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Abstract. We show that the maximum number of mutually nonoverlapping translates of
any tetrahedrof which touchT is 18. Moreover, in the case of 18 touching translates the
arrangement turns out to be unique. We also give a description of all possible arrangements
of 17 touching translates. Finally, we apply these results to determine the minimum and
maximum densities of #neighbor translative packings of tetrahedra.

1. Introduction

First we recall some standard definitions. Byg-@limensional convex bodye mean a
compact convex subset Bf with nonempty interior. Two subsets Bf with nonempty
interiors arenonoverlappindf they have no common interior point, and we say that they
touch each otheif they are nonoverlapping but their intersection is nonempty. Denote
by H (K) thetranslative kissing numbesf a d-dimensional convex bodiK, which is
defined as the maximum number of mutually nonoverlapping translat€studt can be
arranged so that all toudk. H(K) is often called thédadwiger numbenof K as well.

It was proved by Swinnerton-Dyer [17] th&t(K) > d? + d holds for everyd-
dimensional convex bodiK (d > 1). A recent result of Talata [18] improves on this
bound for sufficiently large values of, showing that there exists an absolute constant
¢ > 0 such thatH (K) > 2% for everyd-dimensional convex bodi{ . Combining this
result with the inequalityH (K) < 39 — 1, which was proved by Hadwiger [9], it turns
out that the order of magnitude bf(K) is exponential in the dimension &f for every
convex bodyK .

* This work was partially supported by the Hungarian National Science Foundation under Grant No. A-
221/95.
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A natural problem is the determination &f(K) when K belongs to some well-
known classes of convex bodies. Groemer [6] proved th@ ) = 3¢ — 1 if and only
if K is a paralleletope. In the case of Euclidean balls, the exponential lower bound
H(K) > (2/+/3+ 0(1))? was found by Shannon [15] and Wyner [19].

Griinbaum [7] proved that if a two-dimensional convex bd€lys different from a
parallelogram, themd (K) = 6. However, the exact determination Hf(K) can be a
very hard problem even for some three-dimensional convex bodies. For example, when
K is a three-dimensional Euclidean ball, then this problem leads to the well-known
Newton-Gregory problem, posed in 1694, which was first solved by Hoppe [10] in 1874,
showing that in this caskl (K) = 12. In the present paper we determine the translative
kissing number of tetrahedra.

Let T be a three-dimensional tetrahedron. Zong [21] proved that 18(T) < 19
and conjectured thdtl (T) = 18. He also conjectured that there exists a unique lattice
arrangement of nonoverlapping translate3 af which T has 18 touching members. In
the following theorem we not only verify Zong’s conjectures, but we are able to give a
stronger uniqueness property.

Theorem 1. Let T be atetrahedron in RThen
H(T) =18

Moreoveythe arrangement of8 mutually nonoverlapping translates of T in which all
the translates touch T is unique

In the next section we show that the problem of the determination of the translative
kissing numbeH (K) of a convex bodyK can be reformulated by using the notion of
1-discrete sets. Thus we can characterize the translative kissing numbers in another way,
with which we are notonly able to reformulate Theorem 1, but we can also give acomplete
description of the arrangements where there are exactly 17 mutually nonoverlapping
translates of the tetrahedrdnhwhich touchT. This characterization will be useful in
the proofs of Section 3 as well. Finally, in Section 4 we apply the obtained description
of arrangements of 17 touching translates to get the minimum and maximum densities
of 17t-neighbor translative packings of tetrahedra. Namely, there we prove that the
inequalities

o=d (@) =d"(T) =3
hold for any 17 -neighbor translative packirngy’ of a tetrahedron, and these bounds are
sharp (see Proposition 4.2). (Here we denotelby7’) andd*(7") the lower and the
upper densities df ’, respectively.)

For additional related results and references on this topic, see [1], [2], [20], [22], and
the survey papers [4] and [5].

2. Reformulation of the Problem

First we introduce notation and recall some facts, which will help us to reformulate the
problem of the determination of translative kissing numbers.
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Let A, B ¢ RY. We definex A + 8B as the sefaa + b | a € A, b € B} for any
a, B € R. We denote byA — B the setA + (—1)B. If v € RY, then we writeA + v
instead ofA + {v}. A subsetA’ of RY is called ahomothetic coppf Aif A =« A+ v
for a suitablex > 0 andv € RY. We denote by A the set of boundary points &. If A
is finite, then we use the notatigA| for the cardinality ofA. Amap f: R® - R3isa
congruencef || f(x) — f(y)|| = ||x — y|| for everyx, y € R%, where|| - | denotes the
usual Euclidean norm.

From now on,K denotes an arbitrany-dimensional convex body.

We recall a well-known observation, the so-called “difference body method” of Min-
kowski [13] (also see [14] for a description of the method). gtv; € RY. Then the
two translateK + v, andK + v, of K are mutually nonoverlapping (resp. touching)
if and only if %(K —K)+v and%(K — K) + v, are mutually nonoverlapping (resp.
touching).

A simple consequence of this observation is the following {betv,, . .., va} C RY.

The translate$K + v; }i'_; of K are mutually nonoverlapping (resp. tou¢hif and only
if the elements of the arrangeme{r%t(K — K) + vi}iL, are mutually nonoverlapping
(resp. touch%(K — K)). From this fact it follows thaH (K) = H(K — K), and that it
would be enough to prove Theorem 1 for T instead of the tetrahedran However,
we choose another way for the proof. We consider thgiseto, .. ., vy} of centers of
the translates og(K — K) to get another description féit (K).

We use the notatiofi - ||k _x for the Minkowski norm with unit ball K— K, i.e., if
v € RY, then|lv|lk—k = |lv|l/llwl]l, where]| - || denotes the usual Euclidean norm, and
w is a vector parallel te and having its endpoint on the boundarykof- K.

Letr be a positive real number. A s8tc RY is r-discrete in the metric determined
by K — K (or simplyr-discrete whenK — K is fixed) if |p — qllk_k > r for every
p, q € S. We note that every boundeeddiscrete set is finite for any > 0.

