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Abstract. We presentan easy to survey constructive method using only basic mathematics
which allows us to define a homeomorphism between any compact real algebraic variety
and some components of the configuration space of a mechanical linkage. The aim is to
imitate addition and multiplication in the framework of weighted graphs in the euclidean
plane that permit a “mechanical description” of polynomial functions, and thus of varieties.

1. Introduction

A mechanical linkageg is a mechanism in the euclidean plaRé that is built up
exclusively from rigid bars joined along flexible links. Some links of the linkage may
be pinned down with respect to a fixed frame of reference.cimiguration spac¢g]

of a mechanical linkage is the totality of all its admissible positions in the euclidean
plane.

Configuration spaces of such linkages have been studied for centuries as one of the
basic topics of kinematics, and it is a known fact that their configuration spaces are
compact real algebraic varieties naturally embedde&® ", wheren is the number of
vertices in the graph. Therefore it is natural to ask whether, conversely, every compact
real algebraic variety arises as the configuration space of some mechanical linkage in the
euclidean plane. In [9] Lebesgue gives an account of several results, including Kempe’s
universality theorem, not for the configuration space of the mechanism itself, but for the
orbit of one of its verticesToute courbe al@brique peuétre traccea I'aide d'un syséme
articuleé” The existence of the following universality theorem for some components of
the configuration space has been part of folklore for at least two decades.
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Theorem 1.1. Let V C RY be a compact real algebraic variety with the topology
induced by the euclidean metric Bf.. Then V is homeomorphic to some components
[jeicy Tj of the configuration spadé<] = [ [;; T; of a mechanical linkag@{, where

Tj, j € J, are the components §#{].

Reference [5] which was circulated as a preprint in early 1997 already contains the main
idea of the present proof of Theorem 1.1, but some subtleties were neglected there. In
contrast to the preprint [8] of Kapovich and Millson we give an explicit construction of
the mechanical linkage using only basic mathematics.

Notice that, in the past, a number of similar universality properties have been es-
tablished, beginning with Mev’s celebrated theorem about oriented matroids [10], and
leading to Richter-Gebert's lucid kinematic studies of four-dimensional convex poly-
topes [11].

2. Preliminaries
2.1. Definitions

The first step is to replace our intuitive idea of a mechanical linkage by an exact mathe-
matical definition:

Definition 2.1. The tripleG = (V, E, d) consisting of

(1) asetotertices V= VixUViree, With Viix = {V1, ..., Vi} andViee = {Vims1, - -
Vn},

(2) asetofedges E= {{Vi,, Vi,}, {Vi,, Vi), ..., {Viy, Vi J} with iy, j e {1,...,n},
i # ji, such that any two vertices M are connected by a sequence of elements
of E, and

(3) aweightfunctiond E — R, that attaches to every edfé,, V;, } in E alength
(weight)d(V;., Vi) € Rs,

.

is called aconnected weighted graph

Definition 2.2. LetG = (V, E, d) be a connected weighted graph.

(1) The graphG is called amechanical linkagéf G is realizablein R?, i.e., if a
mappinge: V — R? exists, such thatlz (0(V)), ¢ (V})) = d(M, V) for all
{Vi,V;} € E, wheredg is the euclidean metric iR2,

(2) A realization£ of G = (V, E, d) is a set{g: (V1), ..., ¢: (Vn)} of points inR?
such thatg (¢: (Vi), ¢ (V) = d(V;, ;) for all {4, V;} € E.

We often writeV; at p € R? instead ofp(Vj) = p € R? i.e., consideV,; asg(V)).

Notice that there are connected weighted graphs with only three vertices that are not
realizable in the euclidean plane and obviously a realization of a mechanical linkage is
in general not unique. We define the configuration space of a mechanical linkage as a
subset ofR?", which obtains in natural way a topological structure:
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Definition 2.3. LetG = (V, E, d) be a mechanical linkage and g, ..., pm} be
fixed points inR? with m > 2, such thatg (p, p) = dVi, V) forall {V;,V;} € E
with Vi, V; € {V4, ..., Vm} = Viix. Then theconfiguration spacef G is defined by

[G] := {& realization ofG; ¢¢(V}) = pj, ¥V} € Vix}
= {(X1,..., %) € RH x; = pj,Vj € {L,...,m} and
dr(Xi, X)) = d(M, V), V{Vi, V;} € E}

with the topology induced by the euclidean metridRsf.

Remark 2.4. If M and N are topological spaces, thén LI N denotes the disjoint
topological sum of the two spaces.

Often we are only interested in subspacesdjffpr a given mechanical linkagé =
(V, E, d): restricting a set of vertice®/;q, ..., Vik} € V in a subselY c R* allows
us to considefé € [G]: (Vj1,.... Vi inY} = {& € [G]; (@:(Vjn), ... s (Vi) €
Y} < [4]

Every realization of a mechanical linkage can be represented by a planar drawing
consisting of a set of point¢ and a set of straight linds with the prescribed lengtti:
an empty small circle is a vertex pinned down at a point in the plane, i.e., an element of
Viix and afilled circle is an element ¥f.c.. This enables us to speak in a natural way of
motions of vertices and of rigid mechanical linkages:

Definition 2.5. LetG = (V, E, d) be any mechanical linkage.

