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Abstract. We prove tight lower bounds for the coefficients of the generalieedctor of

a rational polytope with a symmetry of prime order that is fixed-point free on the boundary.
These bounds generalize results of Stanley and Adin fdr-trexctor of a simplicial rational
polytope with a central symmetry or a symmetry of prime order, respectively.

Introduction

For simplicial polytopes, there is a beautiful complete characterization of the occurring
h-vectors, conjectured by McMullen and proved by Billera, Lee, Stanley, and McMullen
(see [BL], [St1], and [McM]). Assuming that in addition the polytope admits a symmetry,
it is natural to ask for the resulting restrictions upon the corresporidivertor.

Bjorner conjectured tight lower bounds for the coefficients oftthector of a cen-
trally symmetric simplicial polytope that were proved by Stanley in [St2], using the
theory of toric varieties. After a small perturbation preserving the combinatorics as well
as the central symmetry one can assume that the polytope is rational. Then the polytope
defines a rationally smooth projective toric variety with an equivariant involution and the
coefficients of thén-vector are the Betti numbers of the variety. Stanley in fact proves
lower bounds for those Betti numbers.

Stanley’s results were generalized by Adin to the case of rational simplicial polytopes
admitting a symmetry of prime order without fixed points on the boundary of the polytope
(see[Ad]). Here itis essential to assume that the polytope is rational, and Adin’s statement
does not make sense without it.

The aim of this paper is to prove an analogous result to Adin’s for rational polytopes
that are no longer assumed to be simplicial. Then the Betti numbers of the associated
projective toric varieties in general are not combinatorial invariants. We have to replace
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singular cohomology by rational intersection cohomology of middle perversity to arrive
at combinatorial invariants. The intersection Betti numbers can be expressed in terms
of numbers of certain flags of faces of the polytope and form the so-called generalized
h-vector (see [St3]).

We obtain lower bounds for the coefficients of the generalle@dctor of a rational
polytope with the same type of symmetry as studied by Adin. In his proof Adin uses
the refined Poincarseries of the Stanley—Reisner ring associated to the polytope. We
generalize this method by considering the refined Poasaries of the equivariant inter-
section cohomology instead. Note that in the simplicial case the equivariant intersection
cohomology forms a ring which is isomorphic to the Stanley—Reisner ring.

In Section 1 we fix the notation, recall Adin’s result, and state our generalization
(see Theorem 1.2). Section 2 is devoted to the interpretation of the result in terms of
projective toric varieties (see Theorem 2.1). Section 3 contains the facts about equivariant
intersection cohomology that are needed to complete the proof which is carried out in
Section 4.

1. Rational Polytopes with a Symmetry of Prime Order

Let P denote a rational polytope R", i.e., the convex hull of a finite number of points
with rational coordinates. We assume tiats of full dimension and that the origin is
placed in its center of mass. By definition, a symmetryPas a bijection ofP induced
by a linear mapA. Note that the assumption thBtis rational impliesA € GL,(Q).

A symmetry of P does not have fixed points on the boundary of the polytope if and
only if the inducing linear map\ does not have 1 as an eigenvalue. This means that the
linear map permutes the proper faces of the polytope without mapping any face onto
itself.

We denote the set of proper facesBfby F(P). (For technical reasons, we also
consider the empty set as a face with the convention/diga —1.) If P admits a
symmetry of prime ordep without fixed points on the boundary, then all the orbits of
the induced permutation ¢f (P) have lengthp, except the orbit of the empty face. So
in particular, the number$; of faces of dimensior) of P (for0 < j < n— 1) are all
divisible by p. Moreover, the dimension is a multiple ofp — 1, since the linear map
A € GL,(Q) defining the symmetry does not have 1 as an eigenvalue, and therefore its
characteristic polynomial is a power of tpth cyclotomic polynomial X+ - -4+xP~1,

For example, thép — 1)-simplexS c RP~1, obtained as the convex hull of the
canonical basis vectoss, ..., e,_1 and the vector := — Zip:_ll e, has a symmetry
of order p, induced by the linear map, sendiggto &, foralli < p — 1 andep_;
to v. Polytopes admitting a symmetry of order 2 without fixed points on the boundary
are precisely centrally symmetric polytopes.

