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Abstract. Consider an art gallery formed by a polygon onn vertices withm pairs of
vertices joined by interior diagonals, the interior walls. Each interior wall has an arbi-
trarily placed, arbitrarily small doorway. We show that the minimum number of guards that
suffice to guard all art galleries withn vertices andm interior walls is min{b(2n− 3)/3c,
b(2n+m− 2)/4c, b(2m+ n)/3c}. If we restrict ourselves to galleries with convex rooms
of size at leastr , the answer improves to min{m, b(n+m)/r c}. The proofs lead to linear
time guard placement algorithms in most cases.

Introduction

The original art gallery problem, posed by Klee and solved by Chv´atal [6], is to find the
smallest number of guards necessary to cover any simple polygon, the art gallery, not
necessarily convex, onn vertices. Here a covering byg guards means that one can find
g points in the interior of the polygon such that every point in the interior is covered
by some guard, that is, for each point in the interior the line segment between it and
some guard does not intersect the polygon. Thecomb polygonsin Fig. 1 show thatbn/3c
guards are sometimes necessary—ifn is not divisible by 3 simply take a comb on 3bn/3c
vertices and subdivide one or two of its edges. Chv´atal also showed thatbn/3c guards
always suffice. For more information on the history of this problem and related problems,
see [15] and [17].

Hutchinson [11] generalized the basic art gallery problem by allowing interior walls.
Throughout this paper anart gallery (with interior walls) will be a simple polygon on
n vertices with some pairs of vertices joined by nonintersecting interior diagonals, the
interior walls. Also suppose that in the interior of each of the walls there is an arbitrarily
placed, arbitrarily small opening, thedoorway. Figure 2 is an example of an art gallery
onn = 15 vertices and 8 interior walls that requires 9 guards. Hutchinson now asked to
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Fig. 1. Comb polygons.

determine the minimum number of guards that suffice to cover any such art gallery onn
vertices.

To motivate our proofs we give Fisk’s [9] elegant proof of Chv´atal’s result:
First triangulate the polygon. The resulting plane graph, with vertex set the corner

points of the polygon, has all its vertices on the outside face. Graphs that can be embedded
in the plane in such a way are calledouterplanar. It is well known that outerplanar graphs
are 3-colorable, which can be easily seen by cutting along a chord and applying induction.
Since each triangle in the triangulation must have vertices of all three colors, putting a
guard at each vertex in the smallest color class produces a covering set ofbn/3c guards.

We now answer Hutchinson’s question with an argument in the spirit of Fisk’s proof
(see also [13]).

Lemma 1. b(2n−3)/3c guards suffice to cover any art gallery on n vertices and there
are galleries withb2n/3c − 2 interior walls where this many guards are required.

Proof. We may assume that the interior walls triangulate the art gallery, since adding
extra interior walls cannot make it easier to guard the gallery. This outerplanar graph
can now be 3-colored. From such a coloring, we get a labeling of the edges of the graph
by assigning to each edge the colornot usedon its endpoints. Now each triangle has
each color appearing on one of its incident edges. Placing a guard in the doorway, for
interior walls, or just next to the wall, for exterior walls, we can see that each set of
labels corresponds to a set of guards that covers the whole art gallery. Sincen-vertex

Fig. 2. Art gallery with interior walls



Art Galleries with Interior Walls 251

Fig. 3. V.

outerplanar triangulations have 2n − 3 edges, which can be seen by induction or by
Euler’s formula, taking the least frequent color suffices.

Art galleries of the type in Fig. 2 achieve this bound. They are obtained by starting
with a small gallery, and attachingk = bn/3c − 1 of theV-shaped galleries in Fig. 3. If
we attach aV with the leftmost wall to an already existing art gallery and put the doorway
exactly in the center we increase the number of vertices by three, the number of interior
walls by two, and the number of guards needed by two. Note that even if a guard from
the smaller gallery can be placed in the doorway of the interior wall connecting theV to
the smaller gallery that guard still cannot see the other branch of theV or the triangle,
so that those will require one additional guard each.

Whenn = 3k + 3 our starting gallery is a triangle (as in Fig. 2), whenn = 3k + 4
any quadrilateral, and whenn = 3k+5 aV. This produces art galleries withb2n/3c−2
(that is 2k, 2k, and 2k+1, respectively) interior walls. The galleries also require exactly
one more guard than they have interior walls.

