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Abstract. LetY be a convex set inRk defined by polynomial inequalities and equations of
degree at mostd ≥ 2 with integer coefficients of binary length at mostl . We show that if the
set of optimal solutions of the integer programming problem min{yk | y = (y1, . . . , yk) ∈
Y∩Zk} is not empty, then the problem has an optimal solutiony∗ ∈ Y∩Zk of binary length
ldO(k4). For fixed k, our bound implies a polynomial-time algorithm for computing an
optimal integral solutiony∗. In particular, we extend Lenstra’s theorem on the polynomial-
time solvability of linear integer programming in fixed dimension to semidefinite integer
programming.

1. Introduction

Let F(y) be a first-order formula over the reals, i.e., an expression of the form

(Q1x[1] ∈ Rn1) . . . (Qωx[ω] ∈ Rnω ) P(y, x[1], . . . , x[ω]), (1)

where:

• y = (y1, . . . , yk) ∈ Rk is the vector of free variables;
• eachQi , i = 1, . . . , ω, is one of the quantifiers∃ or ∀;
• P(y, x[1], . . . , x[ω]) is a Boolean function ofm atomic predicatesgi (y, x[1], . . . ,

x[ω]) 4i 0, i = 1, . . . ,m, in which4i ∈ {>,<,=}, and thegi ’s are polynomials
of degree at mostd ≥ 2 with integer coefficients of binary size at mostl .

∗ The first author was supported in part by NSF Grant CCR-9618796 and ONR Grant N00014-J-1375,
and the second author was supported in part by NSF Grant CCR-9618796, EU ESPRIT LTR Project 20244
(ALCOM-IT), and a DIMACS Graduate Student Fellowship.
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We calld andl thedegreeandbit lengthof F(y).
Let Y = {y ∈ Rk | F(y) true} be the solution set of (1). Consider the integer

programming problem

y∗k = min{yk | y = (y1, . . . , yk) ∈ Y ∩ Zk}. (2)

Note that for the formula(yk+1 = 0)∧F(y1, . . . , yk), the(k+1)-dimensional problem
(2) is equivalent to computing an integral pointy = (y1, . . . , yk) ∈ Y.

Our aim in this paper is to prove the following two results.

Theorem 1.1. Suppose that Y is convex. If the set of optimal solutions of(2) is not
empty, then problem(2) has an optimal solution y∗ = (y∗1, . . . , y∗k ) ∈ Y ∩ Zk such that

log max{|y∗1|, . . . , |y∗k |} = ldO(k4)5ω
i=1O(ni ). (3)

(We assume that n1, . . . ,nω ≥ 1,50
i=1 = 1, and log 0= −∞.)

Theorem 1.2. For any input formula F(y)whose solution set is convex, the integer opti-
mization problem(2)can be solved in lO(1)(md)O(k

4)5ω
i=1O(ni ) time with(md)O(k)5

ω
i=1O(ni )

evaluations of the Boolean function P: {true, false}m → {true, false}. In particular, if
the number k+∑ω

i=1 ni of free and quantified variables is fixed, problem(2) can be
solved inpoly1(l ,m,d) time withpoly2(m,d) evaluations of P, wherepoly1 andpoly2
are some polynomials.

Theorem 1.2 is a generalization of the well-known result of Lenstra [14] on the
polynomial-time solvability of linear integer programming in fixed dimension. We men-
tion three other special cases of Theorem 1.2.

Computing Integral Points in Algebraic Polyhedra. Lenstra’s theorem states that, for
each fixedk, there exists a polynomial-time algorithm that, given a rational polyhedron

Y =
{

y ∈ Rk |
k∑

j=1

ai j yj ≤ ai 0, i = 1, . . . ,m

}
, (4)

either finds an integral pointy ∈ Y, or determines that no such point exists. Theorem 1.2
can be used to extend Lenstra’s result to algebraic polyhedra. Specifically, suppose that
each of the input coefficientsai j , i = 1, . . . ,m; j = 0, . . . , k, is a real algebraic number
defined by some quantifier-free univariate formulaGi j (t):

ai j = {t ∈ R | Gi j (t) true}.

For instance, ifai j is a root of a given univariate polynomialgi j (t) ∈ Z[t ], andai j is
separated from all other real roots ofgi j (t) by a given rational interval(αi j , βi j ), we have

Gi j (t)
.= (gi j (t) = 0) ∧ (αi j < t < βi j ).
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Another way to characterizeai j is to use the Thom encoding

Gi j (t)
.= (gi j (t) = 0)

deg(gi j )−1∧
s=1

(g(s)i j (t) 4s 0), 4s ∈ {>,<,=},

which definesai j by specifying the signs of all derivatives ofgi j (t)atai j (see Section 2.2).
Consider the formula

∀x ∈ Rk+1

{
m∧

i=1

([
k∧

j=0

Gi j (xj )

]
⇒

k∑
j=1

xj yj ≤ x0

)}
.

This formula contains 2k + 1 free and quantified variables, and its solution set is the
polyhedron (4). Hence we conclude that Lenstra’s theorem holds for arbitrary algebraic
polyhedra in bounded dimension.

Convex and Quasi-Convex Polynomial Programming[12], [3], [2]. Letgi (y1, . . . , yk) ∈
Z[y1, . . . , yk], i = 0, . . . ,m, be given convex quadratic, convex polynomial, or quasi-
convex polynomial functions. Theorem 1.2 implies that, for each fixedk, the integer
programming problem

min{g0(y1, . . . , yk) | gi (y1, . . . , yk) ≤ 0, i = 1, . . . ,m, (y1, . . . , yk) ∈ Zk}

can be solved in polynomial time.

