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Abstract. We study the motion-planning problem for pairs and triples of robots operating
in a shared workspace containingn obstacles. A standard way to solve such problems is to
view the collection of robots as one composite robot, whose number of degrees of freedom
is d, the sum of the numbers of degrees of freedom of the individual robots. We show that
it is sufficient to consider a constant number of robot systems whose number of degrees of
freedom is at mostd − 1 for pairs of robots, andd − 2 for triples. (The result for a pair
assumes that the sum of the number of degrees of freedom of the robots constituting the
pair reduces by at least one if the robots are required to stay in contact; for triples a similar
assumption is made. Moreover, for triples we need to assume that a solution with positive
clearance exists.)

We use this to obtain anO(nd) time algorithm to solve the motion-planning problem
for a pair of robots; this is one order of magnitude faster than what the standard method
would give. For a triple of robots the running time becomesO(nd−1), which is two orders
of magnitude faster than the standard method. We also apply our method to the case of a
collection of bounded-reach robots moving in a low-density environment. Here the running
time of our algorithm becomesO(n logn) both for pairs and triples.

1. Introduction

One of the ultimate goals of robotics research is to create robots that are capable of
autonomous action, and accept and execute high-level task descriptions while requir-
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ing little or no human supervision. A fundamental task for an autonomous robot is to
plan its own motion: it should be able to figure out how to get from one position (for
instance, where it has picked up some object) to another position (where the object is to
be delivered). In general there will be obstacles in the workspace of the robot, which it
has to avoid. In many applications the situation is further complicated by the fact that
the robot has to share its workspace with other robots. Examples of this are the trans-
portation systems found at modern airports, ports, and factories. This is the setting of
the motion-planning problem we study: given a collectionR1, . . . , Rm of robots with
d1, . . . ,dm degrees of freedom, respectively, and operating in a shared workspaceW
with n obstacles, find a collection of paths bringing each robot from a specified start
position to a specified goal position without colliding with the obstacles or the other
robots, or report that the problem is not solvable. We assumem is a small constant; we
mainly study the casesm = 2 andm = 3. The problem becomes PSPACE-complete if
the number of robots is not constant [13].

Two established approaches to this problem are decoupled planning and centralized
planning.

Thedecoupled planningapproach [1], [8], [15], [24] first plans the motion of each
robot individually while ignoring the existence of the other robots, then tries to combine
the resulting paths by resolving possible collisions between the paths. Algorithms fol-
lowing this approach are usually incomplete in the sense that they are not guaranteed to
find a solution if one exists.

In centralized planning[17], [19] them robots are regarded as one multi-robot, that
is, one robot with several independent body parts that are not necessarily connected to
each other. Collisions between the robotsRi turn into collisions between different body
parts—in other words, self-collisions—of the multi-robot. The configuration space of
the multi-robot isCS1 × · · · × CSm, whereCS i is the configuration space of robotRi .
The dimension of this configuration space isd1 + · · · + dm, the sum of the dimensions
of the individual configuration spaces; this dimension is considered a constant. Using an
algorithm of Basu et al. [2] for constructing roadmaps, one can thus solve the motion-
planning problem inO(nd1+···+dm+1) time. Under certain general-position assumptions
on the configuration-space obstacles one can use Canny’s roadmap algorithm [4] to
improve the time bound toO(nd1+···+dm logn). (In a later paper [5] Canny showed how to
eliminate the general-position assumption, but unfortunately the adapted version cannot
report an actual path, it can only decide on the existence of a path.) Since we wish to
keep our results as general as possible, we stick to using the roadmap algorithm of Basu
et al. from this point on.

Centralized approaches have the advantage that they allow for complete planners,
which are guaranteed to find a solution whenever one exists. Their main drawback is that
the dimension of the configuration space of the multi-robot is much higher than that of
the individual robots. This increases both the combinatorial and the algebraic complexity
of the problem.

Sharir and Sifrony [19] present a general centralized-planning method for two robots
that is sometimes more efficient than applying the method of Basu et al. to the multi-
robot consisting of these two robots. Their method requires a cell decomposition for
the free portion of each individual configuration space, such that each cell has constant
complexity and is adjacent to at most a constant number of other cells. The cell decom-
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positions are then combined into a representation of the free space of the multi-robot.
The complexity of this representation is the product of the complexities of the individual
configuration spaces. This approach can take advantage of the fact that sometimes the
complexity of (the cell decomposition of) the free space of a robotRi is significantly
smaller than2(ndi ). For instance, it is well known that the complexity of the free space of
a convex polygon translating amidstn polygonal obstacles in the plane is onlyO(n) [12].
Thus the method of Sharir and Sifrony can plan the motion of two convex polygons in
such a workspace inO(n2) time. Applying the method of Basu et al. to the multi-robot
would lead to anO(n5) algorithm, because the number of degrees of freedom of the
multi-robot is four.

We present a refinement of the centralized-planning approach for pairs and triples
of robots. Our technique is quite general: it works for any type of robots, and it can be
combined with roadmap methods and with cell-decomposition methods. The technique
reduces the dimension of the configuration space one has to consider for the multi-robot.
For pairs of robots it does so by stipulating that at all times either one of the robots should
be at its start or goal position, or the robots should touch each other; for triples of robots
the configurations of the multi-robot are constrained in a similar fashion. (Throughout
the paper we make the assumption that the sum of the number of degrees of freedom of
two robots reduces by at least one if the robots are required to stay in contact; for triples
a similar assumption is made. Moreover, for triples we need to assume that a solution
with positive clearance exists.)

The approach of reducing the dimension of the configuration space to be searched
was also used by Hopcroft and Wilfong [10], [11] and Fortune et al. [9]. Hopcroft and
Wilfong [10] showed that if the robots form a single connected component at their start
and goal configurations and if there exists a collision-free motion of the multi-robot
in which the robots need not touch, then there exists a path such that the robots form
a connected component throughout the entire motion. This implies that the search in
the configuration space can be limited to a lower-dimensional subspace. However, their
result only holds when the configuration space is contractible to a point. In a later paper,
Fortune et al. [9] considered the case of two planar robot arms, each having one extendible
and rotatable link. For this case, where the configuration space is not contractible to a
point, they gave a proof (tailored to this special case) that it is sufficient to consider only
motions in contact; in addition, they developed an algorithm to find such motions. In
their second paper [11], Hopcroft and Wilfong applied the result from their first paper
to translating axis-parallel polygons inR2. In particular, they showed that planning the
motions ofn rectangles in a rectangular workspace is in PSPACE.