This settles the problem when the number of interior walls is unspecified. However,
what happens when we have a specified number of interior walls, saym? This question
was suggested by J. Griggs. Ifm ≥ b2n/3c − 2, then Lemma 1 shows that the answer
is still b(2n− 3)/3c, since adding additional interior walls in the art galleries provided
does not make guarding any easier.

Theorem 2. The minimum number of guards that suffice to cover all art galleries with
n vertices and m interior walls, g(n,m), is

min

{⌊
2n− 3

3

⌋
,

⌊
2m+ n

3

⌋
,

⌊
2n+m− 2

4

⌋}
or, more precisely,

g(n,m) =



⌊
2n− 3

3

⌋
for m≥ b 2

3nc − 2,⌊
2m+ n

3

⌋
for m< b 2

5nc,⌊
2n+m− 2

4

⌋
otherwise.
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Fig. 4. Guard placement.

Lemma 1 proves the first part of the statement, and the other two parts are Lemmas 3
and 4.

Lemma 3. Always g(n,m) ≤ b(2m+ n)/3c, and for m< b2n/5c there are galleries
with m interior walls where this many guards are required.

Proof. The bound can be easily established by induction, but there is also a Fisk-type
argument. Before triangulating the art gallery, assign each vertexv a weight ofd(v)−1,
whered(v) is the degree ofv in the outerplanar graph determined by the gallery, i.e.,
the number of walls meeting atv. For example in the art gallery without interior walls
each vertex has weight 1. Now triangulate the gallery, also using the interior walls that
are already present, 3-color the triangulation, and find the color class of smallest total
weightW. It will suffice to find a guard set withW guards, since the total weight on all
vertices is ∑

v∈V(G)

(d(v)− 1) = 2|E(G)| − n = 2m+ n.

To do this simply putd(v)− 1 guards at each vertexv in the color class of total weight
W by putting one guard on every interior angular bisector of walls that meetv, as shown
in Fig. 4, close tov. Note that when we place the guards we ignore the chords that are
not walls and were introduced in the triangulation step. Since every triangle has a vertex
of our chosen color, and each triangle is covered by a guard at the vertex associated with
it, we are done.

Call the art gallery in Fig. 5 anE. Notice that anE has 7 vertices, 1 interior wall, and
requires 3 guards since no guard can cover more than one of the three alcoves. If we

Fig. 5. E.
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attach anE with the vertical wall to an already existing art gallery and put the doorway
exactly in the center we increase the number of vertices by five, the number of interior
walls by two and the number of guards necessary by three. We put the doorway in the
middle of the vertical wall, so that a guard there cannot cover either alcove.

To achieve the bound, letm= 2k+ ε with ε ∈ {0,1}.
Start the construction with a comb onn− 5k− ε vertices. Sincen− 5k− ε ≥ 3+ ε,

such a comb exists. Ifm is odd, attach one triangular room to a wall parallel to the
long horizontal wall in the comb. This adds 1 vertex, 1 interior wall, and 1 guard, since
the guard that is needed to cover the triangle cannot cover any prong of the comb. (If
n− 5k − 1 ∈ {4,5}, then start with aV and subdivide any wall if necessary.) In either
case addk E’s, starting from an end of the comb. The resulting art gallery hasn vertices
andm interior walls. The number of guards required is

for m= 2k: ⌊
n− 5k

3

⌋
+ 3k =

⌊
n+ 4k

3

⌋
=
⌊

2m+ n

3

⌋
;

for m= 2k+ 1:⌊
n− 5k− 1

3

⌋
+ 1+ 3k =

⌊
n+ 4k+ 2

3

⌋
=
⌊

2m+ n

3

⌋
.

Lemma 4. Always g(n,m) ≤ b(2n + m − 2)/4c, and for b(2n − 4)/5c ≤ m ≤
b(2n − 5)/3c there are galleries with m interior walls where this many guards are
required.

Proof. For the construction letk = b(2n− 3m− 5)/4c ≥ 0. Start with the art gallery
with n − 5k ≥ 3 vertices andm− 2k interior walls constructed in Lemma 1. It is a
straightforward computation to check that indeedb2(n− 5k)/3c− 2≤ m− 2k (use the
fact that, for every integerx, x ≥ byc ⇐⇒ x + 1 > y), so that the construction from
Lemma 1 applies. Now addk E’s. The number of guards needed for this art gallery is

3k+
⌊

2(n− 5k)− 3

3

⌋
=
⌊

2n− b(2n− 3m− 5)/4c − 3

3

⌋
≥
⌊

8n− 2n+ 3m+ 5− 12

12

⌋
=
⌊

2n+m− 2

4

⌋
,

unless 2n+m− 2 is divisible by 4. However, in that case our inequality was not sharp
and we can gain an additional1

12 from that term.
We now prove the upper bound by induction onn, with the added requirement that

when 2n+m−2 is divisible by 4 we can place one of the guards arbitrarily at an exterior
wall.