Theh-vector(hy, ..., hy) of ann-dimensional polytop® is defined as follows:

n n
D ohixd =" fax =D e Z[X]
j=0 j=0

where f; denotes the number gfdimensional faces o (for —1 < j < n — 1). For
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exampleh, = 1, h,_;y = fo —n, andhy = Zj”:o(—l)”ﬂ' fi_1. If P is a simplex,
thenh; = 1 for all j. Note that the definition of the-vector makes sense for arbitrary
polytopes. As we mentioned in the IntroductionPiis rational and simplicial, then the
coefficients of thén-vector have a topological interpretation as Betti numbers.

Recall that a polynomiad(x) = Y ,ax' € Z[x] is calledsymmetridf & = a,_i
for alli, and is calledinimodalif its coefficients increase up to a certain index and then
decrease again.

In [Ad], Adin proved the following theorem, thereby generalizing Stanley’s result
[St2] for centrally symmetric simplicial polytopes:

Theorem 1.1[Ad]. Let(ho, ..., h,) denote the h-vector of a rational simplicial poly-
tope P with a symmetry of prime order p that is fixed-point free on the bountiaeyn
p — 1 divides n and the polynomial

n
X:hjxj — (A4 X4+ xPH e 7Z[x], where r:= T
j=0 B

is symmetric and unimodadnd all its coefficients are divisible by. p

Sincehg = 1, the constant term of the polynomial is zero. So the unimodality of
the polynomial implies in particular that the coefficients are nonnegative. The resulting
lower bounds for théy; are tight, as Adin shows by constructing examples of rational
simplicial polytopes with a “minimalh-vector. More precisely, given a natural number
n and a prime numbep such thatp — 1 dividesn, and, fori = 1,...,r :==n/(p— 1),

a copyS of the (p — 1)-simplexSin V; := RP~1, then the convex hull of the union
Ui_; S inthe direct sungD;_, Vi has a symmetry of ordey that is fixed-point free on
the boundary. In this cage)_ohjx) = (1+x+--- 4+ xP7)".

Inthis article we want to generalize Adin’s result further. Namely, we want to consider
rational polytopes that are not necessarily simplicial. Following Stanley (see [St3]), we
introduce two polynomiallp andgp for each polytopd®, that are defined by recursion
over the set of faces d? as follows:

() g =1, , _
(i) hp(X) = Y pcpp)(x — DIMP-dMF-1ge (x),
(ii)) gp(X) = T<(@imQ)/21((1 — X)p(X)),

wherer., denotes the truncation operatos (3 ,ax) == > _ ax.

The vector formed by the coefficients of the polynontialis called thegeneralized
h-vectorof P. Note thathp depends only on the set of fac€gP) as a partially ordered
set, and it involves not only the face numbers but also the numbers of certain flags of
faces ofP. If P is simplicial, then the generalized and the ordinasyector coincide.
However, this is not true for a general rational polytope. For example, the ordirary
vector of the three-dimensional cube(ls —1, 5, 1) whereas the generalizédvector
is (1, 5,5, 1).

The aim of this paper is to prove the following generalization of Theorem 1.1:

Theorem 1.2. Let P be a rational polytope of dimension n admitting a symmetry of
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prime order p without fixed points on the boundamd let(ho, hy, ..., hy) denote its
generalized h-vectoThen p— 1 divides n and the polynomial

n
p—1’

n
Zﬁjxi_(1+x+...+x9*1)reZ[x], where r:=
j=0

is symmetric and unimodadnd all its coefficients are divisible by. jn particular, all
the coefficients are nonnegative

2. Projective Toric Varieties and Intersection Cohomology

Both Stanley and Adin prove their results by first translating them to statements about
projective toric varieties, and we follow the same strategy. Ret R" be a rational
n-dimensional polytope with a symmetry of prime ordgrinduced by a linear map

A € GL,(Q). Suppose tha# does not have 1 as an eigenvalue. Then the characteristic
polynomial of A equals(1 + x + - - - + xP~H)" forr := n/(p — 1), and as arA-module

Q" decomposes into a direct sum ofcopies of Q[t]/(1 4+ X + --- + xP~1). So, in
particular, the rational canonical form @f has only integer entries. Therefore after a
suitable rational base change we can assumeftaGL,(Z).

