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Abstract. The traversal of a self-crossing closed plane curve, with points of multiplicity
at most two, defines a double occurrence sequence, the Gauss code of the curve. Using the
D-switch operation, we give a new simple characterization of these sequences and deduce
a simple self-contained proof of Rosenstiehl’s characterization.

1. Introduction

The traversal of a self-crossing closed plane curve, with points of multiplicity at most two,
defines a double occurrence sequence, which we call the Gauss code of the curve, as it was
first defined by Gauss [7]. While enumerating all possible codes corresponding to curves
having up to five crossing points, Gauss remarked that between the two occurrences of
any point there were an even number of points. This property has been formally proved
by Nagy [11]. Gauss also noticed that this condition is not sufficient to characterize
Gauss codes.

Lovász and Marx introduced another necessary condition [9] and eventually Rosen-
stiehl gave a complete combinatorial characterization [12], [16].

In the meantime, Dehn proved that the successive switching of all the points of a cross
curve gives rise to a touch curve [4]. He also proved that the successive switching of all
the points of a Gauss code gives rise to a double occurrence sequence having a specific
bicoloration property. Unfortunately, this property is not sufficient to characterize Gauss
codes. Using the D-switch, a slight modification of the switch operation, we obtain
a new characterization of Gauss codes which leads to a short self-contained proof of
Rosenstiehl’s characterization.

For further works on Gauss codes, we refer the reader to the Bibliography.

∗ This work was partially supported by the Esprit LTR Project No. 20244-ALCOM IT.
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2. Definitions and Notations

2.1. Curves and Sequences

We first recall and introduce some definitions and notations concerning topological
properties of closed plane curves.

A parametrized curve Cis a continuous mappingC: [0,1]→ R2, such thatC(0) =
C(1) and for which theunderlying curve C([0,1]) is piecewise smooth and has a finite
number of multiple points, all of which have multiplicity two. LetP(C) denote the set of
the points of multiplicity two. To any pointp ∈ P(C), we associate the two parameter
valuest ′p and t ′′p , such thatt ′p < t ′′p andC(t ′p) = C(t ′′p) = p. A point p ∈ P(C) is
a crossing pointif any local deformation ofC in a neighborhood oft ′p preserves the
existence of a double point. Otherwise,p is a touching point. A touch curve(resp. a
cross curve) is a parametrized curve with only touching points (resp. crossing points).

There are two different types of touching points, depending on the local behavior of
the parametrized curve:

Type 1 Type 2

Remark. All the touch points of a touch curve are of type 1. By a local deformation we
may suppress all the touch points but any given one, which then is (and was) of type 1.

The sequence of the points ofP(C) encountered as the parametert goes from 0 to 1
(excluded) is thetraversal sequenceof C and is denoted byS(C).

In the following,sequencesare understood to have two occurrences of each symbol
and to be defined up to reversal and cyclic permutation. Given a sequenceS, two symbols
p,q are interlaced in S if exactly one occurrence ofq appears inS between the two
occurrences ofp (and thus exactly one occurrence ofp appears inS between the two
occurrences ofq). We denote by3(S) the interlacement graphof S defined by the
interlacement relation inS.

A sequenceS is realizedby a parametrized curveC if S is the traversal sequence of
C. A sequence istouch realizable(resp.cross realizable) if it can be realized by a touch
curve (resp. a cross curve). So, saying that a sequence is cross realizable means that it is
a Gauss code of some self-intersecting closed curve.

2.2. Switches and D-Switches

We recall theswitchoperation [4], [8]: Given a pointp of P(C), the curveC′ = C ◦ p
is defined by

C′(t) =
{

C(t) if t 6∈ [t ′p, t
′′
p ],

C(t ′p + t ′′p − t) if t ∈ [t ′p, t
′′
p ].

(1)
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This curve has the same touching and crossing points asC, with the possible exception
of p. The traversal sequence ofC′ is obtained from the one ofC by inverting the order of
the points encountered between the two occurrences ofp. We say that the points that are
interlaced withp have beeninverted. The switch operation onSwill be denoted byS◦ p,
so thatS(C ◦ p) = S(C) ◦ p. We remark that these switch operations are involutions:
C ◦ p ◦ p = C andS◦ p ◦ p = S.

