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Abstract. We prove that a unique simple polygon is determined, up to similarity, by the
interior angles at its vertices and the cross-ratios of diagonals of any given triangulation.
(The cross-ratio of a diagonal is the product of the ratio of edge lengths for the two adjacent
triangles.) This establishes a conjecture of Driscoll and Vavasis, and shows the correctness of
a key step of their algorithm for computing Schwarz–Christoffel transformations mapping
a disk to a polygon.

1. Introduction

Computing meshes for the numerical solution of problems on domains with irregular
geometry poses interesting challenges because it interweaves continuous mathematics
with discrete geometry and then seeks an implementation on an even more discrete com-
puter. One excellent example is a new algorithm by Driscoll and Vavasis for computing
a conformal mapping of a unit disk to a simple plane polygon [2]. We describe this
algorithm in some detail in Section 2. The correctness of one of its steps depends on a
purely geometric conjecture [2, Conjecture 1]:

Let P be ann-vertex, triangulated, simple polygon. ThenP is uniquely determined
up to similarity transform by the following data: the sequence of all interior angles
of P at its vertices, and the list ofn − 3 absolute values of cross-ratios of the
quadrilaterals determined by the triangulation ofP.

Pairs of adjacent triangles, which share adiagonal edgeof the triangulation, form the
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Fig. 1. Angles and cross-ratios.

above-mentioned quadrilaterals. Thecross-ratioof a quadrilateral is the product of the
lengths of two sides counterclockwise from the endpoints of the diagonal divided by the
product of the lengths of the two sides clockwise. That is, if a quadrilateral has sides of
lengtha, b, c, andd in ccw order starting from one endpoint of the diagonal, we define
the cross-ratio to beac/(bd). In the triangulated hexagon of Fig. 1, diagonal edges are
labeled with their cross-ratios. (Note: Driscoll and Vavasis [2] use the reciprocal of this
ratio.)

In this paper we establish their conjecture by establishing properties ofpartially
specified polygons, which we define in Section 4. We employ some observations on the
ratios of triangles that we make in Section 3.

2. The Schwarz–Christoffel Formula and the CRDT Algorithm

If we think of a simple polygonP = {p1, p2, . . . , pn} as a simply connected, open
subset of the complex plane and letD be the unit disk, then the Riemann Mapping
Theorem [3] says that there is an analytic functionf : D → P mapping the unit disk
to the polygon. If the pointf (0) and direction off ′(0) are specified, thenf is unique.
With this mapping, some problems onP (e.g., Laplace’s equation) can be solved on the
simpler domainD. Other problems that require a mesh onP can begin with a mesh on
D; conformal mapping preserves angles in the mesh.

All mappings f : D→ P, from the unit diskD to ann-gon P, can be written using
the Schwarz–Christoffel formula

f (w) = p+ q
∫ w

0

∏
1≤ j≤n

(
1− ω

wj

)βj

dω.

In this formula the complex numbersp andq translate, rotate, and scale the image, the
scalarsβj = ψj /π − 1, whereψj is the interior angle at polygon vertexpj , and the
unit-length complex numberswj are theprevertices, the points on the boundary of the
disk that map to the vertices of the polygon. The integration is a complex contour integral
in the disk. The SC formula hasn+4 parameters. Eliminating similarity transformations
of the polygon and the freedom to choosef (0) and the direction of its derivative leaves
n − 3 parameters unspecified. These are determined by numerically solving a difficult
nonlinear system [1], [2], [4], [5].
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Attempts to compute the prevertices and use the resulting SC formula over the entire
polygonP suffer from a phenomenon calledcrowding—skinny regions ofP cause the
angle between the prevertices to decrease exponentially in the aspect ratio. Crowding
causes problems for numerical techniques that compute prevertices and use them in the
SC formula; many bits of precision can be lost when determining the angle between two
prevertices.

