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Abstract. We prove a formula conjectured by Ahrens, Gordon, and McMahon for the
number of interior points for a point configurationlRf. Our method is to show that the
formula can be interpreted as a sum of Euler characteristics of certain complexes associated
with the point configuration, and then compute the homology of these complexes. This
method extends to other examples of convex geometries. We sketch these applications,
replicating an earlier result of Gordon, and proving a new result related to ordered sets.

1. Introduction

Let A be a collection of points ilRY whose affine span is all &Y. Let int(A4) be the

set of points of4 that lie in the interior of its convex hull, co). Call a subseK of

A freeif conv(K) N A = K and the set of vertices of cofi ) is equal toK . In a recent
paper Ahrens et al. [1, Conjecture 4.1] conjectured the following beautiful formula for
lint(A)|, and proved it for point configurations in R2:

Theorem 1.1.
lint(4)] = (=@ > (~DKIK].

K free

We prove this formula in its full generality in Section 3. Klain [14, Proposition 6.3] has
recently proven this formula independently.

The work of Ahrens et al. is part of a larger project of extending matroid invariants
to greedoids [11], [12]. Recent work has focused on generalizing Crgpio'gariant,
originally defined for matroids [6], to the more general structure of a greedoid [10].

* The second author was partially supported by a Sloan Foundation Fellowship and a University of
Minnesota McKnight-Land Grant Fellowship.
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In the special case of greedoids which are convex geometries, the definition ®f the
invariant reduces to essentially the right-hand side of Theorem 1.1 [10]. Theorem 1.1
gives a combinatorial interpretation to thénvariant of those convex geometries which
are based on Euclidean point configurations. Given this background, it is not surpris-
ing that Ahrens et al. use deletion-contraction arguments to establish their formula for
d=2.

Our point of view is more in the tradition of a topological approach to matroid theory
[3], as we now explain. One can rewrite the right-hand side in Theorem 1.1 as follows:

DY T EDNIK] = (D@ YTy Dl

K free K freeaeK

= (DY) Fa,

acA
where
Ya= ), (DKL

K freeaeK

We will prove Theorem 1.1 by showing (see Lemmata 3.4 and 3.5) that

~ _ =%t if aeintA),
Xa=1p otherwise.

The latter computation is achieved by interpretifgas the reduced Euler characteristic

of a certain simplicial complex (thek of a in the simplicial complex of free sets gf),

and then analyzing the topology of these complexes. In contrast, Klain [14] computes
these Euler characteristics directly using valuation theory for polytopes.

The paper is organized as follows. In the next section we establish some general facts
from combinatorial topology and polytope theory necessary for the proof. In Section 3
we prove Theorem 1.1. Section 4 uses similar techniques to evaluate the gengtalized
invariant for other convex geometries. Section 5 discusses some open problems.

2. Preliminaries

In this section we establish some background results from topological combinatorics
that are used throughout the paper. For much of this material an excellent reference is

[4].
Let A be an abstract simplicial complex on the finite groundXeThat is,A is a
collection of subsets oX, calledsimplices with the property that

cCteA

implies thato € A. For—1 < i < |X| — 1 let f; be the number afdimensional faces
of A, i.e.,

fi={oc € Al |o| =i+ 1}].

For anyx € X, we define three associated subcomplexesdljttkeof x in A, thestar of



Counting the Interior Points of a Point Configuration 3

X in A, and thedeletion of x inA by
ka(X) = {0 —X|X €0 €A},
sta(X) = {0 € A|{X}Uo € A},
dela(X) = {c e Alxgol.
Itis clear from the definitions that
sta(X) Udela(X) = A D
and
dely (X) N sty (X) = Ika(X). 2)

For a given simplicial complex, let Hi (A) = Hi(A, Z) be the reduced homology
groups ofA with coefficients inZ, fori > 0. By the universal coefficient theorem [15,
Section 55]H.(A) determines the homology @ with any other constant coefficients.
Thereduced Euler characteristig (A) is defined by

()= (=D fi=) (-1 dimg Hi(A, Q),
i>—1 i=0
where we note thaf_; = 1.
The following lemma will be necessary in what follows.

