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Abstract. We prove that a unique simple polygon is determined, up to similarity, by the
interior angles at its vertices and the cross-ratios of diagonals of any given triangulation.
(The cross-ratio of a diagonal is the product of the ratio of edge lengths for the two adjacent
triangles.) This establishes a conjecture of Driscoll and Vavasis, and shows the correctness of
a key step of their algorithm for computing Schwarz—Christoffel transformations mapping

a disk to a polygon.

1. Introduction

Computing meshes for the numerical solution of problems on domains with irregular
geometry poses interesting challenges because it interweaves continuous mathematics
with discrete geometry and then seeks an implementation on an even more discrete com-
puter. One excellent example is a new algorithm by Driscoll and Vavasis for computing

a conformal mapping of a unit disk to a simple plane polygon [2]. We describe this
algorithm in some detail in Section 2. The correctness of one of its steps depends on a
purely geometric conjecture [2, Conjecture 1]:

Let P be am-vertex, triangulated, simple polygon. ThEns uniquely determined

up to similarity transform by the following data: the sequence of all interior angles
of P at its vertices, and the list af — 3 absolute values of cross-ratios of the
guadrilaterals determined by the triangulatiorPof

Pairs of adjacent triangles, which shamiagonal edgef the triangulation, form the
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while the author was on leave at the Geometry Center at the Johns Hopkins University, and in project Prisme
at INRIA Sophia-Antipolis.
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Fig. 1. Angles and cross-ratios.

above-mentioned quadrilaterals. T¢ress-ratioof a quadrilateral is the product of the
lengths of two sides counterclockwise from the endpoints of the diagonal divided by the
product of the lengths of the two sides clockwise. That is, if a quadrilateral has sides of
lengtha, b, ¢, andd in ccw order starting from one endpoint of the diagonal, we define
the cross-ratio to bac/(bd). In the triangulated hexagon of Fig. 1, diagonal edges are
labeled with their cross-ratios. (Note: Driscoll and Vavasis [2] use the reciprocal of this
ratio.)

In this paper we establish their conjecture by establishing propertigartifilly
specified polygonsvhich we define in Section 4. We employ some observations on the
ratios of triangles that we make in Section 3.

2. The Schwarz—Christoffel Formula and the CRDT Algorithm

If we think of a simple polygorP = {ps, p2, ..., pn} @s a simply connected, open
subset of the complex plane and Btbe the unit disk, then the Riemann Mapping
Theorem [3] says that there is an analytic functionD — P mapping the unit disk
to the polygon. If the poinff (0) and direction off’(0) are specified, therf is unique.
With this mapping, some problems &h(e.g., Laplace’s equation) can be solved on the
simpler domairD. Other problems that require a mesh®rtan begin with a mesh on
D; conformal mapping preserves angles in the mesh.

All mappingsf: D — P, from the unit diskD to ann-gon P, can be written using
the Schwarz—Christoffel formula

w w ﬂi
f(w)=p+q/ I1 (1—;> do.
J

0 1<j<n

In this formula the complex numbegpsandq translate, rotate, and scale the image, the
scalarsg; = y;/m — 1, wherey; is the interior angle at polygon vertey, and the
unit-length complex numbers; are thepreverticesthe points on the boundary of the
disk that map to the vertices of the polygon. The integration is a complex contour integral
in the disk. The SC formula hast 4 parameters. Eliminating similarity transformations

of the polygon and the freedom to choos@) and the direction of its derivative leaves

n — 3 parameters unspecified. These are determined by numerically solving a difficult
nonlinear system [1], [2], [4], [5].
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Attempts to compute the prevertices and use the resulting SC formula over the entire
polygon P suffer from a phenomenon calledowding—skinny regions ofP cause the
angle between the prevertices to decrease exponentially in the aspect ratio. Crowding
causes problems for numerical techniques that compute prevertices and use them in the
SC formula; many bits of precision can be lost when determining the angle between two
prevertices.

Driscoll and Vavasis [2] have developed an clever combination of numerical and
geometric ideas to minimize the impact of crowding. They use a constrained Delaunay
triangulation ofP, with new vertices introduced on the boundary so that trianglé in
have good aspect ratios. There is a corresponding triangulation of preverti@€gin
prevertices iff an edge joins their vertices®); Driscoll and Vavasis reformulate the
nonlinear system to compute the cross-ratios of this triangulation. Thes8 cross-
ratios are three parameters too few to specifyril@evertices completely. They note
that when an application is concerned with accuracy of computations inside a particular
triangle, it can specify the three prevertices of this triangle to be spread out around
the disk, then determine the rest of the prevertices from the cross-ratios in linear time.
Crowding increases further from the specified triangle, but usually the importance of a
vertex decreases with distance as well.

