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Abstract. We prove a formula conjectured by Ahrens, Gordon, and McMahon for the
number of interior points for a point configuration inRd. Our method is to show that the
formula can be interpreted as a sum of Euler characteristics of certain complexes associated
with the point configuration, and then compute the homology of these complexes. This
method extends to other examples of convex geometries. We sketch these applications,
replicating an earlier result of Gordon, and proving a new result related to ordered sets.

1. Introduction

LetA be a collection of points inRd whose affine span is all ofRd. Let int(A) be the
set of points ofA that lie in the interior of its convex hull, conv(A). Call a subsetK of
A freeif conv(K )∩A = K and the set of vertices of conv(K ) is equal toK . In a recent
paper Ahrens et al. [1, Conjecture 4.1] conjectured the following beautiful formula for
|int(A)|, and proved it for point configurationsA in R2:

Theorem 1.1.

|int(A)| = (−1)(d−1)
∑
K free

(−1)|K ||K |.

We prove this formula in its full generality in Section 3. Klain [14, Proposition 6.3] has
recently proven this formula independently.

The work of Ahrens et al. is part of a larger project of extending matroid invariants
to greedoids [11], [12]. Recent work has focused on generalizing Crapo’sβ invariant,
originally defined for matroids [6], to the more general structure of a greedoid [10].

∗ The second author was partially supported by a Sloan Foundation Fellowship and a University of
Minnesota McKnight-Land Grant Fellowship.



2 P. H. Edelman and V. Reiner

In the special case of greedoids which are convex geometries, the definition of theβ

invariant reduces to essentially the right-hand side of Theorem 1.1 [10]. Theorem 1.1
gives a combinatorial interpretation to theβ invariant of those convex geometries which
are based on Euclidean point configurations. Given this background, it is not surpris-
ing that Ahrens et al. use deletion-contraction arguments to establish their formula for
d = 2.

Our point of view is more in the tradition of a topological approach to matroid theory
[3], as we now explain. One can rewrite the right-hand side in Theorem 1.1 as follows:

(−1)(d−1)
∑
K free

(−1)|K ||K | = (−1)(d−1)
∑
K free

∑
a∈K

(−1)|K |

= (−1)(d−1)
∑
a∈A

χ̃a,

where

χ̃a =
∑

K free,a∈K

(−1)|K |.

We will prove Theorem 1.1 by showing (see Lemmata 3.4 and 3.5) that

χ̃a =
{
(−1)d−1 if a ∈ int(A),
0 otherwise.

The latter computation is achieved by interpretingχ̃a as the reduced Euler characteristic
of a certain simplicial complex (thelink of a in the simplicial complex of free sets ofA),
and then analyzing the topology of these complexes. In contrast, Klain [14] computes
these Euler characteristics directly using valuation theory for polytopes.

The paper is organized as follows. In the next section we establish some general facts
from combinatorial topology and polytope theory necessary for the proof. In Section 3
we prove Theorem 1.1. Section 4 uses similar techniques to evaluate the generalizedβ

invariant for other convex geometries. Section 5 discusses some open problems.

2. Preliminaries

In this section we establish some background results from topological combinatorics
that are used throughout the paper. For much of this material an excellent reference is
[4].

Let 1 be an abstract simplicial complex on the finite ground setX. That is,1 is a
collection of subsets ofX, calledsimplices, with the property that

σ ⊆ τ ∈ 1
implies thatσ ∈ 1. For−1 ≤ i ≤ |X| − 1 let fi be the number ofi -dimensional faces
of 1, i.e.,

fi = |{σ ∈ 1: |σ | = i + 1}|.
For anyx ∈ X, we define three associated subcomplexes, thelink of x in1, thestar of
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x in1, and thedeletion of x in1 by

lk1(x) = {σ − x | x ∈ σ ∈ 1 },
st1(x) = {σ ∈ 1 | {x} ∪ σ ∈ 1 },

del1(x) = {σ ∈ 1 | x 6∈ σ }.
It is clear from the definitions that

st1(x) ∪ del1(x) = 1 (1)

and

del1(x) ∩ st1(x) = lk1(x). (2)