Lemma2.1. LetA be a contractible simplicial complex on the ground set X and let
x e X.Foralli > -1,

Hi (ka (X)) = H; (dels (x)).
Consequently
X (kA (X)) = X(delr(x))
> el

XeoeA

Proof. Associatedto (1) and (2) is a Mayer—Vietoris exact sequence [15, Theorem 25.1]
-+ = Higa(a) > Hi(ka(0) > Hi(delh(0) @ Hi(sta () —> Hi(a) — -+

Note that bothA and sk (x) are contractible, the former by hypothesis and the latter
since sk (x) is a cone. Therefore the above sequence reduces to

s 0= Hi(ka(x) — Hi(dely(x)) = 0— -,

which proves the first assertion. The next equation follows immediately and the last
equation is immediate from the definition of the reduced Euler characteristic. O

Let P be a poset. We can associate wiRhts simplicial complex of chaina (P),
i.e., the collection of totally ordered subsetsfafWhen we speak dP having a certain
topological property, we are really referring to the topology ofghemetric realization
of A(P). If P has both a maximum elemehaind a minimum eleme#t then itsproper
partisP = P— 0,1).1fx € P, thenletP., = {y € P |y < x}. The following lemmata
are essentially due to Quillen [16]. See also Theorem 10.5 and Corollary 10.12 of [4].
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Lemma 2.2. Suppose Q and P are posets and ® — P is an order-preserving
map If for all x € P the fibers f1(P-y) are contractiblethen f induces a homotopy
equivalence between Q and P

Lemma2.3. Let f: P — P be an order-preserving map such thatxj > x for all
x € P. Then f induces a homotopy equivalence between P &Rd. f

Remark 2.4. Inourapplications of Lemma 2.2, we often @te a simplicial complex

A viewed as a patrtially ordered set, where the partial order on the simplices is by
containment. The conclusions drawn will technically be about the order complex of this
poset, which is théarycentric subdivisiosd(A) of A. However, it is well known [15,
Section 15] that sd\) is homeomorphic ta\, so the same conclusions can be drawn
aboutA.

The last general facts that we employ condgate transformsf point configurations.
Let A = {ay, ..., a,} € RYbeacollection of points whose affine span is alR8fand let
conv(A) denote the polytope which is the convex hulléfLista,, ..., ay as columns
of a matrix and append a row of ones to obtain et 1) x n matrix M 4. The null
space ofM 4 is the set of all affine dependencies among the poinid,ine., vectors
(A1, ..., An)suchthad "  Aja =0and)! ;A =0.LetA*bean(n—d —1) x n
matrix whose rows form a basis for this space and denote its columag, by. , v;,.
This collectionA* of points inR"~9-1 is aGale transformof .A. The correspondence
betweerw; andv;" extends naturally to subsets df and A*. For any subseB C A,
denote by affB) the affine span oB. The principal property of Gale transforms is

Lemma 2.5[13, Section 5.5]. Let F be a proper subset of. Then
aff(F)NnconMA — F) =2

if and only if
0 € relint(conv(A — F)*).

That is F is exactly the set of points of that lie on a face otonv A) if and only if
(A — F)* has0in its relative interior

One should observe that any setgdoints inR"~9-1 that has 0 in its relative interior
is the Gale transform of some setropoints inRY. For an interesting survey of the uses
of Gale transforms, see [2].

Lemma 2.6. Let.A be a point configuration ifiRY, let P = conuA), and let.A* be its
Gale transformLet N be the poset of proper subsets Addf ordered by containment
such that

0 ¢ relint(conv(A)).
Then N has the same integral homology as(the- d — 2)-sphere and hence

X(N) = (=)"2,
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Proof. Let 24 be the collection of all subsets gf*. Considering its proper pa2**

as partially ordered by inclusion, its order complex is the barycentric subdivision of
the boundary of aiin — 1)-simplex, and hence is homeomorphic to(an- 2)-sphere.
Lemma 2.5 implies that¥ — N is isomorphic as a poset to the opposite of the face
lattice of P. Thus the order complex &4 — N is the barycentric subdivision of the
boundary complex oP, and hence is homeomorphic to(éh — 1)-sphere. It follows
from Lemma 4.7.27 of [5] thaN is a deformation retract of the spa2é" — N, which

is to say the complement of @ — 1)-sphere in anln — 2)-sphere. It then follows
from Alexander duality [15, Theorem 71.1] thidthas the homology of afth — d — 2)-
sphere. O

