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On Random Sections of the Cube∗
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Abstract. Let f ( j, k,n) denote the expected number ofj -faces of a randomk-section
of the n-cube. A formula for f (0, k,n) is presented, and, forj ≥ 1, a lower bound for
f ( j, k,n) is derived, which implies a precise asymptotic formula forf (n − m,n − l ,n)
when 1≤ l < m are fixed integers andn→∞.

1. Introduction

The principal object in this paper is the expected number ofj -dimensional faces (in
short, j -faces) of a randomk-dimensional central section (in short,k-section) of the
n-cubeBn

∞ = [−1,1]n in Rn. We denote this number byf ( j, k,n). The normalized
rotation invariant measure on the setGn,k of all k-dimensional subspaces ofRn provides
the probabilistic framework.

Section 2 contains a calculation of the expected number of vertices of a random
k-section of then-cube. The result is

f (0, k,n) = 2k

(
n

k

)√
2k

π

∫ ∞
0

e−kt2/2γn−k(t Bn−k
∞ )dt, (1)

whereγn−k denotes the(n− k)-dimensional Gaussian probability measure.
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In Section 3 we derive a lower bound forf ( j, k,n) for every 1≤ j < k < n. The
main result is

f (0, k− j,n)

f ( j, k,n)
<

√
2

π

(
j (k− j )

n− k+ j

)1/2 ∫ ∞
0

exp

(
− j (k− j )

n− k+ j
t2/2

)
γj (t B j

∞)dt.

The lower bound forf ( j, k,n) derived from this inequality, combined with (1), leads in
some cases to asymptotically best possible results. For example, in Section 3 we deduce
from it the following asymptotic formula, for fixed integers 1≤ l < m:

f (n−m,n− l ,n) v (2n)m−l

(m− l )!
as n→∞. (2)

The notationan ∼ bn meansan/bn → 1 asn → ∞. Formula (2) can be interpreted
as follows: the probability that a random fixed-codimensional subspace ofRn intersects
a fixed-codimensional face of then-cube, tends to 1 asn → ∞. Formula (2) itself
follows also from the work of Affentranger and Schneider. (See Remark 1 of Section 3
below.) In [1], they found a formula for the expected numberE( f j (5k P)) of j -faces
of an orthogonal projection of ann-polytopeP onto ak-dimensional random subspace.
Formula (5) of [1] reads as follows:

E( f j (5k P)) = f j (P)− 2
∑
s≥0

∑
F∈Fj (P)

∑
G∈Fk+1+2s(P)

β(F,G)γ (G, P). (3)

HereFj (P) denotes the set ofk-faces ofP, and f j (P) = cardFj (P). β(F,G) denotes
the internal angle [8, p. 297], of the faceG at its faceF , andγ (G, P)—the external
angle [8, p. 308], ofP at its faceG. It is shown in [1] that (3) implies that if 0≤ j < k
are fixed integers, then, asn→∞,

E( f j (5kTn)) ∼ 2k

√
k

(
k

j + 1

)
β(T j , Tk−1)(π logn)(k−1)/2. (4)

HereTn stands for the regularn-simplex.
In a very recent work [5], B¨oröczky, Jr., and Henk showed that (3) implies the same

asymptotic formula (4) also forE( f j (5k Bn
1 )), whereBn

1 is the regular cross-polytope.
In addition, they found an asymptotic formula for the internal anglesβ(T j , Tk−1), when
k/j 2 →∞. Therefore if j is fixed,k is much larger thanj 2 andn much larger thank,
then explicit estimates forE( f j (5k Bn

1 )) are available. See [5] for more details. Explicit
asymptotic formulas forE( f j (5kTn)) were established independently by Vershik and
Sporyshev [10], whenj, k are both proportional ton andn→∞.

A simple duality argument shows that

E( f j (5k Bn
1 )) = f (k− j − 1, k,n).