The polytopeP defines afam\p := {R>o-(FU{O}) | F € F(P)}inR" consisting of
all the cones through proper facesRfSinceP is rational all the cones are rational with
respect to the latticE". The pair(Ap, Z") corresponds to an-dimensional projective
toric variety X = Xp (see, e.g., [Fu]). The vector spaReé is naturally identified with
the Lie algebra of the maximal compact subgr@&ipf the algebraic toru$ acting on
X, and the latticeZ" in R" is the kernelN of the exponential map from L{&€) to S.

Moreover, the linear map € GL,(Z) defines a unique automorphigim of T deter-
mined by the propertgdpa)e/n = A. The isomorphisnp 4 extends to an automorphism
of the toric varietyXp since A permutes the cones &p (for details on equivariant
morphisms of toric varieties see, e.g., [Fu]). The assumptionAHws no fixed points
on the boundary oP implies that the only-stableT -orbit in Xp is the dense orbit.

Conversely, every projective toric varie§with a T -equivariant automorphisip of
prime orderp can be written in the fornX = Xp for some polytopeP such that the
linear mapA = dgeln € GL,(Z) corresponding te induces a symmetry dP. If in
additiong fixes only the dens@& -orbit, thenA does not have 1 as an eigenvalue.

If Pis simplicial, then the associated projective toric variety is rationally smooth, i.e.,
it has at worst finite quotient singularities. In that case the odd Betti numbers of singular
cohomology vanish, and the even Betti numbers are precisely the entrieshefdotor
of P,i.e.,b% (Xp) = h; for 0 < j < n. So the Poincar polynomial of the toric variety
Xp is of the form

2n n

Px(t) := Y _dim(H! (X; @t} = "hyt?l.
j=0 j=0

By Poincag duality, the polynomiaPx is symmetric, and in particuldr; = h,_; for

all j. These relations for the coefficients of thevector are also known as the Dehn—

Sommerville equations. Moreover, the polynomi] is unimodal as a consequence
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of the hard Lefschetz theorem. (The fact that the hard Lefschetz theorem for singular
cohomology is true for rationally smooth varieties follows from the fact that there is also
a hard Lefschetz theorem for intersection cohomology of middle perversity of algebraic
varieties (see [BBD] and [Sa]). If the variety is rationally smooth, then the intersection
cohomology of middle perversity and singular conomology coincide.)

For example, thép — 1)-simplexS, for a given prime numbep, corresponds to the
toric varietyPP~1(C) whose Poincarpolynomial is 1+t2 + - . - +t?P~D and, as stated
in Section 1, all the entries of thevector of Sare equal to 1.

If we drop the assumption th& is simplicial, then the associated projective toric
variety Xp can have more complicated singularities, and the Betti numbers of singular
cohomology are no longer combinatorial invariants. However, instead of singular co-
homology, we can consider the rational intersection cohomology of middle perversity.
It turns out that the intersection Betti numbers are in fact given by the entries of the
generalized-vector(hy, .. ., h,) of P. More precisely, the odd intersection Betti num-
berslbyj;1(X) vanish and the even intersection Betti numbers satisfy(X) = ﬁj.

(In his survey article [St3], Stanley remarks that this result was proved independently
by Bernstein, Khovanskii, and MacPherson, but their proofs have not been published.
Proofs appeared in [Fi] by Fieseler and in [DL] by Denef and Loeser.) In particular, the
intersection Betti numbers are combinatorial invariants.