The posetN which appears in the previous proof is, roughly speaking, the poset of
subsets of4 which do not form boundary faces of cq). In [17] it was asked whether
it has the homotopy type of afn — d — 2)-sphere and not just the same homology
groups. This question was answered affirmatively by Dong [7].

3. Proof of Theorem 1.1

In this section we prove the conjecture of Ahrens et al. Our discussion in this section is
only in terms of the geometric structure of point configuratiori®4nalthough there are
natural generalizations to the more abstract situation of convex geometries. We take up
those more general questions in the next section.

LetA = {a, ..., a,} be a point configuration iRY. Given a subseh of A we define
theclosure of A A, to be

A° = conV(A) N A.

Itis clear that this is a true closure operator on the subsefs tifat is, it is idempotent,
inclusion-preserving, ané C A°. The closed sets under this operator are catled
convex sets ofd. LetL = L (A) be the lattice of convex sets gf ordered by inclusion
and letL be itsproper part thatis,L = L — {@, A}.

If C is a convex set of4, a pointa € C is calledan extreme point of Gf a is the
vertex of the polytope cor€). Let exC) be the set of extreme points 6f A convex
setC is said to bdreeif ex(C) = C. Let Free= Freg.A) be the collection of free sets
of A4, and note that Free is a simplicial complex.

Lemma 3.1. LetA be a point configuration and lét(A) be its lattice of convex sets
ThenL triangulates an

(IA] — 2)-ball if A#exA)),
(JA| — 2)-sphere if A=exA).

Proof. This follows from Theorem 4.10 of [8], but for the sake of completeness we
sketch the proof here. In the case whgre= ex(A), note that_ is a Boolean algebra

on the set4d whose proper part has order complex equal to the barycentric subdivision
of an(|.4| — 1)-simplex, i.e., it triangulates afA| — 2)-sphere.
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If A # ex(A), then the meet of the coatomslois the convex setl — ex(A) which
liesinL. It follows from the Crosscut Theorem (10.8) of [4] thats contractible. O

Lemma 3.2. Let.4 be a point configuration and Idtreebe its simplicial complex of
free setsThenFreeis contractible

Proof. If ex(A) = A, then Free is just a simplex and hence is contractible. Thus, we
may assume that €4) # A, so that the inclusion mapis a map from Free th. We

wish to apply Lemma 2.2, treating the simplicial complex Free as its poset of faces as
discussed in Remark 2.4. We then need to analyze the structure of the fikigrsc)

for eachC € L. It is easy to check that'(L .c) = FregC) (whereC is considered as

a point configuration), and hence is contractible by induction on the number of points.
Hence, by Lemma 2.2, Free has the same homotopy type By Lemma 3.1L is
contractible if A # ex(A), and so the lemma is proven. O

Let
BA) = Y (-DHNIK].

KeFree

Our definition ofg (A) differs from that of Ahrens et al. by aminus sign [1, Definition 2.2].
For our purposes this is the more convenient convention.

Lemma 3.3. If A is a point configurationthen

B(A) = F(dekreda)).

acA

Proof. Asnotedin Lemma 2.1
X (deked@) = Y (=D
acKeFree
since Free is contractible by Lemma 3.2. Thus

> Fdeked@) = Y > (!

ac A ac A acKeFree

> DMK

KeFree

B(A). O

From Lemma 3.3, we see that it is sufficient to understand the topology of each
deletion deke«a) in order to evaluat@(A). That is what we endeavor to do in the rest
of this section. LeP = conu.A). We assume that di(®) = d and thus the interior
of P is the same as its relative interior. Let 8y denote the points aofl lying in the
boundary of congA), that is, bdyP) := A — int(A).