Choosej = k− 1 in (4). Applying the result forBn
1 , one has

f (0, k,n) = E( fk−1(5k Bn
1 )) ∼

2k

√
k
(π logn)(k−1)/2 as n→∞. (5)

The last asymptotic formula follows also from (1). In fact, if{gi }mi=1 are independent
N(0,1) (that is, with mean 0 and variance 1) Gaussian variables, thenγm(t Bm

∞) coincides
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with the probability of the event{max1≤i≤m |gi | ≤ t}. This probabilistic interpretation
allows a straightforward evaluation of the asymptotic behavior of the integral in (1),
whenk is fixed andn→∞.

Formula (1) also yields information aboutf (0, k,n) for k not necessarily fixed. For
example, ifk = n− 1, then the integral in (1) can be computed and the result is

f (0,n− 1,n) = 2nn

π
arctan

1√
n− 1

∼ 2n√n

π
. (6)

Particular values of the last formula were computed numerically in Table 2 of [5]. For
the expected number of vertices of random sections of fixed codimension, we have the
following inequality, which is a consequence of (1):

f (0,n− d,n) ≥
(

n

d

)
2n

(
1

π
arctan

1√
n− d

)d

(d ≥ 1).

Equality holds ford = 1.
To obtain a lower bound forf ( j, k,n), it turns out that it is useful to know an estimate

for the Gaussian measure of a cone generated by a section of a face of a cube. In Section 3
we find such an estimate, by modifying Ball’s calculation of the maximal volume of a
cube-section, based on Brascamp–Lieb’s inequality [2].

Dvoretzky’s theorem on almost Euclidean sections asserts that there exists a function
k(ε,n) ≥ 1, tending to infinity asn → ∞ for each fixedε > 0, such that ifK is an
n-dimensional centrally symmetric convex body (that is, a convex compact set inRn

with nonempty interior, satisfyingK = −K ), andε > 0, then for each 1≤ k ≤ k(ε,n)
there exists ak-dimensional subspaceX, and a linear automorphismT of X for which

X ∩ Bn
2 ⊂ T(X ∩ K ) ⊂ (1+ ε)(X ∩ Bn

2 ), (7)

where Bn
2 denotes the Euclidean unit ball. The proof of Dvoretzky’s theorem in [6]

shows thatk(ε,n) ≥ cε2|logε|−1 logn, for some absolute constantc > 0. That proof
determined the best possible dependence ofk on n. The dependence ofk on ε was
improved by Gordon [7], who discovered another proof of Dvoretzky’s theorem with
k(ε,n) ≥ cε2 logn. Both proofs are probabilistic; they show that not only do there exist
almost Euclidean sections, but actually most sections are such. More precisely, ifX is a
random subspace whose dimension does not exceedk(ε,n), then the probability that the
sectionX ∩ K is (1+ ε)-Euclidean (common terminology for expressing that (7) holds)
tends to 1 asn → ∞. These facts motivate an investigation of the randomf -vector
{ f ( j, k,n)}k−1

j=0, especially since it is well known that everyk-dimensional symmetric
polytope that has 2n facets is affinely equivalent to ak-section of ann-cube.

2. Vertices

Let Gn,k denote the set ofk-dimensional subspaces ofRn. We denote its normalized
rotation invariant measure by “Prob.” Recall that this measure is related to the normalized
Haar measureH of the orthogonal group O(n) by the equality

Prob{X ∈ B} = H{g ∈ O(n): g[ei ]
k
i=1 ∈ B},



160 Y. Lonke

whereB is a Borel subset ofGn,k and [ei ]k
i=1 is thek-dimensional subspace spanned by

the firstk unit vectors inRn. Fix X ∈ Gn,k. For each 0≤ j ≤ k− 1, the set ofj -faces
of the polytopeX ∩ Bn

∞ coincides with the set of intersections of(n − k + j )-faces
of Bn

∞ with X. Every(n− k+ j )-face ofBn
∞ has the same probability to be intersected.

Therefore if one particular(n− k+ j )-faceFn−k+ j is fixed, then the expected number
of j -faces of the sectionX ∩ Bn

∞ is equal to

2k− j

(
n

k− j

)
Prob{X ∩ Fn−k+ j 6= ∅}.