It is easily seen by the previous arguments théK ) is equal to the maximum cardi-
nality of 1-discrete subsets 8{K — K) in the metric determined bl — K. Moreover,
there exists a unique arrangementtbfK) mutually nonoverlapping translates kf
which all touchK if and only if there exists a unique 1-discrete subset(@®f — K) in
the metric determined bl — K with maximum cardinality.

On the other hand, the translative kissing numbers are affine invariant quantities, thus
it is enough to prove Theorem 1 in the case wihies a fixed regular tetrahedron. Then
itiseasytoseeth&@ = T — T is a cuboctahedron (i.e., the convex hull of the midpoints
of the edges of some cube). Denoteu§ ) andz(C) the set of vertices and face centers
of C, respectively. Lep;, p2, ps, ps denote the consecutive vertices of a square face of
C. Theno = %(pl + p3) € z(C). Define§ = v(C) U z(C). Leta, 8 be real numbers,
O<a<pB—3=<3 0 =apr+ (1—a)ps andg, = Bpy + (1 — B)ps. Define
Sep = (S\PL, P2, 0}) Ufa1, Qo). LetO< y <Lt =ypi + Q- y)pi1, 1<i <4,
with the notationps = p;. DefineS, = (S\{p1, P2, P3. P4, 0}) U {t1, t2, t3, ta}. Then
S, S5, S, are 1-discrete subsets @€, |S| = 18 and S, 4| = IS, | = 17.

This way we have that the following theorem is the reformulation of Theorem 1 with
an additional description of the sets formed by the translation vectors of the arrangements
where there are exactly 17 mutually nonoverlapping translates of the tetrafediaoh
all touchT.
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Theorem 2. LetC be acuboctahedroand let SC dC be al-discrete setin the metric
determined by CThen|S| < 18. Moreoverif S, S, 5, S, denote the finite subsets of
dC as defined aboy¢hen we have the following characterization

If |S| = 18,then S= S,. If |S| = 17, then there exists a congruence R® — R®
with f(@C) = 9C, such that one of the following holds

(1) T(S) = S, forsuitableo, € R,0<a < —
(2) 1(9 =S forasuitabley e R,0<y < 1.

NI

1.
=3

3. Proof of Theorem 2

The main ideas of the proof of this theorem can be described as follows. In Section 3.1
we define several subsets @ and certain weighted counting measures on them. In
Section 3.2 we make a complete list of arrangements, showing where the elements of
a 1-discrete set in a “region” @fC can be situated. Then in Section 3.3 we give upper
bounds for the weighted counting measure of a 1-discret8 s C in a “belt”, which

is the union of three regions. We also prove t#jt< 16 for a special configuration.
Finally, in Section 3.4, using that the sum of some weighted counting measusas of
equal to] S|, we prove three propositions, which collectively imply Theorem 2.

3.1. Notation and Terminology

Let A C RY,a, b e RY. We denote by corA) the convex hull ofA. We use the notation
abor [ab] for conv(a, b), [ab) or (ba] for conv(a, b)\{b}, and(ab) for conua, b)\{a, b}.
Assume now tha& € R® is homeomorphic to k-dimensional convex body, 8 k < d.
Then we denote by ¢A) and by rlf A) the relative interior oA and the relative boundary
of A, respectively. The set of vertices of a polytdpes denoted by ve(P).

We denote byD the cube [-1, 1]° of R3. Denote the vertices dd by vy, v, ..., vg
in such a way thab,v; is an edge oD forany 2 < i < 4, andvj = —vg_; for any
1<j<8. Letl ={(, j) € Nx N|uvvjis an edge oD}.

If (i, j) € |, then denote byy; the midpoint of the edge; v; of D (thuspi; = p;i).
Let T be a regular tetrahedron with vertices from the vertex sét[hfLet C=T-T.
ThenC is a cuboctahedron, ar@l = conu({pij € R®| (i, j) € I}).

Consider an arbitraryi, j) € |. Denote byh;; the homothety with centep;; and
with coefficient]. Thatis,hij (x) = 3(x + ;) for anyx € R®. LetR;j = h;;(C) N aC.

R is called aregionof 8C. From the definition oR;j it follows thatR; = R;; and that
{Rj | (i, j) € 1}is acollection of 12 congruent and mutually nonoverlapping regions
of 9C (i.e., ri(R;j) Nri(Rq) = ¥ for every(, j), (k,1) € | with Rj # Ry).

Forl<i <8,wesetB = J{Rj | (i, j) €l,1<]j < 8}. ThenB; is the union of
three regions 08C. B; is called abeltof 9C. Let Ty = conv({p;j | (i,j) e 1,1 < <
8}). ThenT; is a triangle. Denote bi; the smaller triangle determined by the midpoints
of the sides off;. Let Q; = B; U M;. Q; is called aguarterof dC. The reason for this
name isthatilv C vert(D) and con¥V) forms a regular tetrahedron, the@; | i € V}
is a collection of four congruent and mutually nonoverlapping quarters, whose union
“almost” coversdC (more precisely, it cover8C\ [ J{M; |i ¢ V}).



The Translative Kissing Number of Tetrahedra Is 18 235

Fig. 1. The introduced notation o#C.

In the proof we define several nonnegative real-valued functiorsCol hey corre-
spond to certain subsetsd@f. We call these functions weight functions, because they are
related to the counting measure, so we are able to consider them as some kind of weighted
counting measures. Our notation for a weight function corresponding to/& sedC
isw(A, ). If F c aC is a finite set, we use the notatian(A, F) for - w(A, X).
We note that the method of “weight” functions, or “cost” functions, which are usually
piecewise constant, is often used in combinatorics and discrete geometry. For some nice
examples of this method, see [8] (see also [3]), [21], and [22]. Our method is a refinement
of the one used by Zong [21].

Consider the regioRy,. Leto; = %(p46+ p12) ando, = %(p35+ p12). There are four
edges ofC containingp;,. We introduce notation for the midpoints of these edges. Let
a = 3(pr2+ pyi) fori = 3,4, anday = 3(p12+ pzj) for j = 5, 6. With this notation,
the relative boundary dR;; is formed by the closed (nonplanar) hexagea,azo,asags
(see Fig. 1).

We define the weight functiom (R;2, -): 9C — Riin the following way:

1, for X eri(Ryp) U (azay) U (asas),
def | 3. for X e (01a4] U[az0,) U (0z85] U [a601),
w(Ry2, X) = L
7 for x € {0y, 0y},
0, for x e dC\Ry.