We use essentially the same approach, that is, we also show that the search of the
configuration space can be limited to lower-dimensional subspaces, corresponding to
configurations with specific properties. However, we do not require the configuration
space to be contractible, thus generalizing the results of Hopcroft and Wilfong to arbitrary
robots. For instance, our result is directly applicable to the case of two planar robot arms
studied by Fortune et al. Furthermore, we not only prove the existence of a certain
restricted type of multi-path, we also present a general algorithm for finding such a path
efficiently. Unfortunately, we can only prove our result for two and three robots, so in this
respect our results are less general than those of Hopcroft and Wilfong. More precisely,
our results are as follows.



508 B. Aronov, M. de Berg, A. F. van der Stappen, P.Švestka, and J. Vleugels

In Section 3 we prove that in order to plan the motions of two robotsR1 andR2, one
does not have to consider the entire(d1+d2)-dimensional configuration spaceCS1×CS2.
Instead, it is sufficient to consider a collection of five suitably linked configuration-space
slices (corresponding to the constrained type of configurations mentioned above) whose
dimensions are at mostd1 + d2 − 1. Combining this with the method of Basu et al. we
obtain a general method to solve the motion-planning problem for a pair of robots in
O(nd1+d2) time.

In Section 4 we extend our ideas to triples of robots. Here we show that it is sufficient
to consider a constant number of configuration-space slices of maximum dimension
d1 + d2 + d3 − 2, which leads to anO(nd1+d2+d3−1) time algorithm. Note that one can
view a collection ofm robots (withm≥ 4) as a collection of three robots, one of which
is a multi-robot consisting ofm−2 robots. Hence, the improvement (compared with the
standard method of viewing the collection of robots as one multi-robot) of two orders of
magnitude that we obtain for three robots carries over to the case of four or more robots.

Our approach becomes especially effective when the robots under consideration have
bounded reach and the workspace has low density [23], as we show in Section 5. Bounded-
reach robots are robots that are not too large compared with the obstacles, and a workspace
has low density if any region is intersected by only a constant number of obstacles
that are larger than that region. These notions were introduced to exclude unrealistic
inputs—contrived workspaces and robots that induce very high free-space complexities.
It is expected that in most practical situations the robots have bounded reach and the
workspace they operate in has low density. Van der Stappen et al. [23] demonstrate
that the complexity of the free space of a single bounded-reach robot in a low-density
workspace isO(n), irrespective of the number of degrees of freedom of the robot and
of the dimension of its workspace. Van der Stappen et al. also give an algorithm to
compute a linear-size cell decomposition of the free space, leading to anO(n logn) time
algorithm to plan the motion of a single robot. Unfortunately, if we consider a pair or
triple of bounded-reach robots operating in a low-density workspace, then the free-space
complexity of the corresponding multi-robot can be as high as2(n2) for a pair and
2(n3) for a triple. Nevertheless, we show how to apply our method to this case to obtain
the following surprising result: for bounded-reach robots in low-density workspaces,
the time bound on solving the motion-planning problem for pairs or triples of robots is
identical to that for a single robot, namelyO(n logn). Note that the method of Sharir and
Sifrony [19] can be used in this case, because a cell decomposition of the free space of the
individual robots is available. This, however, leads to algorithms with considerably higher
bounds on the running times, namelyO(n2) for a pair of robots andO(n3) for a triple.

2. Preliminaries

Although we assume some familiarity with the basic concepts in motion planning, we
briefly introduce the terminology and notation used throughout the paper. A general
introduction to motion planning can be found in Latombe’s book [13].

LetR = {R1, . . . , Rm} denote a collection ofm robots. All robots operate in the same
workspaceW, which contains a setC = {C1, . . . ,Cn} of obstacles. We assume that each
robot and each obstacle has constant complexity, and that they are semi-algebraically
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defined, that is, bounded by surfaces of low algebraic degree. We also assume they are
open sets; this means that the robot is allowed to “slide along” an obstacle.

Theconfiguration spaceof robotRi is denoted byCS i . The dimension ofCS i equals
di , the number of degrees of freedom ofRi . We assume thatdi > 0 for everyi . Points in
CS i —or configurations—correspond to placements ofRi in the workspace; we denote
the portion of the workspace occupied byRi at configurationp ∈ CS i by Ri [ p]. The
points in CS i representing the start and goal configuration ofRi are denoted bysi

andgi , respectively. A path forRi from its start configuration to its goal configuration
corresponds to a curve inCS i fromsi togi . We parameterize the curve by a time parameter
t , with t ∈ [0,1], so a path from start to goal configuration is a continuous mapping
πi : [0,1]→ CS i with πi (0) = si andπi (1) = gi .

Each obstacle defines a subset—itsconfiguration-space obstacle—in a configuration
space consisting of all configurations in which the robot intersects that obstacle. The
portion of the configuration space covered by the configuration-space obstacles is called
the forbidden space, and its complement is called thefree space. We call a pathπi for
Ri feasibleif Ri does not intersect any obstacle during its motion or, in other words, if
the curveπi lies entirely in the free space.

As stated in the Introduction, we can view the collection of robots as one composite
robot, ormulti-robot, withd :=∑m

i=1 di degrees of freedom. We refer to configurations of
the multi-robot asmulti-configurations, and we call a path for the multi-robot (which is in
fact a collection of paths for the individual robots) amulti-path. We want to find afeasible
multi-pathfor the robotsR1, . . . , Rm and their given start and goal configurations, that
is, a collection of paths that brings each robot from its start configuration to its goal
configuration without colliding with either the obstacles or the other robots.

3. Pairs of Robots

To explain the idea of our method, we start by studying the case of a pair of robots.
One way of planning the motion of a pair of robots is to view the pair as one robot with
d := d1+ d2 degrees of freedom. Thus the problem can be solved in thed-dimensional
configuration spaceCS1 × CS2. Our goal is to reduce the dimension of the space we
have to consider. To this end we limit the possible multi-configurations—combinations
of configurations for the two robots—that we allow. Of course, we have to guarantee
that a feasible multi-path continues to exist.

The multi-configurations that we allow—we call thempermissible multi-config-
urations—are as follows.

• WhenR1 is at its start or goal configuration, we allow any configuration ofR2.
• WhenR2 is at its start or goal configuration, we allow any configuration ofR1.
• When neitherR1 nor R2 is at its start or goal configuration, we only allow config-

urations whereR1 andR2 touch each other.

We give an example. Consider the situation depicted in Fig. 1, where we have two
disk-shaped robots moving amidst polygonal obstacles in the plane. The start and goal
configurations of the robots are indicated in Fig. 1(a); start configurations are solid
and goal configurations are dotted. A feasible multi-path for this problem that uses
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Fig. 1. A feasible multi-path using permissible multi-configurations.

permissible multi-configurations is indicated in Fig. 1(b)–(d): firstR2 moves towardsR1

until it touches it, thenR2 andR1 together move untilR2 is at its end configuration, and
finally R1 breaks off its contact withR2 and moves to its own goal configuration.