Semidefinite Integer Programming. Theorem 1.2 applies to a wider class of semialge-
braic sets than those defined by systems of quasi-convex polynomial inequalities. As an
illustration, consider the formula

∀x ∈ R
{[

m∧
i=1

(ai · y ≤ bi )

]
∧ [(det(y− x I ) 6= 0) ∨ (x ≥ 0)]

}
,

where y ∈ Rk(k+1)/2 is a real symmetrick × k matrix, a1, . . . ,am are given integer
symmetric matrices,b1, . . . ,bm are given integers,I is the identity matrix, anda · y =
trace(ay) is the Frobenius inner product on the space of symmetric matrices. The convex
solution set of this formula consists of all symmetric positive semidefinite matricesy
such thatai · y ≤ bi , i = 1, . . . ,m. Hence the following generalization of Lenstra’s
theorem to integer semidefinite programming:

Corollary 1.3. For each fixed k, there exists a polynomial-time algorithm which finds
an integer symmetric positive semidefinite k× k matrix y satisfying a given system of
linear inequalities ai · y ≤ bi , i = 1, . . . ,m, or decides that no such matrix exists. Given
a symmetric matrix a0 ∈ Zk(k+1)/2, this polynomial-time algorithm can also solve the
integer semidefinite programming problem

min{a0 · y | ai · y ≤ bi , i = 1, . . . ,m, y ∈ Zk(k+1)/2 positive semidefinite}.
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Note that Corollary 1.3 also holds for systems of strict and/or nonstrict linear inequalities
with algebraic coefficients and for positive definite and/or semidefinite matricesy.

Finally, we mention that Barvinok [4] gives a polynomial-time algorithm for counting
integral points in a polytope of fixed dimension. This result should be contrasted with the
observation that computing the numberN(a,b) of integral points in the two-dimensional
convex region{(y1, y2) | 1 ≤ y1 ≤ a, 1 ≤ y2 ≤ b, y1y2 ≥ b} is at least as hard as
factoring (becauseN(a,b)− N(a,b+ 1)+ a = the number of integer divisors ofb in
the interval [1,a]).

The paper is organized as follows. Section 2 reviews some results related to decision
methods for the first-order theory of the reals and Kronecker’s theorem on simultaneous
Diophantine approximation. Section 3 contains the proof of Theorem 1.1. First, in The-
orem 3.1, we consider an arbitrary formula with one existential quantifier and convex
full-dimensional solution setY ⊆ Rk. We show by induction onk that eitherY contains
a small integral interior point, orY can be “sandwiched” between two parallel hyper-
planes defined by linear equations with small integral coefficients. IfY is bounded, the
statement follows from the bound on real solutions of first-order formulae due to Basu
et al. [6]. Assuming thatY is unbounded, we construct algebraic vectorsβ1, . . . , βs ∈ Rk

of low degree and small height such thatβ1, . . . , βs belong to the recession coneC of
Y and generate the linear subspace spanned byC. Then we apply Kronecker’s theorem
to {β1, . . . , βs}. In particular, if the only integral point in lin.hull{β1, . . . , βs}⊥ is u = 0,
the size of an interior integral point inY can be bounded by a quantitative version of
Kronecker’s theorem developed in Section 2. Otherwise, we use a unimodular trans-
formation and projection ofY to finish the proof of Theorem 3.1 by induction on the
dimension of the latticeZk ∩ lin.hull{β1, . . . , βs}⊥. Next, we generalize Theorem 3.1 to
formulae whose convex solution setY is not necessarily full-dimensional and argue that
eitherY has a small integral solution, orZk∩Y is contained between two parallel hyper-
planes defined by small integral coefficients. This easily implies Theorem 1.1. Finally,
in Section 4 we derive the complexity bounds of Theorem 1.2 by using the bound of
Theorem 1.1 along with a straightforward adaptation of Lenstra’s integer programming
algorithm for convex semialgebaic sets.

2. Preliminaries

2.1. Notation

Throughout the paper all vectors are row vectors, unless specified otherwise. For a real
vectorξ = (ξ1, . . . , ξk), we denote by

|ξ | = max{|ξ1|, . . . , |ξk|}, ‖ξ‖2 =
(

k∑
i=1

ξ2
i

)1/2

thel∞ andl2-norms ofξ , respectively. Thel∞-distance fromξ to the latticeZk is denoted
by

‖ξ‖ = min{|ξ − x|: x ∈ Zk}.



Integer Optimization on Convex Semialgebraic Sets 211

In particular, if ξ is a real number, then‖ξ‖ = min{|ξ − x|: x = 0,±1,±2, . . .}
is the distance fromξ to the nearest integer. Ifh(y1, . . . , yk) =

∑
ai1···i k yi1

1 · · · yik
k ∈

Z[y1, . . . , yk] is a polynomial with integral coefficients, then|h| = max|ai1···i k | denotes
the height ofh.

2.2. Computing Algebraic Solutions for First-Order Formulae

It is well known that over the reals, any first-order formulaF(y) is equivalent to a
quantifier-free formula

I∨
i=1

Ji∧
j=1

(hi j (y) 4i j 0), (QF)

where hi j (y) ∈ Z[y1, . . . , yk] are polynomials with integer coefficients and4i j ∈
{<,=}. The following bounds on the degrees and binary lengths of the polynomials
hi j (y) are due to Basu et al. [6].

Proposition 2.1(see Theorem 1 of [6]). Each formula(1) can be transformed into an
equivalent quantifier-free formula(QF) such that

I ≤ m(k+1)5ω
i=1(ni+1)d(k+1)5ω

i=1O(ni ), Ji ≤ m5ω
i=1(ni+1)d5

ω
i=1O(ni ),

deg hi j (y) ≤ d5
ω
i=1O(ni ), log|hi j | ≤ ld(k+1)5ω

i=1O(ni ).

The above transformation requires m(k+1)5ω
i=1(ni+1)d(k+1)5ω

i=1O(ni ) arithmetic operations
and evaluations of the Boolean function P and it can be carried out over ld(k+1)5ω

i=1O(ni )-
bit numbers.

Proposition 2.2 below is implicit in [6].

Proposition 2.2. Let Y be the solution set of a system
∧J

j=1(hj (y) 4j 0) of J poly-
nomial equations and inequalities, where hj (y) ∈ Z[y1, . . . , yk], j = 1, . . . , J, are
polynomials of degree at most D≥ 2 with coefficients of binary length at most L. In
Jk+1DO(k) arithmetic operations over L DO(k)-bit numbers one can determine whether
Y 6= ∅, and, if so, find a nontrivial polynomial G(t) ∈ Z[t ], a vectorσ ∈ {0,±1}deg(G)−1,
and k+ 1 polynomials Q(t), P1(t), . . . , Pk(t) ∈ Z[t ] such that

max{deg(G),deg(Q),deg(P1), . . . ,deg(Pk)} = O(D)k,

log max{(|G|, |Q|, |P1|, . . . , |Pk|} = L DO(k),

and

y =
(

P1(θ)

Q(θ)
, . . . ,

Pk(θ)

Q(θ)