(1) LetY c R%*,Y # pt, be connected. Thie-tuple (Vj1, ..., Vjk) of vertices of
V can bemoved on Yif there exists a componefit of {& € [G]; (¢:(Vj1), ...,
s (Vi) € Y} with (g (1), ... 0:(Vik)): § €C} =Y.

(2) Thevertew; is calledrigid, with respectto arealizatigne [G] with ¢: (V}) = p,
if an open neighborhood C [G] of & exists, such that for any realizatiéne U
it follows thate; (Vj) = p.

(3) Arealizationt € [G] of a mechanical linkag§ is calledrigid if every vertex of
G is rigid with respect t@, i.e.,& is an isolated point ofd].

(4) A realizationé € [G] of a mechanical linkagg is calledregular if there is
dim aff{: (Vi) @¢ (V). ¢z (Vim)} = 2 for all {Vii, i}, {Vi, Vin} € E. {Vk, Vin} ¢
E with V| € Viee, kK £ m.

Each of the mechanical linkages used below has a special area of effectiveness in the
present constructive proof. The reader may imagine that not all realizations will do the
job: consider the mechanical linkadé in Section 2.3.3, we remark that apart from

the drawn realization in Fig. 4 others are looking quite different and may appear by
Z,-actions on some vertices &if. There we show that under special conditiofigan

move only on a straight line orthogonal@A. Exactly those realizations are used in the
present construction, which satisfies the prescribed claims, e.g., in Fig. 4 the Mertex
liesin an orthogonal line t® A, andkC has one degree of freedom only. In general, under
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additional conditions a motion of vertices allows us to parameterize those realizations
obtained by the motion, which are distinct from othersyactions:

Lemma2.6. LetG = (V, E,d) be any mechanical linkage and,; Ve V,Vl €
{1, ..., k},suchthat departing frorfy € [G] the k-tuple(Vj1, . .., Vi) can be moved on
the connected subset R%. If each obtained realizatiofy, € [G] with (Vj1, ..., Vjk)
fixed at pe Y (i.e, Vj1, ..., Vik € Vix for the momentis (i) rigid and (i) regular, then

{§ €[9]: (@ (Vjn), .., 0 (Vi) € Y} = Y 1 Tresy

where Testis any subspace dfy]. The motion of(Vjs, ..., Vjk) on Y is then called
parameterizing

Proof. (i) implies that a motion of any tuple of verticesVh— {Vj4, ..., Vjk} is only
possible by a motion ofVjy, ..., V). (i) induces that this motion is unique for all
vertices inV: during the motion any realization other thinis given by aZ — 2-action

on a vertex, if(Vjs, ..., Vjk) is assumed to be fixed @t This ensures thales is not
connected to a componevitin {& € [G]; (¢ (Vj1), ..., ¢:(Vjk)) € Y}. The position of
the verticesvV — {Vj1, ..., Vjk} are parameterized by trigonometric polynomials of the
variable(g: (Vj1), ..., ¢ (Vjx)) € Y, thereforeY’ ~ Y. |

Notice that condition (ii) is too strong to obtain the result of Lemma 2.6 but it is sufficient

to handle special mechanical linkages used in Sections 2.3 and 3. The drawn realizations
there are calledtarting realizationsty. We often describ@atural realizationsby a
parameterizing motion of a set of vertices departing from the starting realization.

2.2. Real Algebraic Geometry

First we recall some facts aborgal algebraic geometry that serve as a basis for our
considerations.

Definition 2.7. Let Abeasubset@[Xg, ..., Xq]. Thesetl(A) := {x e RY; f(x) =
0,Vf € A} is called theset of zeroof A. Let S be a subset dR9. We noteF(S) :=
{f e R[Xq,..., Xq]; ¥X € S, f(x) = 0}. Thereal algebraic varietiesire those subsets
V of RY, for which L(F(V)) = V.

SinceR is a Noetherian ring, we can us#ilbert's Basis Theorento show that every
ideal inR[ Xy, ..., Xg] is finitely generated. Every evaluation of a polynomialAron

RY is real, thusV in RY can always be described as the zero set of a single polynomial
F e R[Xq,..., Xq]:

Lemma 2.8. Foreachrealalgebraic variety \C R%apolynomial Fe R[ Xy, ..., Xq]
exists such that \& L(F).

Proof. DefineF := f2+ ... + f?2, where fi, ..., fi are generators of the ideal
FV). O
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Fig. 1. Translation linkagér .

2.3. Special Mechanical Linkages

The proof of the main theorem builds on knowledge about the following three basic
mechanical linkages, see [9].

2.3.1. Translation LinkageZ. The translation linkagd™ is the mechanical linkage
shown in Fig. 1, which satisfies the conditions

(a) d(A, B) = d(C, F) = d(D, E) € R*,
(b) d(A, F) = d(B,C) € R*, and
(c) d(E, F) =d(C, D) € R*.

In the proof of Theorem 1.1 the translation linkage appears as a part of the addition
and multiplication linkage. There we use only regular realization® sfich thatAB,

FC, andE D are parallel. Note that without any risk of confusion the denotations of the
vertices are often changed, since we have to couple together several translation linkages.