The bound holds form= 0, sinceg(n,0) = bn/3c ≤ b(n− 1)/2c for n ≥ 3. This is
the only feasible value for the base casen = 3. The added requirement also holds when
n = 3: we can place the guard where we want since triangles are convex.
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Fig. 6.

Consider an art galleryA with n > 3 vertices andm > 0 walls, and letg(A) be the
number of guards needed to coverA. Cut the art gallery along an interior wallxy (see
Fig. 6). This splits the gallery into two parts sharing two vertices. Fori ∈ {1,2}, let ni

andmi be the number of vertices and interior walls in thei th part. Hencen1+n2 = n+2
andm1+m2 = m− 1, so that

g(A) ≤ g(n1,m1)+ g(n2,m2) ≤
⌊

2n1+m1− 2

4

⌋
+
⌊

2n2+m2− 2

4

⌋
≤ 2(n1+ n2)+ (m1+m2)− 4

4
= 2n+m− 1

4
.

Thereforeg(A) ≤ b(2n+m−2)/4c, unless equality holds everywhere, which implies
that(2n1+m1− 2) and(2n2+m2− 2) are divisible by 4. However, in that case we can
invoke the stronger hypothesis and require guards to be on either side of the separating
wall xy right next to the doorway. Now replacing these two guards by a single guard in
the doorway yields the claim.

To show the additional requirement now suppose that 2n + m− 2 is divisible by 4
and that a guard must be placed near exterior walluv. Triangulate the gallery, also using
the interior walls that are already present, and letw be the third vertex in the triangle
containinguv. Removing the triangleuvw, which is already covered, splits the gallery

Fig. 7.
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into two parts (see Fig. 7), satisfyingn1+ n2 = n+ 1 andm1+m2 ≤ m. Thus

g(A) ≤ g(n1,m1)+ g(n2,m2)+ 1≤
⌊

2n1+m1− 2

4

⌋
+
⌊

2n2+m2− 2

4

⌋
+ 1

≤ 2(n1+ n2)+ (m1+m2)

4
≤ 2n+m+ 2

4
.

This also works in the degenerate case when one of theni = 2. So we are done unless
equality holds everywhere, since 2n+m− 2 is divisible by 4. This implies that(2n1+
m1− 2) and(2n2+m2− 2) are divisible by 4. Alsom1+m2 = m so that neither of the
chordsuw or vw is an interior wall. Again we invoke the stronger induction hypothesis
and require guards near the chordsuw andvw close tow. Replacing these two guards
by a single guard right atw finishes the proof.

Art Galleries with Convex Rooms

In [7] Czyzowicz et al. study art galleries that consist of polygons onn vertices that are
subdivided, not necessarily along chords, intok convexregions and show that these can
be covered withb2(n+k)/3c guards. This result is independent of Theorem 2, since our
problem allows rooms of arbitrary shape but requires the interior walls to be chords.

It would be a common special case to study art galleries withn vertices andm interior
walls such that allk = m+1 interior rooms are convex. Notice that we are not requiring
the polygon itself to be convex. However, doing so does not change the answer, since
our construction achieving the upper bound can easily be built to meet this additional
requirement. Since it will pose no additional difficulty, we also require each room to
have at leastr ≥ 3 walls, withr = 3 being the general case.

Summing the sizes of the rooms yieldsn+ 2m, since the interior walls are counted
twice. Hence for art galleries such that all rooms have size at leastr , we haven+ 2m≤
(m+ 1)r , or equivalentlyn ≥ m(r − 2)+ r .

Theorem 5. The minimum number of guards that suffice to cover all art galleries with
m> 0 interior walls and n≥ m(r −2)+ r vertices, such that all rooms are convex with
at least r walls, g∗r (n,m), is

min

{
m,

⌊
n+m

r

⌋}
or, more precisely,

g∗r (n,m) =


m for m≤

⌊
n

r − 1

⌋
,

⌊
n+m

r

⌋
, for m>

⌊
n

r − 1

⌋
.

