), i.e., with density
84(r), while the complementary sector is covered by circles of radiimsthe regular
hexagonal arrangement (i.e., with density/2/27). Condition (35) requires that the
ratio of the total number-densities of large and small circles is 1 : 2. Again, this can
be satisfied by an appropriate choice of angles. The density of the combined cover-
ing is

(1+2r)7

) =
o = s (V2T

Comparing this withsg(r), we find that

86(r) > doa(r) (47

forr > 0.3591.
The results are summarized in the following remark.

Remark 2. The coveringQ(r)isnonsolidforO< r < 0.3461andfor®030<r <1,
andH (r) is nonsolid for 03591 <r < 1.

The results concerning solidjtgonsolidity of Q(r) and H(r) are collected in
Theorem 2.

Theorem 2. The covering @) is solid for0.48770< r < 0.50287,and nonsolid for
0 <r <0.3461and0.6030< r < 1. The covering Hr) is solid for0.19194<r <
0.25024and nonsolid fo0.3591<r < 1.

The incircles of the Archimedean tilingg, 8, 8), (3,12 12), and (4, 6, 12) form
solid packings (see [14]), but it remains open whether the circumcircles form solid
coverings. An argument similar to the one employed above shows that the incircles and
circumcircles of the other Archimedean tiling3, 6, 3, 6), (3,4, 6,4), (3,3,4, 3,4),
(3,3,3,4,4),and(3, 3, 3, 3, 6) are nonsolid sets.
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