For a given simplicial complex1, let H̃i (1) = H̃i (1,Z) be the reduced homology
groups of1 with coefficients inZ, for i ≥ 0. By the universal coefficient theorem [15,
Section 55],H̃ .(1) determines the homology of1 with any other constant coefficients.
Thereduced Euler characteristic̃χ(1) is defined by

χ̃(1) =
∑
i≥−1

(−1)i fi =
∑
i≥0

(−1)i dimQ H̃i (1,Q),

where we note thatf−1 = 1.
The following lemma will be necessary in what follows.

Lemma 2.1. Let1 be a contractible simplicial complex on the ground set X and let
x ∈ X. For all i ≥ −1,

H̃i (lk1(x)) ∼= H̃i (del1(x)).

Consequently,

χ̃(lk1(x)) = χ̃(del1(x))

=
∑

x∈σ∈1
(−1)|σ |.

Proof. Associated to (1) and (2) is a Mayer–Vietoris exact sequence [15, Theorem 25.1]

· · · → H̃i+1(1)→ H̃i (lk1(x))→ H̃i (del1(x))⊕ H̃i (st1(x))→ H̃i (1)→ · · · .
Note that both1 and st1(x) are contractible, the former by hypothesis and the latter
since st1(x) is a cone. Therefore the above sequence reduces to

· · · → 0→ H̃i (lk1(x))→ H̃i (del1(x))→ 0→ · · · ,
which proves the first assertion. The next equation follows immediately and the last
equation is immediate from the definition of the reduced Euler characteristic.

Let P be a poset. We can associate withP its simplicial complex of chains1(P),
i.e., the collection of totally ordered subsets ofP. When we speak ofP having a certain
topological property, we are really referring to the topology of thegeometric realization
of1(P). If P has both a maximum element1̂ and a minimum element0̂, then itsproper
part is P = P−{0̂, 1̂}. If x ∈ P, then letP≤x = {y ∈ P | y ≤ x }. The following lemmata
are essentially due to Quillen [16]. See also Theorem 10.5 and Corollary 10.12 of [4].



4 P. H. Edelman and V. Reiner

Lemma 2.2. Suppose Q and P are posets and f: Q → P is an order-preserving
map. If for all x ∈ P the fibers f−1(P≤x) are contractible, then f induces a homotopy
equivalence between Q and P.

Lemma 2.3. Let f : P → P be an order-preserving map such that f(x) ≥ x for all
x ∈ P. Then f induces a homotopy equivalence between P and f(P).

Remark 2.4. In our applications of Lemma 2.2, we often letQ be a simplicial complex
1 viewed as a partially ordered set, where the partial order on the simplices is by
containment. The conclusions drawn will technically be about the order complex of this
poset, which is thebarycentric subdivisionsd(1) of 1. However, it is well known [15,
Section 15] that sd(1) is homeomorphic to1, so the same conclusions can be drawn
about1.

The last general facts that we employ concernGale transformsof point configurations.
LetA = {a1, . . . ,an} ⊆ Rd be a collection of points whose affine span is all ofRd and let
conv(A) denote the polytope which is the convex hull ofA. List a1, . . . ,an as columns
of a matrix and append a row of ones to obtain the(d + 1) × n matrix MA. The null
space ofMA is the set of all affine dependencies among the points inA, i.e., vectors
(λ1, . . . , λn) such that

∑n
i=1 λi ai = 0 and

∑n
i=1 λi = 0. Let A∗ be an(n− d − 1)× n

matrix whose rows form a basis for this space and denote its columns byv∗1, . . . , v
∗
n.