The Poincag polynomial of the intersection cohomology of middle perversity

2n

2n
IPx(t) := > dim(IH (X; Q)t! = " Ibjt!
j=0

j j=0

is symmetric, since Poinoaduality holds for intersection cohomology. Moreover, as
mentioned above there is also a hard Lefschetz theorem for intersection cohomology of
middle perversity and therefol® x is unimodal (see Corollary 3.2 of [St3]).

So in terms of toric varieties Theorem 1.2 reads as follows:

Theorem 2.1. Let X be a projective toric variety of dimensionand suppose that
X has a T-equivariant automorphisgmof prime order p defining a fixed-point-free
permutation of the T -orbits in the boundary of T in ®hen p— 1 divides n and the
polynomial

n
g(x) :=Zlb2,-xi — A4+ x4+ xPH ez[x], where r:=ﬁ,
=0 B

is symmetric and unimodadnd all its coefficients are divisible by. p

The symmetry of the polynomia immediately follows from the symmetry of the
Poinca€g polynomiallPx. So to prove the theorem, we only have to show thas$
unimodal and that the coefficients are divisible pyAnalogously to Adin’s proof of
Theorem 1.1, we proceed by interpreti(ly p)q as a polynomial whose coefficients
count certain dimensions. In our case, these are the dimensionspfdigenspaces of
@ on the graded pieces of the rational intersection cohomolog§fof some primitive
pth root of unity x.
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The automorphisny induces a linear map on thgh intersection cohomology
IHI(X; Q) of X for 0 < j < 2n. Sinceg is of order p, the possible eigenvalues
of the induced endomorphism are the elements of the gBap pth roots of unity. So
over the complex numbers, we have the following decomposition:

IHI(X:Q®C=EPIH(X),

x€G

wherelH i (X) denotes thg -eigenspace af. The crucial result is the following propo-
sition.

Proposition 2.2. Let X be a projective toric variety of dimensionand suppose that
X has a T-equivariant automorphisgnof prime order p defining a fixed-point-free
permutation of the T -orbits in the boundary of T inRétr :=n/(p — 1). Then

2n
P, (1) := > @dimIH) (X))t! = %(IPX(t) — (L4 2D
j=0

for every primitive ph root of unityy . In particular, IPx (t) = (14t24 ... 4+ t2(P=Dyr
iff ¢ induces the identity on IHX; Q).

The proof of this proposition is given in the last section using equivariant intersection
cohomology. We conclude this section by deducing Theorem 2.1 from the proposition.

Proof of Theoren2.1. It suffices to show tha®, is unimodal. The intersection coho-
mology of middle perversityH *(X; Q) forms a module over the ring of singular co-
homologyH*(X; Q). The hard Lefschetz theorem for intersection cohomology asserts
that there is an element € H?(X; Q) corresponding to a generic hyperplane section
of some embedding of into complex projective space, such that multiplication with
induces an injective map frotid 21 (X; Q) to IH2+2(X; Q) forall 0 < j < [n/2)].

The cohomology class is g-invariant since the action @f on X extends to a linear
action on the projective space (see the argument given in [St2], provided by Kleiman).
Therefore multiplication withw commutes with the action gf on the intersection
cohomology, and henae - IH2(X) c IHZ*2(X) for all 0 < j < [n/2] and for all
characterg. So, in particular, all the polynomial3, are unimodal. O

3. Equivariant Intersection Cohomology

In this section we first briefly recall some definitions, and then we state the facts that are
used in the proof of Proposition 2.2. For the algebraic tdrus (C*)", the principalT -
bundleET := (C®\{0O)" — (P>*°(C))" =: BT is a classifying bundle since the action

of T on the contractible spadeT by componentwise scalar multiplication is free. The
cohomology ringH*(BT; Q) of the base spacBT is a polynomial ring ovefQ in n
variables, where each variable has degree 2, and the corresponding cieries’ is
A4+t +tr 4+ )" =1 -tH™.
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Now let X be a toric variety acted on by the torlisand setg, := (C4*1\{0})" for
g € NU oco. The diagonal action of on Eq x X is free, and forming the quotient By
we obtainXr q 1= (Eq x X)/T = Eq xt X. The natural projection mapy: Xrq —
(P9(C))" =: By is a fibration with fiberX.