Lemma 3.4. Let x € A and suppose that x bdy(P). Thendelk«X) is contractible
As a consequencg(deledx)) = 0.
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Proof. If x is on the boundary oP, then it is contained in the relative interior of a
unique face- of P. Let F = F N A. Define a new point configuratiofi by

B=FuUft],

wheret is a new point ifR? that is affinely independent of the pointskn The mapf
from A to B defined by

if aekF,

a
f@ = {t otherwise,

induces a magf from subsets 0f4 to subsets o3 by f(A) = {f(a)|a € A. ltis
easy to check thaf restricts to a map from dglg.4)(X) to dekreqs) (X). In order to
apply Lemma 2.2 we view both of these simplicial complexes as their posets of faces as
discussed in Remark 2.4.
We now analyze the fibers of this restricted mép:or notational convenience, let

r delFree{A) (X),
I = dekreqs) (X).

Suppose thaK € I'’. We consider two cases in analyzing the filfetl(r"SK).
Ift ¢ K, then

fr.)={C<K|CeT},

which hask as a maximum element, sinéé € I'" andt ¢ K implies thatK € T.
Hence this fiber is contractible.
Ift € K, then

f(I'.) = {Cel|CNF CK}

= Freg(K — {th U (A —F))

(here(K — {t}) U (A — F) is considered as a point configuration on its own). This fiber
is then contractible by Lemma 3.2.

Thus the fibersz‘l(l"’(K) are always contractible, and so by Lemma 2.2, we know
that defreq.1)(X) has the same homotopy type asglals) (x). Since the point was
affinely independent of all of the other pointsfi) we see that dekqs)(X) hast as a
cone point, and hence is contractible. Thusdgl, (x) is contractible and the lemma
is proven. O

We still have to consider the topology of dgl(x) in the instance wher is in the
interior of P.

Lemma 3.5. Let x € A and suppose that x int(P). Thendek.«X) has the integral
homology of ad — 1)-sphere As a consequenc® (deked X)) = (—1)9-1.

Proof. Suppose that € int(P). Define the posef N(x) by

CNX) ={K e L |x ¢ relint(conM(K))}.
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Note that deled(X) € CN(X) and so we can consider the inclusion map
t: delredX) — CN(X).

Again we view degledX) as its poset of faces in order to apply Lemma 2.2 as discussed
in Remark 2.4.

Claim 3.6. The fibera=*(C N(x)k) are contractible for every Ke CN(x).

Proof of Claim There are two cases to consider. First, supposextigai . Then we
see that

"HCN(x)<k) = FregK).

This follows sinceK € L implies that any free subset Kfis also a free subset of, and
x ¢ K implies that it is not in any subset &f. By Lemma 3.2, Freg) is contractible
and so we are done.

The second case is that € K. Then by the definition ofZ N(x), we havex €
bdy(convK)). From this we conclude that

THCNX)<k) = {C e FregK)|x ¢ C}
= delFree(K)(X),

which is contractible by Lemma 3.4. O

Continuing the proof of Lemma 3.5, since the fibersark all contractible, Lemma 2.2
implies that del«(x) has the same homotopy type@(x). Consider another poset
N (x) defined by

N(x) = {B C A|x & relint(conuB))}.

The difference betweeN (x) andC N(x) is that the subsets iN (x) need not be convex.
The closure operatof (B) = B€ gives a mapf from N(x) to itself, since

x & relint(conMB)) = x ¢ relint(conu BY)).

The image ofN(x) under the magf is exactlyC N(x). Thus by Lemma 2.3 we have
that N (x) has the same homotopy type@sl(x), and thus the same homotopy type as
deked(X). It only remains to analyze the homology N{x).

Translate the point configuratiaA so thatx = 0. As observed at the end of the
last section, we can viewd as the Gale transform of some point configuratiéhin
R"-9-1 since 0 is in the relative interior od. Also note that our poséd (x) is now the
same as the one denotBidin Lemma 2.6. Thus by Lemma 2.6 we conclude tN&k)
has the same homology ag@ — 1)-sphere. Hence dgl«(x) has the homology of a
(d — 1)-sphere, and the proof of Lemma 3.5 is complete. O

Theorem 1.1(see Conjecture 4.1 of [1]).1f A is a point configuration ifRY, then

BA) = > (=DNIK| = (=1 Hint(A)],

K eFree
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i.e, (—1)918(A) equals the number of points id which are in the interior of the
convex hull ofA.