As an illustration of their technique, they produced the right side of Fig. 2, which
shows a mapping from a rectangle to a “maze” polygon. Solid lines in the rectangle at
i/5,for 1 < i < 4, and dotted lines at 18, 104, ..., 10~'® map to their images at
right. Driscoll and Vavasis [2] report that “all computations were performed in double
precision.”

While the experimental evidence supports the correctness and efficiency of their
approach, itdoes depend on some conjectures. The first, cited in Section 1 and established
in this paper, relates to their iteration to find prevertices by finding the cross-ratios of
the triangulation of prevertices. Their iteration uses the SC formula to compute cross-
ratios of P from the guessed cross-ratios of prevertices; the question is whether, having
determined the cross-ratios of polygén the algorithm has determindel. There are
other interesting conjectures about the relationship between the magnitudes of cross-
ratios inP and inD, which we cannot yet address.

Fig. 2. Conformal mapping from rectangle to maze. (From [2].)
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Fig. 3. Triangle notation.

3. Observations on the Ratios of Triangles

To begin, we establish several sufficient conditions on sides and angles of a triangle for
its ratio to increase. We use the notation illustrated in Fig. 3: Pqiatsdq are fixed so
that the segmeniq is horizontal from left to right. Points andr, are chosen above the
line’pq;, and the angles of triangleqr; measurey;, i, andy; at p, g, andr;, respectively.
Let & andb; denote the lengths afr; and pr;, respectively. Theatio of the triangle
par; will thus beg; /b;.
Ifwe fix y1 = y», thenthe triangle is determined wheris chosen. Thus, we establish
the next condition by a continuous argument and drop the subscripts.

Lemma 1. Using the above notatignvhen angler is fixed the ratior(e) = a/bis a
strictly increasing function o, for o € [0, 7 — y].

Proof. By the law of sines, the ratio

r(o) a sina cos siny - cotla + y)

b sin(a + y) v 4 4
This is an invertible function for & « < 7 — y, and its derivative sip /sir’(a + y)
is positive for 0< y < m, which we must have fopqr to be a triangle. O

By the way, all of our conditions are established by algebraic arguments, which is
a good way to build character. To develop intuition, it is sometimes more pleasant to
observe the conditions geometrically by considering the interaction of four families of
constraint curves that cover the plane, which are illustrated in Fig. 4. We use these to
illustrate the algebraic proofs.

P e q
fixed angle o fixed ratiob/e fixed angle y fixed ratio b

Fig. 4. Four families of constraint curves for triangle endpaint
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Fig.5. Fixedy.

Observation 2. Let pgr be a triangle with p and q fixed and r to the leffad. The
following families are the loci of points r with the corresponding parameter of triangle
pgr fixed

A. Points with fixed anglee = Zrpq lie on the lines through .p

B. Points with fixed ratio lbe = rp/pq lie on the circles centered at p

C. Points with fixed angle = Zqrp lie on circles through p and.q

D. Points with fixed ratio @b = qr/rp lie on circles orthogonal to those of.C

These curves intersect nicely; a pair of curves chosen from A and B, A and C, B
and D, or from C and D will have only one intersection abovextexis. Families A
and B and families C and D are orthogonal—any two of their curves intersect at right
angles.

A geometric argument for Lemma 1 observes that with angfexed, the pointr
moves along a circular arc of family C asincreases, see Fig. 5. Asnoves, it crosses
each curve of family D, and the ratio increases qero).

Lemma 3. Using the triangle notation of FigB, the ratios a/b; < ax/by ifry #r;
and any of the four following conditions hold

(1) ifa; <ayand by > by,

(2) ifby = by, a1 < ap, andyy > yo,

(3) ifay < ap, B1 > B2, andyy < y», Or

(4) ifay > ap, by < by, 1 < ap, @and 1 > Bo.

Proof. Condition (1) is the easiest. With the assumption that4 r,, one of the
inequalitiesa; < ap or by > b, must be strict, so when condition (1) holdg/b; <
az/bz.

For the remaining conditions, it helps to express ratios of sides using the law of sines
and trigonometric identities. For example,

a sing; _ sin(y, + Bi)
b - sin g o sin g

= COSy; + Cotg; siny; = cosy; + CospB <||q b_ p||> .
i
Note that all angles will be ir0, =), so sines are positive. Cosine and cotangent are
decreasing functions over this angle range, crossing zero atayigle
When condition (2) holds we consider two cases, depending on whetherrigle
obtuse.
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Fig. 6. 1 obtuse.