Driscoll and Vavasis [2] have developed an clever combination of numerical and
geometric ideas to minimize the impact of crowding. They use a constrained Delaunay
triangulation ofP, with new vertices introduced on the boundary so that triangles inP
have good aspect ratios. There is a corresponding triangulation of prevertices inD (join
prevertices iff an edge joins their vertices inP); Driscoll and Vavasis reformulate the
nonlinear system to compute the cross-ratios of this triangulation. Thesen − 3 cross-
ratios are three parameters too few to specify then prevertices completely. They note
that when an application is concerned with accuracy of computations inside a particular
triangle, it can specify the three prevertices of this triangle to be spread out around
the disk, then determine the rest of the prevertices from the cross-ratios in linear time.
Crowding increases further from the specified triangle, but usually the importance of a
vertex decreases with distance as well.

As an illustration of their technique, they produced the right side of Fig. 2, which
shows a mapping from a rectangle to a “maze” polygon. Solid lines in the rectangle at
i /5, for 1 ≤ i ≤ 4, and dotted lines at 10−2,10−4, . . . ,10−16 map to their images at
right. Driscoll and Vavasis [2] report that “all computations were performed in double
precision.”

While the experimental evidence supports the correctness and efficiency of their
approach, it does depend on some conjectures. The first, cited in Section 1 and established
in this paper, relates to their iteration to find prevertices by finding the cross-ratios of
the triangulation of prevertices. Their iteration uses the SC formula to compute cross-
ratios ofP from the guessed cross-ratios of prevertices; the question is whether, having
determined the cross-ratios of polygonP, the algorithm has determinedP. There are
other interesting conjectures about the relationship between the magnitudes of cross-
ratios inP and inD, which we cannot yet address.

Fig. 2. Conformal mapping from rectangle to maze. (From [2].)
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Fig. 3. Triangle notation.

3. Observations on the Ratios of Triangles

To begin, we establish several sufficient conditions on sides and angles of a triangle for
its ratio to increase. We use the notation illustrated in Fig. 3: Pointsp andq are fixed so
that the segmentpq is horizontal from left to right. Pointsr1 andr2 are chosen above the
line←→pq, and the angles of trianglepqri measureαi ,βi , andγi at p, q, andri , respectively.
Let ai andbi denote the lengths ofqri and pri , respectively. Theratio of the triangle
pqri will thus beai /bi .

If we fix γ1 = γ2, then the triangle is determined whenαi is chosen. Thus, we establish
the next condition by a continuous argument and drop the subscripts.

Lemma 1. Using the above notation, when angleγ is fixed, the ratio r(α) = a/b is a
strictly increasing function ofα, for α ∈ [0, π − γ ].

Proof. By the law of sines, the ratio

r (α) = a

b
= sinα

sin(α + γ ) = cosγ − sinγ · cot(α + γ ).

This is an invertible function for 0< α ≤ π − γ , and its derivative sinγ /sin2(α + γ )
is positive for 0< γ < π , which we must have forpqr to be a triangle.

By the way, all of our conditions are established by algebraic arguments, which is
a good way to build character. To develop intuition, it is sometimes more pleasant to
observe the conditions geometrically by considering the interaction of four families of
constraint curves that cover the plane, which are illustrated in Fig. 4. We use these to
illustrate the algebraic proofs.

Fig. 4. Four families of constraint curves for triangle endpointr .
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Fig. 5. Fixedγ .

Observation 2. Let pqr be a triangle with p and q fixed and r to the left ofpq. The
following families are the loci of points r with the corresponding parameter of triangle
pqr fixed:

A. Points with fixed angleα = ∠rpq lie on the lines through p.
B. Points with fixed ratio b/e= rp/pq lie on the circles centered at p.
C. Points with fixed angleγ = ∠qrp lie on circles through p and q.
D. Points with fixed ratio a/b = qr/rp lie on circles orthogonal to those of C.

These curves intersect nicely; a pair of curves chosen from A and B, A and C, B
and D, or from C and D will have only one intersection above thex axis. Families A
and B and families C and D are orthogonal—any two of their curves intersect at right
angles.

A geometric argument for Lemma 1 observes that with angleγ fixed, the pointr
moves along a circular arc of family C asαi increases, see Fig. 5. Asr moves, it crosses
each curve of family D, and the ratio increases over(0,∞).