Let C(Fn−k+ j ) denote the cone generated byFn−k+ j :

C(Fn−k+ j ) =
⋃

x∈Fn−k+ j

{t x: t ≥ 0}.

PutC1(Fn−k+ j ) = C(Fn−k+ j ) ∩ Sn−1. For every subspaceX,

X ∩ Fn−k+ j 6= ∅ ⇐⇒ (X ∩ Sn−1) ∩ C1(Fn−k+ j ) 6= ∅.
For n = 0,1, . . . we denote byσn the normalized rotation-invariant measure on the
unit-sphereSn in Rn+1. The next lemma will prove useful for dealing with intersections
of subsets of the sphere with random subspaces.

Lemma 2.1. Let l,m,n be positive integers satisfying l+ m ≥ n − 1. Suppose that
A ⊂ Sm and B⊂ Sl are Borel subsets. Then, for p = l +m− n+ 1,∫

O(n)
σp(gB∩ A)d H(g) = σl (B)σm(A). (8)

To prove the lemma one observes that for fixedA (resp. B) the integral defines an
invariant measure onSl (resp.Sm); the conclusion follows from that.

Lemma 2.1 is now applied toB = X ∩ Sn−1, which we denote bySk−1, and
to A = C1(Fn−k+ j ). For l = k− 1 andm= n− k+ j equality (8) becomes∫

O(n)
σj (gSk−1 ∩ A)d H(g) = σn−k+ j (A). (9)

We are ready to compute the expected number of vertices. The Gaussian measure in
Rm whose density is(2π)−m/2 exp(−∑m

1 x2
i /2) is denoted byγm.

Proposition 2.2. The expected number of vertices of a random k-dimensional central
section of the n-cube is given by the formula

f (0, k,n) = 2k

(
n

k

)√
2k

π

∫ ∞
0

e−kt2/2γn−k(t Bn−k
∞ )dt.

Proof. For eachg ∈ O(n) we have

gSk−1 ∩ C1(Fn−k) = (span(gSk−1) ∩ C(Fn−k)) ∩ Sn−1.
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For almost everyg the intersection span(gSk−1) ∩C(Fn−k) is either the origin itself, or
else a ray emanating from the origin. Therefore the intersectiongSk−1 ∩ C1(Fn−k) is
either empty or a singleton, for almost everyg. Choosej = 0 in (9), with A = C1(Fn−k).
Since the measureσ0 is concentrated on two points giving mass1

2 to each, we deduce
from (9) that

Prob{X ∩ Fn−k 6= ∅} = 2σn−k(C1(Fn−k)). (10)

To compute the right-hand side of (10), consider an(n− k)-dimensional cube of edge-
length 1 insideRn−k+1, at a distance

√
k from the origin, form the cone it generates, and

compute the measure of its intersection with the sphereSn−k. Invoking polar coordinates
we see that

σn−k(C1(Fn−k)) = γn−k+1(C(Fn−k)).

By rotational symmetry of the Gaussian measure we may assume thatFn−k is specif-
ically the set{x: |xi | ≤ 1, 1 ≤ i ≤ n − k, xn−k+1 =

√
k}. The intersection of the

hyperplane{xn−k+1 = t} with C(Fn−k) is an(n− k)-dimensional cube of edge-length
t/
√

k. Therefore by Fubini’s theorem

γn−k+1(C(Fn−k)) = 1√
2π

∫ ∞
0

e−t2/2γn−k

(
t√
k

Bn−k
∞

)
dt

=
√

k

2π

∫ ∞
0

e−kt2/2γn−k(t Bn−k
∞ )dt.

The last equality, together with (10), implies the desired formula.

The next lemma points out the precise asymptotic behavior off (0, k,n) whenk is
fixed andn→∞, and also that off (n−m,n− l ,n), whenl ,m are fixed andn→∞.
(To be used in Section 3.)