Remark. A switch at a pointp transformsp in the following way:

– touching point of type 1↔ crossing point,
– touching point of type 2↔ touching point of type 2.

Remark. A touching pointq of a parametrized curveC is a touching point ofC ◦ p
(p 6= q) which has a different type inC andC ◦ p if and only if p andq are interlaced
in S(C) (that is, ifq has been inverted by the switch atp).

Definition 1. Thelocal complementof a graphG at a vertexv is the graphG ◦ v with
the same vertex set asG and the same edges asG except that the neighborhood ofv in
G is complemented. Note that this is called thelocal complementationof G in [3].

Remark. According to the definition of a switch and the definition of a local comple-
ment, we have

3(S◦ p) = 3(S) ◦ p.

This is the reason why we denote both operations by “◦”.

Definition 2 (D-Switch and Twin). LetSbe a sequence, aD-switchat p consists of a
switching atp and the addition of two occurrences of a new symbolp′, called thetwin
of p, one just after the first occurrence ofp and one just before the second occurrence
of p. The D-switch of a sequenceSat a pointp is denoted byS◦◦ p.

S= (αpβpγ ) 7→ S◦◦ p = (αpp′β−1 p′pγ ).

Definition 3 [3]. TheD-local complementof a graphG at a vertexv is the graphG ◦◦ v
obtained fromG ◦ v by adding a new vertexv′ having the same neighbors asv.
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Remark. According to the definition of a D-switch and the definition of a D-local
complement, we have

3(S◦◦ p) = 3(S) ◦◦ p.

This is the reason why we denote both operations by “◦◦”.

Remark. The sequence obtained fromS◦◦ p◦◦ p by deleting the two twins ofp is
equal toS.

2.3. Remarks on Switch Operations

We recall a result by Dehn [4] (which follows from the remarks of the previous section)
and mention the major difficulties encountered when trying to use it to characterize cross
realizable sequences.

Proposition 4 [4]. Consider a cross curve C and any given order(p1, . . . , pn) of the
points of C. Then the parametrized curve C◦ p1◦· · ·◦ pn obtained from C by successively
switching the pi is a touch curve.

The converse of this proposition is not true (e.g., the sequence(abab) is not cross
realizable).

Remarks. We denote byS
◦−→S′ the existence of an order(p1, . . . , pn) of the symbols

of S, such thatS′ = S◦ p1 ◦ · · · ◦ pn.

– A cross realizable sequence does not determine the cross curve itself up to a homeo-
morphism.

– One may find a cross realizable sequenceS1, a noncross realizable sequenceS2,
and a touch realizable sequenceST , such thatS1

◦−→ST andS2
◦−→ST . Actually, S1

andS2 may be proved to have different interlacement graphs.
– Two different cross realizable sequencesS1 andS2 may have the same interlace-

ment graph (e.g., the sequences(abcaefdcbefd) and(acbaefdbcefd)). However, no
sequenceST satisfiesS1

◦−→ST andS2
◦−→ST .

3. A New Characterization of Gauss Codes

We first state a lemma characterizing touch realizable sequences.

Lemma 5. A sequence S is touch realizable if and only if its interlacement graph3(S)
is bipartite.

Proof. Figure 1 shows the bijection between a touch curve (I) and a bicolored chord
diagram (IV):

– From I to II each touch point is split into two adjacent points with the same label,
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Fig. 1. Bijection between a touch curve (I) and a bicolored chord diagram (IV).

such that the traversal of the curve does not use the new edge. Conversely, II is
obtained from I by contracting edges linking points with the same label.

– II and III are homeomorphic; the traversal of the original curve is now represented
by a circle.

– IV is obtained from III by drawing all the chords inside the circle; the bicoloration
corresponds to the inside–outside partition in III. Then two chords of the same
color do not intersect. Conversely, III is obtained from IV by drawing the chords
of one color outside the circle; the obtained 3-regular graph is obviously plane.

IV is a chord diagram, which is the traditional representation of the interlacement of
the sequence induced by the traversal of the circle; the interlacement graph is then the
intersection graph of the chords of the circle.

This bijection maps a touch curve realizingS into a bicolored chord diagram repre-
senting3(S), which achieves the proofs.