Lemma 3. Using the triangle notation of Fig. 3, the ratios a1/b1 < a2/b2 if r 1 6= r2

and any of the four following conditions hold:

(1) if a1 ≤ a2 and b1 ≥ b2,
(2) if b1 ≥ b2, α1 ≤ α2, andγ1 ≥ γ2,
(3) if a1 ≤ a2, β1 ≥ β2, andγ1 ≤ γ2, or
(4) if a1 ≥ a2, b1 ≤ b2, α1 ≤ α2, andβ1 ≥ β2.

Proof. Condition (1) is the easiest. With the assumption thatr1 6= r2, one of the
inequalitiesa1 ≤ a2 or b1 ≥ b2 must be strict, so when condition (1) holds,a1/b1 <

a2/b2.

For the remaining conditions, it helps to express ratios of sides using the law of sines
and trigonometric identities. For example,

ai

bi
= sinαi

sinβi
= sin(γi + βi )

sinβi
= cosγi + cotβi sinγi = cosγi + cosβi

(‖q − p‖
bi

)
.

Note that all angles will be in(0, π), so sines are positive. Cosine and cotangent are
decreasing functions over this angle range, crossing zero at angleπ/2.

When condition (2) holds we consider two cases, depending on whether angleβ1 is
obtuse.
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Fig. 6. β1 obtuse.

Case1: β1 obtuse(Fig. 6). Assume, for the sake of deriving a contradiction, that
a1/b1 ≥ a2/b2, or equivalently

cosγ1+ cotβ1 sinγ1 ≥ cosγ2+ cotβ2 sinγ2.

Sinceβ1 > π/2, the value− cotβ1 is positive. Also,π/2> γ1 ≥ γ2, so cosγ1 ≤ cosγ2

and sinγ1 ≥ sinγ2. Combining these inequalities, we observe that− cotβ1 ≤ − cotβ2.
We conclude thatπ2 < β1 ≤ β2 andα1 ≤ α2 < π/2.

However, then sinα1 ≤ sinα2 and sinβ1 ≥ sinβ2, and, if r1 6= r2, one of these
inequalities is strict. Thus we derive a contradiction,

a1

b1
= sinα1

sinβ1
<

sinα2

sinβ2
= a2

b2
.

Case2: β1 not obtuse(Fig. 7). Assume, for the sake of deriving a contradiction, that
a1/b1 ≥ a2/b2. Let e denote the fixed length of the edge fromp to q. The condition
α1 ≤ α2 implies cosα1 ≥ cosα2. By the conditionb1 ≥ b2, we know

cosα1+ cosβ1

(
a1

b1

)
= e

b1
≤ e

b2
= cosα2+ cosβ2

(
a2

b2

)
.

Fig. 7. β1 not obtuse.
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Fig. 8. Angle and distance constraints.

Since cosβ1 is nonnegative, we can combine the above inequalities to derive that 0≤
cosβ1 ≤ cosβ2. However, since cosγ1 ≤ cosγ2 ande/b1 ≤ e/b2, with one of these
inequalities strict ifr1 6= r2, we again derive a contradiction:

a1

b1
= cosγ1+ cosβ1

(
e

b1

)
< cosγ2+ cosβ2

(
e

b2

)
= a2

b2
.

We reduce condition (3) to condition (2). Reflect the triangle about a vertical line,
which exchangesa’s with b’s, andα’s with β ’s. Then exchange 1’s with 2’s, and apply
the proof for condition (2). When we return the conclusion to the original notation, we
obtain thatb2/a2 < b1/a1. Taking reciprocals gives the desired result.

The final part of the lemma is vacuously true—condition (4) cannot be satisfied unless
r1 = r2.

By the law of sinesbi = esinβi /sinγi = ecosαi + ai cosγi , wheree = ‖q − p‖
is fixed (see Fig. 8). Since cosα1 ≥ cosα2 and a1 ≥ a2, in order to haveb1 ≤ b2

(and r1 6= r2), we must either have 0≤ cosγ1 < cosγ2 or cosγ1 < 0. Similarly,
ai = ecosβi + bi cosγi , cosβ1 ≤ cosβ2, andb1 ≤ b2. In order to havea1 ≥ a2 (and
r1 6= r2), we must either have 0≤ cosγ2 < cosγ1 or cosγ2 < 0. Because the inequalities
with nonnegative cosines are incompatible, we must have that bothγ1 andγ2 are obtuse
angles.