This collectionA∗ of points inRn−d−1 is aGale transformof A. The correspondence
betweenvi andv∗i extends naturally to subsets ofA andA∗. For any subsetB ⊆ A,
denote by aff(B) the affine span ofB. The principal property of Gale transforms is

Lemma 2.5[13, Section 5.5]. Let F be a proper subset ofA. Then

aff(F) ∩ conv(A− F) = ∅
if and only if

0 ∈ relint(conv(A− F)∗).

That is, F is exactly the set of points ofA that lie on a face ofconv(A) if and only if
(A− F)∗ has0 in its relative interior.

One should observe that any set ofn points inRn−d−1 that has 0 in its relative interior
is the Gale transform of some set ofn points inRd. For an interesting survey of the uses
of Gale transforms, see [2].

Lemma 2.6. LetA be a point configuration inRd, let P= conv(A), and letA∗ be its
Gale transform. Let N be the poset of proper subsets A ofA∗, ordered by containment,
such that

0 6∈ relint(conv(A)).

Then N has the same integral homology as the(n− d − 2)-sphere, and hence

χ̃(N) = (−1)n−d−2.
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Proof. Let 2A
∗

be the collection of all subsets ofA∗. Considering its proper part2A∗

as partially ordered by inclusion, its order complex is the barycentric subdivision of
the boundary of an(n− 1)-simplex, and hence is homeomorphic to an(n− 2)-sphere.
Lemma 2.5 implies that 2A

∗ − N is isomorphic as a poset to the opposite of the face
lattice of P. Thus the order complex of2A∗ − N is the barycentric subdivision of the
boundary complex ofP, and hence is homeomorphic to a(d − 1)-sphere. It follows
from Lemma 4.7.27 of [5] thatN is a deformation retract of the space2A∗ − N, which
is to say the complement of a(d − 1)-sphere in an(n − 2)-sphere. It then follows
from Alexander duality [15, Theorem 71.1] thatN has the homology of an(n− d− 2)-
sphere.

The posetN which appears in the previous proof is, roughly speaking, the poset of
subsets ofAwhich do not form boundary faces of conv(A). In [17] it was asked whether
it has the homotopy type of an(n − d − 2)-sphere and not just the same homology
groups. This question was answered affirmatively by Dong [7].

3. Proof of Theorem 1.1

In this section we prove the conjecture of Ahrens et al. Our discussion in this section is
only in terms of the geometric structure of point configurations inRd, although there are
natural generalizations to the more abstract situation of convex geometries. We take up
those more general questions in the next section.

LetA = {a1, . . . ,an} be a point configuration inRd. Given a subsetA ofAwe define
theclosure of A, Ac, to be

Ac = conv(A) ∩A.
It is clear that this is a true closure operator on the subsets ofA, that is, it is idempotent,
inclusion-preserving, andA ⊆ Ac. The closed sets under this operator are calledthe
convex sets ofA. Let L = L(A) be the lattice of convex sets ofA ordered by inclusion
and letL be itsproper part, that is,L = L − {∅,A}.

If C is a convex set ofA, a pointa ∈ C is calledan extreme point of Cif a is the
vertex of the polytope conv(C). Let ex(C) be the set of extreme points ofC. A convex
setC is said to befree if ex(C) = C. Let Free= Free(A) be the collection of free sets
of A, and note that Free is a simplicial complex.

Lemma 3.1. LetA be a point configuration and letL(A) be its lattice of convex sets.
ThenL triangulates an{

(|A| − 2)-ball if A 6= ex(A),
(|A| − 2)-sphere if A = ex(A).

Proof. This follows from Theorem 4.10 of [8], but for the sake of completeness we
sketch the proof here. In the case whereA = ex(A), note thatL is a Boolean algebra
on the setA whose proper part has order complex equal to the barycentric subdivision
of an(|A| − 1)-simplex, i.e., it triangulates an(|A| − 2)-sphere.
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If A 6= ex(A), then the meet of the coatoms ofL is the convex setA− ex(A) which
lies inL . It follows from the Crosscut Theorem (10.8) of [4] thatL is contractible.

