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Abstract. We prove tight lower bounds for the coefficients of the generalizedh-vector of
a rational polytope with a symmetry of prime order that is fixed-point free on the boundary.
These bounds generalize results of Stanley and Adin for theh-vector of a simplicial rational
polytope with a central symmetry or a symmetry of prime order, respectively.

Introduction

For simplicial polytopes, there is a beautiful complete characterization of the occurring
h-vectors, conjectured by McMullen and proved by Billera, Lee, Stanley, and McMullen
(see [BL], [St1], and [McM]). Assuming that in addition the polytope admits a symmetry,
it is natural to ask for the resulting restrictions upon the correspondingh-vector.

Björner conjectured tight lower bounds for the coefficients of theh-vector of a cen-
trally symmetric simplicial polytope that were proved by Stanley in [St2], using the
theory of toric varieties. After a small perturbation preserving the combinatorics as well
as the central symmetry one can assume that the polytope is rational. Then the polytope
defines a rationally smooth projective toric variety with an equivariant involution and the
coefficients of theh-vector are the Betti numbers of the variety. Stanley in fact proves
lower bounds for those Betti numbers.

Stanley’s results were generalized by Adin to the case of rational simplicial polytopes
admitting a symmetry of prime order without fixed points on the boundary of the polytope
(see [Ad]). Here it is essential to assume that the polytope is rational, and Adin’s statement
does not make sense without it.

The aim of this paper is to prove an analogous result to Adin’s for rational polytopes
that are no longer assumed to be simplicial. Then the Betti numbers of the associated
projective toric varieties in general are not combinatorial invariants. We have to replace
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singular cohomology by rational intersection cohomology of middle perversity to arrive
at combinatorial invariants. The intersection Betti numbers can be expressed in terms
of numbers of certain flags of faces of the polytope and form the so-called generalized
h-vector (see [St3]).

We obtain lower bounds for the coefficients of the generalizedh-vector of a rational
polytope with the same type of symmetry as studied by Adin. In his proof Adin uses
the refined Poincar´e series of the Stanley–Reisner ring associated to the polytope. We
generalize this method by considering the refined Poincar´e series of the equivariant inter-
section cohomology instead. Note that in the simplicial case the equivariant intersection
cohomology forms a ring which is isomorphic to the Stanley–Reisner ring.

In Section 1 we fix the notation, recall Adin’s result, and state our generalization
(see Theorem 1.2). Section 2 is devoted to the interpretation of the result in terms of
projective toric varieties (see Theorem 2.1). Section 3 contains the facts about equivariant
intersection cohomology that are needed to complete the proof which is carried out in
Section 4.

1. Rational Polytopes with a Symmetry of Prime Order

Let P denote a rational polytope inRn, i.e., the convex hull of a finite number of points
with rational coordinates. We assume thatP is of full dimension and that the origin is
placed in its center of mass. By definition, a symmetry ofP is a bijection ofP induced
by a linear mapA. Note that the assumption thatP is rational impliesA ∈ GLn(Q).

A symmetry ofP does not have fixed points on the boundary of the polytope if and
only if the inducing linear mapA does not have 1 as an eigenvalue. This means that the
linear map permutes the proper faces of the polytope without mapping any face onto
itself.

We denote the set of proper faces ofP by F(P). (For technical reasons, we also
consider the empty set as a face with the convention dim∅ = −1.) If P admits a
symmetry of prime orderp without fixed points on the boundary, then all the orbits of
the induced permutation ofF(P) have lengthp, except the orbit of the empty face. So
in particular, the numbersf j of faces of dimensionj of P (for 0 ≤ j ≤ n− 1) are all
divisible by p. Moreover, the dimensionn is a multiple ofp− 1, since the linear map
A ∈ GLn(Q) defining the symmetry does not have 1 as an eigenvalue, and therefore its
characteristic polynomial is a power of thepth cyclotomic polynomial 1+x+· · ·+xp−1.

For example, the(p − 1)-simplex S ⊂ Rp−1, obtained as the convex hull of the
canonical basis vectorse1, . . . ,ep−1 and the vectorv := −∑p−1

i=1 ei , has a symmetry
of order p, induced by the linear map, sendingei to ei+1 for all i < p − 1 andep−1

to v. Polytopes admitting a symmetry of order 2 without fixed points on the boundary
are precisely centrally symmetric polytopes.