Let us define the weight function(R;;, -) of an arbitrary regiorR;; similarly as we
defined the weight functiom (Ry», -). More precisely, consider a congruengeR® —
R3forwhichg(dC) = 4C andg(R;j) = Rz hold, and define (R;j, X) = w(Ru2, 9(X))
for everyx € 9C. Itis easy to see that then(R;j, -) is well-defined, i.e., its value does
not depend on the selected congruegce

Let 1 <i < 8. We define the weight function correspondingBoasw(B;, X) =
D{w(R;.x) 1 (,]) € 1,1 < j < 8} for everyx € aC. We also define the weight
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function of the triangleM; as

aef |2 for xeri(Mp),

w(Mi, X) = i
0, for x e aC\ri(M;).

Define the weight function of the quart&; asw(Q;, x) = w(B;, X) + w(M;, x) for
everyx € 9C.

Let us defineM = [ J2_, ri(M;). Let F be an arbitrary finite subset 6€. It follows
immediately by the definitions of the weight functions introduced above that

8 8

2IF| =) w(Q.F)=> w(B, F)+2MNF|.

i=1 i=1

3.2. Local Case Analysis

First we recall two simple statements which will help us to decide whether the distance
between two points 0AC is less than or equal to 1 in the metric determinedChy
These statements are immediate consequences of the triangle inequality in the metric
determined byK — K. We leave their proofs to the reader.

Proposition 3.1. Let K be ad-dimensional convex bol#y Z; and Z be finite subsets
of RY, p € conV(Z,), g € convZ,). Then there exist points = Z; and » € Z, such
that

Ilp—allk-x < 1z — Z2|lk -k -

Proposition 3.2. Let K be a d-dimensional convex botht L be a convex set in®R
p,q € RY. Assume that ge ri(L), and that there exists a point € L such that
[P—wllk-k < MaX%cL [P —2llk-k- Then

P —dllk-k <max|p—z|lk—«-
zel

From now on, we fix the metric determined Byi.e., we consideR® equipped with
the metric determined by the Minkowski norm with the unit k2dl

LetS = {s1,%,...,Sn} be a 1-discrete subset &,. If |S| = 1, then we have
w(Ry2, S) < 1. We now make a complete list (up to a congruencBgj of eight cases,
showing where the elements 8fcan be situated iRy, if |S] > 2. That is, this list
will have the property that for any 1-discrete subBedf Ry, |F| > 2, there exists a
congruencef: R® — R3with f(Ry) = R (and then withf (3C) = 3C) such that
one of the following eight cases holds e f (F). Moreover, since for every, j) € |
there exists a congruenge R® — R3 with g(R;j) = Rizand f (3C) = 3C, therefore
this list will have the property that for any, j) € |, any 1-discrete subsét of R,
|F| > 2, there exists a congruende R® — R3with f(R;) = Rizand f (3C) = aC,
such that one of the following eight cases holdsSee f (F).
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Starting to make the list, we assume tf&it> 2. SinceR;» C h12(C), so the distance
between any two points dR;» is at most 1 (in the metric determined K. First we
consider the case wham, € S. Then it is easy to see th&C {pi», 01, 02}. Thus we
have two cases.

Case 1.S= {p12, 01}. Thenw(Ry2, S) = 1.25.
Case 2.S = {p12, 01, 02}. Thenw(Ry2, S) = 1.5.

We now consider the case wh&m (ri(Ri2)\{p12}) # ¥, says: € ri(Ri2), St # Pia.
Then there exists a segmemifb] C Ry» such thats; € (pi2b). Applying Proposi-
tion 3.2, we havel p12 — S2|lc = 1, s0s; € {01, 0,}. However, a simple argument shows
that{o;, 0,} ¢ Sands, ¢ ri(Ty). Thus we can reduce the situation to the following.

Case 3.|S| = 2,5 € ri(Ry2) N con0y, a4, P12, 85), S = 02. Thenw(Ry2, S) =
1.25.

In the further cases we may assume tBatri(R;2) = ¢. Considering the case when
SN ((agay) U (asae)) # ¥ we may assume by symmetry reasons that (aza4). Then
by Proposition 3.2 we get th&\{s;} C [asag]. This way we can reduce the situation
for one of the following two cases:

Case 4.|§ = 2,5, € (azay), S € (a536). Thenw(Ryp, S) = 2.
Case5.|§| =2,s; € (azgay), S, = as. Thenw(Ryp, S) = 1.5.

Inthe remaining cases we may assume $at[ag01] U[01a4] U[a302] U[0z85]. Then
it is clear that eithefSN (Jag01] U [01a4])] < 1 or SN ([ag01] U [0184]) = {ay, as}. By
symmetry ofR;, a similar result can be obtained f8N ([az02] U [0284]). However, by
llag—asllc = % and by Proposition 3.2, itis easy to see ff&h ((0,a4] U (02a3)])| < 1,
and|SN ((01a6] U (0235])| < 1. Then the reader can easily verify that these conditions
reduce the situation to the following three, essentially different cases:

Case 6.|§| =2, = a4, S = a. Thenw(Ryp, S) = 1.
Case 7.|§ = 3,5 = a4, S = a5, andsz = 0p. Thenw(Ryp, S) = 1.25.
Case 8.|5 = 2,51 € (01a4], S € (0z85]. Thenw (R, S) < 1.

This completes the list of cases.

3.3. Lemmas

We define thesubregion F%z of the regionRy, as the relatively closed subset Bf,
bounded by the closed (nonplanar) pentagep;.02asa4. In general, we define two
subregions R and R,J of the regionR;. Let R = f(R},), wheref: R® - R3isthe
unigue congruence for which(Ry2) = Ryj, f(Ml) = M;, and detf) = 1. However,
Rj = Rji, so we assigned two subregions to each regtgrby the above definition. It

is easy to see that(iR};) N rl(R,J )=#andR; =R} U le for every(i, j) e I.