Proof. The proof is immediate from Lemmata 3.3-3.5. |

4. Convex Geometries

In this section we discuss generalizations of Theorem 1.1 to more general convex ge-
ometries. Most of the framework discussed in Section 3 goes through for general convex
geometries, but we lack at the moment completely general versions of Lemma 3.4 or
3.5. We can, however, prove analogues of these lemmata for other specific examples of
convex geometries.

We begin with a brief description of the theory of convex geometries. For a more
detailed introduction see [8], whose notation we follow. Xebe a finite set, and lef
be a collection of subsets of that containsz and X and is closed under intersection.
We can alternatively think of as a closure operator ot defined by

cApH= (] c
{CeL|CDA}
The subsets i or, equivalently, those subsefsof X such thatZ(A) = A are called
convex setdNe say thatC is anti-exchangéf given any convex set, and two unequal
points p andq in X, neither inC, one has that

qe LKU{ph) = pgLECUQD.

A collection £ of convex sets that is anti-exchange is calledavex geometryetL (L)
be the lattice of convex sets d@f ordered by containment. Some examples of convex
geometries are:

Point configurations. The collection ofconvex subsetsf a point set4 in RY (as
described in the previous section) is a convex geometry, Xith A.
Order convex setslLet Q be a poset, and for any subgetC Q define

Co(A)={qeQlda,a eA a<qg=<al

The closur&, is anti-exchange, and we call the associated convex geometry with
X = Q theorder convex sets of Qlenoted’q.

Chordal graphs. Let G be a chordal graph on a vertex 8&tThat is,G is a graph
such that every cycle of length longer than 4 has a chord. A sbsgY is called
m-convexXf it contains every vertex on every chordless path between vertices in
C. The collectionZ(G) of m-convex sets of a chordal graph is a convex geometry,
with X =V [9].

If C is a convex set in a convex geomettya pointx € C is calledan extreme point
of Cif x & L(C — x). We denote the set of extreme pointsby ex(C). We call a
convex sefreeif ex(C) = C. The set of free sets of a convex geometry form a simplicial
complex which we denote Fré@). The following lemmata are direct generalizations of
Lemmata 3.1 and 3.2.
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Lemma4.1. LetL be a convex geometry on a ground set X and.let L (£) be its
lattice of convex set§ henL triangulates an

(|X]| — 2)-ball if X #£ ex(X),
(|X] — 2)-sphere if X=ex(X).

Proof. See Theorem 4.10 of [8]. O

Lemma 4.2. LetL be a convex geometry and fateebe its simplicial complex of free
sets ThenFreeis contractible

Proof. The proof follows exactly the argument for Lemma 3.2. O

As before we define
By = Y (=DNIK],

KeFreg L)
and note that because of Lemma 4.2, Lemma 3.3 still holds, i.e.,
BL) = X (dekreqr) (X)) ©)
xeX

Although we do not have a uniform way of computifigC) for all convex geometries,
we can use the framework we have established to evaluate it for the examples of convex
geometries we described above. We sketch those arguments here.

4.1. Order Convex Sets

Let Q be a poset and letg be the collection of order convex sets Qf We call an
elemeny € Q abottleneckf g is comparable with every element @f butq is neither
a maximum nor a minimum element.

Lemma 4.3. LetFree= FredCq) be the free sets of the convex geometry of order
convex sets of hendek«q) has the homotopy type of thesphere if q is a bottleneck
and is contractible otherwise

Sketch of Proof If g is a bottleneck defin@. (resp.Q-q) to be the points inQ
strictly bigger than (resp. less thag) It is easy to check that Hedq) is the disjoint
union of the two (nonempty) complexes F€g._,) and Fre€Cq_,), each of which is
contractible by Lemma 3.2. Hence gdel(q) has the homotopy type of the O-sphere.