The intersection cohomology groupl } (X1,4; Q) isindependent off for 0 < j <
2q. Therefore it is natural to define equivariant intersection cohomologi( efith
rational coefficients in the following way (see (2.12) in [Ki]):

IHF(X; Q) := IH (X74:Q)  for j>0, where q> JE

The equivariant intersection cohomology Xfis related to its ordinary intersection

cohomology in the following way (see, e.g., (2.14) in [Ki]):

Remark. Let X be a projective toric variety. Then
IHT(X; Q) =~ H*(BT; Q) ®q IH*(X; Q). 3.1

This remark can be proved by observing that the spectral sequences associated to
the fibrationsp, degenerate at th&, level. So for everyj, there is a filtration of
IH I (X7 q; Q) such that the occurring factors are precisely Baeerms of the spectral
sequence on theth diagonal. On the other hand the direct sum offgliterms equals
the tensor produdt *(By; Q) ®g IH*(X; Q).

For the Poincar’series of the equivariant intersection cohomoldg’;&(t) =
Y Zo(dimIH 1 (X; @)t! we conclude from (3.1) that

IPT() =@ —tH ™" IPx(1). (3.2
We also use the following result, proved by Fieseler in [Fi]:

Proposition 3.1[Fi]. Let X be a projective toric variety corresponding to the fan
A € R". Then

IH3(X; Q) ~ @ IH}(Us, Uy \B,; Q), (33)
g€eA
where for every coner € A, U, denotes the corresponding affine chart of X and B
denotes the corresponding T -orbit

4. Proof of Proposition 2.2

Returning to the setting of Theorem 2.1 and Proposition 2.2, we assum tisaa
projective toric variety of dimensiomwith a T -equivariant automorphis of orderp,
for some prime numbep, and suppose that the onpystableT -orbit in X is the dense
orbit. Then, as remarked in Section 2, the automorphsm= dg. € Aut(N) of
the latticeN = kerexp does not have 1 as an eigenvalue. Siadg of order p, the
characteristic polynomial oA is a power of thepth cyclotomic polynomial.
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We prove Proposition 2.2 by analyzing the induced actiap@fi the terms occurring
in (3.1), and considering their respective refined Poiasaries.

The refined Poincag seriesPy, of a graded complex vector spaé = @;’iowi
with respect to the action of some graded endomorplgisshorder p is defined as the
following formal power series in one variable over the group @#fig] of the groupG
of pth roots of unity:

Py (t) :=§:Z(dimwpxti,

j=0 xeG

whereW, denotes the eigenspaceyin W/ for the eigenvalug e G. If, for example,
W is a polynomial ring in one variable of degrdavhich is an eigenvector af for the
eigenvalue,, thenPy (t) = 1+ Atd + 222 ... = (1 — 9L,

ForW = IH*(X; Q) ® Cor IH7(X; Q) ® C, we denote the corresponding refined
Poinca€ series bytP% or IP ¥, respectively. We claim that

IPLY(t) = PLo(t) IP%(1). 4.1)

To justify (4.1) note that th@ -equivariant automorphism of X also determines
automorphisms okq, as well as ofXt q and By, that commute with the fibrations
Pg: X1, — By. Sog acts naturally on all the terms occurring in the associated spectral
sequences. The proof of (3.1) implies that for evethere is an isomorphism between
the associated gradgdmodules oﬂH'T(X; Q) and of(H*(BT; Q) ®g IH*(X; Q))/.
Sincey is of finite order and hence semisimple, we can even concludel-ﬂ*l,aax; Q)
and(H*(BT; Q) ®q IH*(X; Q))! are isomorphic ag-modules and the claim follows.