)
∈ Y,

whereθ is a real algebraic number satisfying the conditions

G(θ) = 0, (sign(G′(θ)), . . . , sign(G(deg(G)−1)(θ)) = σ. (5)
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Note that conditions (5) characterizeθ . These conditions, known as Thom’s encoding
of θ , defineθ even if G(t) is a reducible polynomial. On the other hand, sinceG(t)
can be factored in polynomial time [13], and the sign of any of its factors atθ can also
be determined in polynomial time, the minimal polynomialg(t) ∈ Z[t ] for θ can be
computed in time polynomial in deg(G) and log|G|. Furthermore, it is well known that
log|g| ≤ log|G| + O(deg(G)) (see, e.g., [15]). Since the polynomialQ−1(t) modg(t)
can be computed in polynomial time, and the binary length of its rational coefficients
can be bounded via subresultants byO(deg(gQ) log(|g||Q|deg(gQ))) bits (see, e.g.,
[9] and [7]), Propositions 2.1 and 2.2 readily imply the following result.

Corollary 2.3. There is an algorithm that, given a first-order formula F(y), either
determines that F(y)has no real solution,or finds an irreducible polynomial g(t) ∈ Z[t ],
an integer q6= 0, and k polynomials p1(t), . . . , pk(t) ∈ Z[t ] such that

y = 1

q
(p1(θ), . . . , pk(θ)) ∈ Y, g(θ) = 0, (6)

deg(p1), . . . ,deg(pk) < deg(g) = dO(k)5ω
i=1O(ni ),

log max{|g|, |q|, |p1|, . . . , |pk|} = ldO(k)5ω
i=1O(ni ),

where Y is the solution set of F(y). The algorithm runs in lO(1)(md)O(k)5
ω
i=1O(ni ) time

and requires(md)O(k)5
ω
i=1O(ni ) evaluations of P.

Remark 2.4. Suppose that the solution set ofF(y) is homogeneous, i.e.,λy ∈ Y for
all y ∈ Y andλ > 0. Then in Corollary 2.3 we can chooseq = 1, and assume without
loss of generality thatθ is an algebraic integer: lead.coeffg(t) = 1.

2.3. Inscribing a Box into a Full-Dimensional Semialgebraic Set

Proposition 2.5 below is a restatement of Theorems 5 and 6 of [6].

Proposition 2.5. Let Y 6= ∅ be the solution set of a system of strict polynomial inequal-
ities

∧J
j=1 (hj (y) < 0), where hj (y) ∈ Z[y1, . . . , yk], j = 1, . . . , J, are polynomials

of degree at most D≥ 2 with coefficients of binary length at most L. Then Y contains a
box{y ∈ Rk : |y− α| < 1/R} such that|α| ≤ R andlog R= L DO(k).

This result along with Proposition 2.1 leads to the following bound.

Corollary 2.6. If the solution set Y of a formula F(y) is full-dimensional, then there is
a boxB = {y ∈ Rk: |y−α| < 1/R} ⊆ Y such that|α| ≤ R andlog R= ldO(k)5ω

i=1O(ni ).

2.4. Kronecker’s Theorem on Simultaneous Diophantine Approximations

Letβ1, . . . , βs be given vectors inRk. The classical Kronecker theorem on simultaneous
Diophantine approximations asserts thatfor every real vectorα ∈ Rk the following two
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statements are equivalent:

(i) For anyε > 0 there is an x= (x1, . . . , xs) ∈ Zs such that‖α+∑s
i=1 xiβi ‖ ≤ ε.

(ii) For every u= (u1, . . . ,uk)
T ∈ Zk, if ‖β1u‖ = · · · = ‖βsu‖ = 0 then‖αu‖ = 0.

(See, e.g., [8].) The fact that (i) implies (ii) is trivial. Proposition 2.7 below can be
regarded as a quantitative version of the reverse implication.

Proposition 2.7[8, Chapter V, Theorem XVII, Part B]. Letα ∈ Rk be a given vector,
and let X andε be given positive numbers. A sufficient condition that∥∥∥∥∥α + s∑

i=1

xiβi

∥∥∥∥∥ ≤ ε, |x| ≤ X, (7)

holds for some x∈ Zs is that

‖αu‖ ≤ γ max{ε|u|, X‖β1u‖, . . . , X‖βsu‖} (8)

for all u ∈ Zk with γ = 2k−1/[(k+ s)!] 2.

Since‖αu‖ ≤ 1
2 for all α and u, from Proposition 2.7 it follows that (7) can be

satisfied for anyα provided that the right-hand side of (8) is at least1
2. Since this is so

for |u| ≥ 1/(γ ε), we conclude that for everyα ∈ Rk there is anx ∈ Zs that satisfies (7)
with

X = 1

min
{
maxj=1,...,s ‖βj u‖ : u ∈ B′1/γ ε

} ,
where B′1/γ ε = {u ∈ Zk | 0 < |u| ≤ 1/(γ ε)} (assuming the finiteness ofX). On
replacingX andα by 2X andα+ X

∑s
i=1 βi , respectively, it follows that the conditions∥∥∥∥∥α + s∑

i=1

xiβi

∥∥∥∥∥ ≤ ε, 0≤ xi ≤ X, i = 1, . . . , s,

X = 2

min{maxj ‖βj u‖ : u ∈ B′1/γ ε}
(9)

can be satisfied by some integralx provided that the expression forX in (9) is finite.

Corollary 2.8. Suppose that the only integral solution of the homogeneous system of
linear equationsβ1u = · · · = βsu = 0 is u = 0. Then for anyα ∈ Rk and anyε > 0
there is a real vectorλ = (λ1, . . . , λs) such that∥∥∥∥∥α + s∑

i=1

λiβi

∥∥∥∥∥ ≤ ε, 0≤ λi ≤ 3, i = 1, . . . , s,

where

3 = 2

min{maxj |βj u| : u ∈ B′1/γ ε}
. (10)
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Proof. First,3 is finite because the setB′1/γ ε contains finitely many integral vectors
u 6= 0 for each of which(β1u, . . . , βsu) ∈ Rs\{0}. Next, letλ = τx, wherex ∈ Zs and
τ > 0 is a fixed positive parameter. Then finding a solution to‖α +∑s

i=1 λiβi ‖ ≤ ε
is equivalent to solving‖α + τ∑s

i=1 xiβi ‖ ≤ ε for integralx. Forτ sufficiently small,
‖τβi u‖ = τ |βi u| for all i = 1, . . . , s andu ∈ B′1/γ ε. Hence‖α + τ∑s

i=1 xiβi ‖ ≤ ε
can be solved by an integralx such that 0≤ xi ≤ 3/τ (see (9) and (10)). This implies
0≤ λi = τxi ≤ 3 for all i = 1, . . . , s.