Theorem 6. Let S be a sequence, and let(p1, . . . , pn) be any order on its symbols.
Then S is cross realizable if and only if the sequence Sn = S◦◦ p1 ◦◦ · · · ◦◦ pn obtained
by successively D-switching the pi has a bipartite interlacement graph.

Proof. In the following,p′i denotes inSj ( j ≥ i ) the twin of the pointpi introduced by
the D-switch ofpi .

(⇒) AssumeS is realized by a cross curveC. As a D-switch of a crossing point of
a parametrized curve gives rise to two touching points (that will never become crossing
points again), the curveC is iteratively transformed into a touch curveCn. The traversal
sequenceSn of Cn has hence a bipartite interlacement graph, according to Lemma 5.

(⇐) Conversely, assume thatSn has a bipartite interlacement graph. LetSi =
S◦◦ p1 ◦◦ · · · ◦◦ pi denote the sequence obtained after the firsti D-switches.

We inductively construct backward (fori going fromn to 0) the parametrized curves
Ci realizingSi , such that the crossings ofCi are thepj , with j > i .
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• Construction ofCn:
As 3(Sn) is bipartite, there exists a touching curveCn whose traversal sequence
is Sn.
• Construction ofCi−1 from Ci (i ≤ n):

We prove thatpi is always of type 1 inCi , that is thatpi has been inverted an even
number of times during the further D-switches atpi+1, . . . , pn:
∗ The symbolpi and its twinp′i are not interlaced inSi ,
∗ pi and p′i are alternatively interlaced and not interlaced after each further

inversion,
∗ if the last inversion ofpi occurred during a switch atpj , thenpi and pj are

interlaced inSn and, similarly,p′i and pj are interlaced inSn. As3(Sn) is
bipartite,pi andp′i are not interlaced inSn: otherwisepi , p′i , pj would define
a triangle of3(Sn).

Hence, the symbolpi has been inverted an even number of times andpi is of
type 1 inCi . Hence, the suppression ofp′i and the switch ofpi transformspi into
a crossing point and gives rise to a parametrized curveCi−1, havingpi , . . . , pn as
crossing points andSi−1 as a traversal sequence.

Then the parametrized curveC0 is a cross curve realizingS.

Remark. A cross curve realizing the sequenceScould be geometrically derived from
a touch curve realizing the sequenceS′ obtained fromSn by suppressing all twined letters
by transforming each touching point into a crossing point.

4. Proof of Rosenstiehl’s Characterization

In [12] and [16] Rosenstiehl gave the following characterization of Gauss codes. A
sequenceS is a Gauss code if and only if:

– 3(S) is Eulerian.
– For any nonedge{u, v} of3(S), u andv have an even number of common vertices.
– The set of the edges{u, v} of 3(S) such thatu andv have an odd number of

common vertices is a cocycle of3(S).

To prove this theorem, we need a preliminary definition and two lemmas.

Definition 7. A graphG together with a partition(A, B)satisfies the propertyP(G;A,B)
if any two vertices ofG have an odd number of common neighbors if and only if they
are different, adjacent, and belong to the same class of the partition.

Remark. As a particular case, if a graphG together with a partition(A, B) satisfies
the propertyP(G;A,B), thenG is Eulerian.

The vertex setV of a graphG defines the basis of a vector space 2V , with the
canonical scalar product〈X,Y〉 : the addition corresponds to the symmetric difference
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and the scalar product to the parity of the intersection. In the following,NG(u) denotes
the neighbor set of the vertexu in the graphG.

Lemma 8. Let G be a graph with a vertex bipartition A, B and let p be a vertex of
G. Let G′ = G ◦◦ p and let A′, B′ be the vertex bipartition of G′ defined by: A′ =
A+N(p), B′ = B+N(p) and assigning p′ to the class of p. Then P(G; A, B) implies
P(G′; A′, B′).

Proof. According to the definition of a D-complement, we have (in 2V ):

– NG′(p′) = NG′(p) = NG(p),
– NG′(u) = NG(u), if u is not adjacent top (in G or equivalently inG′),
– NG′(u) = NG(u)+ u+ NG(p)+ p′, if u is adjacent top.