At first sight, it seems quite severe to restrict oneself to permissible multi-config-
urations. Nevertheless, it turns out that solutions using only permissible multi-configura-
tions always exist, provided a solution exists at all.

Lemma 1. Let R1 and R2 be two robots operating in the same workspace. If there
is a feasible multi-path for given start and goal configurations, there is also a feasible
multi-path for those start and goal configurations that only uses permissible multi-
configurations.

Proof. Let5 = {π1, π2} be a feasible multi-path. We define thecoordination diagram
for5 as follows. LetU be the unit square. We call the edges ofU incident to the origin
theaxesof U . The horizontal axis, ort1-axis, of U represents the configuration ofR1

alongπ1; the vertical axis, ort2-axis, represents the configuration ofR2 alongπ2. Thus a
point (t1, t2) ∈ U corresponds to placingR1 andR2 at configurationsπ1(t1) andπ2(t2),
respectively. Observe that the left edge ofU corresponds to multi-configurations where
R1 is at its start configuration, the top edge ofU corresponds to configurations whereR2

is at its goal configuration, and so on. A point(t1, t2) ∈ U is calledforbiddenif R1[π1(t1)]
intersectsR2[π2(t2)]; otherwise it is calledfree—see Fig. 2. The coordination diagram
for 5 is the subdivision ofU into free and forbidden regions.

Fig. 2. The coordination diagram; forbidden regions are shaded.
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Define0 := (0,0) and1 := (1,1) to be the lower left and top right vertex ofU ,
respectively. We call a path inU from 0 to 1 a 0-1 path. Since{π1, π2} is a feasible
multi-path, R1 does not intersect any obstacle alongπ1 and R2 does not intersect any
obstacle alongπ2. Hence, a0-1 path that lies in the free region corresponds to a feasible
multi-path; we call this afeasible0-1 path. Notice that the diagonal from0 to 1 is by
definition a feasible0-1 path. This means that0 and1 lie in the same component of
the free region. Since they both lie on the boundary ofU , they must lie in the same
component of the boundary of the free region as well. Hence, there is a feasible0-1 path
along the boundary of the free region, as illustrated in Fig. 2. Any point on such a0-1path
corresponds to a permissible multi-configuration: the point either lies on the boundary
of U , in which case one of the robots is at its start or goal configuration, or it lies on the
boundary of a forbidden region, in which case the robots touch each other.

Before we continue we make two remarks about the proof. First, the0-1 path that we
find is not necessarily monotone in eithert1 or t2. This may seem like a problem, because
it appears to mean that we move back in time. However, what it really means it that we
move back along the pathπ1 or π2, which is allowed. Second, it is important to realize
that we do not have a feasible multipath available at the start of the algorithm—otherwise
we would already be done—so we cannot compute the coordination diagram used in the
proof. However, we can use it to prove the correctness of our approach.

We now know that we can solve the motion-planning problem by looking at only a
subspace of the composite configuration spaceCS1 × CS2. This subspace consists of
five configuration-space slices, or slicesfor short.

• In the first slice,R2 is free to move andR1 is stationary at its start configuration; here
we can simply considerR1 as an additional obstacle. We denote this configuration-
space slice byCS1,s; its dimension isd2, the number of degrees of freedom ofR2.
• In CS1,g, the second slice,R2 is again free to move andR1 is stationary, but this

time R1 is at its goal configuration. Again,R1 is an additional obstacle, and the
dimension of the slice isd2.
• The third slice,CS2,s, is defined analogously toCS1,s, with the roles ofR1 andR2

reversed. Its dimension isd1.
• The fourth slice,CS2,g, is defined analogously toCS1,g, with the roles ofR1 and

R2 reversed. Its dimension isd1.
• The fifth slice,CScontact, is a configuration space for thecontact robot〈R1R2〉,

which is the robot composed ofR1 andR2 whereR1 andR2 are required to touch
each other.

In what follows we make the following assumption:

DOF-Reduction Assumption (for pairs of robots). The number of degrees of free-
dom of the contact robot〈R1R2〉 is at mostd1+d2−1, whered1 andd2 are the numbers
of degrees of freedom of the robotsR1 andR2, respectively.

There are certain degenerate situations where this condition is not fulfilled. For in-
stance, when two blocks are confined to move on parallel tracks whose distance is such
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that the blocks touch when they pass each other, then requiring them to touch will not
reduce the total number of degrees of freedom.

Linking the Configuration-Space Slices. Of course we cannot treat the five slices com-
pletely separately; a feasible multi-path using only permissible multi-configurations will
in general switch between slices a number of times. In the example of Fig. 1, for instance,
the first part of the path lies inCS1,s, then (whenR2 reachesR1) a switch is made to
CScontact, and finally a switch is made toCS2,g. We have to connect the slices to make
such switches possible. We do this by identifying certaintransition pointsin each slice.
These points correspond to configurations that are represented by a point in one of the
other slices as well. For a given transition point in a slice, we call the point in another
slice that corresponds to the same configuration itstwin in the other slice. Thus if we
travel along a curve in one slice and reach a transition point, we may continue in the
other slice from its twin. Next we explain which transition points we use.

First we observe that no switches can occur betweenCS1,s andCS1,g, becauseR1

cannot go from its start to its goal configuration instantaneously. (Ifs1 = g1 thenCS1,s =
CS1,g, so we can discard one of these configuration-space slices.) Similarly, no switches
can occur betweenCS2,s andCS2,g.

There is only one point inCS1,s where we can step toCS2,s, namely ats2. Its twin
in CS2,s is s1. This transition is not needed, however, because there is no reason to ever
come back to the initial configuration and make a switch there. Similarly, we need not
add transition points to step fromCS1,g to CS2,g, because when we arrive at that point
we have solved the problem.

We do need to add transition points fromCS1,s toCS2,g, namely the pointg2 ∈ CS1,s

and its twins1 ∈ CS2,g. Similarly, we need to adds2 ∈ CS1,g and its twing1 ∈ CS2,s to
the collection of transition points.

The difficulty lies in defining transition points to step fromCScontactto one of the other
slices. The problem is that in general there is a continuum of configurations common
to CScontactand, say,CS1,s. We want to add only a limited number of transition points,
while at the same time ensuring that no essential connectivity is lost. To achieve this we
add the following transition points.