Lemma 2.3. Suppose that{αn}∞n=1 is a sequence of real numbers that has a positive
limit α. Then, as n→∞,∫ ∞

0
e−αnt2/2γn(t Bn

∞)dt ∼ 0(α)π
α/2

√
2

(logn)(αn−1)/2

nαn
, (11)

where0 is the gamma function.

Proof. Let Fn(t) = Prob{maxi |gi | ≤ t}, whereg1, . . . , gn are independentN(0,1)-
Gaussian variables. We have

γn(t Bn
∞) =

(√
2

π

∫ t

0
e−x2/2 dx

)n

= Fn(t).

For n > 1, put

an = 1√
2 logn

and bn =
√

2 logn− log(π logn)

2
√

2 logn
.
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The well known tail approximation√
2

π

∫ ∞
t

e−x2/2 dx =
√

2

π

1+ o(1)

t
e−t2/2 as t →∞, (12)

combined with a simple calculation, implies that

lim
n→∞ Fn(anx + bn) = exp(−e−x), ∀ x ∈ R. (13)

A change of variables gives∫ ∞
0

e−αnt2/2γn(t Bn
∞)dt = an

∫ ∞
−bn/an

e−αn(anx+bn)
2/2Fn(anx + bn)dx

= παn/2

√
2

(logn)(αn−1)/2

nαn
e−o(1)

·
∫ ∞
−∞

e−x2 o(1)e−αnx(1−o(1))Fn(anx + bn)χn(x)dx.

Hereχn stands for the characteristic function of the interval [−bn/an,∞). All four terms
of the integrand in the last integral are nonnegative for eachx. Forx ≥ 0 and sufficiently
largen we havee−αnx(1−o(1)) < e−αx/2, while the rest of the terms are majorized by 1.
For x < 0, the tail estimate (12) implies the existence of a constantc = c(α) > 0, such
that Fn(anx + bn) < e(α+1)x for everyx in (− logn,−c), and sufficiently largen. One
more application of (12) shows that limn→∞

∫ − logn
−bn/an

e−αnx Fn(anx+bn)dx = 0. By (13),
the integrand converges pointwise to the functione−αx exp(−e−x); Lebesgue’s bounded
convergence theorem can be applied:

lim
n→∞

∫
−bn/an

e−x2o(1)e−αnx(1−o(1))Fn(anx + bn)dx =
∫ ∞
−∞

e−αx exp(−e−x)dx

= 0(α).

The proof of Lemma 2.3 is complete.

Taking αn ≡ k in Lemma 2.3 and bearing in mind Proposition 2.2 re-proves the
following result, which was mentioned in the Introduction.

Corollary 2.4. For fixed k,

f (0, k,n) ∼ 2k

√
k
(π logn)(k−1)/2 as n→∞.

We turn now to the case of fixed codimension. The next result is deduced from Proposi-
tion 2.2.

Proposition 2.5. For d ≥ 1,

f (0,n− d,n) ≥
(

n

d

)
2n

(
1

π
arctan

1√
n− d

)d

(d ≥ 1).
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Equality holds for d= 1:

f (0,n− 1,n) = 2nn

π
arctan

1√
n− 1

. (14)

Proof. Consider the probability measuredµ(t) = 2
√
(k/π)e−kt2dt on the half-line

[0,∞). Put

8(t) = 2√
π

∫ t

0
e−x2

dx.

Then

γn−k(t Bn−k
∞ ) =

(√
2

π

∫ t

0
e−x2/2 dx

)n−k

= 8n−k

(
t√
2

)
.

Therefore√
2k

π

∫ ∞
0

e−kt2/2γn−k(t Bn−k
∞ )dt =

√
2k

π

∫ ∞
0

e−kt2/28n−k

(
t√
2

)
dt

=
∫ ∞

0
8n−k(t)dµ(t)

≥
(∫ ∞

0
8(t)dµ(t)

)n−k

. (15)

Elementary calculation shows that∫ ∞
0

e−kt28(t)dt = 1√
πk

arctan
1√
k
.