We can now observe a contradiction: anglesαi andβi are not obtuse, so sinα1 ≤ sinα2

and sinβ1 ≥ sinβ2. By the law of sines,ai /bi = sinαi /sinβi , but

a1

b1
≤ a2

b2
and

sinα1

sinβ1
≥ sinα2

sinβ2
.

Only if r1 = r2 can these inequalities be satisfied simultaneously.

4. A Proof Using Partial Polygons

The remainder of this paper proves that the interior angles and cross-ratios of a triangu-
lated polygonP are sufficient to determineP up to similarity. The proof usespartial
polygons, for which all cross-ratios and all angles except the first and last are specified.
In notation, letP = p1 p2 · · · pn be a simple polygon in the Euclidean plane. Assume
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Fig. 9. Realizations of a partial polygonP for five different anglesθ . In each, the angles atp2 throughp5

are 120◦, and cross-ratios are 1/2, 3, and 1/2 as labeled in the middle hexagon.

that we are given:

• n− 2 anglesψ2, ψ3, . . . , ψn−1, where 0< ψi ≤ 2π measures the internal angle
at pi ,
• n − 3 cross-ratios for the quadrilaterals formed by the pairs of triangles adjacent

to then− 3 diagonals in the triangulation ofP.

Note that anglesψ1 andψn at verticesp1 andpn are not specified. We callψn thevariable
angleof partial polygonP. If we setψn = θ , we can determineψ1 since the sum of
interior angles

∑
1≤i≤nψi = (n− 2)π .

A realization of partial polygon Pis an embedding that respects the specified angles
and cross-ratios and has positive, finite area for all triangles; Fig. 9 shows five realizations
of a triangulated hexagon for different values ofθ . No global monotonicity properties
for realizations ofP seem to be evident asθ varies—e.g., the area and sides of triangle
p1 p2 p3 shrink and grow again asθ decreases in Fig. 9.

We callpn p1 theunspecified edgeof partial polygonP. It is one side of a triangle in the
triangulation ofP; let a andb be the lengths of the other two sides in counterclockwise
order, and define theratio of P to bea/b. We prove by induction that the ratio ofP is
a partial function ofθ that is strictly increasing over its domain.

Theorem 4. Let P be a partial polygon with variable angleθ . For eachθ , the real-
ization of P, if it exists, is unique, and the ratio of P is a strictly increasing partial
function r(θ).

Proof. We prove this by induction on the number of triangles inP.

In the base case, partial polygonP is a single trianglep1 p2 p3. We can choose the
positions ofp1 and p3 as in Fig. 10 to fix the similarity transformation. Since angleψ2

at p2 is specified, Lemma 1 applies to show that the ratio is a strictly increasing function
of the variable angleθ at p3.

In the induction step, we are given a partial polygonP, having n > 3 vertices,
n− 2 triangles, and variable angleθ and unspecified edgee, which we fix as horizontal.
Removing the triangle incident on the unspecified edge leaves a pair of partial polygons
or, when this triangle uses vertexpn−1 or p2, a single partial polygon. We handle these
cases separately.
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Fig. 10. Base case.

Single using pn−1. When trianglep1 pn−1 pn is adjacent to the unspecified edgeeof
P, then removing this triangle leaves a partial polygonP′ from p1 to pn−1 to which we
may apply the induction hypothesis.

We define notation as in Fig. 11: Letϕ be the variable angle forP′, and leta be the
length of the unspecified edge ofP′. Let γ = ψn−1− ϕ. Let b be the length ofpn−1 pn,
which is the third side of the removed triangle, and letβ be the angle opposite the side of
lengthb. Let κ be the cross-ratio specified for diagonalpn−1 p1. Define thecross-ratio
function s(ϕ) to be the ratio forP′ divided byκ. By the induction hypothesis,s(ϕ) is a
strictly increasing partial function.

We want to prove that the ratior (θ) = a/b is a strictly increasing partial function.
First, we note that a given angleθ determines at most one realization ofP. As ϕ varies
from 0 toψn−1, the functions(ϕ) increases. At the same time, the angleγ = ψn−1− ϕ
decreases; for a fixedθ , Lemma 1 says that the ratioe/b also decreases. Because any
realization ofP hase/b = s(ϕ), the realization for any fixedθ is unique.