If q is not a bottleneck, then there are two possibilities. On the one lgandyht be
a maximum or minimum element, in which case it is easy to see that4lg) is the
same as Fré&€q_(q)), and hence is contractible by Lemma 3.2.

If g is not a bottleneck and is also neither a maximum nor a minimum elemént of
then there exist elements @fwhich are bigger thaq, smaller tham, and incomparable
with q. Define a new four-element poggt = {b, s, i, q'} (hereb, s, i are mnemonic for
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“bigger,” “smaller,” “incomparable” withg) in whichb > q’ > sandi is incomparable
with any of the other three. One can easily check that&gl, ) (q") is contractible since
it is a cone with cone poinit The mapf: Q — Q' given by

b if x>gq,

) if x=aq,

FO) = S if x<gq,
i

if X isincomparable witl

induces a map from delec,)(Q) to del:rech/)(q/). One can check the relevant fibers
f‘l(Q’Ey) to see that they are all contractible, and thuggdel, (q) has the homotopy
type of dehee(co,)(q’), and hence is contractible. O

Corollary 4.4. Let Q be a poset and €l be the collection of order convex sets of
Q. ThenB(Co) is equal to the number of bottlenecks in Q

Proof. From the previous lemma we see that

~ _ |1 ifgis abottleneck
X (dekred @) = {O otherwise.

Apply this formula to (3). O

4.2. Chordal Graphs

Gordon has previously interpret@d£(G)) for a chordal grapl@ in [10]. He did this

by means of a deletion-contraction argument. Our topological approach gives a more
detailed result.

Lemma 4.5. Let G be a connected chordal graph subset K of V is free i (G) if
and only if it induces a clique in G

Proof. See Lemma 5.1 of [10]. O

For each vertex in G let c(v) be the number of connected component&ef v.

Lemma 4.6. Let G be a connected chordal graph and leee = Fred£(G)). For
each vertex in G, the complexiek«(v) has the homotopy type ofQ disjoint points

Sketch of Proof Itis easytoshowthatdgldv) is justthe disjointunion of Fré& (G’))
for each connected componéatof G — v. By Lemma 4.2 these are all contractible so
the lemma follows. O

Recall that ablock of a graph is a maximal subgraph which contains no cut-vertex.
We denote byp(G) the number of blocks in the grah.
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Corollary 4.7 [10, Theorem 5.1]. Let G be a connected chordal grapfhen

B(L(G)) =b(G) — 1.

Proof. From the previous lemma we see that

X (dekred(v)) = c(v) — 1,
and so

BLG)) =) (c(v) — 1)

veG

Itis then an elementary graph-theoretic fact [18, Problem 4.1.28] that

Z(C(v) —1)=b(G) — 1. O

veG

5. Open Problems

In this section we discuss some open problems aimed toward generalizing Theorem 1.1
to all convex geometries. As a first step in this direction we formulate a conjecture
that generalizes Lemma 3.4 for all convex geometries.AL & a convex geometry

on the ground seX. A subsetA of X is calledindependentf a ¢ L(A — a) for all

a € A. We say thatx depends on ¥f there exists an independent satsuch that

y e A X € L(A) butx & L(A —y). Let Dep(x) be the set of all pointy such that

x depends ory. The situation in whiclDep(x) = X includes the following as special
cases:

e X € int(A) for a point configuration,
e X is a bottleneck of a poset,
e X is a vertex for whicke(v) = 1 in a chordal graph.

Conjecture 5.1(see Lemmata 3.4, 4.3, and 4.6)0or a convex geometn on the
ground set Xthe complexdeleq)(X) is contractible unless De&g) = X.

The question of what happensbep(x) = X is much less clear, as the diversity of
outcomes in Lemmata 3.5, 4.3, and 4.6 indicate. In this direction, we pose the following
guestion.

Question 5.2. For any convex geomettg on the ground seX, and any poink with

Dep(x) = X, does the complex dgkq ) (X) have same integral homology as a bouquet

of equidimensional spheres? Is it homotopy equivalent to a bouquet of equidimensional
spheres?
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