2.3.2. ConformalLinkag€. The conformallinkagé isthe mechanical linkage shown
in Fig. 2 which satisfies the conditions

(&) d(0, B) =d(0O, D) andd(B, C) =d(C, D) € R%,

(b) d(O, B') =d(O, D’) andd(B’,C") = d(C’, D) € R*,

(c) d(A, A) = d(E,E) € R, with d(O,A) = d(O,E) = 3d(O,B) and
d(0, A) =d(0, E') = $d(0, B, and

(d) the kite quadrilatera®BCDandOBC’D’ are similar for all natural realizations.

Fig. 2. Conformal linkageC.
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Al

Fig. 3. Linear linkagel.

In the proof of Theorem 1.1 the conformal linkage appears as a part of the multiplication
linkage. There we use only regular realizationg péspeciallyC andO never lie at the
same point, or the vertice3, B, C, D lie in one line.

2.3.3. Linear Linkage£. The linear linkageL is the mechanical linkage shown in
Fig. 3, a special case ¢f It satisfies the conditions

(&) d(0, A) =d(0,C)=d(A,B) =d(B,C) e R,
(b) d(O, A) =d(0O,C’)=d(A,B)=d(B,C") = -d(O, A)with» > 1, and
(c) the rhombuse® ABCandO A'B'C’ are similar for all natural realizations.

In the proof of Theorem 1.1 the linear linkage appears as a part of the multiplication
linkage. There we use only regular realization£péspeciallyB andO never lie at the
same point, or the verticed, A, B, C lie in one line. Note that we usé changing the
denotations of the vertices below.

2.3.4. Kempe's LinkagdC. We consider the mechanical linkafjein Fig. 4 which is
defined in [9] assextilatre de Kempdt satisfies the properties

(@) d(0, E) =v/2/2-d(0, A) € R*,
(b) for all natural realization®ABDis a rhombus, and
(c) for all natural realization© EBD andCXEBare similar kite quadrilaterals.

Fig. 4. Starting realizatior§o of Kempe’s linkagec.
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Our interest lies in a subset of the configuration spade, aihd we chos®, A € Vs for
the moment. In the poir® we define a local orthogonal system of coordinateS,&uch
thatO is pinned down at the origin & and A atd(O, A) of the positive real axis. Note
that in the proof of Theorem 1.1 Kempe'’s linkage is used several times as a crucial part
of the final mechanical linkage, namely of the addition and multiplication linkage. There
we renounce sometimes to the requirem@ntA € Vs, and identify the edgé¢O, A}
with an appropriate edge of the addition and multiplication linkage, respectively. In this
way we get the possibility of restricting the position of certain vertices orthogonally to
OA above the verteXD and without consequence to the considered components of the
total configuration space.

Departing from the starting realizatigashown in Fig. 4 we obtain other realizations
by moving the vertexX, such thatX lies in a subset of IfC), and noZ,-actions are
allowed on the vertices df. First we define the intervdl := {z € C;¢ < Im(2) <
d(O, A) — &, Re(z) = 0} for anye € [0,  d(O, A)] and obtain the following lemmas:

Lemma 2.9. The vertex X can move on a straight limamely on ¢ 2 I..

Proof. Let the anglesy, 8, v, 8, n, p be as shown in Fig. 4. First we consider the
edges{O, A}, {O, E}, {A, B}, {B, E} of K: departing from&, a motion of E is pa-
rameterized by € 10, n/4[, where{A, B}, {B, E} do not hinder this motion, since
dr(A, E) < d(A, B) + d(B, E). Completing/XC by the remaining edges we have
dr (O, B) < d(O, D)+d(B, D) anddg(C, E) < d(C, X)+d(E, X), sothey cause no
hindrance for the motion d& too. Second we obtai atd(O, E)-€ ?+d(E, X)-d ™9,
where§ =y —n=(2r —-28—a)—a)—npandn = p =7 —a— B,i.e.,6 = p. Since
d(0, E) = d(E, X) the vertexX lies atd(O, E) - (¢ » —e""*) = 2i -d(O, E) - sinp,
i.e., X moves onlg for p €10, 7 /4]. O

Lemma 2.10. Let X be fixed ind, i.e., X € V;x for the momentsuch that its position
is obtained by a motion departing froég as described in Lemm2.9. Then a rigid
realizationé € [K] results

Proof. Let X be as prescribed. It follows thd&i is rigid, sinceO € Vx; B is also
rigid, sinceA € V;x; C andD are rigid too, becaus® € V;y. Therefore the considered
realization is rigid. O

By the scaling ofl, we obtain only regular realizations during the motion>f so
Lemma 2.6 gives a parameterizing motionXfon |.. Exactly those realizations are
callednatural realizationsof K.

Lemma 2.11. Lete € [O, 1d(0, A)[. Then an open neighborhood,n C of |, exists
such that departing frorgy a motion of X on | implies a motion of X on,l

Proof. By the parameterization oX introduced in the proof of Lemma 2.9 there is
OX L OA soXliesinl,. O
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Fig. 5. Simplified representation of Kempe’s linkagie

Summarizing the above we obtain an important corollary, which states intuitively that
there exists a one-dimensional part 81 [which is parameterized by the vertéxin Ig

and contains the natural realizationg@fin the followingT,estiS always any topological
space which we do not specify:

Corollary 2.12. For anye < ]0, 3d(O, A)[, an open neighborhood Jof I, exists
suchthaf{¢ € [K]; X inU,, } = I, I T, in particular {& € [K]; X in I} = 1, O Trest

All figures in the sections below show Kempe'’s linkage in a simplified manner, since its
operation is determined by the relation between the ¢@geA} and the vertexX only.