Proof. The bounds are straightforward. For the first bound, place a guard in each
doorway. Since the rooms are convex every room can be covered by at least one of the
guards.
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Fig. 8. D3, D4, andD5.

For the second bound, one can first provide a labeling of the walls withr labels, such
that each room has every label on one of its walls. We do so by induction onm with the
result being trivial form= 0. Form> 0 cut along an interior wall and apply induction
on both parts. To combine both labelings into one it may be necessary to swap labels in
one of the parts if they disagree on the separating wall. Now placing one guard at each
wall suggested by the label used least frequently establishes the bound.

For the construction, letDr be an art gallery with one central room andr − 1 side
rooms of sizer . The side rooms share a wall only with the central room. Figure 8 shows
D3, D4, andD5. EachDr hasr − 1 interior walls,r (r − 2) + 2 vertices, and requires
r − 1 guards.

If m≤ bn/(r − 1)c, our gallery will be similar to aDr :
Take a center room of sizen−m(r − 2) ≥ r , and attachm side rooms of sizer each.

This is possible, since whenm ≤ bn/(r − 1)c we haven − m(r − 2) ≥ m, and this
gallery requiresm guards.

If on the other handm > bn/(r − 1)c, then letk = d(m(r − 1)− n)/r e > 0. We
form our gallery by taking a gallery onn′ = n−kr(r −2) vertices andm′ = m−kr ≥ 0
interior walls and then attachingk Dr ’s to it. Always attaching the nextDr with the free
wall of its center room to any other room we obtain a gallery onn vertices andm walls.

It can be readily checked thatn′ ≥ m′(r − 2)+ r andn′ ≥ m′(r − 1) so that we can
take a gallery from the first case to start out with. So we need

m′ + k(r − 1) = m− k =
⌊

m− m(r − 1)− n

r

⌋
=
⌊

m+ n

r

⌋
guards to cover this gallery.

Complexity

In implementing Fisk’s proof, Avis and Toussaint [2] obtained anO(n logn) algorithm
to placebn/3c guards to guard ann-vertex art gallery. This approach can be improved to
obtain a linear time algorithm, since Chazelle [3], [4] showed that ann-vertex polygon
can be triangulated, at least theoretically, in timeO(n).
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First triangulate the polygon in timeO(n). Since outerplanar triangulations are chordal
graphs, one can find a vertex elimination scheme (see, for example, [16]) and then use
this to obtain a 3-coloring of the vertices [10], both inO(n + e) = O(n) time. Now
placing the guards just requiresO(n) time and the algorithm is linear.

From here it is easy to see how the upper bound arguments in Lemmas 1 and 3 can
be used to find linear time algorithms for these problems too. The only problem could
be that the existence of interior walls does not necessarily make triangulation easier.
However, we can triangulate each room separately. This is still possible in linear time,
since they have a total ofn+ 2m < 3n vertices. Finding the rooms and therefore also
the weak dual can be done in linear time. See [5] or [12] to find the rotation scheme
from which this can be done.

A straightforward implementation of Lemma 4 results in anO(n2) algorithm, due to
the stronger statement, even form= 0. However, this case can be implemented in linear
time even with the stronger statement. Forn = 3 just add the guard where requested.
Forn ≥ 4 apply the basic algorithm and just add the extra guard at the required place if
necessary. This will work sincebn/3c + ε ≤ b(n− 1)/2c, for n ≥ 4 with ε = 1 whenn
is odd and 0 otherwise.

This makes a faster algorithm plausible, however, it is still an open question whether
a linear time algorithm can be obtained in this case. A Fisk-type proof for the upper
bound in Lemma 4 would certainly yield a fast algorithm.

In the case of convex rooms the situation is easier. The first bound trivially leads to
an O(m) algorithm. The second bound can be implemented in timeO(m) = O(n) as
well, since the labeling can be found in linear time: Find the weak dual of the art gallery,
then starting at any vertex conduct a Breadth-First Search on this dual tree to determine
the order in which the rooms will be labeled. In the first room label the edges using each
one of ther labels at least once. On each consecutive room one wall is already labeled,
so label the remaining walls accordingly to assure that every label is being used.

It is important to note that although these algorithms give fast algorithms for guarding
given classes of art galleries efficiently they do not necessarily give the best possible
answer for a specific art gallery. This problem is known to be NP-hard even when the
art gallery has no interior walls [1], [14].
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