Lemma 3.2. LetA be a point configuration and letFreebe its simplicial complex of
free sets. ThenFreeis contractible.

Proof. If ex(A) = A, then Free is just a simplex and hence is contractible. Thus, we
may assume that ex(A) 6= A, so that the inclusion mapι is a map from Free toL . We
wish to apply Lemma 2.2, treating the simplicial complex Free as its poset of faces as
discussed in Remark 2.4. We then need to analyze the structure of the fibersι−1(L≤C)

for eachC ∈ L . It is easy to check thatι−1(L≤C) = Free(C) (whereC is considered as
a point configuration), and hence is contractible by induction on the number of points.
Hence, by Lemma 2.2, Free has the same homotopy type asL . By Lemma 3.1,L is
contractible ifA 6= ex(A), and so the lemma is proven.

Let

β(A) =
∑

K∈Free

(−1)|K ||K |.

Our definition ofβ(A)differs from that of Ahrens et al. by a minus sign [1, Definition 2.2].
For our purposes this is the more convenient convention.

Lemma 3.3. If A is a point configuration, then

β(A) =
∑
a∈A

χ̃(delFree(a)).

Proof. As noted in Lemma 2.1

χ̃(delFree(a)) =
∑

a∈K∈Free

(−1)|K |

since Free is contractible by Lemma 3.2. Thus∑
a∈A

χ̃(delFree(a)) =
∑
a∈A

∑
a∈K∈Free

(−1)|K |

=
∑

K∈Free

(−1)|K ||K |

= β(A).

From Lemma 3.3, we see that it is sufficient to understand the topology of each
deletion delFree(a) in order to evaluateβ(A). That is what we endeavor to do in the rest
of this section. LetP = conv(A). We assume that dim(P) = d and thus the interior
of P is the same as its relative interior. Let bdy(P) denote the points ofA lying in the
boundary of conv(A), that is, bdy(P) := A− int(A).

Lemma 3.4. Let x ∈ A and suppose that x∈ bdy(P). ThendelFree(x) is contractible.
As a consequencẽχ(delFree(x)) = 0.
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Proof. If x is on the boundary ofP, then it is contained in the relative interior of a
unique faceF of P. Let F = F ∩A. Define a new point configurationB by

B = F ∪ {t},
wheret is a new point inRd that is affinely independent of the points inF . The mapf
fromA toB defined by

f (a) =
{

a if a ∈ F,
t otherwise,

induces a mapf̂ from subsets ofA to subsets ofB by f̂ (A) = { f (a) |a ∈ A}. It is
easy to check that̂f restricts to a map from delFree(A)(x) to delFree(B)(x). In order to
apply Lemma 2.2 we view both of these simplicial complexes as their posets of faces as
discussed in Remark 2.4.

We now analyze the fibers of this restricted mapf̂ . For notational convenience, let

0 = delFree(A)(x),

0′ = delFree(B)(x).

Suppose thatK ∈ 0′. We consider two cases in analyzing the fiberf̂ −1(0′≤K ).
If t 6∈ K , then

f̂ −1(0′≤K ) = {C ⊆ K |C ∈ 0},
which hasK as a maximum element, sinceK ∈ 0′ and t 6∈ K implies thatK ∈ 0.
Hence this fiber is contractible.

If t ∈ K , then

f̂ −1(0′≤K ) = {C ∈ 0 |C ∩ F ⊆ K }
= Free((K − {t}) ∪ (A− F))

(here(K − {t})∪ (A− F) is considered as a point configuration on its own). This fiber
is then contractible by Lemma 3.2.