A combination of (15) with Proposition 2.2 gives the desired inequality, after a replace-
ment ofk by n− d. Observe that, fork = n− 1 (that is,d = 1), there is equality in the
inequality of (15).

Remarks. 1. Forn = 3 we get, from (14),f (0,2,3) = (24/π)arctan(1/
√

2) ≈ 4.7.
Therefore a random 2-section of the 3-cube is more likely to be a parallelogram than a
hexagon.

2. Bárány and Lovász proved in [3] that (in particular) almost everyk-section of the
n-cube has at least 2k vertices. Clearly this is a precise lower bound. Fork = n− 1, our
result shows that the expected value is asymptotically

√
n/π times the minimal value.

3. The asymptotic behavior of the integral∫ ∞
0

e−kt2/2γn−k(t Bn−k
∞ )dt

for fixed k andn → ∞ was determined in [5] (following [9]), and was used to prove
formula (4) of the Introduction. See also [1]. The asymptotic result is basically a corollary
of the classical tail approximation of a singleN(0,1)-Gaussian variable. Our approach
to the proof of Lemma 2.3 seems to simplify the analysis.
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4. As was indicated in the Introduction, we can chooseε = c/
√

logn for some constant
c > 0, and then with high probability a random 2-section of the cube is(1+ c/

√
logn)-

Euclidean. It is well known that among all centrally symmetric polygons having 2m
vertices, the regular 2m-gon minimizes the Banach–Mazur distance to the Euclidean
disk; the minimal distance is(cos(π/2m))−1. Consequently with high probability we
have (

cos
π

2m

)−1
< 1+ c√

logn
.

Hence most 2-sections of then-cube have at leastC(logn)1/4 vertices, for some positive
constantC. By Proposition 2.2 (after suitable rearrangement)

f (0,2,n) = 2
√
π E

(
max
1≤i≤n

|gi |
)
,

which is of the order of magnitude of
√

logn. Summarizing these observations, we
conclude: a typical 2-section of then-cube is(1+ c/

√
logn)-Euclidean, hence it cannot

have too few vertices—it has at leastC(logn)1/4 vertices with probability that tends
to 1 asn→∞. It does not however tend to be a regular polygon, because the expected
number of its vertices is too high for that.

3. Other Faces

We now turn to the casej ≥ 1, and prove the following result.

Proposition 3.1. For j ≥ 1, the following inequality holds:

f (0, k− j,n)

f ( j, k,n)
<

√
2

π

(
j (k− j )

n− k+ j

)1/2 ∫ ∞
0

exp

(
− j (k− j )

n− k+ j
t2/2

)
γj (t B j

∞)dt.

The starting point in the proof of Proposition 3.1 is (9). Again, we chooseA = C1(Fn−k+ j ).
The random variableg→ σj (gSk−1 ∩ A), which is defined on O(n), has values in [0,1].
Hence ∫

O(n)
σj (gSk−1 ∩ A)d H(g) =

∫ 1

0
H{g: σj (gSk−1 ∩ A) ≥ t}dt. (16)

The integrand is nonincreasing, and

H{g: σj (gSk−1 ∩ A) ≥ 0} = Prob{X ∩ Fn−k+ j 6= ∅}, (17)

because the event{gSk−1 ∩ A 6= ∅ andσj (gSk−1 ∩ A) = 0} has Haar measure zero.
Therefore, by (9),

σn−k+ j (A) ≤ Prob{X ∩ Fn−k+ j 6= ∅} sup{t : H{g: σj (gSk−1 ∩ A) ≥ t} > 0}
≤ Prob{X ∩ Fn−k+ j 6= ∅} sup{σj (gSk−1 ∩ A): g ∈ O(n)}.
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Let

tj,k,n = sup{σj (gSk−1 ∩ A): g ∈ O(n)}.
By (9), (15), and (16) we get

Prob{X ∩ Fn−k+ j 6= ∅} ≥ σn−k+ j (A)

tj,k,n
.