The free part of the sliceCS1,s consists of a number ofcells(d2-dimensional features)
which are bounded by parts of constraint hypersurfaces. We call the(d2−1)-dimensional
features of a cell thepatchesof the cell. A patch is a part of the boundary of some
configuration-space obstacle (recall thatR1 is now regarded as an additional obstacle);
patches are by definition path-connected. Each patch corresponds to a maximal path-
connected set of configurations whereR2, the robot which is free to move in the slice we
are considering, either touches a specific obstacle orR1. For each patch on the boundary
of a cell in the free space that corresponds to configurations whereR1 and R2 touch,
we take an arbitrary point on the patch as a transition point (together with its twin in
CScontact).

The following lemma shows that the transition points we defined are sufficient to
capture the connectivity between the slices.

Lemma 2. If there is a feasible multi-path for given start and goal configurations
for R1 and R2, then there is a feasible multi-path whose corresponding curve in the
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configuration spaceCS1× CS2 lies entirely in the union of the five slices defined above
and switches between slices at transition points.

Proof. Lets1, g1, s2, andg2 be start and goal configurations such that there is a feasible
multi-path for R1 and R2. Lemma 1 states that there is a feasible multi-path that uses
permissible multi-configurations only, that is, lies in the union of the five slices. Consider
such a multi-path5 = {π1, π2}. It is possible that5 switches between configuration-
space slices at points other than transition points. We modify5 so that it only switches
between slices at transition points.

Switches that are not at transition points can only occur betweenCScontact and one
of the other four configuration-space slices. Assume without loss of generality that5

switches toCS1,s. By definition, the switch must occur at a configuration whereR1

and R2 touch and, moreover,R1 is at its start configuration. Hence, this configuration
is represented by a pointp on a patch of some free-space cell inCS1,s. Let q be the
transition point chosen for that patch. Furthermore, letp′ andq′ be the twins inCScontact

of p and q. Becausep and q are on the same patch, there is a curve on that patch
connecting them. Such a curve corresponds to a motion ofR2 that keeps it in contact
with R1. Hence, this motion is also represented by some curve connectingp′ to q′ in
CScontact. This means that instead of stepping fromCScontactto CS1,s at the pointp′, we
can first follow the curve fromp′ to q′ in CScontact, then follow the link betweenq′ and
q, and finally move back fromq to p. This proves that the transition points provide all
the necessary connectivity.

The Algorithm. We combine the ideas above with an algorithm of Basu et al. [2]. This
algorithm computes a roadmap of a given semi-algebraic set—of the free configura-
tion space in a motion-planning problem, for instance. Aroadmapis a one-dimensional
subspace—a graph embedded inCS—that captures the connectivity of the free configu-
ration space. If the number of obstacles isn and the dimension of the configuration space
is d, then the algorithm constructs the roadmap inO(nd+1) time. The algorithm by Basu
et al. allows us to connect a given point in the free space to the part of the roadmap that
lies in the same connected component of the free space inO(n) time. We use this feature
of the algorithm to include the transition points in the roadmap. In both time bounds, the
constant of proportionality depends on the algebraic degree of the constraints.

Now consider the setting where we have two robots,R1 andR2. We use the method of
Basu et al. to construct a roadmap in each of the five configuration-space slices defined
above. Since the five configuration-space slices have dimensions at mostd1 + d2 − 1,
we can compute these roadmaps in timeO(nd1+d2). It remains to link the roadmaps
in the five configuration-space slices. To this end, we first include in the roadmap of
each configuration-space slice the set of transition points defined for that slice, taking
O(n) time per point. (We explain below how to find the transition points.) This gives us
five graphs, each capturing the connectivity of one of the free spaces. Finally, we add
links between transition points and their twins. We thus obtain one graph, which captures
the connectivity of the free space inCS1× CS2.

The computation of the transition points is only interesting for transition points be-
tweenCScontactand the other configuration-space slices. We focus on the transition points
betweenCScontactandCS1,s. Consider the surface of the configuration-space obstacle in
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CS1,s corresponding toR2 touchingR1. This surface is an algebraic variety of dimension
d2− 1. Consider the arrangement induced on it by all the configuration-space obstacles
in CS1,s. We place a transition point in those faces of this arrangement that correspond to
free configurations of the contact robot. This is done by invoking the algorithm of Basu et
al. [3], which yields inO(nd2) time a representative point in each face (of any dimension)
of the arrangement. For each of the resultingO(nd2−1) representative points we determine
in a brute-force manner whether the point is in the free space; the points that are in the free
space are added to the set of transition points. The time needed for this isO(nd2). Hence,
the total time to compute the transition points betweenCScontactandCS1,s is O(nd2).

It follows from the above discussion that the total time to compute all the transition
points isO(nmax(d1,d2)). The connection of all theseO(nmax(d1,d2)−1) transition points to
their respective roadmaps takesO(nmax(d1,d2)) time. As a result, the computation of the
final graph, capturing the connectivity of the free space inCS1 × CS2, takesO(nd1+d2)

time. The graph search needed to solve the motion-planning problem takes linear time
in the size of the roadmap. As a result, the motion-planning problem for a pair of robots
can be solved inO(nd1+d2) time. This leads to the following theorem.

Theorem 3. Let R1 and R2 be two robots, with d1 and d2 degrees of freedom, respec-
tively, that satisfy the DOF-Reduction Assumption, operating in a workspace with n
obstacles. Then we can compute a feasible multi-path for a given pair of start and goal
configurations for R1 and R2 in O(nd1+d2) time, if it exists, and otherwise report failure.

4. Three Robots

To extend the results of the previous section to the case of three robots, we have to find a
suitable definition of permissible multi-configurations. We first generalize the notion of a
coordination diagram, a concept from the proof of Lemma 1. We then prove the existence
of a certain type of0-1 path in the coordination diagram—such a curve represents a
feasible motion—from which the definition of permissible multi-configurations follows.
As in the previous section, the permissible multi-configurations induce a constant number
of slices of the configuration space for the multi-robot; the motion-planning problem can
then be solved in the union of these slices, suitably linked.

LetR = {R1, R2, R3} denote a collection of three robots operating in a workspace
W, which contains a setC = {C1, . . . ,Cn} of obstacles. As in Section 3, we assume that
robots are open and semi-algebraically defined. Suppose that a feasible multi-path exists
between the given start and goal configurations of the robots. In addition, we make a
stronger assumption:

Positive-Clearance Assumption. There is a feasible0-1 path that stays in the interior
of the free configuration space of the multi-robot, except at the endpoints.

We suspect that this assumption is not necessary, but we face some technical difficul-
ties if we drop it.