Lemma3.1. If S C 9C is al-discrete set(i, j) € I, and SNri(M;) # @ (resp
SN M; # ¢), then SN R = ¢ (resp SNTi(R};) =¥),and[SN R} | < 1.
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Proof of Lemma&.1. Without loss of generality we may assume that1 andj = 2.
Suppose thabNri(M;) # @. Then|SNTy| = 1. Let{s;} = SN T1. We haveR}z\Tl C
conu( P12, 01, a4) U conU ps2, 02, a3). We prove thatSnN R}Z = ). By symmetry it is
enough to show thaB N conu(p;2, 01, a4) = ¥. Using Proposition 3.1, it is easy to see
that the diameter of coriyi,, 01, a4) U My is equal to 1 (in the metric determined by
C), and applying Proposition 3.2 fqy € conu(pi2, 01, &4), g = S1, andw = a4 we
get the wanted inequalityp — si|lc < 1. A similar argument shows that in the case
SNM; # ¥ we haveSNri(RL,) = ¢. Finally we sketch how to prove that$n R}, = ¢,
then|SN R2,| < 1. Assuming the contrary, i.6SN R2,| > 2, we get that there exists
a congruencd: R® — R® such thath(Ry») = Ri» and one of Cases 1-8 holds for
S = h(S). Then eitherS N R}, = ¥ or S N RZ, = ¥. However, both cases turn out to
be impossible after taking a closer look at each of the eight local cas&s for O

Let S ¢ aC be a 1-discrete set, létbe an integer, < i < 8. We introduce the
notationn; (S) = [{j | (i, j) € |, SNri(M;) # B}|. Thus 0< n; (S) < 3. The following
lemma is an immediate consequence of Lemma 3.1.

Lemma 3.2. Let S 9C be al-discrete setl < i < 8,SNri(Mj) # @. Then
w(Qi, S =2+ w(Bi, S <5-—n;(S).

Letq; = %(p14 + pae) andqp = %(pls + pzs). Let S, be defined as the collection
of all 1-discrete sets ofC for which S € S, if and only if Sis 1-discrete andgs N
B1 = {S1. &, S, . S5} With 51 € (asau), S € (as@p), S3 € I1(CONMO1, P14, O1)), 4 €
ri(conv0y, P13, 02)), andss = %(p14 + ps7). The reader can see a representation of
{s}?_, in Fig. 2, which shows a planar projection&t.

LetH = {h | his a congruence dr3, h(3C) = dC}. We note that for everit € H
there exists adi, j) € | suchthah(Ri2) = R;j. We introduce the notatiaf = {h(S) |
SeS,,heH}

Lemma 3.3. Let Sc dC be al-discrete setl < i < 8. Assume that 8 ri(M;) = @.
Then the inequalitw (B;, S) < 4.5 — n;(S)/2 holds Moreoverif w(B;, S) = 4.5, then
either SN B e Syor SN B = N B;.

We remark that 2 (B;, S) € Z sincew(B;, X) € {%, 1} for everyx € B;. Thus if
w(Bi, S) < 4.5, thenw (B, S) < 4. We also keep in mind that 8N ri(M;) = ¢, then
w(Qi, S =w(B, S).

Proof of Lemma&.3. Without loss of generality we may assume that 1 and that
w(R12, S > w(Ri3, S > w(Rus, S). We note thatB; = Rpp U R13 U Ry4. Assume
thatw(B;, S) > 4. By Cases 1-8 we have thatuf(Rj, S) > 1, thenw(R;, S €
{1.25, 1.5, 2}. A simple analysis of the eight cases combining with applications of
Lemma 3.1 shows thatif (R;2, S) = 2, thenw(Ry3, S) andw(Ry4, S) are at most 25,
3(p1a+ ps7) € S and finally we geBn B; € S.. Otherwise we have:(Ryp, S) < 1.5.
Then, by the assumption(B;, S) > 4, itis clear thatw(Ry2, S) = w(Ry3, S) = 1.5.
Furthermore, considering the regi®i,, we get thatp;4 € Smust hold. Thus we have
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Fig. 2. A planar projection ofC.

SNB; = SN Bs. It can be easily seen that in the two cases obtained (B, S) > 4 the
equalityn; (S) = 0 must hold. Now assume thaf(S) = 2. Suppose the contrary of the
conclusion, i.e., thaw (B, S) > 4. We may assume by symmetry ti&0 ri(M;) # ¢

for | = 3,4. Then, by Lemma 3.1, we hawe(R;j,S) < 1 for ] = 3 and 4, so
w(Ry2, S) = 2 holds. ThusSN M; # @, thereforeSnN ri(R%j) =@ for j =3,4by
Lemma 3.1. HoweverSN ri(Ry3 N Ry4) = @ by Propositions 3.1 and 3.2, so we get
SN By = SN Ryo. Hencew(B,, S) = 2, which is a contradiction. Finally we assume
thatn{(S) = 3. Then, by Lemma 3.1, we hawg(Ryj, S) < 1for j =1, 2, and 3. Thus
we getw(B, S) < 3. O

Lemma 3.4. Let Sc 9C be al-discrete setlf SN B; € Siforasuitablej1 <i < 8,
then|S| < 16.

Proof of Lemm&.4. By symmetry, we may assume ti&nh Ry, € S,. Thus we can
use the notatior5 = {§ | 1 < i < m} where eacls has the same property as in
the definition ofS, for 1 < i < 5 (see Fig. 2). Considering the position ®f we
have by Lemma 3.1 that 5N ri(Mg) # @, thenw(Qg, S) < 4. If SN ri(Mg) = ¢,
then considerind=ys and applying Lemma 3.3 we hawe(Qs, S) < 4. Thus we get
w(Qg, S) < 4foranyS. Similarly, w(Qs, S) < 4. Considering the points &N B;, we
get by Lemma 3.1 thasNri(Mj) =@ fori =1,2,3,4,and 7, saw(Q;, S) < 4.5 for