Hence, by (10),

f ( j, k,n) ≥ 2k− j

(
n

k− j

)
σn−k+ j (A)

tj,k,n
=

1
2 f (0, k− j,n)

tj,k,n
.

We must boundtj,k,n from above. SinceA is contained in a half-space, a trivial bound is
tj,k,n ≤ 1

2. In some cases this bound can be significantly improved. The main lemma in
this section is the following.

Lemma 3.2. If 1≤ j < k < n, then

tj,k,n ≤ 1√
2π

(
j (k− j )

n− k+ j

)1/2 ∫ ∞
0

exp

(
− j (k− j )

n− k+ j
t2/2

)
γj (t B j

∞)dt.

The next lemma will be used in the proof of Lemma 3.2.

Lemma 3.3. Given a positive numberτ > 0, a j-dimensional affine subspace Y of
Rm, and a point y0 ∈ Y, the following inequality holds:

γj ((Y ∩ τBm
∞)− y0) ≤ γj

(
τ

√
m

j
B j
∞

)
. (18)

Proof. Let Q denote the orthogonal projection ontoY − y0. As usual,{ei }mi=1 are the
standard unit vectors inRm. Putui = Qei /‖Qei ‖ if Qei 6= 0, andui = 0 otherwise;
put ci = ‖Qei ‖2 andαi = 〈y0,ei 〉 for 1 ≤ i ≤ m. (〈·, ·〉 is the standard scalar product.)
Then

Y ∩ τBm
∞ = {y ∈ Y: |〈y,ei 〉| ≤ τ, ∀ i }
= {y ∈ Y: |〈y− y0,ei 〉 + 〈y0,ei 〉| ≤ τ, ∀ i }
=
{

y ∈ Y:
−αi − τ√

ci
≤ 〈y− y0,ui 〉 ≤ −αi + τ√

ci

}
.

Therefore

(Y ∩ τBm
∞)− y0 =

{
x ∈ Y − y0:

−αi − τ√
ci
≤ 〈x,ui 〉 ≤ −αi + τ√

ci

}
.

Now we can imitate Ball’s argument from [2] concerning sections of maximal volume.
Instead of the Lebesgue measure, we have to consider the Gaussian measure.
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In Y − y0, the identity operator can be written as
∑m

1 ci ui ⊗ ui . In particular,

m∑
i=1

ci = j and ‖x‖2 =
m∑

i=1

ci 〈x,ui 〉2, ∀x ∈ Y − y0.

Therefore the Gaussian measure inY − y0 is equal to

(2π)− j/2 exp

(
−1

2

m∑
i=1

ci 〈x,ui 〉2
)

dx.

Letχi denote the characteristic function of the interval [(−αi−τ)/√ci , (−αi+τ)/√ci ].
Then, by the above,

γj ((Y ∩ τBm
∞)− y0) = (2π)− j/2

∫
Y−y0

(
m∏

i=1

χi (〈x,ui 〉)e−ci 〈x,ui 〉2/2
)

dx

= (2π)− j/2
∫

Y−y0

m∏
i=1

(χi (〈x,ui 〉)e−〈x,ui 〉2/2)ci dx

≤ (2π)− j/2
m∏

i=1

(∫ (−αi+τ)/√ci

(−αi−τ)/√ci

e−s2/2 ds

)ci

. (19)

The last inequality is a consequence of Brascamp–Lieb’s inequality, which is stated in
[2] as follows:

Lemma. Let (ui )
m
1 be a sequence of unit vectors inRn and let(ci )

m
1 be a sequence of

positive numbers so that
m∑
1

ci ui ⊗ ui = In.

For each i, let fi : R→ [0,∞) be integrable. Then∫
Rn

m∏
i=1

fi (〈ui , x〉)ci dx ≤
m∏

i=1

(∫
R

fi

)ci

.