Thus the representation in Fig. 5 enables to change the denotations of the cited vertices
0, A, X without any risk of confusion.

2.4. Product Linkage

Definition 2.13. LetG = (Vix U Viee, E, d) andG’ = (Vg U Vi, E', d') be two
mechanical linkages. Th&n® G’ := (Vix U Vi, U Viree U Viiges EU E'U Econ, d ® d)

is called theproduct linkageof G andG’, whereEcon = {{V41, V]}} with Vi € Vi,
VieVigandd®@d|e:=d,dod g =d,d®d Vi, V)) = dr(Vi, V).

Lemma2.14. [ ® G'] ~[F] x [G'].

Proof. G andg@’ independently create the configuration spacdsapd [G']. O

3. Proof of Theorem 1.1

1. We are interested in compact real algebraic varieti@!ithat occur as the zero set
of a single polynomiaF € R[X4, ..., Xg].

Consider the canonical representationfofe R[Xy, ..., Xq] as a finite real linear
combination of the monomialX;* - - - XS‘* € R[Xq, ..., Xql:
F= ) X Xg

(V1,..., 1) ENY

with a,, .., € R, all but a finite number are zero.

yeeey
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The polynomialF is constructed algorithmically from the zero polynomial with
vy @nd Xy, ..., Xq. First we define the

.....

lexicographic order> onNj and get(Ng, >):

Definition 3.1. Let (v1,....vq) and (v}, ..., v,) be in N§. Then (v1,...,vg) >
(V1. ..., vy) ifand only if vy > vy or (1 = vy andvy > vy) or...or (g = vy, ...,
Vg = v(’q).

ConstructingrF we start with the smallest elemeftt, ..., 0) e Ng and define the set
Us(F) of special subpolynomials @, consisting of the following elements:

. ©,...00 ._ 1,0,..,0) . _
u(o 0) ‘=24a0,..,0 and u(l,O ..... 0) -—al,O ..... 0 u(l,O ..... 0) -—al,O ..... Oxl-

.....

The construction proceeds in this manner up to the biggest multi-ifidex. . , 7) that
appears irf-. As a result we get the monomial of maximal total degree multiplied by its
coefficient inF:

@,..., 0) A [P Lq) Al A i1 i
U(Vl YYYY ﬁq) - aVl ,,,,, Vg (D1yenn, aq) avl ,,, Dq Xl .. Xn
(\31 ,,,,, qu) _ N . ‘31 Vq
(D1,....7g) a”la---s"q Xl ' n
Further we define
. . (L1, .eest ). ~ N
Z/{C(F) = 'U(vl’ Vo) = Z u(ll,.wl:)’ (U]_, s Vq) < (Ulv ) Vq)

as the set of composed subpolynomial$-cdind the union of all special and composed
subpolynomial${/(F) := Us(F) U U(F).

Example 3.2. Consider the polynomidF (X, Y) := 5X? + 3Y2 — 2 in two variables.
Thenls(F) = {—2,5,5X, 5X2, 3, 3Y, 3Y2} andlU(F) = {—2, —2+5X?2, —2+5X2+
32}

SinceV is compact there exists € R*, such thaty € B, (0) ;= {Xx € R9; x
r}. Define the real numberAg = max{|u(x)|; VX € B;;1(0),Vu € U(F)}, B :
max{|xj|; VX € Br+1(0),Vj € {1,....q}} =r + 1, and

1A

Lr := 1+ max{ A, Be}.
Sinceld (F) C R[Xy, ..., Xq] and B;11(0) is compact, these extrema exist.

2. With the product linkag, ® - - - ® Kq of g identical linkages of Kempe a system of
coordinates on} Lg, Lg[%is constructed, such that each vengy . . ., Xy represents
a coordinate.

For this purpose we set for glle {1, ..., g} the lengthd(O;, A)) := 2L¢ + 2in K.
DefineVix of K1 ® - - - ® Kq as the sefOq, Ay, ..., Oq, Ag}, such that alO; are pinned
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down at(—Lr —1,0) and allA; at(—Lg — 1, =2Lf — 2) in R2. Then each verteX;
can be moved, parameterizing in the subset

e :=]—L;:, L[:[ X {0}

By Lemma 2.14 we obtain(; ® - - - ® Kq] = [K1] x - - - x [Kq] and by Corollary 2.12
the restriction of the verticeXy, ..., Xqin ¢ is

{EelK1® - ®Kql; (X1, ..., Xg) in (Ip)}
=1 e[Ki® - @ Kgl; X1, ..., Xqin g} ~ ]-Lg, LE[9 L Treg

Note that the realizations #f; ® - - - ® Kq are callechatural, ifforall j € {1, ..., q}the
realizations ofC; are natural. Our next aim is to couple the special mechanical linkages
in a way that they define addition and multiplication lgn

3. Required properties for the addition linkageand the multiplication linkagé1.

Let x andy be the evaluations of two subpolynomialsv € U/ (F) at the pointxy €
Br11(0), i.e.,u(xg) = x andv(xg) = y. If u+v,u-v,a+u, ora-uare elements of
U(F), then using construction in part 1 we assume ghat y € |—Lg, L[ andx +y,
X-y,a+Xx,ora-x € |—Lg, Lg[, wherea is any coefficient of. For each mechanical
linkage.A and M, the values ok andy as well as the evaluations+ y andx - y are
attached to the corresponding verticésY, X + Y, X - Y in Ig. Then we need to have
the following properties:

(P1) The mechanical linkage$ and M can be placed in such a way théatandY
move onlg.