j =2, 7andw(Qj, S < 4for j = 3,4 by applying Lemma 3.3. We have two cases. If
w(Qg, S) = 5,thenitiseasytosee,byLemma3.3,thaQ;, S) < 4forj = 2, 7. From
this it follows that 25| < 335, i.e.,|S| < 16. Inthe second case(Qg, S) < 4.5, sowe
getthe estimate|8| < 4-4+4-4.5 = 34. Suppose to the contrary th& > 17. Then
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|S| = 17, and each estimate fer(Q;, S) is sharp. In particular, we hawe(Q,, S) = 4.5
andw(Qg, S) = 4. Howeverw(Ry2, S) = 2, sowe geBN Q, € S by Lemma 3.3. This
impliesw(Rye, S) = 1.25. Recallgy = 3 (P1a+ Pae)- Letds = 2(pa6+ pas). Defineq;
(4 < j < 6)sothaty, g4, Os, Gs, 03, 01 denote consecutive verticesiRfs. Then we have
Snri(convog, Os, P2e)) # ¥, SO considering the position ef also, we get, by applying
Propositions 3.1 and 3.2, th80 Rys = SN(CONV(4, Js, Ge, Pas) \([T4, Pas]U[Ts, Pac)))-
Thenw(R4e, S) < 1. Thusw(Rgs, S) > 4 — 1.25— 1 = 1.75, that is,w(Reg, S) = 2
by Cases 1-8. HoweveBN Rgg contains a square face centel®by w(Q,, S) = 4.5,
which implies (by Cases 1-8) that(Rsg, S) < 2. This is a contradiction. O

3.4. Global Case Analysis

Finished with the preparations, we now turn to the actual proof of Theorem 2 which we
carry out by the following three propositions. The reader should notice that collectively
they imply Theorem 2.

Proposition 3.3. Let SC 9C be al-discrete setlf SN M # ¢, then|S| < 16.

Proof of Propositior8.3. By Lemma 3.4 we may assume tisab B; ¢ Sx for eachi,
1<i <8 Thenw(Bj,S =45ifand only if SN B = $ N B;. First we prove that
if |[SN M| > 2,thenSNri(M;) = @ implies thatw(Q;, S) < 4. This follows from
the fact that ifSN ri(My) # ¢, then{oy, 02, 03} N'S = @, whereoz = 3 (P14 + P37),
but {01,000, 03} N Bj # P foranyj # 8, ando, € S forl <i < 3. Letn(§ =
HG, ) el |1 < j,SNri(My) # @, SNri(M;) # @}|. Then, by Lemma 3.2, we have
218 =32, w(Qi. S < 32+ SN M| —2n(S) if SN M| > 2. Using the trivial bound
n(S) > 3(|SN M| —4), we get 25| < 31— 5(]SN M| — 5), which means thdtS| < 16

if SN M| > 5.

If ISN M| = 1, then without loss of generality we may assume satri(M1) # @.
By the first part of this proof we now have(Q;, S) < 4 for anyi # 1,8. Thus
2|15 <54+6-44+45=335,i.e.,|9 < 16.

If ISN M| =2,then 29| <32+ 2—2n(S). Soifn(S) > 0, then|S| < 16. If there
exists a square face of the cuBesuch thaty; andv; are opposite vertices of that face,
ISNri(Mi)| = |SNri(Mj)| = 1, then, denoting the indices of the other two vertices
of that face byk; andky, we getn, (S) > 2 fort = 1, 2. By Lemma 3.3, we obtain
w(By,S) <35t =12),s025 <2-5+2-35+4-4=33,ie,/5 <16.ltis
easy to see that the only remaining case is Wign ri(M;)| = [SNri(M;)| = 1 for
i +j =9, i.e.,vy andv; are opposite vertices @. Without loss of generality we may
suppose that = 1. It is enough to show that there exists an indesuch that either
SNri(My) =@ andw(B;, S) < 4,0orSNri(M,) # @ andw(Q,, S) < 5, because then
we have 25| < 2.5+ 6-4 = 34, which implies thatS| < 16. Assume the contrary.
Then we havev(Q1, S) = w(Qg, S) = 5 andw(B,, S) = 4. Thus there exists an index
k € {1,5, 6} such thatw(Rx, S) > 1.5, since 4(R,,z, X) € Z for eachx € R,
(z1, ) € |. Observing the fact that the square face centeiG ofinnot belong tc,
and analyzing Cases 1-8, we get tkag 1 andSN My # @. By Proposition 3.2 we
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obtainSN rb(Rgg) = ¥. So, by Lemma 3.1, we ha@N R = . However, this is a
contradiction, because we assumed thé@g, S) = 5, which impliesw(Ryg, S) = 1.

If SN M| = 3,then 25 < 32+ 3 —2n(S), so|S| < 16 if n(S) > 0. Otherwise,
whenn(S) = 0, it is easy to see that there exists an ingex < j < 8, such that
Snri(M;) # @ foranyi with (i, j) € |. Then we have that there exists a 3etf indices
such thatJ| = 4, SNri(My) = @, andn(S) > 2 for anyk € J. Thus, by Lemma 3.3,
we getw(By, S) < 3.5foranyk € J. Thisimpliesthat 25| < 3-5+4-3.5+4 = 33,
thatis|S| < 16.

If |ISNM| =4,then2S| <32+ 4—2n(S), s0|S| < 16ifn(S > 2. Itis easily
seen thatif(S) < 2, thenn(S) = 0 andV; = {v; | SNri(M;) # @} is the vertex set of
a regular tetrahedron. Then(S) = 3 for eachj € vert(D)\ V1. Applying Lemma 3.3,
we getw(B;j, S) < 3foranyj € vert(D)\Vy. Thus we have 5| <4-5+4.3 = 32,
i.e.,|§| < 16. O

Proposition 3.4. Let Sc 9C be al-discrete setSN M = ¢. Then|S| < 18 holds
Moreoverif |S| = 18,then S= . If |S| = 17,then there exists a square face F of C
such that 1 (aC\F) = SN (dC\F).

Proof of Propositior8.4. By Lemma 3.3, we have @ < 8-4.5 = 36, so|S| < 18.

Furthermore, if S| = 18, thenw(B;, S) = 4.5 foreachi (1 <i < 8). By Lemmas 3.3
and 3.4, we then ha8N Q; = SN (1 < i < 8). However| J°_, Q; = 4C, so we
getS=%.