In what follows we will be dealing with algebraic vectorsβ1, . . . , βs.

Corollary 2.9. Letβ1, . . . , βs ∈ Rk satisfy the assumption of Corollary2.8.Suppose
that the components ofβ1, . . . , βs are algebraic integers represented in the form(6):

β1
...

βs

 = D−1∑
j=0

θ j Bj , g(θ) = 0, (11)

where g(t) = t D+g1t D−1+· · ·+gD ∈ Z[t ] is an irreducible polynomial of degree D,and
B0, . . . , BD−1 are integral s×k matrices such thatlog max{|g|, |B0|, . . . , |BD−1|} ≤ L.
Then the parameter3 in Corollary 2.8can be bounded as follows:

log3 = O (D[L + log(D/ε)+ k logk]) .

Proof. Since the powers 1, θ, . . . , θ D−1 are linearly independent over the rationals, and
the matricesBj are integral, each linear equationβi u = 0, u ∈ Zk, is equivalent to the
system ofD Diophantine equationsB0[i ]u = · · · = BD−1[i ]u = 0, u ∈ Zk, where
Bj [i ] is the i th row of the matrixBj . This means that the assumption of Corollary 2.8
holds for a subsystem ofβ1, . . . , βs consisting of at mostk vectors. We can thus assume
that s ≤ k, and therefore log(1/γ ) = log([(k + s)!] 2/2k−1) = O(k logk). Let ν =
min{maxi |βi u| : u ∈ B′1/γ ε}; thenν = |βi ∗u∗| for somei ∗ ∈ {1, . . . , s} andu∗ ∈ B′1/γ ε.
By (11), ν = v(θ), wherev(t) ∈ Z[t ] is a polynomial of height|v| ≤ k2L/(γ ε).
Consider the univariate polynomialU (t) =∏D

j=1(t − v(θj )), whereθ1 = θ, θ2, . . . , θD

are the conjugates ofθ . It is easy to see that the coefficients ofU (t) are integral, and
that

|U | ≤ 2D
D∏

i=1

max{1, |v(θi )|} ≤ (2D|v|)D

(
D∏

i=1

max{1, |θi |}
)D−1

.

Sinceθ1, . . . , θD are the roots of the polynomialg(t), by Landau’s inequality [15] we
have

∏D
i=1 max{1, |θi |} ≤ (1+ |g1|2 + · · · + |gD|2)1/2 ≤ (D + 1)1/2|g|. Hence|U | ≤

(|g||v|D)O(D). However,ν = v(θ) is a positive root ofU (t) ∈ Z[t ], which implies that
ν ≥ 1/(1+|U |) (see, e.g., [15]). Consequently, log3 = log(2/ν) = O(D[L+ log D+
log(k/(γ ε))]).



Integer Optimization on Convex Semialgebraic Sets 215

3. Proof of Theorem 1.1

We start with the following result.

Theorem 3.1. Let8(y)
.= ∃x ∈ Rn P(y, x) be a formula with one existential quan-

tifier, where P(y, x) is a Boolean function of m polynomial predicates gi (y, x) 4i 0 of
degree d≥ 2 with integral coefficients of binary length l. Suppose that the solution set
Y ⊆ Rk of8(y) is convex and full-dimensional.

(i) If Zk ∩ int Y 6= ∅, then Y contains an interior integral pointȳ such that

log|ȳ| ≤ ldck3(n+k), (12)

where c> 0 is an absolute constant.
(ii) If Zk ∩ int Y = ∅, then there is an integral vector a= (a1, . . . ,ak)

T 6= 0 and
integers b1,b2 such that

Y ⊆ {y ∈ Rk | b1 ≤ ya≤ b2}, (13)

log max{|a|, |b1|, |b2|} ≤ ldck2(n+k). (14)

Proof of Theorem3.1. We prove the theorem by induction onk = dimY.

The One-Dimensional Case. Fork = 1 the setY is an interval. IfY = R, we have nothing
to prove. OtherwiseY has a finite endpointα. From Proposition 2.1 it follows thatα
satisfies a nontrivial polynomial equationh(y) = 0 with integral coefficients of binary
lengthld O(n). Since the absolute value of any root ofh(y) = 0 does not exceed 1+ |h|,
we have log|α| = ldO(n). If int Y ∩ Z 6= ∅, then|ȳ − α| ≤ 1 for someȳ ∈ int Y ∩ Z,
which gives (12). Otherwise the length ofY is at most 1, which implies (13) and (14).

For convenience, we separately consider another special case of Theorem 3.1.

The Bounded Case. Suppose thatY is bounded, and consider the formula

∀(y, x) ∈ Rk+n

{
¬P(x, y) ∨

k∧
j=1

(±yj ≤ r )

}
.

The solution set of this formula is the interval [r ∗,+∞), wherer ∗ = sup{|y| : y ∈ Y} <
+∞. By Proposition 2.1,r ∗ satisfies a univariate polynomial equation with integral
coefficients of binary lengthldO(k+n). Hence

log|y| = ldO(k+n) for all y ∈ Y, (15)

which implies the theorem.

We assume henceforth that dimY = k ≥ 2, and that the convex full-dimensional set
Y is unbounded.

Constructing a Spanning Set for the Recession Cone of Y. Consider the recession cone of
Y, i.e., the setC = {y ∈ Rk | α+ λy ∈ Y for all λ > 0}, whereα is an arbitrary interior
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point of Y. (It is well known that this definition is invariant with respect toα ∈ int Y.)
Let L = lin.hull C ands = dim L. SinceY is unbounded,s ∈ {1, . . . , k}. A set ofs
vectorsβ1, . . . , βs ∈ C is called aspanning set for Cif lin.hull {β1, . . . , βs} = L.

Lemma 3.2. The recession cone C has an algebraic integer spanning setβ1, . . . , βs

of the form β1
...