Let 5 = {π1, π2, π3} denote a feasible multi-path guaranteed by the positive-
clearance assumption. As it lies in the interior of the free configuration space, which
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is a semi-algebraic set, we can assume5 is semi-algebraic: connected semi-algebraic
sets are semi-algebraically connected (see, for example, the article by Schwartz and
Sharir [16]). The coordination diagram for5 is defined as follows. LetU denote the
three-dimensional unit cube [0,1]3. The edges ofU incident to the origin are called
the axesof U . Each axis represents the configuration of one of the robots; thet1-axis
represents the configuration ofR1 alongπ1, the t2-axis represents the configuration of
R2 alongπ2, and thet3-axis represents the configuration ofR3 alongπ3. Thus a point
(t1, t2, t3) ∈ U corresponds to placingRi atπi (ti ) for every 1≤ i ≤ 3.

A pair of values(α, β) ∈ [0,1]2 is calledi j -forbidden, for somei 6= j , if Ri [πi (α)]
intersectsRj [πj (β)]. Let U12 := {(t1, t2, t3) | t1, t2 ∈ [0,1], t3 ∈ R}, and defineU13 and
U23 analogously. Fori, j ∈ {1,2,3} with i 6= j , defineBi j to be the set of all points
(t1, t2, t3) ∈ Ui j so that(ti , tj ) is i j -forbidden. We callBi j a coordination-diagram
obstacle, or cd-obstaclefor short. (We do not constrain the remaining coordinate to lie
in the interval [0,1] for technical reasons.) Since the robots and workspace obstacles
are open and the robot position is a continuous function oft , cd-obstacles are open.
Each obstacle is a cylinder that is the Cartesian product of the forbidden region on some
ti tj -face ofU with the line containing the remaining axis. (Theti tj -faceof U is the
two-dimensional face ofU spanned by theti - andtj -axes.) Note that cd-obstacles have
nothing to do with the obstacles in the workspace; they are defined using5, the positive-
clearance feasible multi-path, and reflect possible interferences between robots if they
follow the paths of5 independently.

A point (t1, t2, t3) ∈ U is calledforbiddenif there is a pairi, j of distinct indices
such that(ti , tj ) is i j -forbidden; otherwise it is calledfree. In other words, a free point
corresponds to a placement of each robot at some point along its path so that the robots
do not overlap. Thecoordination diagramfor 5 is the subdivision ofU into free and
forbidden regions. Figure 3 shows schematically a coordination diagram for three disk-
shaped robots in the plane. By definition, the forbidden region is the union of the cd-
obstacles truncated to withinU .

Fig. 3. The coordination diagram for three robots.
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Define 0 := (0,0,0) and 1 := (1,1,1) to be the lexicographically smallest and
largest vertex ofU , respectively, and let1 be the diagonal connecting0 to 1.

We now slightly modify the notion of a cd-obstacle and free point. Namely, pos-
itive clearance implies that1 in fact does not meet theclosureof the cd-obstacles,
except at its endpoints. Consider a specific cd-obstacleBi j and its closure Cl(Bi j ). If
Cl(Bi j ) is not simply connected,1 cannot meet any of its holes, because1 avoids
Cl(Bi j ) except at its endpoints. (There is one case in which this is not true, namely,
if Cl(Bi j ) has a hole containing1. This can only happen if Cl(Bi j ) touches1 at 0
and at1; we then consider Cl(Bi j ) to be two separate obstacles—one “above” and one
“below” 1—that meet along the two edges of the cube incident to0 and 1, respec-
tively, and perpendicular to theti tj -facet. The volume in between these two obstacles
is not considered a hole. It is easy to verify that this does not cause any problems
in the remainder of the proof.) So we can safely “fill in” the holes if there are any.
The resulting setB̄i j is a closed cd-obstacleand its interiorBi j := Int(B̄i j ) relative
to Ui j is a (modified open) cd-obstacle. In what follows, we refer to it simply as a
cd-obstacle.

We write ∂ B̄i j for the boundary ofB̄i j relative toUi j . Note that each connected
component ofB̄i j is contractible by construction, since we removed all holes from it.
PutB := {B̄12, B̄13, B̄23}. Thefree regionFR is defined as

FR := U\
⋃
i 6= j

Bi j .

A 0-1 path is a curve inU from 0 to 1. We call a0-1 pathfeasibleif it lies in FR. By
construction,1 is feasible.

We want to prove the existence of a feasible0-1 path along∂FR, because this will
restrict the configurations for the collection of robots. In fact, we want to find a0-1 path
along the so-calledskeletonofFR, which intuitively is a graph-like structure embedded
in ∂FR. We give a formal definition below.

In the remainder of this section we assume that all subsets of the configuration diagram
that we consider are semi-algebraic. Indeed, since the robots and obstacles are semi-
algebraically defined, and5 is semi-algebraic,Bi j , B̄i j , ∂ B̄i j are semi-algebraic.

Let h1, . . . , h6 be the six planes supporting facets ofU . For 1≤ i ≤ 6, let Hi be the
open half-space bounded byhi and not containingU . PutH := {H1, . . . , H6}.

Let G be the following set of “surfaces”:hi , for 1 ≤ i ≤ 6, and for each connected
component of each̄Bi j ∈ B, its boundary relative toUi j . Note that the latter “surfaces”
need not be manifolds; for instance, their cross section can look like a figure eight. We
define the 1-skeleton(or simplyskeleton) Sof FR as follows:

S := FR ∩
⋃{

σ ∩ σ ′: σ, σ ′ ∈ G, σ 6= σ ′} .
If the surfaces ofG are manifolds and intersect among themselves transversally, then
∂FR is a manifold consisting of 2-faces (“facets”)—connected portions of boundary of
sets fromB∪H, 1-faces (“edges”)—portions of pairwise intersections of these surfaces,
and 0-faces (“vertices”)—points of triple intersections. In this caseS is the traditional
1-skeleton of∂FR—the union of edges and vertices ofFR. In more general situations,
∂FR need not be a manifold. Moreover,S need not be a variety of dimension 1, since
it may contain two-dimensional portions.
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We want to prove that there is a0-1 path along the skeletonSor, in other words, that
0 and1 are connected by a path inS.

Proposition 4. LetB be a finite set of closed simply-connected cylinders as above in
the three-dimensional unit cube U such that the0-1 diagonal1 lies in the complement
U\⋃B of the cylinders. Then there is a0-1 path along the skeleton S ofFR.

We first sketch the line of attack. We argue by contradiction. If there is no0-1 path
along the skeleton, there must be a collection of curves (in the proof we actually use more
general sets) on∂FR that avoidsSand separates the surface, so that0and1 lie in different
components when the curves are removed. Then we viewFR and its complement as
two topological spaces glued together along the boundary ofFR except for these curves.
Since the boundary ofFR is separated by the curves, a path connecting the two points
outside the cube and another one (namely,1) connecting them inFR together form a
loop that cannot be contracted to a point in the topological space obtained by removal
of these curves fromR3. We continue by proving that the curves are not “tangled” in the
sense that each of them can be contracted to a point in a cd-obstacle without meeting
the other curves or the loop, and then removed. Thus an incremental process removes
all curves, yieldingR3. We argue that the non-contractibility of the loop we constructed
above is not affected by this process—it should remain non-contractible. We then have
a contradiction, sinceR3, being simply connected, admits no non-contractible loops.