Theh-vector(h0, . . . , hn) of ann-dimensional polytopeP is defined as follows:

n∑
j=0

hj x
j :=

n∑
j=0

f j−1(x − 1)n− j ∈ Z[x] ,

where f j denotes the number ofj -dimensional faces ofP (for −1 ≤ j ≤ n − 1). For
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example,hn = 1, hn−1 = f0 − n, andh0 =
∑n

j=0(−1)n− j f j−1. If P is a simplex,
thenhj = 1 for all j . Note that the definition of theh-vector makes sense for arbitrary
polytopes. As we mentioned in the Introduction, ifP is rational and simplicial, then the
coefficients of theh-vector have a topological interpretation as Betti numbers.

Recall that a polynomialq(x) =∑n
i=0 ai xi ∈ Z[x] is calledsymmetricif ai = an−i

for all i , and is calledunimodalif its coefficients increase up to a certain index and then
decrease again.

In [Ad], Adin proved the following theorem, thereby generalizing Stanley’s result
[St2] for centrally symmetric simplicial polytopes:

Theorem 1.1[Ad]. Let(h0, . . . , hn) denote the h-vector of a rational simplicial poly-
tope P with a symmetry of prime order p that is fixed-point free on the boundary. Then
p− 1 divides n, and the polynomial

n∑
j=0

hj x
j − (1+ x + · · · + xp−1)r ∈ Z[x], where r := n

p− 1
,

is symmetric and unimodal, and all its coefficients are divisible by p.

Sinceh0 = 1, the constant term of the polynomial is zero. So the unimodality of
the polynomial implies in particular that the coefficients are nonnegative. The resulting
lower bounds for thehj are tight, as Adin shows by constructing examples of rational
simplicial polytopes with a “minimal”h-vector. More precisely, given a natural number
n and a prime numberp such thatp− 1 dividesn, and, fori = 1, . . . , r := n/(p− 1),
a copySi of the (p − 1)-simplex S in Vi := Rp−1, then the convex hull of the union⋃r

i=1 Si in the direct sum
⊕r

i=1 Vi has a symmetry of orderp that is fixed-point free on
the boundary. In this case

∑n
j=0 hj x j = (1+ x + · · · + xp−1)r .

In this article we want to generalize Adin’s result further. Namely, we want to consider
rational polytopes that are not necessarily simplicial. Following Stanley (see [St3]), we
introduce two polynomialshP andgP for each polytopeP, that are defined by recursion
over the set of faces ofP as follows:

(i) g∅ ≡ 1,
(ii) hP(x) =

∑
F∈F(P)(x − 1)dim P−dim F−1gF (x),

(iii) gP(x) = τ≤[(dim Q)/2]((1− x)hP(x)),

whereτ≤r denotes the truncation operatorτ≤r (
∑n

i=0 ai xi ) :=∑r
i=0 ai xi .

The vector formed by the coefficients of the polynomialhP is called thegeneralized
h-vectorof P. Note thathP depends only on the set of facesF(P) as a partially ordered
set, and it involves not only the face numbers but also the numbers of certain flags of
faces ofP. If P is simplicial, then the generalized and the ordinaryh-vector coincide.
However, this is not true for a general rational polytope. For example, the ordinaryh-
vector of the three-dimensional cube is(1,−1,5,1) whereas the generalizedh-vector
is (1,5,5,1).

The aim of this paper is to prove the following generalization of Theorem 1.1:

Theorem 1.2. Let P be a rational polytope of dimension n admitting a symmetry of
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prime order p without fixed points on the boundary, and let(h̃0, h̃1, . . . , h̃n) denote its
generalized h-vector. Then p− 1 divides n, and the polynomial

n∑
j=0

h̃j x
j − (1+ x + · · · + xp−1)r ∈ Z[x] , where r := n

p− 1
,

is symmetric and unimodal, and all its coefficients are divisible by p. In particular, all
the coefficients are nonnegative.

2. Projective Toric Varieties and Intersection Cohomology

Both Stanley and Adin prove their results by first translating them to statements about
projective toric varieties, and we follow the same strategy. LetP ⊂ Rn be a rational
n-dimensional polytope with a symmetry of prime orderp, induced by a linear map
A ∈ GLn(Q). Suppose thatA does not have 1 as an eigenvalue. Then the characteristic
polynomial ofA equals(1+ x + · · · + xp−1)r for r := n/(p− 1), and as anA-module
Qn decomposes into a direct sum ofr copies ofQ[t ]/(1 + x + · · · + xp−1). So, in
particular, the rational canonical form ofA has only integer entries. Therefore after a
suitable rational base change we can assume thatA ∈ GLn(Z).