βs

 = D−1∑
j=0

θ j Bj , g(θ) = 0, (16)

where g(t) = t D + g1t D−1+ · · · + gD ∈ Z[t ] is an irreducible polynomial of degree

D = dO(sk(n+logs)), (17)

and B0, . . . , BD−1 are integral s× k matrices such that

log max{|g|, |B0|, . . . , |BD−1|} = ldO(sk(n+logs)). (18)

Proof of Lemma3.2. By Corollary 2.6, the full-dimensional setY contains a rational
interior point p/q = (p1/q, . . . , pk/q) such thatp1, . . . , pk andq ≥ 1 are integers of
binary lengthld O(kn). The recession coneC is the solution set of the formula

∀ λ ∈ R{(λ < 0) ∨8(p/q + λy)}. (19)

The change of variablesy → p/q + λy transforms each of them atomic polyno-
mial predicatesgi (y, x) 4i 0 into the polynomial relationGi (λ, y, x) 4i 0, where
Gi (λ, y, x)

.= qdgi (p/q+λy, x) ∈ Z[λ, y, x] is a polynomial with integral coefficients
of binary lengthld O(kn). In particular, (19) can be written as

(∀ λ ∈ R) (∃x ∈ Rn){(λ < 0) ∨ P∗(λ, y, x)}, (20)

whereP∗(λ, y, x) is obtained fromP(y, x) by the substitutiongi (y, x)→ Gi (λ, y, x).
By Proposition 2.1, (20) can be transformed into an equivalent quantifier-free formula
C(y) of degreedO(n) and bit lengthldO(kn).

Givens vectorsβ1, . . . , βs ∈ Rk, denote byG(β1, . . . , βs) their Gram matrixGi j =
βiβ

T
j . By definition, {β1, . . . , βs} is a spanning set for the recession coneC if and

only if C(β1) ∧ · · · ∧ C(βs) ∧ ( det G(β1, . . . , βs) 6= 0 ). This quantifier-free for-
mula hassk variables and consists of polynomial relations of degree max{dO(n),2s} =
dO(n+logs) with integral coefficients of binary lengthldO(kn). Since the set of all span-
ning vectors{β1, . . . , βs} is homogeneous, the lemma follows from Corollary 2.3 and
Remark 2.4.

We continue with the proof of Theorem 3.1.
LetM = L⊥ = {u ∈ Rk | β1u = · · · = βsu = 0} be the orthogonal complement of

L, i.e., the set of all linear formsu that vanish onC. Denote byMI = Zk ∩M the set
of all integral points inM. By Lemma 3.2,MI = {u ∈ Zk | β1u = · · · = βsu = 0} is
a lattice of the form

MI = {u ∈ Zk | Mu = 0}, (21)
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whereM is an integral(k− p)× k matrix of full row rank such that

log|M | = ldO(sk(n+logs)). (22)

Note that p, the dimension ofMI , is bounded by dimM = k − s. Hence p ∈
{0,1, . . . , k− 1}. We now split the proof into two cases:p = 0 andp ≥ 1.

The Kronecker Case. Suppose thatp = 0. Then the only integral solution ofβ1u = · · · =
βsu = 0 is u = 0. Hence the recession directionsβ1, . . . , βs satisfy the assumption
of Corollary 2.9 withD = dO(sk(n+logs)) and L = ldO(sk(n+logs)). By Corollary 2.6,
Y contains an open boxB = {y ∈ Rk : |y − α| < 1/R} such that|α| ≤ R and
log R= ld O(kn). SinceB ⊆ int Y, andβ1, . . . , βs ∈ C, we haveB+∑s

i=1 λiβi ⊆ Y for
all nonnegativeλ1, . . . , λs. Applying Corollary 2.9 withε = (2R)−1 we conclude that
there are nonnegative scalarsλ∗1, . . . , λ

∗
s for which the conditions

Zk ∩
(
B +

s∑
i=1

λ∗i βi

)
6= ∅, 0≤ λ∗i ≤ 3, i = 1, . . . , s,

can be satisfied with a3 such that

log3 = O (D[L + log(D/ε)+ k logk]) = ldO(sk(n+logs)).

Let ȳbe an (interior) integral point inB+∑s
i=1 λ

∗
i βi . Since the polynomialg(t) in (16) has

integral coefficients of binary lengthld O(sk(n+logs)), we have log|θ | = ldO(sk(n+logs)).The
latter bound along with (17) and (18) shows that log max{|β1|, . . . , |βs|} = ldO(sk(n+logs)).

Consequently, log|ȳ| = ld O(sk(n+logs)). Since s < k, it follows that log|ȳ| =
ld O(k2(n+logk)). This means that, forp = 0,8(y) has an interior integral solution that
satisfies (12).

Induction. Let p = dimMI ≥ 1. Thenp ∈ {1, . . . , k − s}, wheres = dimC ≥ 1.
By (21),MI = {u ∈ Zk | Mu = 0} for some integral(k − p) × k matrix M of full
row rank. The latticeMI is invariant under all transformationsM → V M, whereV is
a nondegenerate rational matrix of orderk − p. Next, for any unimodular matrixU of
orderk, the change of variables

y = y′U (23)

transforms8(y) into the formula8′(y′) = ∃x ∈ Rn P(y′U, x) with the solution set
Y′ = YU−1. By unimodularity,Y′ ∩Zk = (Y∩Zk)U−1, that is, (23) gives a one-to-one
correspondence between the sets of integral solutions of8(y) and8′(y′). Note that
C′ = CU−1 andM′I = {u ∈ Zk | VMU−1 u = 0}, whereC′ is the recession cone of
Y′ andM′I is the lattice of integral forms vanishing onC′. By reducing the matrixM
to the Smith normal form, we can compute a nondegenerate rational matrixV and a
unimodular matrixU such thatM ′ = VMU−1 = (0, I ), whereI is the identity matrix
of orderk− p. Moreover, since the binary length of each element ofU can be bounded
by O(k log(k|M |)) bits (see, e.g., Chapter 5 of [17]), from (22) it follows that we may
assume without loss of generality that

log|U | = ld O(sk(n+logs)). (24)
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Consequently,8′(y′) has bit lengthldO(sk(n+logs)).For simplicity of notation, we assume
henceforth that

M =


0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 1

 (25)

for the original formula8(y), and that the bit length of8(y) has been increased to
ld O(sk(n+logs)). By (25),MI = (Zp,0) and hence

βi = (0, β̄i ), i = 1, . . . , s, (26)

where the vectors̄βi ∈ Rk−p satisfy the assumption of Corollary 2.9:

{u ∈ Zk−p | β̄1u = · · · = β̄su = 0} = {0}. (27)

Consider the partitiony = (y[1], y[2]), wherey[1] = (y1, . . . , yp) andy[2] = (yp+1, . . . ,

yk). Let

8[1](y[1])
.= ∃(y[2], x) ∈ Rn+k−p P(y, x),

and letY[1] be the solution set of8[1](y[1]). SinceY[1] is a projection ofY, the set
Y[1] ⊆ Rp is convex and full-dimensional.