We now give a more formal version of this argument. We need the following topo-
logical facts. Recall that we have assumed that all sets we consider are semi-algebraic—
which, for a compact set, is a stronger assumption than assuming it corresponds to a
finite CW-complex (for a definition and discussion of CW-complexes see, for example,
the book by Spanier [20, p. 401]). In what follows we do not distinguish between a
complex and the corresponding topological space.

Fact 5. Let V and W be finite subcomplexes of a common CW-complex, with V path-
connected and V∪ W contractible to a point. Then the number of path-connected
components of V∩W equals the number of path-connected components of W.

This is easily shown by considering the Mayer–Vietoris sequence forV ∪ W. For a
complete argument, see Theorem 3.9 of the article by Hopcroft and Wilfong [10].

Fact 6. Let D be(a finite CW-complex corresponding to a topological space homeo-
morphic to) a closed two-dimensional disk. Let V, W be two subcomplexes of D and
x, y ∈ ∂D be distinct points such that:

• V ∪W = D,
• x, y ∈ V ∩W, and
• x and y divide∂D into two curvesα andβ, with α ⊂ V andβ ⊂ W.

Then x and y are connected by a path in V∩W.

Proof. In this proof, we write “component” to mean “path-connected component”. By
replacingV with its component containingα and adjoining the rest ofV to W, we
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maintain the assumptions of the lemma while not increasingV ∩W. So in the remainder
of the proof we assume thatV is path-connected.

Consider a componentX of W. In finite CW-complexes the notion of path-connected-
ness coincides with the notion of connectedness, soX, being a connected component of
a closed set must be a closed subset ofW and thus ofD. If X ∩ V = ∅, thenX and
V ∪ (W\X) are two disjoint closed sets whose union isD, contradicting connectedness
of D. HenceX must intersectV . Thus each component ofW meetsV ∩W. Trivially a
component ofV ∩W is contained in a single component ofW. By Fact 5 the number
of components ofV ∩ W is equal to the number of components ofW. Hence each
component ofW contains exactly one component ofV ∩W. As x andy lie onβ, and
thus in the same component ofW, and also inV∩W, they must lie in the same component
of V ∩W, completing the proof.

Given a finite familyF of disjoint, compact, not necessarily connected semi-algebraic
sets inR3, we say that a setV ∈ F is trivial (with respect toF) if there exists a contractible
compact setW containingV and avoiding the rest of the sets of the family. (This
notion appears to be stronger than requiring thatV be contractible in the complement of⋃
(F\{V}).)

Fact 7. Consider a familyF as above containing, among other sets, a loop C. If all
sets besides C are trivial with respect toF , then C is contractible inR3\⋃(F\{C}).
Proof. Let A be a compact contractible semi-algebraic set inR3. Then it has a closed
neighborhood̂A such thatA is a strong deformational retract of̂A, andÂ is homeomor-
phic to a ball, and its boundary∂ Â is homeomorphic to a sphere (such a neighborhood
can be explicitly constructed using techniques of Milnor [14]). Now consider a semi-
algebraic setK . By Van Kampen’s theorem, the setK ∪

∂ Â Â obtained fromK by gluing
to it such a neighborhood̂A of A along its boundary∂ Â has the same fundamental group
as K . In particular, a loop inK is contractible inK if and only if it is contractible in
K ∪

∂ Â Â. We make use of this observation below.
We now turn to our proof. We proceed by induction on the size of the familyF . If it

consists of onlyC the claim holds trivially.
Suppose that the claim holds for families of sizek with k > 0, and consider a

family F with k + 1 sets satisfying our assumptions. LetV ∈ F be different from
C. By inductive assumption,C is contractible inR3\⋃(F\{V,C}). By assumption,
V is trivial with respect toF , so there is a compact contractible setW ⊃ V
avoiding the rest of the sets ofF . Consider the collection(F\{V,C}) ∪ {W}.
Using the techniques of Milnor [14], one can construct an open neighborhood of
each set of this collection such that the neighborhoods of different sets are disjoint
and avoidC and each set is a strong deformation retract of its neighborhood. Let
F̂ be the resulting collection of neighborhoods. Because the neighborhoods can
be made arbitrarily close to the sets they surround,C is contractible inR3\⋃(F̂\{Ŵ}),
whereŴ is the neighborhood ofW, asC is contractible inR3\⋃(F\{V,C}). Now,
R3\⋃(F̂\{Ŵ}) is obtained fromR3\⋃ F̂ by gluing it toŴ along∂Ŵ, with the compact
contractible semialgebraic setW being a strong deformational retract of its “nice” neigh-
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borhoodŴ. HenceC must remain contractible inR3\⋃ F̂ and inR3\⋃(F\{C}) ⊃
R3\⋃ F̂ , as claimed.

Proof of Proposition4. PutFR′ := Cl(R3\FR). Since0,1 lie on ∂U , there exists a
pathσ connecting them in Cl(R3\U ) ⊂ FR′. Later it will be convenient to assume that
σ lies outsideU except at its endpoints. On the other hand,1 lies in Int(FR) except at
0 and1. Let η be the loop formed by joiningσ and1.

For a contradiction, suppose that0,1do not lie in the same path-connected component
of S. Let S1 be the component ofScontaining0 and letS2 be the rest ofS. Consider the
set6 of all points in∂FR at equal distance fromS1 andS2 in the Euclidean metric. It
is compact. In the absence of degeneracies it would be a one-dimensional variety, but in
general it may contain two-dimensional portions.

Suppose we were to continuously deformσ to 1 in R3; this is possible sinceR3

is contractible. This deformation can be viewed as a continuous functionγ mapping a
two-dimensional diskD intoR3 = FR ∪ FR′ and∂D ontoη. PuttingV := γ−1(FR)
andW := γ−1(FR′), we notice thatV ∪W = D, thatx := γ−1(0) andy := γ−1(1)
both lie in V ∩ W, and the paths1 andσ connecting0 to 1 correspond to the two
portions of ∂D connectingx to y in V and W, respectively. Applying Fact 6, we
conclude that there is a pathδ from x to y in V ∩ W, and hence a pathγ (δ) from
0 = γ (x) to 1 = γ (y) in γ (V ∩ W) = FR ∩ FR′ = ∂FR. As the difference
of the Euclidean distances from a point on this path toS1 and toS2 is a continuous
function of the position of the point along the path, and since it is negative at0 and
positive at1, there is a pointz ∈ 6 on the path. In other words, we have shown that
during any continuous deformation ofσ to 1 there is an intermediate path that meets
the bisector6.1 In other words, in any family of sets that includesη and6, η is not
trivial.