Casel: B; obtuse(Fig. 6). Assume, for the sake of deriving a contradiction, that
ay/b; > ay/by, or equivalently

COSy; + cotB; Siny; > coSy, + cotBs Sinys.

SinceB; > /2, the value- cotp; is positive. Also;r/2 > y1 > y2, SO €091 < COSy»
and siny; > siny,. Combining these inequalities, we observe thatg; < — cotp,.
We conclude that, < 81 < B2 anda; < ap < /2.

However, then si; < sina, and sing; > singy, and, ifry # rp, one of these
inequalities is strict. Thus we derive a contradiction,

a; Sinay Sina  a
bl Sinfy Sinfs bz

Case2: 8, not obtusgFig. 7). Assume, for the sake of deriving a contradiction, that
a;/b; > ay/by. Let e denote the fixed length of the edge frgmo g. The condition
ay < ap implies cosy; > cosay. By the conditionb; > by, we know

a1 a
COSx1 + COSPBs (_) = < = COSw» + COSf» <—) .
bl b2

Fig. 7. B1 not obtuse.
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Fig. 8. Angle and distance constraints.

Since cog; is nonnegative, we can combine the above inequalities to derive that O
cosp; < cosp,. However, since cog < cosy, ande/b; < e/by, with one of these
inequalities strict it 1 # r,, we again derive a contradiction:

a

a e e
— = COSy; + C0Sp1 <—) < COSy» + C0Sp2 (—) =5
2

bl bl b2

We reduce condition (3) to condition (2). Reflect the triangle about a vertical line,
which exchangea’s with b’s, anda’s with g’s. Then exchange 1's with 2’s, and apply
the proof for condition (2). When we return the conclusion to the original notation, we
obtain thath,/a, < by/a;. Taking reciprocals gives the desired result.

The final part of the lemma is vacuously true—condition (4) cannot be satisfied unless
rp =ro.

By the law of sinedy, = esing;/siny; = ecosw; + a cosy;, wheree = || — pl|
is fixed (see Fig. 8). Since cas > cosa, anda; > &, in order to haveh; < by
(andry # rp), we must either have & cosy; < cosy, or cosy; < 0. Similarly,

a = ecosp; + b cosy;, cosp; < cospBy, andb;, < b,. In order to havey, > a, (and
ry # ry), we musteither have 8 cosy, < cosy; or cosy, < 0. Because the inequalities
with nonnegative cosines are incompatible, we must have thathathdy, are obtuse
angles.

We can now observe a contradiction: angleandg; are not obtuse, so sin < sina;
and sinB; > sinB,. By the law of sinesg; /b = sine; /sinG;, but

a a siney  Sinas
— < — and — > —.
by by sinfBy sinB»
Only if ry = r, can these inequalities be satisfied simultaneously. O

4. A Proof Using Partial Polygons

The remainder of this paper proves that the interior angles and cross-ratios of a triangu-
lated polygonP are sufficient to determin® up to similarity. The proof usegartial
polygons for which all cross-ratios and all angles except the first and last are specified.
In notation, letP = pyp,--- pn be a simple polygon in the Euclidean plane. Assume
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Fig. 9. Realizations of a partial polygoR for five different angle®. In each, the angles g throughps
are 120, and cross-ratios are’2, 3, and ¥2 as labeled in the middle hexagon.

that we are given:

e N — 2 anglesy,, ¥, ..., ¥n_1, Where O< v < 27 measures the internal angle
atp;,

e n — 3 cross-ratios for the quadrilaterals formed by the pairs of triangles adjacent
to then — 3 diagonals in the triangulation &f.

Note that angleg; andyr, at verticegp; andp,, are not specified. We call, thevariable
angleof partial polygonP. If we sety,, = 6, we can determing; since the sum of
interior anglesy ", _; _, ¥i = (N — 2)7.

A realization of partial polygon Rs an embedding that respects the specified angles
and cross-ratios and has positive, finite area for all triangles; Fig. 9 shows five realizations
of a triangulated hexagon for different valuesofNo global monotonicity properties
for realizations ofP seem to be evident @#svaries—e.g., the area and sides of triangle
p1 p2 ps shrink and grow again asdecreases in Fig. 9.

We callp, p: theunspecified edgef partial polygonP. Itis one side of atriangle in the
triangulation ofP; let a andb be the lengths of the other two sides in counterclockwise
order, and define theatio of P to bea/b. We prove by induction that the ratio &f is
a partial function o that is strictly increasing over its domain.