Let |S| = 17. Then it can be easily seen that the proof can be reduced to showing
the existence of a facé’ of D with the propertyw (B, S) = 4.5 for anyi € vert(F’).
Then the square facé of C which is opposite to the square faé N C of C will
have the property required by the proposition. Denotévbya subset of vertices of
D whose elements form the vertices of a regular tetrahedronViet vert(D)\Vi,
J={jlveVijfori =12 Then) {w(B;,S | j e J} =[5 =17 fori =1, 2.
By w(B;j,S) < 4.5and v (B;, S e Z there are at least two elemerjts j, of J; for
which w(B;,, S) = 45 (i = 1, 2). Then pj,v;,] is not an edge oD, and there exists
a square fac&’ of D such that;,, vj, € vert(F’). Without loss of generality we may
assume thaf; = 2, j, = 8, andF’ = conUvy, us, vg, ve). Assume that the fade’ of D
does not have the required property. Then eithéR4s, S) < 1.5 orw(Rss, S) < 1.5.
By symmetry we may suppose thatRse, S) < 1.5. However,SN Ryg contains the two
points ofR4s with weight 025, so we get (by Cases 1-8 or directly) th&Rys, S) = 0.5.
Thenw(B;, S) = 3.5 fori = 4, 6. From this it follows thatw(B;, S) = 4.5 for any
i #4,6.LetF” = conWvs, vs, v, v7). ThenF” is a face ofD which has the required
property. O

Let F C R? be a square with consecutive verti@gsc,, cs, 4. Leta, 8, ¥ € [0, 1],
b =tc + (1 —t)cio anda; = tc + (1 — t)ciyq for every integeli, 1 < i < 4,
andt € [0,1] (if 5 < k < 8, we use the notation, for cx_4 as well). LetFjﬁ =
{bra. by g, Co, Ca}, F2 5 = {bpo, b2 g, C1, G}, andF, s = {F.} ;. F2,}. Furthermore, let
F,={a,1<i=<4}.
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Proposition 3.5. Let N ¢ R? be a square with center,avhere o is the origin of R
Let F be the square determined by the midpoints of the sides loét\& be dl-discrete
subset of F in the metric determined by Then|S| < 5. In particular, |S| = 5 if and
only if S= vert(F)U{o}. Furthermore |S| = 4if and only if either Se F, 4 for suitable
awandB,0<a <p—13 <3 orS=F,forasuitabley,0<y < 1.

Proof of Propositior8.5. Obviously vertF) U {o}, F(Lﬁ (i =1,2), andF, are 1-
discrete subsets df for any values ofx, 8, andy described in Proposition 3.5. So
we need to prove only the other direction of the proposition. |Sgt> 4. If 0 € S,
thenS C vert(F) U {0}, so|S| < 5. Furthermore, then in the case|& = 5 we get
S = vert(F) U {o}, while in the case ofS| = 4 we obtainS € 7, 1 U]—H 1 U Fp1. From
now on we may assume tha¢ S. LetS={s, S, ..., Sn}- Foreach deflneq. as the
unique point on the boundary &f for whichs € [0og] (1 <i < m). Thens = «;q;
for a suitable real numbef;, 0 < o <1 (1<i <m).LetS ={01,Q2,...,0m}. S'is

a 1-discrete set since, for any j, o < ), we have

1< 1 < iIIS —§jlIn < ﬂIlq| —Qj ||N+<1— —) G lIn < 1+—(|Iq| Qjlin —1).
qj qj qj

Moreover, if|gi —q; [N = 1,thenwe have equalities in each of the preceding inequalities,

thuse; = 1andjo—qjlin = I — gjlin = Is — g;ll = 1. This means that & # ¢,

then pg] € 3(N —q;), i.e., N has a side parallel taf]. In this special case we get

thatg; andg; (= s;) are vertices of.

Denote bycy, ¢,, €3, ¢4 the consecutive vertices &&. Then|S N [ccy1)| < 1
(1<i <4),s0|§ = |S]| =4 (we use the notatioq) .4 for ¢; as well). Without loss of
generality we may assume ti@gte [¢ici;1) for eachi. Using the notatiomyj_4 for g
as well, it can be shown by a simple argument that

g —Gilin - IGi+1 — Citzlin

foreveryi, 1<i <4

IGi+1—GClln — lIG+2 — Cit1lin
Thus
—C i — G : )
g1 — Calin _ llgi — Gilln foreveryi, 1<i <4,
lco—clin lG+1 —Gilln

Lety = |lds — cilin/licz — Cilin. If ¥ # 0, thenwe ge8 = F,, and||gi+1 —qilln = 1
(1 <i < 4).Byy # 0we have thatdq] is not parallel to any sides df. This implies
thatS=S =F,.If y =0, thenwe getthay =s = ¢ andgi» = 542 = Gio fora
suitablei, 1 <i < 2. Then itis clear thafs y1, S+3} C [Ci+1Ci+3]. HenceS e F, 4 for
suitable reals, 8 € [0, 1]. We may assume that < 8. However,Sis a 1-discrete set,
Soa < B — % This completes the proof of Proposition 3.5. O

4. Applications

In this section we apply Theorem 2 to determine the minimum and maximum densities
of 17+-neighbor translative packings of tetrahedra. The main idea we use is to reduce the
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proof to a problem on packings with-translates of a certain cluster Bf. Finally, in
Proposition 4.3 we considercadimensional generalization of this problem, but in this
case we can only prove a somewhat weaker result than in the case of the original problem
(Lemma 4.1). Thus Proposition 4.3 is not so closely connected to the other propositions
and lemmas, but it has an interest of its own.

We recall some notions from the theory of packings (see [4] and [5])AL& < RY.
B is called aZ-translateof Aif B = A+ v for a suitablev € Z9. A collectionP of
mutually nonoverlapping subsets Bff with nonempty interiors is called packing If
all the members of the packirfgare translates (resg-translates) of a fixed s&, then
P is called dranslative packindresp.Z-translative packingof P. A packing (respZ-
translative packingp of R%is called diling (resp.Z-tiling) if | P = RY. Theneighbors
of an elemen®P of a packingP are the elements of the SR’ ¢ P | PPN P # @}. A
k-neighbor packindresp.k*-neighbor packinyis a packing where each element has
exactly (resp. atleast)neighbors. A packin® is calledconnectedf  J P is a connected
subset oRY. Theconnected componert§a packingP are the subcollections @ for
which their unions form the connected components of thé st

Let P be a packing irRY, andCy(r) = [—r/2,r/2]¢ for everyr > 0. Theupper
density d (P) of the packingP is defined as

d*(P) = limsup(V ((UP) N Cy(r))/r%),
r—oo
whereV (-) denotes the volume iRY. Similarly, thelower density d (P) of the packing
P is defined as

d™(P) = liminf(V ((UP) N Ca(r)/r%).