Now consider a path-connected component of6. We know that6 lies in∂FR ⊂⋃G
and avoidsS, which is the union of pairwise intersections of surfaces fromG. Hence,
each component of6 must lie on a single such surface. Partition6 into sets according
to the surface ofG they lie on. Each consists of a number of connected components of
6. Addη to the resulting familyF of compact disjoint sets. We claim that all sets butη

are trivial with respect toF . Then, by Fact 7,η is contractible in the complement of the
remaining sets of the family. However, we just observed that this is not the case, leading
to a contradiction.

1 Technically, we have shown that this occurs for anysemi-algebraicdeformation, or more generally any
transformationγ for whichγ−1(FR) andγ−1(FR′) are CW-complexes. However, if there were a continuous
deformation of a semi-algebraic pathσ to a semi-algebraic path1 avoiding a semi-algebraic set6, there
would be a semi-algebraic deformation with such properties. Indeed, suppose such a continuous deformation
is possible. Then there is a positive minimum distance that is achieved between the path being moved and6.
Using Milnor’s perturbation technique [14] we construct an open neighborhood6+ of 6 that lies within half
that distance from6 and such that6 is a strong deformational retract of6+. We are interested in constructing
a semi-algebraic deformation ofσ to1 in R3\6+, if we know that a continuous deformation exists. Consider
the cylindrical algebraic decomposition [6] ofη and6+ and refine it to a triangulation. Contractibility ofη
can be decided by considering only the incidence structure of the triangulation. Thus the assertion thatη is
contractible inR3\6+ becomes a statement in a first-order theory of reals and therefore the deformation can
be carried out semi-algebraically.
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It remains to argue the claim that the intersection of6 with the boundary of a path-
connected componentX of, say, B̄12 is trivial in F . It lies in a compact contractible
set B̄12 ∩U , which avoids all other components of6, as they lie on the other surfaces,
outside ofB̄12. Moreover, it avoidsη since1 lies in the interior of free space andσ
lies strictly outsideU , except for0 and1. What if 0 ∈ X and, as before,X ⊂ B̄12?
(The other cases are handled symmetrically.) Then thet3-axis of U lies in X and in
S. Note that6 ∩ ∂ B̄12 avoids it. We remove a small open neighborhood of thet3-axis
from B̄12, possibly splittingX into several components and increasing the number of
path-connected components ofB̄12. However, each resulting connected component of
X is still contractible and the set6 ∩ ∂X is not affected by this transformation. If the
removal of the neighborhood of thet3-axis fromX splits it into several path-connected
components, we intersect the boundary of each component with6 and use the resulting
sets to replace6 ∩ ∂X in F .

Finally,6 ∩ hi is also trivial with respect toF , by similar reasoning. It lies in a facet
of U which is contractible and avoids the remainder of6 andη, except possibly for0 or
1. Suppose the facet contains0 (1 is handled similarly). However, observe that0 avoids
6 ∩ hi , hence the facet can be replaced by a compact contractible set, namely, a square
with the0 corner cut off, showing triviality of6 ∩ hi with respect toF .

To summarize, we have proven that all sets except forη are trivial inF , with respect
toF , contradicting Fact 7, as claimed, and completing the proof of Proposition 4.

The existence of a0-1path along the skeleton of the coordination diagram implies the
existence of a multi-path that uses certain types of multi-configurations only, as explained
next. The skeleton consists of those features of the modified free region, which are the
intersections of 2− k boundaries of closed cd-obstacles withk facets ofU , for somek
with 0≤ k ≤ 2. This means that points on the skeleton correspond to the following type
of permissible multi-configurations:

There arek, for somek ∈ {0,1,2}, robots placed at either their start or goal
configuration, and 2− k pairs of robots that are in contact.

There are several different ways in which a permissible multi-configuration can be
achieved. We mention a few of the possibilities. One type of permissible multi-configura-
tion is that R1 is at its start configuration andR2 and R3 form a contact robot. An-
other type is thatR1 is at its goal configuration,R2 touchesR1, and R3 is uncon-
strained. Although the number of types of permissible multi-configurations is fairly
large, it is a constant. Each type of permissible multi-configuration gives rise to a con-
figuration space slice, as in the previous section. In what follows we make the fol-
lowing assumption, similar to the DOF-Reduction Assumption we had for a pair of
robots.

DOF-Reduction Assumption (for triples of robots). Let R1, R2, andR3 be a triple
of robots. Suppose we requirek, for somek ∈ {0,1,2}, robots to be placed at either their
start or goal configuration, and 2− k pairs of robots to be in contact. Then the number
of degrees of freedom of the resulting robot system is at mostd1 + d2 + d3 − 2, where
di is the number of degrees of freedom ofRi .
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Generally, every touching pair of robots reduces the number of degrees of freedom of
the multi-robot by one, and every robot fixed at its start or goal reduces this number by
at least one (namely, by the number of its degrees of freedom), so this condition will be
fulfilled. As we already noted, however, there are certain “degenerate” situation where
this condition does not hold.

We now proceed as in the previous section: each type of permissible multi-configura-
tion gives a configuration-space slice in which we compute a roadmap, we connect the
roadmaps at a suitable collection of transition points (when the number of configurations
common to two slices is infinite, we again choose a representative point from each face
of every dimension bounding the free parts in such slices) and search the resulting graph
finally to find a feasible multi-path. We obtain the following result.

Theorem 8. Let R1, R2, R3 be three robots satisfying the DOF-Reduction Assumption,
operating in a workspace with n obstacles. Then we can compute a feasible multi-path
for a given triple of start and goal configurations for R1, R2, R3 in O(nd−1) time, where
d is the sum of the degrees of freedom of the three robots, if a feasible multi-path with
positive clearance exists, and otherwise report failure.

5. Bounded-Reach Robots in Low-Density Environments

Define thesizeof an objecto, denoted by size(o), to be the radius of the smallest ball
enclosing it. We say that the workspaceW with the obstacle setC is aλ-low-density
environment[7], [18], [21], [23] if, for any ball B, the number of obstaclesC ∈ C with
size(C) ≥ radius(B) that intersectB is at mostλ. (Our definition is the one used by
de Berg et al. [7], and is slightly different from the earlier definition by van der Stap-
pen [21].) Ifλ is a (small) constant, we say thatW haslow density.