Lemma 3.3. A point ȳ[1] belongs toZp ∩ int Y[1] if and only if there is a point̄y[2] ∈
Zk−p such that(ȳ[1], ȳ[2]) ∈ Zk ∩ int Y.

Proof of Lemma3.3. The fact that(ȳ[1], ȳ[2]) ∈ Zk ∩ int Y implies ȳ[1] ∈ Zp ∩ int Y[1]

follows directly from the definition ofY[1] . Suppose that̄y[1] ∈ Zp ∩ int Y[1] . Since
ȳ[1] is an interior point ofY[1] , the setY[1] is a projection ofY, andY is convex and
full-dimensional, there exists a real vectorξ ∈ Rk−p such that(ȳ[1], ξ) ∈ int Y. Hence
there is a positiveε such that the open boxB = {(y[1], y[2]) : |y[1] − ȳ[1] | < ε,

|y[2] − ξ | < ε} belongs toY. In view of (27), Kronecker’s theorem guarantees the
existence of nonnegative scalarsλ1, . . . , λs such that‖ξ +∑s

i=1 λi β̄i ‖ < ε. Since the
vectorsβ1, . . . , βs in (26) are recession directions ofY, it follows that the setB +∑s

i=1 λiβi belongs toY and contains an interior integer point.

Now we are ready to prove parts (i) and (ii) of Theorem 3.1 by induction.
(i) Suppose thatZk ∩ int Y 6= ∅. Then8[1](y[1]) has an interior integral solution̄y[1]

whose binary length can be bounded by applying the induction hypothesis (12) inp
dimensions:

log|ȳ[1] | = ldcp3(n+k)+O(sk(n+logs)),

where the multiplicative constant hidden in the termO(sk(n+ logs)) does not depend
onc. Substituteȳ[1] into8(y) and consider the resulting formula

8[2](y[2])
.= 8(ȳ[1], y[2]).
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The solution setY[2] ⊆ Rk−p of 8(y[2]) is the intersection ofY with the subspace
{y ∈ Rk | y[1] = ȳ[1]}. Since ȳ[1] ∈ int Y[1] , it follows that Y[2] is convex and
full-dimensional. By Lemma 3.3,Zk−p ∩ int Y[2] 6= ∅. Hence we can use the induc-
tion hypothesis (12) ink − p dimensions to bound the binary length of an interior
integral solution ȳ[2] of 8[2](y[2]). We can thus assume that log|(ȳ[1], ȳ[2])| is
bounded by

ldcp3(n+k)+c(k−p)3(n+k−p)+O(sk(n+logs)),

where, as before, the constant in the termO(sk(n+ logs)) does not depend onc. (Note
that this bound remains true after the transformation (23).) It is easy to see that the
inclusions ȳ[i ] ∈ int Y[i ] , i = 1,2, guarantee that(ȳ[1], ȳ[2]) ∈ int Y. To obtain the
required bound (12) ink dimensions it remains to show that ifk ≥ 2, then

cp3(n+ k)+ c(k− p)3(n+ k− p)+ sk(n+ logs) ≤ ck3(n+ k)

for c sufficiently large. (We have scaled the multiplicative constant in the termO(sk(n+
logs)) to 1.) Since 1≤ p ≤ k− 1 ands ≤ k, we have

cp3(n+ k)+ c(k− p)3(n+ k− p)+ sk(n+ logs)

≤ c[ p3+ (k− p)3](n+ k)+ k2(n+ logk)

≤ [c(k− 1)3+ c+ k2](n+ k).

Hence the required inequality holds forc ≥ 2
3.

(ii) Suppose thatZk ∩ int Y = ∅. By Lemma 3.3,Zp ∩ int Y[1] = ∅. Inductively
applying part (ii) of the theorem to8[1](y[1]) we conclude thatY[1] ⊆ {y[1] ∈ Rp |
b1 ≤ y[1]a[1] ≤ b2}, where a[1] ∈ Zp \ {0}, and log max{|a[1] |, |b1|, |b2|} =
ldcp2(n+k)+O(sk(n+logs)). Hence we obtain (13) with

a = U−1

(
a[1]

0

)
.

By (24),

log max{|a|, |b1|, |b2|} = ldcp2(n+k)+O(sk(n+logs)).

Scaling the constant in the termO(sk(n + logs)) to 1, lettingc = 1, and taking into
account the inequalitys ≤ k− p, we can bound the exponent ofd as follows:

p2(n+ k)+ sk(n+ logs)) ≤ pk(n+ k)+ (k− p)k(n+ log(k− p))

≤ k[ p(n+ k)+ (k− p)(n+ k− p)] ≤ k2(n+ k).

This shows (14) and completes the proof of Theorem 3.1.

Theorem 3.4. Let P(y) be a quantifier-free formula composed of polynomial predi-
cates gi (y) 4i 0, where gi (y) ∈ Z[y1, . . . , yk] are polynomials of degree d≥ 2 with
coefficients of binary length l. Suppose that the set Y= {y ∈ Rk | P(y) true} is convex.
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Then Y satisfies at least one of the following two conditions:

(i) Y contains an integral point y such thatlog|y| = ldO(k4).
(ii) There is an integral vector a6= 0 and integers b1,b2 such that

Y ∩ Zk ⊆ {y ∈ Zk | b1 ≤ ya≤ b2}, (28)

log max{|a|, |b1|, |b2|} = ldO(k3). (29)

Proof of Theorem3.4. Any quantifier-free formulaP(y) can be written as∃x ∈
R1P(y), wherex is a dummy variable. IfY is full-dimensional, Theorem 3.4 is thus a
special case of Theorem 3.1 forn = 1. Suppose thatY is not full-dimensional. Since
Y ⊂ Rk is convex, there exist a vectoru = (u1, . . . ,uk)

T ∈ Rk and a scalarv ∈ R such
thatu 6= 0 andyu = v for all y ∈ Y. The set of all vectors(u, v) ∈ Rk+1 that satisfy
these two conditions is the solution set of the formula

H(u, v)
.= ∀y ∈ Rk{[uTu > 0] ∧ [¬P(y) ∨ (yu= v)]}.