If d*(P) = d=(P), then we denote their common value &§P). This §(P) is called
the densityof the packingP.

We now start to investigate the f1-heighbor translative packings of tetrahedra. Our
main purpose is to determine the minimum and maximum densities of these packings.
For analogous results of this kind for other convex bodies in two and three dimensions,
see [12] and the survey paper [5].

In the following proposition we prove that anyfl-heighbor translative packing of a
tetrahedron can be obtained from its uniqué-Iighbor translative packing by omitting
some elements of that packing.

Proposition 4.1. LetT c R3be atetrahedroriThen there exists a uniqd&-neighbor
translative packing” of T such that Te 7. If 77 is a17"-neighbor translative packing
of T with T e 77, then7’ C 7, and for every T € 7\7 all the neighbors of Tin the
packingZ are elements of ' as well

Proof of Propositiord.1. Using the same argument as in the proof of Theorem 2, we
obtain that it is enough to prove the analogue of this proposition for the cuboctahedron
Co = %C, whereC is the cuboctahedron defined in Section 3.1.Cet {Co+v | v €

Z3). ThenC is an 18-neighbor translative packing. l&tbe an arbitrary 18-neighbor
translative packing o€y such thatCy € C;. Then by Theorem 1 and the fact titats
connected, we gat € C;. We show thatC; = C. Otherwise there exists an element
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Cy € C1\C. Then we can consider a transl&gof C; for which C U {C,} is a packing
andC,; touches at least one elementoHowever, then this element 6fwould have at
least 19 neighbors iU {C,}, which contradicts Theorem 1. This proves the uniqueness
part of Proposition 4.1.

LetC’ be a 17-neighbor translative packing @, such thaCy € C’. We denote by
Cp the connected component @f which containsCo. We prove that’y € C. Assume
the contrary. Then there exi®, = Co + v1 € C;\C andC; € C; N C such thatC; and
C, are neighbors. I€; has 18 neighbors ié’, thenC; € C by Theorem 1, which is a
contradiction. So, we may assume t@athas 17 neighbors ii;. Then, by Theorem 2,
for C; — v, we get that eithep; € S\ for a suitabley, 0 < y < 1, 0rvy € § s\ S
for suitablex andg, («, B) ¢ {(0, %), (%, 1), (0, 1)}. However, in this case it is easy to
see thaC, — v1 would have less than 17 neighbor<in— v1, which is a contradiction.
Thus we obtain thaf, < C. Therefore, ifC" € Cj, C" has 17 neighbors, then there exists
a neighborC” of C’ in C such thatC” ¢ C;, andC, U {C"} is also a packing. Le€”
be an arbitrary neighbor of suchGi andC” in C. Then it is easy to see th&¥ e C;.
This way we get that each neighbor®f in C is an element of} as well. LetC” be
the collection of elements @f which have some neighbors éhbelonging toC; also.
Then itis clear tha€; U C” is an 18-neighbor packing @, which containgC,. Thus,
by the already proven first part of Proposition 4.1, we h&ye C” = C. Applying the
argument used in the proof of the first part of this proposition, w€get C’, and hence
C'UC” =C. Consequently’ C C, and for everyC” € C\(’ all the neighbors o€” in
the packing’ are elements af’ as well. O

LetU = 2D = [-1, 1]3. Thenld = {U + v | v € Z3} is a tiling of R®. A finite
subset ot/ is called acluster Let E = {v € Z% | v € [—1, 1]®\vert([—1, 1]®)}. Define
Gtobetheset) + E = [ J{U +v | v € E}. ThenG is a cluster, which can be obtained
from a cube formed by the union of 27 translate&Joby leaving the 8 translates bf
out at the vertices of the cube. Let us denotd_hyhe sublattice oZ® generated by the
vectors(3, 1, 0), (-1, 3,0), (1, 2,2). LetG* = {G+ v | v € L,}. ThenG* is a packing
with Z-translates ofs.

By Proposition 4.1, it is easy to see that there is a one-to-one correspondence between
the 17" -neighbor translative packings of a tetrahedron and the packing$ with Z-
translates ofs. So, first we determine the maximum density of the packings mentioned
last, and then we apply this result to get the minimum density bound fong&ighbor
translative packings of tetrahedra.

Lemma4.1l. LetG be an arbitrary packing with Z-translates of.Ghen d"(G) <
8(G*) = 0.95.

Proof of Lemmat.1. Itiseasyto find Z-translatd)’ of U which touche& and which
is not covered by any elements @f. Then observe thdiGuUU’) +v |v € L,}isa
tiling of R®. From this it follows tha8(G*) = 32 = 0.95.

Consider nowg. Without loss of generality, we may assume tGat G. We will find
avectorv € Z3with ||v| < 2 for whichU + v is not covered by JG. If U + (0, 0, 2) is
not covered by, then letv = (0, 0, 2). OtherwiseJ + (0, 0, 2) ¢ G + w for a suitable
w e Z3. Itis clear that the third coordinate af has to be 3. This way there are five
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choices forw. If w = (0, 0, 3), then a simple argument shows that eitble# (1, 1, 1)
orU + (1, 1, 2) is not covered by;. Choosey = (1, 1,1) if U + (1, 1, 1) is not covered
by G, otherwise choose = (1, 1, 2). In the remaining four cases we may assume by
symmetry thatv = (1, 0, 3). (If w # (1, 0, 3), then we can apply a rotation R® — R®
around the third coordinate axis, which send® (1, 0, 3). Thenr ~1(v) will correspond

to G, wherev is the vector defined fojr (G’) | G’ € G} in the following process.) Now,

if U+ (1, -1, 1) is not covered by, then letv = (1, —1, 1). Otherwise, considering
U+ (1,1, 1), ifitis not covered byg, then letv = (1, 1, 1). Finally, it can be easily
seen that iU + (1, —1,1) andU + (1, 1, 1) are covered by, thenG + (2, -2, 1),