Thus the fibersf̂ −1(0′≤K ) are always contractible, and so by Lemma 2.2, we know
that delFree(A)(x) has the same homotopy type as delFree(B)(x). Since the pointt was
affinely independent of all of the other points inB, we see that delFree(B)(x) hast as a
cone point, and hence is contractible. Thus delFree(A)(x) is contractible and the lemma
is proven.

We still have to consider the topology of delFree(x) in the instance whenx is in the
interior ofP.

Lemma 3.5. Let x ∈ A and suppose that x∈ int(P). ThendelFree(x) has the integral
homology of a(d − 1)-sphere. As a consequence, χ̃(delFree(x)) = (−1)d−1.

Proof. Suppose thatx ∈ int(P). Define the posetC N(x) by

C N(x) = {K ∈ L |x 6∈ relint(conv(K ))}.
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Note that delFree(x) ⊆ C N(x) and so we can consider the inclusion map

ι: delFree(x)→ C N(x).

Again we view delFree(x) as its poset of faces in order to apply Lemma 2.2 as discussed
in Remark 2.4.

Claim 3.6. The fibersι−1(C N(x)≤K ) are contractible for every K∈ C N(x).

Proof of Claim. There are two cases to consider. First, suppose thatx 6∈ K . Then we
see that

ι−1(C N(x)≤K ) = Free(K ).

This follows sinceK ∈ L implies that any free subset ofK is also a free subset ofA, and
x 6∈ K implies that it is not in any subset ofK . By Lemma 3.2, Free(K ) is contractible
and so we are done.

The second case is thatx ∈ K . Then by the definition ofC N(x), we havex ∈
bdy(conv(K )). From this we conclude that

ι−1(C N(x)≤K ) = {C ∈ Free(K ) | x 6∈ C}
= delFree(K )(x),

which is contractible by Lemma 3.4.

Continuing the proof of Lemma 3.5, since the fibers ofιare all contractible, Lemma 2.2
implies that delFree(x) has the same homotopy type asC N(x). Consider another poset
N(x) defined by

N(x) = {B ⊆ A | x 6∈ relint(conv(B))}.
The difference betweenN(x) andC N(x) is that the subsets inN(x) need not be convex.
The closure operatorf (B) = Bc gives a mapf from N(x) to itself, since

x 6∈ relint(conv(B)) ⇒ x 6∈ relint(conv(Bc)).

The image ofN(x) under the mapf is exactlyC N(x). Thus by Lemma 2.3 we have
that N(x) has the same homotopy type asC N(x), and thus the same homotopy type as
delFree(x). It only remains to analyze the homology ofN(x).

Translate the point configurationA so thatx = 0. As observed at the end of the
last section, we can viewA as the Gale transform of some point configurationA∗ in
Rn−d−1, since 0 is in the relative interior ofA. Also note that our posetN(x) is now the
same as the one denotedN in Lemma 2.6. Thus by Lemma 2.6 we conclude thatN(x)
has the same homology as a(d − 1)-sphere. Hence delFree(x) has the homology of a
(d − 1)-sphere, and the proof of Lemma 3.5 is complete.

Theorem 1.1(see Conjecture 4.1 of [1]). If A is a point configuration inRd, then

β(A) =
∑

K∈Free

(−1)|K ||K | = (−1)d−1|int(A)|,
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i.e., (−1)d−1β(A) equals the number of points inA which are in the interior of the
convex hull ofA.

Proof. The proof is immediate from Lemmata 3.3–3.5.

4. Convex Geometries

In this section we discuss generalizations of Theorem 1.1 to more general convex ge-
ometries. Most of the framework discussed in Section 3 goes through for general convex
geometries, but we lack at the moment completely general versions of Lemma 3.4 or
3.5. We can, however, prove analogues of these lemmata for other specific examples of
convex geometries.

We begin with a brief description of the theory of convex geometries. For a more
detailed introduction see [8], whose notation we follow. LetX be a finite set, and letL
be a collection of subsets ofX that contains∅ andX and is closed under intersection.
We can alternatively think ofL as a closure operator onX defined by

L(A) =
⋂

{C∈L |C⊇A}
C.