Theorem 4. Let P be a partial polygon with variable angte For eaché, the real-
ization of P, if it exists is unique and the ratio of P is a strictly increasing partial
function r(6).

Proof. We prove this by induction on the number of triangle®in

In the base case, partial polygéhis a single trianglep; p2 ps. We can choose the
positions ofp; and ps as in Fig. 10 to fix the similarity transformation. Since angte
at p, is specified, Lemma 1 applies to show that the ratio is a strictly increasing function
of the variable anglé at ps.

In the induction step, we are given a partial polygenhavingn > 3 vertices,
n — 2 triangles, and variable angleand unspecified edgg which we fix as horizontal.
Removing the triangle incident on the unspecified edge leaves a pair of partial polygons
or, when this triangle uses vertgx_; or p,, a single partial polygon. We handle these
cases separately.
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P3

Fig. 10. Base case.

Single using p_;.  When trianglep; pn—1 pn is adjacent to the unspecified edgef
P, then removing this triangle leaves a partial polydg®rfrom p; to p,_1 to which we
may apply the induction hypothesis.

We define notation as in Fig. 11: Letbe the variable angle fd?’, and leta be the
length of the unspecified edge Bf. Lety = ¥,_1 — ¢. Letb be the length o,_1pn,
which is the third side of the removed triangle, andddte the angle opposite the side of
lengthb. Let « be the cross-ratio specified for diagofgL; p;. Define thecross-ratio
function ) to be the ratio folP’ divided byk. By the induction hypothesis(y) is a
strictly increasing partial function.

We want to prove that the ratia®#) = a/b is a strictly increasing partial function.
First, we note that a given angledetermines at most one realization®fAs ¢ varies
from 0 toyr,_1, the functions(p) increases. At the same time, the angle- ¥n_1 — ¢
decreases; for a fixe#l Lemma 1 says that the rateyb also decreases. Because any
realization ofP hase/b = s(¢), the realization for any fixed is unique.

Now, to show that () = a/b is strictly increasing, we compare the ratios for two
realizations oP with two differentangles}; < 6,. We consider two subcases, depending
on whether the corresponding anglas> y, or y1 < y». (As with the lemmas of the
previous section, we can assume t@aémains fixed, and subscript other lengths and
angles in the two realizations.)

If y1 > y2, thengpy < ¢y, so the ratioe/b; = s(¢p1) < S(¢2) = €/by. Since angles
6, < 6, correspond to the’s of Lemma 3, we have the conditions of part (2) and can
conclude that the ratio increasesd;) = a; /by < ax/by, =r(67).

Fig. 11. Single partial polygon.
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Onthe otherhand, iy < y»,thenp; > ¢, sotherati@/b; = S(¢1) > S(@2) = €/b,.
Since the angles of the triangle sumtpwe know thatg, > B,. Thus, whera; < a,
we can apply Lemma 3(3), and whan> a, we apply Lemma 3(4); in either case, the
ratio increases:(0;) = a1 /by < ax/by, =1 (6,).

This completes the argument for the single case uping.

Single using p.  When trianglep, p2pn is adjacent to the unspecified edgeRf
we can reduce this case to the previous. Refkeabout a line, taking the reciprocals of
all specified cross-ratios, to obtdy. Apply the argument of the previous case to show
that there is a strictly increasing function of anglefor the ratior g(6r) of Pr. Then
there is a strictly increasing function of ang@ldor the ratior (9) of P, namely

1
'r ((n —2)r — (ZZSifnfl 1ﬁi) - 9).

Unigueness is preserved under reflection.

r@) =

Pair using p.  When trianglep; p; p, is adjacent to the unspecified edgef P, for
some 2< j < n— 1, we can label the sides= P, p; andb = P; pn, and angles, g,
andy = & — o — B opposite the sides, b, ande. We fix the similarity by choosing
edgee to be horizontal as in Fig. 12.

Removing trianglebeleaves two partial polygons: one frop to p, with variable
anglep = 6 — « and cross-ratio functios(¢), and another fronp; to p; with variable
anglex and cross-ratio functiot(y ). (Because the angle @ is specified ag/;, and
the angles of &-gon sum tak — 2)7, we know thaty + y — ¢ is a constant, namely
(N —j — D — 3 n ¥ Similarly, 6 + B — x is a constant.) We can apply the
induction hypothesis to both partial polygons, so the cross-ratio fundignandt (x)
are strictly increasing partial functions of their angles.