In this section we apply the ideas from the previous sections to obtain efficient so-
lutions to the motion-planning problem for the so-calledbounded-reachrobots [22]
moving in low-density workspaces. Informally, bounded-reach robots are robots that are
not too large compared with the obstacles. More precisely, they are defined as follows.
Let pR be an arbitrary reference point in a robotR. Then thereachof R, denoted by
reach(R), is defined as the radius of the smallest ball centered atpR that containsR, no
matter in which configurationR is. For instance, ifR consists of two links of length 1
that are both attached to the origin, and the reference point is the tip of one of the links,
then the reach ofR is 2. (If the reference point were the origin, then the reach would
be 1. For any two reference points inR, however, the two values reach(R) can be at most
a factor of two apart.) A bounded-reach robot is now defined as a robotR with

reach(R) ≤ c ·min
C∈C
{size(C)},

wherec is a (small) constant.
Van der Stappen et al. [23] have shown that the free space of a bounded-reach robot

moving in a low-density workspace hasO(n) complexity, irrespective of the number of
degrees of freedom of the robot or the dimension of its workspace. They also show how
to compute inO(n logn) time a decomposition of the configuration space, after which
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a feasible path between given start and goal configurations can be found inO(n) time.
Hence, the total amount of time to solve the motion-planning problem for this setting
is O(n logn).

If we have two or more bounded-reach robots, then we cannot use the result of
van der Stappen et al. directly, because the multi-robot consisting of these robots does
not have bounded reach: its bodies can be arbitrarily far apart. However, when the
number of robots is two or three, the multi-robots we have to consider when we restrict
ourselves to permissible multi-configurations do have free configuration spaces with
linear complexity.

Indeed, consider first the case of two bounded-reach robots. Clearly, when one robot is
fixed at its start or goal configuration and the other robot moves, the free-space complexity
of the moving robot is linear, because it has bounded reach. (The moving robot can be very
large with respect to the fixed robot, which we now view as an additional obstacle, but this
does not influence the asymptotic bound.) The remaining type of multi-configuration is
where the two robots form a contact robot. Here the free-space complexity is also linear,
because the reach of a contact robot is bounded by the reach of one of the constituent
robots plus twice the reach of the other constituent robot.

For three robots, a similar argument shows that the free-space complexities of all
the configuration-space slices we have to consider are linear. The only case which is
slightly different from the cases we have for two robots is when one robot is fixed,
another robot moves in contact with the fixed robot, and the third robot is free. In this
case the multi-robot formed by the second and third robot does not have bounded reach.
However, it follows from the results of van der Stappen [21] that the robot that moves
in contact with the fixed robot has only a constant number of combinatorially distinct
critical configurations. Combined with the fact that the third robot had bounded reach
and, hence, a linear number of critical configurations, this shows that the multi-robot
consisting of the second and third robot has a free space of linear complexity.

We have argued that in all the configuration-space slices we have to consider the com-
plexity of the free space is linear. Moreover, we can use the algorithm of van der Stap-
pen et al. to compute decompositions of these free spaces. Each cell in the resulting
decomposition is bounded by a constant number of algebraic surfaces, and therefore has
constant complexity. For each facet of such a free-space cell in one of the slices, we de-
termine a transition point; due to the constant complexity of the cell, this takes constant
time. Next, for each transition point thus found we determine its twins in the other slices
as follows. The decomposition algorithm of van der Stappen et al. constructs a so-called
cc-partitionof a low-density workspace: a subdivision into constant-complexity regions
such that the robot can intersect at most a constant number of obstacles as long as its
reference point stays within a single region. The decomposition consists of a BSP-like
structure that allows us to determine the workspace cell containing a given transition
point in logarithmic time. Finally, we examine the constant number of configuration-
space cells that correspond to this cell to determine which cell contains the transition
point. Summed over allO(n) transition points, this takesO(n logn) time.

To see that this algorithm can also be applied in the exceptional case mentioned
above—one robotR1 is fixed, another robotR2 moves in contact withR1, and the
third robot R3 is free—pretend thatR2 does not exist, and compute the workspace
decomposition ofR3. Each region in the decomposition corresponds to a region in the
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configuration space ofR3—and, hence, in that ofR3 combined withR2—that is crossed
by only a constant number of constraint surfaces. (These surfaces are reported by the
algorithm of van der Stappen et al.) Now consider what happens if we placeR2 back into
the scene. SinceR2 is forced to maintain contact withR1, it defines only a constant number
of additional constraint surfaces over the entire configuration space. When computing
the free cells of a configuration-space cylinder (obtained by extending a region in the
cc-partition forR3 to the additional dimensions due toR2), we determine which (if any)
of these surfaces intersect the cylinder, and add them to the constraint surfaces reported
by the algorithm. A similar reasoning shows that the computation of transition points
and their twins can still be done inO(n logn) time.

This leads to the following result. Notice that the time bound of our algorithm is, as
in the case of a single bounded-reach robot, independent of both the numbers of degrees
of freedom of the robots and of the dimension of the workspace. Also note that we do
not need the DOF-Reduction Assumption for the result below to hold.

Theorem 9.

(i) Let R1 and R2 be two bounded-reach robots operating in a low-density workspace
with n obstacles. Then we can compute a feasible multi-path for a given pair of
start and goal configurations for R1 and R2 in O(n logn) time, or report that no
such path exists.

(ii) Let R1, R2, and R3 be three bounded-reach robots operating in a low-density
workspace with n obstacles. Then we can compute a feasible multi-path for a
given triple of start and goal configurations for R1, R2, and R3 in O(n logn)
time, if a feasible multi-path with positive clearance exists, or report that no such
path exists.

6. Concluding Remarks

We presented a general technique to plan the motions of pairs and triples of robots
sharing the same workspace. By combining this with the roadmap algorithm of Basu et
al. [2], we obtain an algorithm withO(nd) running time for a pair of robots andO(nd−1)

running time for a triple of robots, whered is the sum of the degrees of freedom of
the individual robots. These bounds are one and two orders of magnitude, respectively,
faster than what the standard method would give. Here we have assumed that the sum of
the number of degrees of freedom of two robots reduces by at least one if the robots are
required to stay in contact; for triples a similar assumption is made. Moreover, for triples
we need to assume that a solution with positive clearance exists. Our approach becomes
especially effective for bounded-reach robots operating in low-density workspaces. In
this case our algorithm runs inO(n logn), both for two and for three robots, irrespective
of their numbers of degrees of freedom.

Any collection ofm > 3 robots can be viewed as a triple of robots, one of which is
a multi-robot consisting ofm− 2 robots. Hence, our result for triples can be applied to
four or more robots. This will reduce the dimension of the configuration space one has to
consider by two. Greater savings are possible if for anym there would be a0-1path along
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the 1-skeleton of them-dimensional coordination diagram. If this is true (which we have
been unable to prove or disprove), the resulting reduction in dimension would bem− 1
and the motion-planning problem form robots would be solvable inO(nd−m+2) time.
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