The subsets inL or, equivalently, those subsetsA of X such thatL(A) = A are called
convex sets. We say thatL is anti-exchangeif given any convex setC, and two unequal
points p andq in X, neither inC, one has that

q ∈ L(K ∪ {p}) ⇒ p 6∈ L(C ∪ {q}).
A collectionL of convex sets that is anti-exchange is called aconvex geometry. LetL(L)
be the lattice of convex sets ofL ordered by containment. Some examples of convex
geometries are:

Point configurations. The collection ofconvex subsetsof a point setA in Rd (as
described in the previous section) is a convex geometry, withX = A.

Order convex sets.Let Q be a poset, and for any subsetA ⊆ Q define

CQ(A) = {q ∈ Q | ∃a,a′ ∈ A, a ≤ q ≤ a′}.
The closureCQ is anti-exchange, and we call the associated convex geometry with
X = Q theorder convex sets of Q, denotedCQ.

Chordal graphs. Let G be a chordal graph on a vertex setV . That is,G is a graph
such that every cycle of length longer than 4 has a chord. A subsetC of V is called
m-convexif it contains every vertex on every chordless path between vertices in
C. The collectionL(G) of m-convex sets of a chordal graph is a convex geometry,
with X = V [9].

If C is a convex set in a convex geometryL, a pointx ∈ C is calledan extreme point
of C if x 6∈ L(C − x). We denote the set of extreme points ofC by ex(C). We call a
convex setfreeif ex(C) = C. The set of free sets of a convex geometry form a simplicial
complex which we denote Free(L). The following lemmata are direct generalizations of
Lemmata 3.1 and 3.2.
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Lemma 4.1. LetL be a convex geometry on a ground set X and letL = L(L) be its
lattice of convex sets. ThenL triangulates an{

(|X| − 2)-ball if X 6= ex(X),
(|X| − 2)-sphere if X= ex(X).

Proof. See Theorem 4.10 of [8].

Lemma 4.2. LetL be a convex geometry and letFreebe its simplicial complex of free
sets. ThenFreeis contractible.

Proof. The proof follows exactly the argument for Lemma 3.2.

As before we define

β(L) =
∑

K∈Free(L)
(−1)|K ||K |,

and note that because of Lemma 4.2, Lemma 3.3 still holds, i.e.,

β(L) =
∑
x∈X

χ̃(delFree(L)(x)). (3)

Although we do not have a uniform way of computingβ(L) for all convex geometries,
we can use the framework we have established to evaluate it for the examples of convex
geometries we described above. We sketch those arguments here.

4.1. Order Convex Sets

Let Q be a poset and letCQ be the collection of order convex sets ofQ. We call an
elementq ∈ Q abottleneckif q is comparable with every element ofQ, butq is neither
a maximum nor a minimum element.

Lemma 4.3. Let Free= Free(CQ) be the free sets of the convex geometry of order
convex sets of Q.ThendelFree(q)has the homotopy type of the0-sphere if q is a bottleneck,
and is contractible otherwise.

Sketch of Proof. If q is a bottleneck defineQ>q (resp.Q<q) to be the points inQ
strictly bigger than (resp. less than)q. It is easy to check that lkFree(q) is the disjoint
union of the two (nonempty) complexes Free(CQ>q) and Free(CQ<q), each of which is
contractible by Lemma 3.2. Hence delFree(q) has the homotopy type of the 0-sphere.

If q is not a bottleneck, then there are two possibilities. On the one hand,q might be
a maximum or minimum element, in which case it is easy to see that delFree(q) is the
same as Free(CQ−{q}), and hence is contractible by Lemma 3.2.