(P2) IfbothX, Y of A are fixed inlg, then arigid realizatios € [.A] results. If both
X, Y of M are fixed inlg, then a rigid realizatio§ € [ M] results.

(P3) Allrealizations obtained in (P1) are regular.

(P4) The construction of the addition and multiplication witland M on | ¢ is well
defined in the sense that for each realization obtained in (P2) the evaluation
verticesX + Y of AandX - Y of M represent the evaluatiomst+ y andx - y
in (F=

Conditions (P1)—(P3) ensure by Lemma 2.6, that the used moti&n 6fis parameter-
izing for both mechanical linkage4 and M.

4. Addition linkageA.

The mechanical linkagd whichis responsible for the addition consists of two translation
linkagesTy, 7, two linkages of Kempé&.,, K,, and two edgek;, E; as shown in Fig. 6.

We take the following attachments and sizes, wihietel is any real constant for the
moment:

(a) The set of vertices df; is {A, B, C, D, G, H} such thatd (A, B) = d(A, G) =
d(G,H) =2c- L.
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K

ROk

Fig. 6. Starting realizatior§p of the addition linkageA.

(b) The set of vertices df; is {B, C, D, E, F, Y} such thad(B, Y) = d(F,Y) =
d(E,F)=2c- L.

(c) Eachk; for j € {1, 2} is given byd(O;, Aj) =8c- L.

(d) The edgeE; is given by{E, X + Y} such thad(E, X +Y) = 3c- L, andE;
is given by{H, X} such thad(H, X) =c- L.

To have the properties of part 3 the 8% of A is {O, A1, Oz, Az, A}, such thatO;
is pinned down af{—4c - L, 0), Ay at(—4c- Lg, —8c- Lg), Oz at(4c- Lg, 0), A, at
(4c- Lg,8c-Lg),andAat(—2c- Lg, 0). The mechanical linkagd, for the addition
with a constant € |—Lg, Lg[ is obtained fromA by completingVsx with the vertex
Y pinned down ata, 0).

Before verifying properties (P1)-(P4) we give a description of the working method
of A. Let X, Y be inlg. The vertexE is gained by a shift of the equilateral triand8Y
to HDE using both translation linkage§ and7;. Finally to getX + Y we subtract the
vector(0 — A) + (H — X) from E, whose length is@- L. Note that this subtraction
is necessary, sincd is displaced fromX by a length ofc - L and A is pinned down
at(—2c- L, 0), i.e., is not equal to the origin df. The position ofX + Y andH are
forced toR x {0} by K1 and K5, respectively. Both translations alofigx {0} ensure
(P2) and (P3) foranX, Y onlg if c > 1.

Verification of(P1)-(P4) for A.

(P1) We consider the starting realizatigshown in Fig. 6. IfX is fixed inl g, then
K, ensures by Lemma 2.11 that the verkgis rigid, soG is determined modulo
Zo-actions which are not of interest. Under this condition batland7; allow
realizations of4 such that we have congruent, nondegenerate triaddsés
GCF, andHDE: they may be obtained by movingon I . Note thatCy, Ko,
E;, andE; are without significance for this motion &f. for any X in I the
scaling ofKCy, E1, E; ensures that they do not hinder the motioryaip to the
range ofl . By symmetry we obtain the same result for a motiorXo#vhile
Y is fixed: the scaling ok,, E;, E; ensures that they do not hinder the motion
of X up to the range ofe. Summarizing we get departing frafp a motion of
X, Yonlg. O
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(P2) Firstlett € [A] be any realization obtained in (P1), such tiaty are fixed in
Ir. ThenH is rigid and soB andG are rigid. ThusC is rigid sinceB does not
lie at the same point &S. It follows thatF and D are rigid and therefor& is
rigid too. By Lemma 2.10 the linkages of Kemfig andC, are rigid, which
implies (P2) for any realization oft described in (P1). O

(P3) Choose > 1. Then departing fron§p, a motion of X, Y on I induces only
small deformations of;, 75, K1, and/C,, especially the triangles of vertices
containing only two edges never degenerate. Thus all realizatiof®bfained
above are regular and only those are then calktdral realizationsof A. O

(P4) This property follows by (P1) and by (P2), i.e., the rigidityhfwheneverX, Y
are fixed inl g, where we always take into consideration the described working
method ofA. O

5. Multiplication linkage M.

The description of the multiplication with a mechanical linkag¢ is based on the
following modification of a well-known construction with a pair of compasses and a
ruler suggested in Fig. 7. For any réak 1 the cutting point of the lineR x {0} and

gy is X - Yy := (A"1x -y, 0), whereg, goes throughy’ := (0, y) and is parallel to

Ox given by the pointg0, A) andx := (X, 0). It is easy to see that this construction
defines the multiplication af, y andi~! by the ratiox : A = (A"1x y) : y, whenever

y = (y,0) # 0.1fy = 0, thengy cutsR x {0} in O for anyx € R x {0}, thusx -, y =0

as prescribed.