The polytopeP defines a fan1P := {R≥0 ·(F∪{0}) | F ∈ F(P)} inRn consisting of
all the cones through proper faces ofP. SinceP is rational all the cones are rational with
respect to the latticeZn. The pair(1P,Zn) corresponds to ann-dimensional projective
toric varietyX = XP (see, e.g., [Fu]). The vector spaceRn is naturally identified with
the Lie algebra of the maximal compact subgroupS of the algebraic torusT acting on
X, and the latticeZn in Rn is the kernelN of the exponential map from Lie(S) to S.

Moreover, the linear mapA ∈ GLn(Z) defines a unique automorphismϕA of T deter-
mined by the property(dϕA)e|N = A. The isomorphismϕA extends to an automorphism
of the toric varietyXP since A permutes the cones of1P (for details on equivariant
morphisms of toric varieties see, e.g., [Fu]). The assumption thatA has no fixed points
on the boundary ofP implies that the onlyϕA-stableT-orbit in XP is the dense orbit.

Conversely, every projective toric varietyX with aT-equivariant automorphismϕ of
prime orderp can be written in the formX = XP for some polytopeP such that the
linear mapA = dϕe|N ∈ GLn(Z) corresponding toϕ induces a symmetry ofP. If in
additionϕ fixes only the denseT-orbit, thenA does not have 1 as an eigenvalue.

If P is simplicial, then the associated projective toric variety is rationally smooth, i.e.,
it has at worst finite quotient singularities. In that case the odd Betti numbers of singular
cohomology vanish, and the even Betti numbers are precisely the entries of theh-vector
of P, i.e.,b2 j (XP) = hj for 0≤ j ≤ n. So the Poincar´e polynomial of the toric variety
XP is of the form

PX(t) :=
2n∑

j=0

dim(H j (X;Q))t j =
n∑

j=0

hj t
2 j .

By Poincaré duality, the polynomialPX is symmetric, and in particularhj = hn− j for
all j . These relations for the coefficients of theh-vector are also known as the Dehn–
Sommerville equations. Moreover, the polynomialPX is unimodal as a consequence
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of the hard Lefschetz theorem. (The fact that the hard Lefschetz theorem for singular
cohomology is true for rationally smooth varieties follows from the fact that there is also
a hard Lefschetz theorem for intersection cohomology of middle perversity of algebraic
varieties (see [BBD] and [Sa]). If the variety is rationally smooth, then the intersection
cohomology of middle perversity and singular cohomology coincide.)

For example, the(p− 1)-simplexS, for a given prime numberp, corresponds to the
toric varietyPp−1(C)whose Poincar´e polynomial is 1+ t2+· · ·+ t2(p−1), and, as stated
in Section 1, all the entries of theh-vector ofSare equal to 1.

If we drop the assumption thatP is simplicial, then the associated projective toric
variety XP can have more complicated singularities, and the Betti numbers of singular
cohomology are no longer combinatorial invariants. However, instead of singular co-
homology, we can consider the rational intersection cohomology of middle perversity.
It turns out that the intersection Betti numbers are in fact given by the entries of the
generalizedh-vector(h̃0, . . . , h̃n) of P. More precisely, the odd intersection Betti num-
bers I b2 j+1(X) vanish and the even intersection Betti numbers satisfyI b2 j (X) = h̃j .
(In his survey article [St3], Stanley remarks that this result was proved independently
by Bernstein, Khovanskii, and MacPherson, but their proofs have not been published.
Proofs appeared in [Fi] by Fieseler and in [DL] by Denef and Loeser.) In particular, the
intersection Betti numbers are combinatorial invariants.

The Poincar´e polynomial of the intersection cohomology of middle perversity

IP X(t) :=
2n∑

j=0

dim(IH j (X;Q))t j =
2n∑

j=0

I bj t j

is symmetric, since Poincar´e duality holds for intersection cohomology. Moreover, as
mentioned above there is also a hard Lefschetz theorem for intersection cohomology of
middle perversity and thereforeIP X is unimodal (see Corollary 3.2 of [St3]).