Since the solution set ofH(u, v) is homogeneous, from Corollary 2.3 and Remark 2.4
it follows that H(u, v) has a solution of the form(

u∗

v∗

)
=

D−1∑
j=0

θ j

(
u∗j
v∗j

)
,

whereθ is an algebraic integer of degreeD = dO(k2),(
u∗j
v∗j

)
∈ Zk+1, j = 0, . . . , D − 1, and

log max{|u∗j |, |v∗j | : j = 0, . . . , D − 1} = ldO(k2).

For integraly, the linear equationyu∗ = v∗ is equivalent to the system ofD Diophantine
linear equationsyu∗0 = v∗0, . . . , yu∗D−1 = v∗D−1. Sinceu∗ =∑D−1

j=0 θ
j u∗j 6= 0, we have

u∗j 6= 0 for at least one of theD integral vectorsu∗0, . . . ,u
∗
D−1. Hence we obtain (28)

and (29) witha = u∗j andb1 = b2 = v∗j .

Corollary 3.5. Let P(y) satisfy the assumptions of Theorem3.4, and let Y be the
solution set of P(y).

(i) If Y ∩ Zk 6= ∅, then Y contains an integral point y such thatlog|y| ≤ ldck4
,

where c> 0 is a constant.
(ii) If y∗k = min{yk | y = (y1, . . . , yk) ∈ Y ∩ Zk} is finite, thenlog|y∗k | ≤ ldck4

.

Proof of Corollary3.5. (i) We prove the statement by induction onk, the number of
free variables. The casek = 1 is trivial. Suppose thatk ≥ 2. By Theorem 3.4 we can
assume without loss of generality that there exists an integral vectora 6= 0 and an integer
b such that

Y ∩ {y ∈ Zk | ya= b} 6= ∅, (30)
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and log max{|a|, |b|} = ldO(k3). The general integral solution of the equationya = b
has the formy = t + y′T , wherey′ runs throughZk−1, andT and t are an integral
(k− 1)× k matrix andk-vector such that

log max{|T |, |t |} = ld O(k3). (31)

(See, e.g., Chapter 5 of [17].) Substitutingt + y′T for y into the original formulaP(y),
we obtain a new quantifier-free formulaP′(y′) .= P(t + T y′) whose set of solutions
is still convex. It is easy to see that the degreed′, bit lengthl ′, and the numberk′ of
free variables forP′(y′) can be bounded as follows:d′ ≤ d, l ′ = ldO(k3), k′ ≤ k − 1.
Moreover, by (30),P′(y′) has an integer solution̄y′. By the induction hypothesis, log|ȳ′|
can be bounded byl ′(d′)ck′4. Hence log|ȳ′| = ldc(k−1)4+O(k3), where the constant in the
termO(k3) does not depend onc. However, then̄y = t + ȳ′T is an integral solution for
P(y) for which (31) yields log|ȳ| = ldc(k−1)4+O(k3). This inductively proves (i).

(ii) We again use induction onk with the trivial basek = 1. If y∗k ≥ 0, then (ii) follows
from part (i) above. Assume thaty∗k < 0 and letξ ∗k = inf{ξk | ξ = (ξ1, . . . , ξk) ∈ Y}.
If ξ ∗k > −∞, then log|ξ ∗1 | = ldO(k) by Proposition 2.1 and we are done. Suppose that
ξ ∗k = −∞. ThenZk ∩ int Y = ∅, for otherwise from Minkowski’s theorem it would
follow that Y contains a sequence of pointsy = (y1, . . . , yk) ∈ Zk ∩ int Y with yk →
−∞, which would contradict our assumption thaty∗k is finite. If Y is full-dimensional,
Theorem 3.1 guarantees that the integer programming problem min{yk | y ∈ Y ∩ Zk}
has an optimal solutiony∗ satisfying a linear equationya= b with integral coefficients
a = (a1, . . . ,ak)

T 6= 0 andb of binary lengthldO(k3). If Y is not full-dimensional then
such an equation can be found for the entire setY (see the proof of Theorem 3.4). As
before, the general integral solution ofya= b can be written in the formy = t + y′T ,
wherey′ ∈ Zk−1 andT ∈ Z(k−1)×k, t ∈ Zk satisfy (31). After an appropriate unimodular
transformationy′ → y′U , we can assume without loss of generality thatT1,k = T2,k =
· · · = Tk−2,k = 0 andTk−1,k ≥ 0. If Tk−1,k = 0, theny∗k = tk and (ii) follows from
(31). Otherwiseyk = tk + y′k−1Tk−1,k with Tk−1,k > 0. This reduces the original integer
programming problem toy′∗k−1 = min{y′k−1 | y′ = (y′1, . . . , y′k−1) ∈ Y′ ∩ Zk−1}, where
Y′ ⊂ Rk−1 is the solution set ofP′(y′) .= P(t + y′T), and completes the inductive
proof.

Corollary 3.6. Let P(y) be a quantifier-free formula whose solution set Y is convex.
If the set of optimal solutions of the integer optimization problem y∗

k = min{yk | y =
(y1, . . . , yk) ∈ Y ∩ Zk} is nonempty, then the problem has an optimal solution y∗ such
that

log|y∗| = ldO(k4), (32)

where d≥ 2 and l are the degree and bit length of P(y), respectively.

Proof of Corollary3.6. Any integral solution of the formulaP∗(y) .= (yk ≤ y∗k )∧P(y)
solves the optimization problem. By part (ii) of Corollary 3.5, the bit length ofP∗(y) is
ld O(k4). Hence by part (i) of the same corollary,P∗(y) has an integral solutiony∗ in the
box (32).
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Proof of Theorem1.1. By Proposition 2.1, any input formulaF(y) with ω ≥ 1 quan-
tifiers can be transformed into an equivalent quantifier-free formula (QF) of degree
dQF = d5

ω
i=1O(ni ) and bit lengthlQF = ld(k+1)5ω

i=1O(ni ). SubstitutingdQF andlQF for d and
l in (32) results in the required bound (3) forF(y).