We focus our attention on the first part of the multiplication linkalgke which is
responsible for the rotation of the vert¥xanticlockwise around the origin by/2 to
Y’, whenevel lies in I. The corresponding mechanical linkad§éc is a coupling of
a conformal linkag€ and two translation linkage® and7; as Fig. 8 shows.

We take the following attachments and sizes:

(a) The set of vertices d is given by the denotations in Section 2.3.2 such that
d(0O, B) =d(0, B)) = Lr andd(A, A') = (+/2/2)LF.

(b) Thesetofvertices df,is{O, Oy, C, D, F, Y}suchthat(O, Ogp) = d(O, D) =
d(C,D) = L.

(c) The set of vertices off; is {O, Oy, B, C’, F’, Y’} such thatd(O, Op) =
d(0,B)=d(B,C’) = L.

AR
-1
Ty \:my y 0 1 v
v
\gy

Fig. 7. Construction of - y.
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Fig. 8. Starting realizatior§o of the partM ¢ of the multiplication linkageM.

In order to have the properties of part 3, ther¢@ Og, Oj} C Vix, such thatO is
pinned down at—Lg, —L¢), Opat(—Lg, 0) andOj at(0, —L ), whereVyy is already
related toM.

Lemma 3.3. Departing from the starting realizatiog, of Mc, the vertex Y can be
moved parameterizing orx ) and for Y at any pointy, 0) € | there is Y at the point

. y).

Proof. Consider the starting realizatiofy and C in Fig. 8. A motion of C on
]-LEg, L[ x {—Lg} produces a similar motion &’ on{—Lg} x ]—Lg, Lg[, since
both kite quadrilateral©BCD andOBC'D’ are forced to be congruent by the edges
{A, A’} and{E, E’}. The prescribed coupling @i and7;, causes a vertical shift & to

Y in Ig and a horizontal shift o’ to Y’ in {0} x ]—Lg, Lg[, in particular no hindrance
for this motion.

We prove thatM is rigid and fixY after a motion at any point ity as above. Then
7, is determined modul@,-actions which are not of interest, i.€3, is rigid. ThusC is
rigid and sinceO € Vsx with O andC at different points( is rigid too. FinallyZ is
rigid, sinceC’ andO do not lie at the same point.

Every realization ofM¢ is regular during the motion of on I, sinceY never lies
at the point(—L, 0) and so both translation linkages do not degenerate.

Finally with Lemma 2.6 a parameterizing motionobn | ¢ results and by symmetry
of the construction there @& (0, Y') = dr (0, Y). O

The last part ofM has to define the linear transformation of the ver¥x, Y in
A7 Mg :=]-2"1LE, AL [ x {0} to the evaluation verteX - Y in | . The corresponding
mechanical linkage\1, is a coupling of a linear linkagé€ and a linkage of Kempg,4
as in Fig. 9.

We take the following attachments and sizes, where: 2c - L¢ is already related
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4,

Bk

s
0,

Fig. 9. Starting realizatiorfp of the partM | of the multiplication linkageM.

to M, andc > 1 is any real constant for the moment:

()) The set of vertices of is{Os, R, R, S, S, T, X -, Y} such thad(Os, R) =
1/candd(Os, R) = A/c = 2LF.

(K) K4is given byd(QOg4, A4) = 4LF.

() The edgeks is given by{T, X - Y} such thad(T, X - Y) = 2L¢ — 1/c.

In order to have the properties of part 3, ther¢@s, Os, A4} C Viix, such thatO, is
pinned down at2L, 0), Os at(—1/c, 0), and A4 at (2L, 4LF), whereViy is already
related toM. Notice that forh = 2¢ - L there isk 11 =]-1/2c, 1/2¢[ x {0}.

Lemma3.4. Let ¢ > 1 be any real constant and = 2c - Lg. Departing from
the starting realizationty of M|, the vertex X., Y can be moved parameterizing
oni~lg,and for X -, Y atany poin{A~1x - y,0) € ALl there is X- Y at the point
x-y,0) € lg.

Proof. Consider firstC in Fig. 9 showing the starting realizatigp of M. Clearly,
X -, Y can be moved on~tlg, since there iglz(0s, X -1 Y) € ]1/2¢c, 3/2c], thus
dr(0s, X 4 Y) < 2/c=d(0s, R) +d(R, X -5 Y). By its scaling JC4 does not hinder
the induced motion of andX - Y, because it allowX - Y in | .

By fixing X -, Y at any point during the motion above, there &gS rigid, since
X -1 Y neverliesat—1/c, 0). ThusR', S, andT are rigid. Kempe’s linkag&’, ensures
by Lemma 2.11 thaX - Y lies onR x {0}, so X - Y is rigid andX4 too because of
Lemma 2.10.

During the motion oiX -, Y we obtain only regular realizations 6fand/C,4. Because
of their connection byEs, M| is regular too.

Summarizing by Lemma 2.6 the motionXf-, Y oni~l is parameterizing, where
X-Ylieson(z,0)withz=x-X -; y+(1/c0)(A -1 —d(X Y, T)=A-X - y. O

Figure 10 shows the multiplication linkaget, where M and M/ are indicated only
by their verticesy’ and X -; Y, respectively, since their operation is determined by
Lemmas 3.3 and 3.4. The multiplication linkage is completed by three translation
linkagesTs, 74, 75, three linkages of Kempky, K2, K3, and two edgeg&;, E, with the
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K O3

A3

M

Fig. 10. Starting realizatio§p of the multiplication linkageM.

following attachments and sizes, where 1 is as forM . :

(d) The set of vertices offz is {O’, M, N, P, Q, X} such thatd(O’, N) =
d(M, N) =4c. Lg andd(O’, P) =8c- L.