We begin with a different decomposition Bf, however, to show that the realization
of P for a givend is unique. BreakP into two partial polygons at edge If we fix
6, then the induction hypothesis applies to the polygon figm .., pn, p:: the ratio
b/eis a strictly increasing partial function of variable angleand its reciprocag/b is
decreasing. Witld + 8 — x a constant and fixed, however, anglg and ratio function
t(x) are also strictly increasing (partial) functionsgfandt (x) = e/b. Equality holds
at most once for any specified

Fig. 12. Pair of partial polygons.
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Now, to show that (§) = a/b is strictly increasing, we compare the ratios for
two realizations ofP with two different angles9; < 6,, and consider four subcases
depending on the comparisons of corresponding anglegth ¢, and x; with x2. (As
before, we assume thatemains fixed, and subscript other lengths and angles in the two
realizations.)

Casel: g1 < gy andy1 < x2. Sinces(g;) = a1/e < S(p2) = az/eandt(xy) =
e/b; < t(x2) = e/by, the ratior () = a3/b; < ay/b, = r(6,) increases in this case.
Note that this is Lemma 3(1), but it is easier to observe directly than by paging back to
the lemma.

Case2: g1 > ppand x1 < x2. Here,t(x1) = e/by < t(x2) = €/bp, soby > by.
Sinceq; = 6; — ¢;, anglesy; < ap, and sincey; + xi — ¢; IS a constanty; > y». This
satisfies the conditions for Lemma 3(2),r96:) = a;/b; < ax/by, = r (6,) in this case,
also.

Case3: g1 < gp andy1 > x2. Here,s(p1) = a3/e < s(g2) = az/e. The angles
y1 < Y2, SINCey, + xi — ¢i is a constant, anfl; > B, sincep; + 6, — x; is a constant.
This satisfies the conditions for Lemma 3(3)r%6,) = a1/b1 < ax/by, =r (62).

Cased: 1 > g2 and x1 > x2. Now,S(p1) = a1/€ > S(¢2) = a/eandt(x1) =
e/by > t(x2) = e/b,. Anglesa; < ap andpBy > B, sincea; = 6; — ¢ andB; + 6, — x;
is a constant. This satisfies the conditions for Lemma 3(4)(&0 = a1 /b; < ap/b, =
r (82)—vacuously, in fact.

This completes the pair cases; the theorem is established by mathematical in-
duction. O

Because any fully specified polygon can be made into a partial polygon by omitting
the first and last internal angles, we have an immediate corollary.

Corollary 5. A triangulated n-gon P is uniquely determinegb to similarity by its
sequence of internal angles and the cross-ratios of its diagonals

5. Open Questions

We have proved that angles and cross-ratios determine a unique simple polygon by
establishing that a partial functiani®) is strictly increasing. It is natural to ask further
guestions about the behavior of this function.

There are examples in which the domain of the ratio functi@) is not a single
interval. One such is a pentag@a - - - ps with diagonals(1, 3) and (1, 4) having unit
cross-ratios, angles = /4, ¢3 = 7/2, ¢4 = 37 /8, and variable anglgs = 6. Rather
than proving this, we give the intuition from the “Singbg” case of the induction step.

The reader may wish to refer back to Fig. 11 for the notation. Figure 13 shows three types
of curves that may contain the loci for verticps satisfyinge/b = s(¢), depending on
whether the ratio functios(p) takes on values greater, less, or both greater and less than
unity. If the ratio function attains a minimum value<0 s(¢min) < 1, then some lines
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Fig. 13. Curves forpy.

intersect this locus in two points, which correspond to two different triangles with the
same ratios. We can fix the anglg_ to be less thagmin + sin~*(S(¢min)) S0 that there

are two solutions fof . Both solutions are preserved@as ¢g increases, atleast until the
cross-ratio function becomes greater than unity. However, gpce minimum, angle

@ cannot decrease, and there is a portion of the curve whose @ngpersot correspond

to polygon realizations.

Note that as long as the ratio attains a nonzero minimum, we can adjust the cross-
ratio of p; pn—1 to make the minimuns(p) less than unity. Complete exploration of the
realizations of even simple cases seems to require long sessions with a symbolic algebra
package like Mathematica.

It might be nice to extract an algorithm to compute the ratio functions, and thus
compute realizations, from the proof of the previous section. This not only seems difficult,
but an exact implementation would require expensive, high-precision arithmetic. The
CRDT algorithm of Driscoll and Vavasis [2] performs an iterative computation to find
a Schwarz—Christoffel mapping of a disk to a polygon; our theorem shows that their
algorithm does produce a mapping to the correct polygon.

Many interesting gquestions about the CRDT algorithm remain, including how to
analyze its rate of convergence and quantify the worst-case crowding. It would be good
to consider other interesting combinations of continuous and combinatorial geometry
that address precision questions.
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