The i th integral in the product of (19) is not larger than
∫ τ/√ci

−τ/√ci
e−s2/2 ds. Hence the

last expression in (19) is bounded above by

(2π)− j/2
m∏

i=1

(
2
∫ τ/

√
ci

0
e−s2/2 ds

)ci

,

which is maximized when all theci ’s are equal. Hence

γj ((Y ∩ τBm
∞)− y0) ≤

(√
2

π

∫ τ
√

m/j

0
e−s2/2 ds

) j

= γj

(
τ

√
m

j
B j
∞

)
. (20)

The proof of Lemma 3.3 is complete.
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Proof of Lemma3.2. Forg ∈ O(n),

σj (gSk−1 ∩ A) = γj+1
(
C(Fn−k+ j ) ∩ span(gSk−1)

)
= γj+1

(
C[Fn−k+ j ∩ span(gSk−1)]

)
.

The second equality is a consequence of the identityC(Fn−k+ j )∩ X = C(Fn−k+ j ∩ X),
which trivially holds for every subspaceX ⊂ Rn. Fix a subspaceX ∈ Gn,k for which
the sectionX ∩ Fn−k+ j is j -dimensional; almost everyX ∈ Gn,k has this property. Let
C denote the( j + 1)-dimensional cone generated byX ∩ Fn−k+ j ; put X0 = spanC. By
M we denote the affine subspace spanned byX ∩ Fn−k+ j , and byd its distance from
the origin ofX. The Gaussian measure of the coneC is computed as follows. Take the
unit vectorξ ∈ X0 which is orthogonal toM , and for whichdξ ∈ M . For t > 0, put
Wt = {x ∈ X0: 〈x, ξ〉 = t}. Observe thatC ∩Wt = (t/d)(X ∩ Fn−k+ j ). Let P denote
the orthogonal projection fromX0 ontoW0. By Fubini’s theorem,

γj+1(C) = 1√
2π

∫ ∞
0

e−t2/2γj (P(C ∩Wt ))dt

= 1√
2π

∫ ∞
0

e−t2/2γj

(
P

t

d
(X ∩ Fn−k+ j )

)
dt. (21)

Our task is to estimate the expressionγj (Pτ(X ∩ Fn−k+ j )) for everyτ > 0. We need
to discuss Gaussian measures in different subspaces. WheneverM is anm-dimensional
subspace ofRn andq ∈ M , letGM,q denote the measure(2π)−m/2 exp(−‖x−q‖2/2)dx.
In caseM is an m-dimensional linear subspace ofRn and q = 0 we simply write
GM,0 = γm. If T is an isometry ofRn, then for every Borel subsetS⊂ M we have

GM,q(S) = GT M,T q(T S). (22)

We momentarily assume thatτ = 1. Let q denote the nearest point ofM to the origin
of X. Both M and the range of the projectionP are j -dimensional affine subspaces
of X0. We have

P(X ∩ Fn−k+ j ) = (X ∩ Fn−k+ j )− q,

hence, by (22),

GM,q(X ∩ Fn−k+ j ) = γj (P(X ∩ Fn−k+ j )). (23)

Now letL denote the affine subspace spanned byFn−k+ j , whose originOL is taken as the
center of the faceFn−k+ j . (So if X passes through the center ofFn−k+ j , thenq = OL .)
M is also aj -dimensional affine subspace ofL. By (22),

GM,q(X ∩ Fn−k+ j ) = GM−(q−OL ),OL

(
(X ∩ Fn−k+ j )− (q − OL)

)
.

Applying the same argument for arbitraryτ > 0 we conclude that

γj (Pτ(X ∩ Fn−k+ j )) = GτM−τ(q−OL ),τOL

(
τ(X ∩ Fn−k+ j )− τ(q − OL)

)
. (24)

We may think ofτ L asRn−k+ j , of τ Fn−k+ j asτBn−k+ j
∞ , and ofτ(X ∩ Fn−k+ j ) as

an affine j -dimensional section ofτBn−k+ j
∞ . Thus for eacht > 0 Lemma 3.3 can be
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used withτ = t/d andm= n− k+ j . By the definition ofd, we haved ≥ √k− j .
Combining (18), (21), and (24) we deduce that

γj+1(C) ≤ 1√
2π

∫ ∞
0

e−t2/2γj

(
t

(
n− k+ j

j (k− j )

)1/2

B j
∞

)
dt

= 1√
2π

(
j (k− j )

n− k+ j

)1/2 ∫ ∞
0

exp

(
− j (k− j )

n− k+ j
t2/2

)
γj (t B j

∞)dt.