(e) Thesetofvertices@is{O’, I, K, L, M, N}suchthat(O’, N) =d(M, N) =
d(O’,1)=4c- L.

() The set of vertices of5 is {G, H, |, K, L, Y’} such thad(l, K) = d(K, L) =
d(G,L)=4c- L.

(9) K1 andk; are given byd(O;1.2, A1 2) =8C- Lg.

(h) K3is given byd(Os3, Az) =8c- L.

(i) The edgeE; is given by{O;, Y’} such thatd(O; 2, Y') = 4c- Lg, andE; is
given by{A; », Y’} such thatd(A; -, Y') = 4v/5¢ - L¢.

To have the properties of part 3 the 8% of M is {O, O’, Og, Oy, Oz, Oa, Os, As,
A4, P}, such thatO, Og, Oy, O4, Os, A4 are pinned down as prescribed ¢ and
M, 0O at(0,—6¢c- Lg), Ozat(—6¢- Lg,0), Azat(—6¢c- Lg,—8c- Lg), andP at
(0,2c- L), i.e.,dg(0, P) = A as in Lemma 3.4. The mechanical linkagé, for the
multiplication with a constars € |—L¢, L¢[ is obtained fromM by completingVix
with the vertexy pinned down ata, 0).

Before verifying properties (P1)—(P4) we give a description\frelated to the
geometrical principle of the multiplication explained above. Kel be inlg such that
X-y € ]-Lg, Le[. Thengy is given byP, X, and by the vertice®’, M of the translation
linkage7z a line parallel tayy is defined. ByZy, 75 the linegy throughG, Y’ is defined,
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whereY’ is obtained byMc as a rotation ofY described above. Kempe’s linkag@
hands over the direction @f, to > in a way, such tha®1 > As » is orthogonal tayy. We
obtainx -, y as the common verteX -, Y of K, and K3, which is the cutting point
betweeng, andR x {0}. Finally M defines the evaluation vertex - Y as the linear
transformation ofX -, Y on A~tI¢ by multiplication with. By dz (0, P) = A > L¢
we avoid a motion ofY’ through P, which simplifies considerably the proof of (P3)
using only small deformations of the multiplication linkage departing feggm

Verification of(P1)+(P4) for M.

(P1) We consider the starting realizatiggof M, and to begin with we disregard
T4, Ts, K1, K2, K3, E1, E», M. Itis clear that7z allows a motion of the vertex
Xin g, sincedg (P, X) < 8c- L is always fulfilled and byM¢ the vertexy
can be moved on any poiny, 0) in ¢ and induces by Lemma 3.3 a position
of Y at (0, y). Both translation linkage$,, 7s do not hinder the motion oX,
since X determines only the trianglé3MN, IKL andGHY’ of 74, 75, which
are obtained by shiftin@QX of 73. Neither are they hindering the motion of
Y, sincedr(O’, Y') < 8c- L. By their scaling the mechanical linkagks,
K2, K3, E1, Ez, M| are without importance for the motions &f Y on I,
wheneverx -y € |—Lg, Lg[, i.e., X -, Y lies inA~%lg. Summarizing we get
departing fromgg a motion of(X, Y) on{(x,y) € (—Lg, L[ x {OD% x -y €
]—LF,LF[}C |,§ O

(P2) Leté e [M] be any realization obtained in (P1), such tiaty are fixed inl .
Then7; is rigid, sinceP does not lie at the same point ¥sand M is rigid
by Lemma 3.3. Therefore both, 75 are rigid, sincer’ andO’ are at different
points. Lemmas 2.10 and 2.11 ensure that the linkages of Kétnpk,, 3
are all rigid. So by Lemma 3.41,_ is rigid which implies (P2). O

(P3) Choose& > 1. Then departing frorgy a motion of(X, Y) as in (P1) induces
only small deformations dfz, 74, 75, K1, K2, andKs, especially the triangles of
vertices consisting of two edges never degenerate. By connecting the Yertex
of Mc andX -, Y of M| to the linkages cited above, condition (ii) of Lemma
2.6 may be injured. This is unimportant for the claimed parameterizing motion
of X, Y, since the motion of defines the parameterization\tf and the motion
of X, Y’ givesX -, Y and soX - Y. Thus all realizations oM obtained above
are callechatural realizationsf M. O

(P4) This property follows by (P1) and (P2), i.e., the rigidity/ef, wheneverX, Y
are fixed inl g with x-y € ]|—L g, Lg[, where we always take into consideration
the described working method fa1. O

6. Generating a mechanical linkaggeby coupling mechanical linkagd$, ® - - - ® Kq,
A, Aa, M, and M, to represent the polynomiéd with V = L(F).

The polynomialF depending on the variable = (xy, ..., Xq) is constructed as a
mechanical linkagét wherex is represented by theg-tuple (Xy, ..., Xq) of vertices.
For this purpose we defingy of H as the union of the set4 of every used mechanical
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linkagelC;1®- - -®Kq, A, Aa andM, M, (both containing\c, M ), calledsublinkages
of H, where the positions of the vertices\ are cited in parts 2, 4, and 5. The described
algorithmic procedure to build up can be carried out directly, connecting the mechanical
linkagesA, A,, M, and M.