Now, to show thatr (θ) = a/b is strictly increasing, we compare the ratios for two
realizations ofP with two different angles,θ1 < θ2. We consider two subcases, depending
on whether the corresponding anglesγ1 ≥ γ2 or γ1 < γ2. (As with the lemmas of the
previous section, we can assume thate remains fixed, and subscript other lengths and
angles in the two realizations.)

If γ1 ≥ γ2, thenϕ1 ≤ ϕ2, so the ratioe/b1 = s(ϕ1) ≤ s(ϕ2) = e/b2. Since angles
θ1 < θ2 correspond to theα’s of Lemma 3, we have the conditions of part (2) and can
conclude that the ratio increases:r (θ1) = a1/b1 < a2/b2 = r (θ2).

Fig. 11. Single partial polygon.
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On the other hand, ifγ1 ≤ γ2, thenϕ1 ≥ ϕ2, so the ratioe/b1 = s(ϕ1) ≥ s(ϕ2) = e/b2.
Since the angles of the triangle sum toπ , we know thatβ1 ≥ β2. Thus, whena1 ≤ a2

we can apply Lemma 3(3), and whena1 ≥ a2 we apply Lemma 3(4); in either case, the
ratio increases:r (θ1) = a1/b1 < a2/b2 = r (θ2).

This completes the argument for the single case usingpn−1.

Single using p2. When trianglep1 p2 pn is adjacent to the unspecified edge ofP,
we can reduce this case to the previous. ReflectP about a line, taking the reciprocals of
all specified cross-ratios, to obtainPR. Apply the argument of the previous case to show
that there is a strictly increasing function of angleθR for the ratior R(θR) of PR. Then
there is a strictly increasing function of angleθ for the ratior (θ) of P, namely

r (θ) = 1

r R
(
(n− 2)π − (∑2≤i≤n−1ψi

)− θ) .
Uniqueness is preserved under reflection.

Pair using pj . When trianglep1 pj pn is adjacent to the unspecified edgeeof P, for
some 2< j < n− 1, we can label the sidesa = p1 pj andb = pj pn, and anglesα, β,
andγ = π − α − β opposite the sidesa, b, ande. We fix the similarity by choosing
edgee to be horizontal as in Fig. 12.

Removing triangleabeleaves two partial polygons: one frompj to pn with variable
angleϕ = θ − α and cross-ratio functions(ϕ), and another fromp1 to pj with variable
angleχ and cross-ratio functiont (χ). (Because the angle atpj is specified asψj , and
the angles of ak-gon sum to(k − 2)π , we know thatχ + γ − ϕ is a constant, namely
(n − j − 1)π −∑j≤k<nψk. Similarly, θ + β − χ is a constant.) We can apply the
induction hypothesis to both partial polygons, so the cross-ratio functionss(ϕ) andt (χ)
are strictly increasing partial functions of their angles.

We begin with a different decomposition ofP, however, to show that the realization
of P for a givenθ is unique. BreakP into two partial polygons at edgea. If we fix
θ , then the induction hypothesis applies to the polygon frompj , . . . , pn, p1: the ratio
b/e is a strictly increasing partial function of variable angleβ, and its reciprocale/b is
decreasing. Withθ + β − χ a constant andθ fixed, however, angleχ and ratio function
t (χ) are also strictly increasing (partial) functions ofβ, andt (χ) = e/b. Equality holds
at most once for any specifiedθ .

Fig. 12. Pair of partial polygons.
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Now, to show thatr (θ) = a/b is strictly increasing, we compare the ratios for
two realizations ofP with two different angles,θ1 < θ2, and consider four subcases
depending on the comparisons of corresponding anglesϕ1 with ϕ2 andχ1 with χ2. (As
before, we assume thate remains fixed, and subscript other lengths and angles in the two
realizations.)

Case1: ϕ1 < ϕ2 andχ1 ≤ χ2. Sinces(ϕ1) = a1/e < s(ϕ2) = a2/e andt (χ1) =
e/b1 ≤ t (χ2) = e/b2, the ratior (θ1) = a1/b1 < a2/b2 = r (θ2) increases in this case.
Note that this is Lemma 3(1), but it is easier to observe directly than by paging back to
the lemma.