So in terms of toric varieties Theorem 1.2 reads as follows:

Theorem 2.1. Let X be a projective toric variety of dimension n, and suppose that
X has a T -equivariant automorphismϕ of prime order p, defining a fixed-point-free
permutation of the T -orbits in the boundary of T in X. Then p− 1 divides n, and the
polynomial

q(x) :=
n∑

j=0

I b2 j x j − (1+ x + · · · + xp−1)r ∈ Z[x] , where r := n

p− 1
,

is symmetric and unimodal, and all its coefficients are divisible by p.

The symmetry of the polynomialq immediately follows from the symmetry of the
Poincaré polynomial IP X. So to prove the theorem, we only have to show thatq is
unimodal and that the coefficients are divisible byp. Analogously to Adin’s proof of
Theorem 1.1, we proceed by interpreting(1/p)q as a polynomial whose coefficients
count certain dimensions. In our case, these are the dimensions of theχ -eigenspaces of
ϕ on the graded pieces of the rational intersection cohomology ofX for some primitive
pth root of unityχ .
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The automorphismϕ induces a linear map on thej th intersection cohomology
IH j (X;Q) of X for 0 ≤ j ≤ 2n. Sinceϕ is of order p, the possible eigenvalues
of the induced endomorphism are the elements of the groupG of pth roots of unity. So
over the complex numbers, we have the following decomposition:

IH j (X;Q)⊗ C =
⊕
χ∈G

IH j
χ (X) ,

whereIH j
χ (X) denotes theχ -eigenspace ofϕ. The crucial result is the following propo-

sition.

Proposition 2.2. Let X be a projective toric variety of dimension n, and suppose that
X has a T -equivariant automorphismϕ of prime order p, defining a fixed-point-free
permutation of the T -orbits in the boundary of T in X. Let r := n/(p− 1). Then

Pχ (t) :=
2n∑

j=0

(dim IH j
χ (X))t

j = 1

p
(IP X(t)− (1+ t2+ · · · + t2(p−1))r )

for every primitive pth root of unityχ . In particular, IP X(t) = (1+ t2+ · · · + t2(p−1))r

iff ϕ induces the identity on IH∗(X;Q).

The proof of this proposition is given in the last section using equivariant intersection
cohomology. We conclude this section by deducing Theorem 2.1 from the proposition.

Proof of Theorem2.1. It suffices to show thatPχ is unimodal. The intersection coho-
mology of middle perversityIH ∗(X;Q) forms a module over the ring of singular co-
homologyH∗(X;Q). The hard Lefschetz theorem for intersection cohomology asserts
that there is an elementω ∈ H2(X;Q) corresponding to a generic hyperplane section
of some embedding ofX into complex projective space, such that multiplication withω
induces an injective map fromIH 2 j (X;Q) to IH 2 j+2(X;Q) for all 0≤ j ≤ [n/2].

The cohomology classω is ϕ-invariant since the action ofϕ on X extends to a linear
action on the projective space (see the argument given in [St2], provided by Kleiman).
Therefore multiplication withω commutes with the action ofϕ on the intersection
cohomology, and henceω · IH 2 j

χ (X) ⊂ IH 2 j+2
χ (X) for all 0 ≤ j ≤ [n/2] and for all

charactersχ . So, in particular, all the polynomialsPχ are unimodal.

3. Equivariant Intersection Cohomology

In this section we first briefly recall some definitions, and then we state the facts that are
used in the proof of Proposition 2.2. For the algebraic torusT = (C∗)n, the principalT-
bundleET := (C∞\{0})n→ (P∞(C))n =: BT is a classifying bundle since the action
of T on the contractible spaceET by componentwise scalar multiplication is free. The
cohomology ringH∗(BT;Q) of the base spaceBT is a polynomial ring overQ in n
variables, where each variable has degree 2, and the corresponding Poincar´e series is
(1+ t2+ t4+ · · ·)n = (1− t2)−n.
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Now let X be a toric variety acted on by the torusT , and setEq := (Cq+1\{0})n for
q ∈ N∪∞. The diagonal action ofT on Eq × X is free, and forming the quotient byT
we obtainXT,q := (Eq × X)/T = Eq ×T X. The natural projection mappq: XT,q →
(Pq(C))n =: Bq is a fibration with fiberX.

The intersection cohomology groupIH j (XT,q;Q) is independent ofq for 0 ≤ j <
2q. Therefore it is natural to define equivariant intersection cohomology ofX with
rational coefficients in the following way (see (2.12) in [Ki]):

IH j
T (X;Q) := IH j (XT,q;Q) for j ≥ 0, where q >

j

2
.