4. Proof of Theorem 1.2

Before proceeding to the proof of Theorem 1.2 we pause to make a few observations.
First, due to Proposition 2.1, it suffices to prove that the integer optimization problem
(2) can be solved inl O(1)mO(k3)dO(k4) time for any convex setY defined by a quantifier-
free formulaP(y) of form (QF) withm polynomial predicates of degreed and integral
coefficients of binary lengthl . Secondly, we can use binary search along with the bound
of Theorem 1.1 to reduce the integer optimization problem (2) toldO(k4) feasibility
subproblems of the following form: Given a fixed parametert ∈ Z, find an integral
solution y = (y1, . . . , yk) for (yk ≤ t) ∧ P(y), or prove that no such solution exists.
Since(yk ≤ t)∧ P(y) is also a formula of the form (QF), to prove Theorem 1.2 we only
need to show the following result:

There is an algorithm of running timel O(1)mO(k3)dO(k4) that, given a
quantifier-free formulaP(y) of form (QF) with convex solution set
Y ⊆ Rk andm polynomial predicates of degreed and bit lengthl ,
either determines thatY ∩ Zk = ∅ or finds a pointy ∈ Y ∩ Zk.

(33)

Observe that (33) trivially holds fork = 1 (even without the convexity assumption).
Finally, we can assume without loss of generality thatY is full-dimensional, for otherwise
by using the argument presented in the proof of Theorem 3.4 the number of variables in
P(y) can be reduced inl O(1)(md)O(k

2) time.
Let Y be a bounded convex full-dimensional set inRk. An affine transformation

y→ a+ y A

ρ-rounds Yif U1 ⊆ a+Y A⊆ Ūρ , whereU1 = {y ∈ Rk : ‖y‖2 < 1}andŪρ = {y ∈ Rk :
‖y‖2 ≤ ρ} are the open and closed Euclidean balls of radii 1 andρ, respectively, centered
at the origin. Denote byQF(k,m,d, l ) the class of bounded convexk-dimensional sets
Y ⊂ Rk defined by quantifier-free formulae (QF) composed ofm polynomial relations
of degreed and bit lengthl .

Lemma 4.1. Given a set Y∈ QF(k,m,d, l ), a rational (k + 1)-rounding affine
transformation for Y can be computed in lO(1)(md)O(k

3) time. In particular, for fixed k,
such a transformation can be found in time polynomial in l, m, and d.

Proof. It is well known that any bounded convex full-dimensional set inRk can be
k-rounded [11]. Suppose thatY is defined by a quantifier-free formulaP(y). Then the
nonempty set of allk-rounding affine transformations forY can be characterized by the
the formula

R(a, A)
.= (∀y ∈ Rk) {[(‖a+ y A‖2 ≥ 1) ∨ P(y)] ∧ [(‖a+ y A‖2 ≤ k) ∨ ¬P(y)]} .
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Let ε be a positive number, and consider anε-approximatesolution of R(a, A), i.e., a
rational matrix(a′, A′) such that‖(a′, A′)− (a, A)‖2 ≤ ε for some exact solution(a, A)
of R(a, A). Since the Hausdorff distance

inf{δ | a+ Y A⊆ Euclideanδ-neighborhood ofa′ + Y A′,
anda′ + Y A′ ⊆ Euclideanδ-neighborhood ofa+ AY}

between the setsa′ + Y A′ anda + Y A is at most‖a′ − a‖2 + r ∗‖A′ − A‖2, where
r ∗ = sup{‖y‖2 : y ∈ Y}, it follows that U1−ε(r ∗+1) ⊆ a′ + Y A′ ⊆ Ūk+ε(r ∗+1). By
(15), logr ∗ = ldO(k). HenceY can be(k+ 1)-rounded by computing anε-approximate
solution for R(a, A) with − logε = ldO(k). Note that by Corollary 2.6,Y contains a
Euclidean ball{y ∈ Rk : ‖y − α‖2 ≤ 1/R} such that‖α‖2 ≤ R and logR = ldO(k).
This implies that log‖(a, A)‖2 = ldO(k) for any solution(a, A) of R(a, A).

It is known [16, Theorem 1.2] that anε-approximate solution for an arbitrary formula
F(y) can be computed inl O(1)(md)O(k)5i O(ni ) log log(3+r/ε)-time, wherer is an upper
bound on the Euclidean norm of an exact solution. Applying this result toR(a, A), the
lemma follows.

LetK be a class of bounded convex full-dimensional sets inRk. Consider the problem:

Pk: Given a setY ∈ K, determine whetherY ∩ Zk 6= ∅, and, if so,
find a pointy ∈ Y ∩ Zk.

Suppose that each setY ∈ K can beρ-rounded by an appropriate rational affine trans-
formation. Then for aρ-rounded setY Lenstra’s algorithm can either solve problemPk

in polynomial time, or reduce it toρ2O(k) subproblemsPk−1, each of which calls for
computing an integral vectory in the intersection ofY with a given rational hyperplane
{y ∈ Rk | a1y1+· · ·+akyk = b} ([1]; see also [14], [10], and [17]). By Lemma 4.1, this
implies that for any set inQF(k,m,d, l ) problemPk can be solved inl O(1)(md)O(k

3)

time, or reduced to 2O(k) similarly structured(k− 1)-dimensional problems. Hence one
can conclude by induction onk that problemPk can be solved inl O(1)(md)O(k

3) time for
any input setY ∈ Q(k,m,d, l ). This proves (33) forboundedsetsY. Finally, suppose
that the solution setY of a quantifier-free formulaP(y) is convex but not necessarily
bounded. By Theorem 1.1, computing an integral solution forP(y) is equivalent to
computing an integral solution for(|y| ≤ r ) ∧ P(y), wherer is a positive integer of
binary sizeld O(k4). This proves (33) and hence Theorem 1.2 for an arbitrary convex
semialgebraic setY.

We mention in closing that applying the shallow-cut ellipsoid method [10], [17] for
rounding semialgebraic sets inQ(k,m,d, l ), along with Theorem 1 of [5], the run-
ning time of the integer programming algorithm in Theorem 1.2 can be improved to
l O(1)dO(k4)5ω

i=1O(ni )mO(k2)5ω
i=1O(ni ). Most likely, the bound of Theorem 1.1 can also be

improved in terms of its dependence onk. We also expect that Corollary 1.3 can be
strengthened by developing an algorithm for semidefinite integer optimization in fixed
dimension whose running time is linearm.
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