Let u andv be two vertices ofG′. We shall prove that the pair(u, v) does not falsify
P(G′; A′, B′). As p and p′ have the same neighbors, are not adjacent, and belong to
the same class inG′, by consideringp instead ofp′, we may reduce to the case where
neitheru norv is equal top′. Then we have three exclusive cases to consider:

– The verticesu andv are not adjacent or equal top.
Then their neighborhoods, their class, and their number of common neighbors are
the same inG andG′. Thus, the pairu, v does not falsifyP(G′; A′, B′).

– The vertexu is adjacent top andv is not adjacent or equal top.

〈NG′(u), NG′(v)〉 = 〈NG(u)+ u+ NG(p)+ p′, NG(v)〉
= 〈NG(u), NG(v)〉 + 1.

As u andv belong to the same class (A′, B′) if and only if they do not belong
to the same class (A, B) and as they are adjacent, the pairu, v does not falsify
P(G′; A′, B′).

– The verticesu andv are both adjacent top.

〈NG′(u), NG′(v)〉 = 〈NG(u)+ u+ NG(p)+ p′, NG(u)+ v + NG(p)+ p′〉
= 〈NG(u), NG(v)〉 + 〈N(u), N(p)〉 + 〈N(v), N(p)〉 + 1.

As u is adjacent top, 〈N(u), N(p)〉 = 1 if and only ifu andp belong to the same
class (A, B). So,〈N(u), N(p)〉 + 〈N(v), N(p)〉 + 1 = 1 if and only if u andv
belong to the same class (A, B). As 〈NG(u), NG(v)〉 = 1 if and only ifu andv are
adjacent inG and belong to the same class (A, B), 〈NG′(u), NG′(v)〉 = 1 if and
only if u andv are not adjacent inG and belong to the same class (A, B), that is,
if and only if they are adjacent inG′ and belong to the same class (A′, B′). Thus,
the pairu, v does not falsifyP(G′; A′, B′).

Lemma 9. Let G be a graph with a vertex bipartition A, B and let p be a vertex
of G. Let G′ = G ◦◦ p and let A′, B′ be the vertex bipartition of G′ defined by A′ =
A + N(p), B′ = B + N(p) and assigning p′ to the class of p. Then P(G′; A′, B′)
implies P(G; A, B).
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Proof. Let G′′ = G′ ◦◦ p and let A′′, B′′ be the vertex bipartition ofG′′ defined by
A′′ = A′ + N(p), B′′ = B′ + N(p), and assigningp′′ to the class ofp. By Lemma 8,
P(G′; A′, B′) implies P(G′′; A′′,G′′). The deletion of the two twinsp′ and p′′ of p
ensures thatP(G; A, B) also holds.

Theorem 10. A sequence S is a Gauss code if and only if:

– 3(S) is Eulerian,
– for any nonedge(p, p′) of3(S), |N(p) ∩ N(p′)| is even,
– the set of the edges(p, p′) of3(S) such that|N(p) ∩ N(p′)| is even is a cocycle
3(S).

Proof. The theorem may be restated as follows: a sequenceS is cross realizable if and
only if there exists a bipartitionA, B of the vertex set of3(S), such thatP(3(S); A, B)
holds.

(⇐) Assume there exists a bipartitionA, B of the vertex set of3(S) such that
P(3(S); A, B) holds. Consider any sequenceS′ = S◦◦ p1 ◦◦ · · · ◦◦ pn obtained by suc-
cessively D-switching the symbols ofS. According to Lemma 8,3(S′) has a bipartition
A′, B′ such thatP(3(S′); A′, B′) holds. As all the symbols have been twined and as
p and its twin p′ have the same neighbors, any two vertices of3(S′) have an even
number of common vertices. According to propertyP(3(S′); A′, B′), the graph3(S′)
is bipartite. Then, from Theorem 6,S is cross realizable.

(⇒) Conversely, ifS is cross realizable, then any sequence of D-switches gives rise
to a sequenceS′ having a bipartite interlacement graph; any bicoloration of it defines
a bipartition A, B such thatP(3(S′); A, B) holds. The theorem then follows from
Lemma 9.

5. Conclusion

Although the characterization of double and triple occurrences which are cross realizable
can be reduced to the characterization of Gauss codes [2], no characterization is known
for the general case where any letter may occur any number of times.
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