G + (2,2,1) are contained irj, andU + (2, 0, 1) cannot be covered bg. Then let

v = (2,0, 1). This way we assigned a vectoicorresponding to the packirggin each
case, for whiclJ + v is not covered by. Let G’ = G + w’ be an arbitrary element
of G. ThenG = G’ — w’ € G — w’, so by applying the above process tr w’, we
can define a vectar = v(G — w’) which corresponds to the packigg— w’. Define
afunctionf: G — Z%asf(G) = v(G — w') foranyG’ € G, wherew’ € Z3is the
unique vector for whictG’ = G + w’. A simple case analysis, which we leave to the
reader, shows that®;, G, € G, G; # Gy, thenf (Gy) # f(Gy). This way we get that
{G'U{U + f(G))} | G’ € G} is a packing ofR%, sod* (G) < 2. O

Proposition 4.2. Let7’ be al7t-neighbor translative packing of a tetrahedtdrhen
=0T =d (T =d"(T) <8(T) =3
holds whereT = {To+v | v € Z3}is an18-neighbor packingand7” = {To+v | v €

Z3\L,} is a17*-neighbor packinghere T denotes a regular tetrahedron contained
the cube U= [—3, 3]® with vert(To) C vert(U)).

n

Proof of Propositior4.2. Obviously it is enough to consider the case whéns a
translative packing ofy, andTy € 7'. Then we have, by Proposition 4.1, ti&atC 7,
sod* (7)) < 8(7) = % On the other hand, iT” € 7\7’, then the neighbors oF”
in 7, which form the se{T”} + (E\{o}), are contained i¥’. However,7" is a 17"-
neighbor packing, sd; + E and T, + E are mutually nonoverlapping subsets Rt
foranyT,, T, € 7\7". From this it follows thatg = {G+v | To+v € 7\7'}is a
Z-translative packing witf} - ;5d*(G) = d*(7\T") = § —d~(7"). By Lemma 4.1 we
haved™(G) < ;—g, thusd=(7") > é—g. Furthermore, ifl’ = Ty + L., thenG = G*, and
therefored(7") = §(7") = 2. O

The following corollary shows an interesting property oftdifeighbor translative
packings of tetrahedra.

Corollary 4.1. If 77 is a 17" -neighbor translative packing of tetrahedrhen there
exists a tetrahedron Te 7' which hasl8 neighbors

Proof of Corollary4.1. We use the notation of the proof of Proposition 4.2. It was
shown there thafy; = {T + (E\{0}) | T € 7\7"} is a packing. We have) 7 € | J 7"
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andJ(Z7\THU Ty ¢ UT sincel JG #R*=U+ 23 Thus J7x ¢ U7/, anditis
clear that for each elemefit of 77 with T’ & | J 7, T’ has 18 neighbors ifi”. O

We formulate the analogue of the maximum density bound of Proposition 4.2 for
15" -neighbor translative packings of tetrahedra, as a conjecture.

Conjecture 4.1. Let7 be al5t-neighbor translative packing of a tetrahedrarhen
d*(7) < 3.

We also conjecture that the upper bound for the densities of lattice packings of tetra-
hedra, proved by Hoylman [11], remains valid for all translative packings of tetrahedra.
We note that in this bound equality holds for a certain 14-neighbor lattice packing of
tetrahedra (that explains why we consider only dteighbor translative packings in
Conjecture 4.1).

Conjecture 4.2. Let7 be an arbitrary translative packing of a tetrahedrarhen
df(7) < 22

Finally we show a generalization of the fact (which can be easily derived from
Lemma 4.1) that there is nd-tiling of R® with translates of5.

Proposition 4.3. Let g = {v € Z9 | v e [0,K]%vert([0, k]%)} and Gg4 =
UIl-%. 219 + v | v € Exg} for arbitrary integers kd > 2. Then there is a tiling
of Rd Wlth translates of @4 if and only if d= 2 and either k=2 or k = 3.

Proof of Propositior4.3. LetL; C R? be the lattice generated by the vect(2s1)
and(—1, 2). Similarly, letL, c R? be the lattice generated by the vect(8s2) and
(0,4). Thenitis easy to see thfBs 2} + L1 and{G,,} + L, are tilings ofR2.

In the following we prove the other direction of the proposition. By Theorem 4 on
p. 36 of the book by Stein and Szafl6], we may restrict ourselves to examining the
existence ofZ-tilings for a givenk andd. Dealing with Z-tilings only, we prove the
nonexistence of some more general tilings. Ugl = U + (Z3N [0, k]%). Consider an
arbitrary packing® of Z-translates 06y 4 andUy 4 with the assumption th& contains
at least one translate G 4. We claim thatP is not a tilingifd > 3, ord = 2 andk > 4.

We use induction od to prove this claim. Fod = 3 andk = 2 we getby Lemma 4.1
thatP is not a tiling. Ford = 3 andk = 3 a similar argument can be applied as in the
proof of Lemma 4.1 (where we found a vectocorresponding t@ such thaty + v
was not covered bg), to find an uncovered translate Of neighborly to an element
Gkd + v € P.Ford = 2 andk > 4 a similar argument can be used, but everything is
much simpler in this planar case. We leave the details to the reader. We now prove that if
P is aZ-tiling with the required properties for sorkeandd, then there exists A-tiling
‘P’ with the required properties férandd — 1. Obviously this will complete the proof
of Proposition 4.3. LeGy 4 + v’ € P. Denote bye; the vector(1, 0,0, ..., 0) of Rd.



The Translative Kissing Number of Tetrahedra Is 18 247

ConsiderP’ = {(P —v)NH | P € P}, whereH is the hyperplane which is orthogonal
to e; and contains the origin dR® (thusH = Rt andz9 N H = z9-1). Then itis
clear thatP’ has the required properties, sincdlife P’, then(P — v’) N H is either a
translate ofGy 4_1 or a translate oty 4_1, and we havésy 4_; € P’ by construction.
We also get thaP’ is a Z-tiling. This completes the proof. O

The determination of the maximum density for translative packing&af (the
analogue of Lemma 4.1) remains unsolved in general. So we pose this in the following.

Problem 4.1. Determine the maximum density of translative packing&gj in RY
for arbitrary integerk, d > 2.
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