The equivariant intersection cohomology ofX is related to its ordinary intersection
cohomology in the following way (see, e.g., (2.14) in [Ki]):

Remark. Let X be a projective toric variety. Then

IH ∗T (X;Q) ' H∗(BT;Q)⊗Q IH ∗(X;Q). (3.1)

This remark can be proved by observing that the spectral sequences associated to
the fibrationspq degenerate at theE2 level. So for everyj , there is a filtration of
IH j (XT,q;Q) such that the occurring factors are precisely theE2 terms of the spectral
sequence on thej th diagonal. On the other hand the direct sum of allE2 terms equals
the tensor productH ∗(Bq;Q)⊗Q IH ∗(X;Q).

For the Poincar´e series of the equivariant intersection cohomologyIPT
X(t) :=∑∞

j=0(dim IH j
T (X;Q))t j we conclude from (3.1) that

IPT
X(t) = (1− t2)−n IP X(t) . (3.2)

We also use the following result, proved by Fieseler in [Fi]:

Proposition 3.1[Fi]. Let X be a projective toric variety corresponding to the fan
1 ∈ Rn. Then

IH ∗T (X;Q) '
⊕
σ∈1

IH ∗T (Uσ ,Uσ\Bσ ;Q), (3.3)

where, for every coneσ ∈ 1, Uσ denotes the corresponding affine chart of X and Bσ

denotes the corresponding T -orbit.

4. Proof of Proposition 2.2

Returning to the setting of Theorem 2.1 and Proposition 2.2, we assume thatX is a
projective toric variety of dimensionn with aT-equivariant automorphismϕ of orderp,
for some prime numberp, and suppose that the onlyϕ-stableT-orbit in X is the dense
orbit. Then, as remarked in Section 2, the automorphismA := dϕe ∈ Aut(N) of
the latticeN = ker exp does not have 1 as an eigenvalue. SinceA is of order p, the
characteristic polynomial ofA is a power of thepth cyclotomic polynomial.
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We prove Proposition 2.2 by analyzing the induced action ofϕ on the terms occurring
in (3.1), and considering their respective refined Poincar´e series.

The refinedPoincaré seriesPϕ

W of a graded complex vector spaceW = ⊕∞
j=0 W j

with respect to the action of some graded endomorphismϕ of order p is defined as the
following formal power series in one variable over the group ringZ[G] of the groupG
of pth roots of unity:

Pϕ

W(t) :=
∞∑

j=0

∑
χ∈G

(dimW j
χ ) χ t j ,

whereW j
χ denotes the eigenspace ofϕ in W j for the eigenvalueχ ∈ G. If, for example,

W is a polynomial ring in one variable of degreed which is an eigenvector ofϕ for the
eigenvalueλ, thenPϕ

W(t) = 1+ λtd + λ2t2d + · · · = (1− λtd)−1.
For W = IH ∗(X;Q)⊗ C or IH ∗T (X;Q)⊗ C, we denote the corresponding refined

Poincaré series byIPϕ

X or IPT,ϕ
X , respectively. We claim that

IPT,ϕ
X (t) = Pϕ

BT(t) IPϕ

X(t). (4.1)

To justify (4.1) note that theT-equivariant automorphismϕ of X also determines
automorphisms ofEq, as well as ofXT,q and Bq, that commute with the fibrations
pq: XT,q → Bq. Soϕ acts naturally on all the terms occurring in the associated spectral
sequences. The proof of (3.1) implies that for everyj there is an isomorphism between
the associated gradedϕ-modules ofIH j

T (X;Q) and of(H∗(BT;Q)⊗Q IH ∗(X;Q)) j .
Sinceϕ is of finite order and hence semisimple, we can even conclude thatIH j

T (X;Q)
and(H ∗(BT;Q)⊗Q IH ∗(X;Q)) j are isomorphic asϕ-modules and the claim follows.

We now computePϕ

BT. There is a natural identification ofH2(BT;R) with the dual
of the Lie algebra Lie(S) of the maximal compact torusS ⊂ T . On the other hand,
Lie(S) is generated as a real vector space byN = ker exp in Lie(S). So altogether we
have a natural isomorphism betweenH2(BT;Q) andN∨Q , and we can viewH∗(BT;Q)
as the symmetric algebra ofN∨Q .