We now computePg. There is a natural identification 6f2(BT; R) with the dual
of the Lie algebra Li€S) of the maximal compact toruS c T. On the other hand,
Lie(S) is generated as a real vector space\by= ker exp in LigS). So altogether we
have a natural isomorphism betwedA(BT; Q) andN\Y, and we can viewd*(BT; Q)
as the symmetric algebra by .

The action ofp on H?(BT; Q) ~ Ng is given by the dual oA So the eigenvalues
are precisely the primitivgth roots of unity, and each € G\{1} occurs with the same
multiplicity r := n/(p — 1). Over the complex numbers we can choose a basis of the
second cohomology consisting of eigenvectorsgoand the cohomology ring @T is
a polynomial ring in those basis vectors. Egcleigenvector in the basis of the second
cohomology contributes a factét — xt2)~* to the refined Poincarseries oB T, and
hence

0 3 i j 1
P+ () = Z > odimHIBT)xt = ] a0 (4.2)
j=0 xeG 1#£x€G

To describe the action gfon I1H 3 (X; Q) we use that, by Proposition 3.1H 7 (X; Q)
~ @P,cn HF Uy, Uy \ B, Q), whereA denotes the fan associated to the toric variety
X. That means that the long exaét 7 sequences associated to the p&irfs V;_1),
whereV; = (Jgim, <r B SPlit into short exact sequences. Sinceghaction preserves
the open exhaustion oX by the open subsets,, ¢ acts naturally on all the terms
occurring in those sequences. Using thas of finite order, we obtain as above that
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IH}(X; Q) and@, ., IHL(U,, U, \B,; Q) are isomorphic even ggmodules. So in
particular, the refined Poinaaseries of both sides of (3.3) are equal.

The action ofp on the right-hand side of (3.3) permutes the direct summands in the
same way as the linear mapconsidered as an element of GR) permutes the cones
of A. The onlyA-stable cone oA is the zero cone. We halgy = T = Ug and therefore
IH3 (Ug, Uo\Bp; Q) = IH3(T; Q), which consists of one copy @ in degree 0. So
the zero cone only contributes a one-dimensional subspace in the eigenspace for the
eigenvalue 1 ofH2(X; Q).

Every cones # 0 has an orbit of lengtip under A, and for everyj the ¢-stable
subspacé€P)_;, IH} (U, Uake)\Baro); Q) of IHL(X; Q) decomposes into a direct
sum of copies of the regular representation of the group generated Hyat implies
that in @O#M IH ’T(UG, U, \Bs; Q) every eigenvaluge € G appears with the same
multiplicity.

We obtain

IPY/(t) —1==>"(IPX(1) — Dx.

1
prG
Settingu 1= (1/p) 3_, ¢ x € Z[G] and using (3.2), we arrive at

_k
(1-t3n

Inserting (4.2) and (4.3) into (4.1) we get

IPLY(t) = IPx(t)+@1—p). (4.3)

IP%(t) = (ﬁ IPx(t)—i-(l—,U«)) [T a-xt». (4.4)
1#£xeG

Lemma4.1. Inthe polynomial rindZ[G][ x] over the group rindZ[ G] of the group G
of pth roots of unity the following identities hald

() #liggec@—xX" =pn@—x)"
(i) 1= ) [Tisyec@— x0" = @ — W@+ X+ -+ xP~Y)", where as above
n=@1/p > ccX-

Proof. (i) It suffices to checkcx = w for all x € G. However, this is clear since the
multiplication onX,EG x’ with an elemenj of G only permutes the summands.
(i) This part of the lemma is contained in [Ad] as Lemma 13. O

Applying Lemma 4.1 and insertingf for x, we can rewrite (4.4) in the following
form:
IPSM) = IPx(t) + (L — )L+ 2+ + 2P
which is equivalent to
1
IPYt) = A+t2+- - + 2P D) 4 ° D UPx(t) = A4 t2 4 12PD))
xeG

Now Proposition 2.2 is an immediate consequence.
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