The proof of Lemma 3.2 and thus of Proposition 3.1 is complete.

By using the asymptotic formulas of Section 2, namely Lemma 2.3 and Corollary 2.4,
we can now prove the following result, which shows that the lower bound forf ( j, k,n)
derived from Proposition 3.1 is, in some cases, asymptotically best possible.

Corollary 3.4. For fixed integers1≤ l < m,

f (n−m,n− l ,n) v (2n)m−l

(m− l )!
as n→∞. (25)

Proof. Putαn = (m− l )(n−m)/(n−m+ l ). By Proposition 3.1,

f (0,m− l ,n)

f (n−m,n− l ,n)
<

√
2αn

π

∫ ∞
0

e−αnt2/2γn−m(t Bn−m
∞ )dt. (26)

Putbn = (log(n−m))(αn−1)/2/(n−m)αn andcn = (logn)(m−l−1)/2. Let dn denote the
right-hand side of (26), from which we get

f (n−m,n− l ,n)
bn

cn
>

f (0,m− l ,n)

cn

bn

dn
.

Since limn→∞ αn = (m− l ), Lemma 2.3 implies that

lim
n→∞

bn

dn
= 1

π(m−l−1)/20(m− l )
√

m− l
.

Moreover, by Corollary 2.4,

lim
n→∞

f (0,m− l ,n)

cn
= 2m−lπ(m−l−1)/2

√
m− l

.

Thus, the sequencef (n − m,n − l ,n)(bn/cn) is larger than a sequence that tends to
2m−l/(m− l )! asn tends to infinity. On the other hand we havef (n−m,n− l ,n) <
2m−l

( n
m−l

)
, so

f (n−m,n− l ,n)
bn

cn
< 2m−l

(
n

m− l

)
bn

cn
,

and sincebn/cn v nl−m, the right-hand side here tends to 2m−l/(m− l )!. Consequently,

lim
n→∞ f (n−m,n− l ,n)

bn

cn
= 2m−l

(m− l )!
.



On Random Sections of the Cube 169

The required asymptotic formula follows immediately. The proof of Corollary 3.4 is
complete.

Remarks. 1. The previous corollary implies that the number of(n − m)-faces of a
random(n − l )-section of then-cube tends to concentrate near the value 2m−l

( n
m−l

)
,

which bounds it from above. So, for example, a typical 1-codimensional section of the
n-cube will have 2n− o(n) facets asn→∞. This result can also be deduced from the
identity (3). Indeed, by duality we havef (n − m,n − l ,n) = E( fm−l−1(5n−l (Bn

1 ))),
and replacingTn by Bn

1 in the proof of Theorem 2 in [1] (the details of this replacement
appear in [5]; see the proof of Theorem 1.1 there) we get the previous corollary.

2. According to a remark made in [5], the numberf ( j, k,n) is equal to the expected
number of(k − j − 1)-faces of the convex hull of±G1, . . . ,±Gn, where theGi ’s are
independent copies of ak-dimensional Gaussian vector. See also [4]. Hence, the results
for f (0, k,n) can be interpreted as results for the expected number of facets of the
convex hull of{±Gi }n1 in Rk. For example, we can translate the first remark at the end
of Section 2 to the following statement:

If three points in the plane are chosen at random, then their symmetric convex hull
is more likely to be a parallelogram than a hexagon.
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3. I. Bárány and L. Lovász, Borsuk’s theorem and the number of facets of centrally symmetric polytopes,
Acta Math. Acad. Sci. Hungar. 40(3–4) (1982), 323–329.

4. Y. M. Baryshnikov and R. A. Vitale, Regular simplices and Gaussian samples,Discrete Comput. Geom.
11(2) (1994), 141–147.
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