Case2: ϕ1 ≥ ϕ2 andχ1 ≤ χ2. Here,t (χ1) = e/b1 ≤ t (χ2) = e/b2, sob1 ≥ b2.
Sinceαi = θi − ϕi , anglesα1 < α2, and sinceγi + χi − ϕi is a constant,γ1 ≥ γ2. This
satisfies the conditions for Lemma 3(2), sor (θ1) = a1/b1 < a2/b2 = r (θ2) in this case,
also.

Case3: ϕ1 < ϕ2 andχ1 > χ2. Here,s(ϕ1) = a1/e < s(ϕ2) = a2/e. The angles
γ1 < γ2, sinceγi + χi − ϕi is a constant, andβ1 > β2, sinceβi + θi − χi is a constant.
This satisfies the conditions for Lemma 3(3), sor (θ1) = a1/b1 < a2/b2 = r (θ2).

Case4: ϕ1 ≥ ϕ2 andχ1 > χ2. Now, s(ϕ1) = a1/e ≥ s(ϕ2) = a2/e andt (χ1) =
e/b1 ≥ t (χ2) = e/b2. Anglesα1 < α2 andβ1 > β2, sinceαi = θi − ϕi andβi + θi −χi

is a constant. This satisfies the conditions for Lemma 3(4), sor (θ1) = a1/b1 < a2/b2 =
r (θ2)—vacuously, in fact.

This completes the pair cases; the theorem is established by mathematical in-
duction.

Because any fully specified polygon can be made into a partial polygon by omitting
the first and last internal angles, we have an immediate corollary.

Corollary 5. A triangulated n-gon P is uniquely determined, up to similarity, by its
sequence of internal angles and the cross-ratios of its diagonals.

5. Open Questions

We have proved that angles and cross-ratios determine a unique simple polygon by
establishing that a partial functionr (θ) is strictly increasing. It is natural to ask further
questions about the behavior of this function.

There are examples in which the domain of the ratio functionr (θ) is not a single
interval. One such is a pentagonp1 · · · p5 with diagonals(1,3) and(1,4) having unit
cross-ratios, anglesϕ2 = π/4,ϕ3 = π/2,ϕ4 = 3π/8, and variable angleϕ5 = θ . Rather
than proving this, we give the intuition from the “Singlepn” case of the induction step.
The reader may wish to refer back to Fig. 11 for the notation. Figure 13 shows three types
of curves that may contain the loci for verticespn satisfyinge/b = s(ϕ), depending on
whether the ratio functions(ϕ) takes on values greater, less, or both greater and less than
unity. If the ratio function attains a minimum value 0< s(ϕmin) < 1, then some lines
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Fig. 13. Curves forpn.

intersect this locus in two points, which correspond to two different triangles with the
same ratios. We can fix the angleψn−1 to be less thanϕmin+ sin−1(s(ϕmin)) so that there
are two solutions forθ . Both solutions are preserved asϕ ≥ ϕ0 increases, at least until the
cross-ratio function becomes greater than unity. However, sinceϕ0 is minimum, angle
ϕ cannot decrease, and there is a portion of the curve whose anglesθ do not correspond
to polygon realizations.

Note that as long as the ratio attains a nonzero minimum, we can adjust the cross-
ratio of p1 pn−1 to make the minimums(ϕ) less than unity. Complete exploration of the
realizations of even simple cases seems to require long sessions with a symbolic algebra
package like Mathematica.

It might be nice to extract an algorithm to compute the ratio functions, and thus
compute realizations, from the proof of the previous section. This not only seems difficult,
but an exact implementation would require expensive, high-precision arithmetic. The
CRDT algorithm of Driscoll and Vavasis [2] performs an iterative computation to find
a Schwarz–Christoffel mapping of a disk to a polygon; our theorem shows that their
algorithm does produce a mapping to the correct polygon.

Many interesting questions about the CRDT algorithm remain, including how to
analyze its rate of convergence and quantify the worst-case crowding. It would be good
to consider other interesting combinations of continuous and combinatorial geometry
that address precision questions.
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