The action ofϕ on H2(BT;Q) ' N∨Q is given by the dual ofA. So the eigenvalues
are precisely the primitivepth roots of unity, and eachχ ∈ G\{1} occurs with the same
multiplicity r := n/(p− 1). Over the complex numbers we can choose a basis of the
second cohomology consisting of eigenvectors forϕ, and the cohomology ring ofBT is
a polynomial ring in those basis vectors. Eachχ-eigenvector in the basis of the second
cohomology contributes a factor(1− χ t2)−1 to the refined Poincar´e series ofBT, and
hence

Pϕ

BT(t) =
∞∑

j=0

∑
χ∈G

(dim H j
χ (BT))χ t j =

∏
16=χ∈G

1

(1− χ t2)r
. (4.2)

To describe the action ofϕ on IH ∗T (X;Q)we use that, by Proposition 3.1,IH ∗T (X;Q)
'⊕σ∈1 IH ∗T (Uσ ,Uσ\Bσ ;Q), where1 denotes the fan associated to the toric variety
X. That means that the long exactIH ∗T sequences associated to the pairs(Vr ,Vr−1),
whereVr :=⋃dimσ≤r Bσ , split into short exact sequences. Since theϕ-action preserves
the open exhaustion ofX by the open subsetsVr , ϕ acts naturally on all the terms
occurring in those sequences. Using thatϕ is of finite order, we obtain as above that
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IH j
T (X;Q) and

⊕
σ∈1 IH j

T (Uσ ,Uσ\Bσ ;Q) are isomorphic even asϕ-modules. So in
particular, the refined Poincar´e series of both sides of (3.3) are equal.

The action ofϕ on the right-hand side of (3.3) permutes the direct summands in the
same way as the linear mapA considered as an element of GLn(R) permutes the cones
of1. The onlyA-stable cone of1 is the zero cone. We haveB0 = T = U0 and therefore
IH ∗T (U0,U0\B0;Q) = IH ∗T (T;Q), which consists of one copy ofQ in degree 0. So
the zero cone only contributes a one-dimensional subspace in the eigenspace for the
eigenvalue 1 ofIH 0

T (X;Q).
Every coneσ 6= 0 has an orbit of lengthp under A, and for everyj theϕ-stable

subspace
⊕p

k=1 IH j
T (UAk(σ ),UAk(σ )\BAk(σ );Q) of IH j

T (X;Q) decomposes into a direct
sum of copies of the regular representation of the group generated byϕ. That implies
that in

⊕
06=σ∈1 IH j

T (Uσ ,Uσ\Bσ ;Q) every eigenvalueχ ∈ G appears with the same
multiplicity.

We obtain

IPT,ϕ
X (t)− 1= 1

p

∑
χ∈G

(IPT
X(t)− 1)χ .

Settingµ := (1/p)
∑

χ∈G χ ∈ Z[G] and using (3.2), we arrive at

IPT,ϕ
X (t) = µ

(1− t2)n
IP X(t)+ (1− µ) . (4.3)

Inserting (4.2) and (4.3) into (4.1) we get

IPϕ

X(t) =
(

µ

(1− t2)n
IP X(t)+ (1− µ)

) ∏
16=χ∈G

(1− χ t2)r . (4.4)

Lemma 4.1. In the polynomial ringZ[G][x] over the group ringZ[G] of the group G
of pth roots of unity the following identities hold:

(i) µ
∏

16=χ∈G(1− χx)r = µ(1− x)n;
(ii) (1− µ)∏16=χ∈G(1− χx)r = (1− µ)(1+ x + · · · + xp−1)r , where as above

µ = (1/p)
∑

χ∈G χ .

Proof. (i) It suffices to checkµχ = µ for all χ ∈ G. However, this is clear since the
multiplication of

∑
χ ′∈G χ

′ with an elementχ of G only permutes the summands.
(ii) This part of the lemma is contained in [Ad] as Lemma 13.

Applying Lemma 4.1 and insertingt2 for x, we can rewrite (4.4) in the following
form:

IPϕ

X(t) = µ IP X(t)+ (1− µ)(1+ t2+ · · · + t2(p−1))r ,

which is equivalent to

IPϕ

X(t) = (1+ t2+ · · · + t2(p−1))r + 1

p

∑
χ∈G

(IP X(t)− (1+ t2+ · · · + t2(p−1))r )χ .

Now Proposition 2.2 is an immediate consequence.
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