All subpolynomialsu € U(F) are restricted, in particular(x) € ]—-Lg, L¢[ for all
X € B;;1(0) which implies, by the scaling and the construction, thatfothe motion
of (Xq,..., Xgq) on Br;1(0) C (I¢)9 is parameterizing and the vert€(Xa, ..., Xq)
gives the evaluation df on I :

First take the multi-index in (Nf,, >) proposed in part 1 to enumerate the mechanical
linkagesA, Ay, M, and Mg in H.

(PY) We assume a starting realizatioNrr}Bﬁ/vith (X1, ..., Xq) in B;+1(0), where the
realizations of all sublinkages &f are natural. Such a realization exists, since
each sublinkage can be moved individually up to the required rarg8; 1 (0)
by a parameterizing motion, where they are then connected together by their
verticesXy, ..., Xg, X, Y, X +Y, X - Y. Because of (P1) and (P4) a motion
of the evaluation verticeX + Y or X - Y of two given sublinkages ifi{ with
multi-indexv andv’ allows the motion oiX, Y of a connected sublinkage with
v” > v, v’. By induction theg-tuple of vertices(Xy, ..., Xq) can be moved
on B;,1(0). Notice that the obtained realizations¥fneed not to be regular,
see (P3.

(P2) By (P2) and (P4) an induction over connected sublinkages with growing multi-
index as in (P) ensures the rigidness of all common vertices of different
sublinkages it if (X1, ..., Xq) is fixed in B;;1(0). So any realization of{
obtained in (P is rigid, if (X4, ..., Xq) is fixed in B;;1(0).

(P3) During the motion of Xy, . .., Xq) on B, 1(0) described in (P}, clearly each
realization of all sublinkages i is regular. Only those vertice§, . . ., Xq, X,
Y, X+Y, X-Y (andY’, X -, Y for M andM,) connecting edges of two differ-
ent sublinkages may cause condition (ii) of Lemma 2.6 to be injured. They are
unimportantfor the claimed parameterizing motioXf, . .., Xq) onB;1(0)
below: by induction over connected sublinkages with growing multi-index as
in (PT), two vertices inXy, ..., Xq, X +Y, X - Y define the parameterization
of X, Y in the next connected sublinkage.

(P1)—(P3) imply with Lemma 2.6, that the motion afXy, ..., Xq) on Br11(0) is
parameterizing starting with a realization®fsuch that(Xy, ..., Xq) lies in B 11(0)
and the realizations of all sublinkages7nare natural. The obtained realizations are
callednatural realizationsof H and there is

{& € [Hl: (X1, ..., Xq) in Br11(0)} & Br11(0) L Trest

We assume natural realizations;ﬂt If (Xq,..., Xy) is restricted inV C B;11(0),
then the vertexr (Xy, ..., Xq) of H representing the evaluation &f is always equal
to the origin of the interval g, sinceV = {(x1, ..., %) € RY; F(xq, ..., Xq) = 0}. If
(X1, ..., Xg) liesinU (V) — V, then the vertexr (X, ..., Xq) of H is never equal to
the origin, wherdJ (V) C B;;1(0) is an open neighborhood df. These considerations
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result in

Corollary 3.5. Ifthe vertex KX, ..., Xq) is fixed atO € |, then either

(i) (Xg,...,Xg) liesinV assuming natural realizations onor
(i) (Xq,..., Xg) lies in U(V) for realizations other than naturaor
(i) (X1, ..., Xq) does not lie in UV).

Finally we obtair as a mechanical linkage in the sense of Definition 2.2 by completing
Viix of H with F(Xy, ..., Xq) pinned down at Oc Ir. A realization of# is called
natural if the corresponding realization iff € [H]; F(Xy, ..., Xq) at G is natural.

By Corollaries 2.12 and 3.5 it follows that disjoint open neighborhood&Zhof the
sets{¢ e [H]; (Xy, ..., Xg)inV, & natura} and its complement inH] exist. So the
configuration space

[H] ~ {& € [H]; F(X1, ..., Xq) at 0} &~ V L Trest

of the mechanical linkag# results. O

Remark 3.6. At the end we obtain a mechanical linkagfewith some vertice¥sx =

{V1, ..., Vn} pinned down in the plane with dim & (V1), ..., o(Vm)} = 2. Adding

all edges of PotVsy) := {{Vi, Vj}; Vi,V € Viix, i # |} to the setE and extending the
weight functiord to Pob(Vsix) suchthat(V;, V;) := dr(pi, py) foralli, j € {1,..., m}
andi # j, where{p, ..., pm} are the fixed points in the plane, we get an expanded
mechanical linkag@ey. If the configuration space is definedadbrealizations ofHex,

in the plane modulo proper euclidean motiothen [H] LI[H] ~ (V L Tres) LI (V L Ties)

is the configuration space ®fey,. This coincides with the approach in [2]-[4], [7], and
[12], but has the disadvantage that the extra edges (Bl are rather difficult to
handle, when they are introduced from the beginning. Notice that Theorem 1.1 holds for
both definitions of the configuration space.
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