If q is not a bottleneck and is also neither a maximum nor a minimum element ofQ,
then there exist elements ofQ which are bigger thanq, smaller thanq, and incomparable
with q. Define a new four-element posetQ′ = {b, s, i,q′} (hereb, s, i are mnemonic for
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“bigger,” “smaller,” “incomparable” withq) in whichb ≥ q′ ≥ s andi is incomparable
with any of the other three. One can easily check that delFree(CQ′ )(q

′) is contractible since
it is a cone with cone pointi . The mapf : Q→ Q′ given by

f (x) =


b if x > q,
q′ if x = q,
s if x < q,
i if x is incomparable withq

induces a map from delFree(CQ)(q) to delFree(CQ′ )(q
′). One can check the relevant fibers

f −1(Q′≤y) to see that they are all contractible, and thus delFree(CQ)(q) has the homotopy
type of delFree(CQ′ )(q

′), and hence is contractible.

Corollary 4.4. Let Q be a poset and letCQ be the collection of order convex sets of
Q. Thenβ(CQ) is equal to the number of bottlenecks in Q.

Proof. From the previous lemma we see that

χ̃(delFree(q)) =
{

1 if q is a bottleneck,
0 otherwise.

Apply this formula to (3).

4.2. Chordal Graphs

Gordon has previously interpretedβ(L(G)) for a chordal graphG in [10]. He did this
by means of a deletion-contraction argument. Our topological approach gives a more
detailed result.

Lemma 4.5. Let G be a connected chordal graph. A subset K of V is free inL(G) if
and only if it induces a clique in G.

Proof. See Lemma 5.1 of [10].

For each vertexv in G let c(v) be the number of connected components ofG− v.

Lemma 4.6. Let G be a connected chordal graph and letFree= Free(L(G)). For
each vertexv in G, the complexdelFree(v) has the homotopy type of c(v) disjoint points.

Sketch of Proof. It is easy to show that delFree(v) is just the disjoint union of Free(L(G′))
for each connected componentG′ of G− v. By Lemma 4.2 these are all contractible so
the lemma follows.

Recall that ablockof a graph is a maximal subgraph which contains no cut-vertex.
We denote byb(G) the number of blocks in the graphG.
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Corollary 4.7 [10, Theorem 5.1]. Let G be a connected chordal graph. Then

β(L(G)) = b(G)− 1.

Proof. From the previous lemma we see that

χ̃(delFree(v)) = c(v)− 1,

and so

β(L(G)) =
∑
v∈G

(c(v)− 1).

It is then an elementary graph-theoretic fact [18, Problem 4.1.28] that∑
v∈G

(c(v)− 1) = b(G)− 1.

5. Open Problems

In this section we discuss some open problems aimed toward generalizing Theorem 1.1
to all convex geometries. As a first step in this direction we formulate a conjecture
that generalizes Lemma 3.4 for all convex geometries. LetL be a convex geometry
on the ground setX. A subsetA of X is calledindependentif a 6∈ L(A − a) for all
a ∈ A. We say thatx depends on yif there exists an independent setA such that
y ∈ A, x ∈ L(A) but x 6∈ L(A− y). Let Dep(x) be the set of all pointsy such that
x depends ony. The situation in whichDep(x) = X includes the following as special
cases:

• x ∈ int(A) for a point configuration,
• x is a bottleneck of a poset,
• x is a vertex for whichc(v) = 1 in a chordal graph.

Conjecture 5.1(see Lemmata 3.4, 4.3, and 4.6).For a convex geometryL on the
ground set X, the complexdelFree(L)(x) is contractible unless Dep(x) = X.

The question of what happens ifDep(x) = X is much less clear, as the diversity of
outcomes in Lemmata 3.5, 4.3, and 4.6 indicate. In this direction, we pose the following
question.

Question 5.2. For any convex geometryL on the ground setX, and any pointx with
Dep(x) = X, does the complex delFree(L)(x) have same integral homology as a bouquet
of equidimensional spheres? Is it homotopy equivalent to a bouquet of equidimensional
spheres?
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