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Abstract. We show that the maximum number of mutually nonoverlapping translates of
any tetrahedronT which touchT is 18. Moreover, in the case of 18 touching translates the
arrangement turns out to be unique. We also give a description of all possible arrangements
of 17 touching translates. Finally, we apply these results to determine the minimum and
maximum densities of 17+-neighbor translative packings of tetrahedra.

1. Introduction

First we recall some standard definitions. By ad-dimensional convex bodywe mean a
compact convex subset ofRd with nonempty interior. Two subsets ofRd with nonempty
interiors arenonoverlappingif they have no common interior point, and we say that they
touch each otherif they are nonoverlapping but their intersection is nonempty. Denote
by H(K ) the translative kissing numberof a d-dimensional convex bodyK , which is
defined as the maximum number of mutually nonoverlapping translates ofK that can be
arranged so that all touchK . H(K ) is often called theHadwiger numberof K as well.

It was proved by Swinnerton-Dyer [17] thatH(K ) ≥ d2 + d holds for everyd-
dimensional convex bodyK (d ≥ 1). A recent result of Talata [18] improves on this
bound for sufficiently large values ofd, showing that there exists an absolute constant
c > 0 such thatH(K ) ≥ 2cd for everyd-dimensional convex bodyK . Combining this
result with the inequalityH(K ) ≤ 3d − 1, which was proved by Hadwiger [9], it turns
out that the order of magnitude ofH(K ) is exponential in the dimension ofK for every
convex bodyK .

∗ This work was partially supported by the Hungarian National Science Foundation under Grant No. A-
221/95.
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A natural problem is the determination ofH(K ) when K belongs to some well-
known classes of convex bodies. Groemer [6] proved thatH(K ) = 3d − 1 if and only
if K is a paralleletope. In the case of Euclidean balls, the exponential lower bound
H(K ) ≥ (2/√3+ o(1))d was found by Shannon [15] and Wyner [19].

Grünbaum [7] proved that if a two-dimensional convex bodyK is different from a
parallelogram, thenH(K ) = 6. However, the exact determination ofH(K ) can be a
very hard problem even for some three-dimensional convex bodies. For example, when
K is a three-dimensional Euclidean ball, then this problem leads to the well-known
Newton-Gregory problem, posed in 1694, which was first solved by Hoppe [10] in 1874,
showing that in this caseH(K ) = 12. In the present paper we determine the translative
kissing number of tetrahedra.

Let T be a three-dimensional tetrahedron. Zong [21] proved that 18≤ H(T) ≤ 19
and conjectured thatH(T) = 18. He also conjectured that there exists a unique lattice
arrangement of nonoverlapping translates ofT in whichT has 18 touching members. In
the following theorem we not only verify Zong’s conjectures, but we are able to give a
stronger uniqueness property.

Theorem 1. Let T be a tetrahedron in R3. Then

H(T) = 18.

Moreover, the arrangement of18 mutually nonoverlapping translates of T in which all
the translates touch T is unique.

In the next section we show that the problem of the determination of the translative
kissing numberH(K ) of a convex bodyK can be reformulated by using the notion of
1-discrete sets. Thus we can characterize the translative kissing numbers in another way,
with which we are not only able to reformulate Theorem 1, but we can also give a complete
description of the arrangements where there are exactly 17 mutually nonoverlapping
translates of the tetrahedronT which touchT . This characterization will be useful in
the proofs of Section 3 as well. Finally, in Section 4 we apply the obtained description
of arrangements of 17 touching translates to get the minimum and maximum densities
of 17+-neighbor translative packings of tetrahedra. Namely, there we prove that the
inequalities

19
60 ≤ d−(T ′) ≤ d+(T ′) ≤ 1

3

hold for any 17+-neighbor translative packingT ′ of a tetrahedron, and these bounds are
sharp (see Proposition 4.2). (Here we denote byd−(T ′) andd+(T ′) the lower and the
upper densities ofT ′, respectively.)

For additional related results and references on this topic, see [1], [2], [20], [22], and
the survey papers [4] and [5].

2. Reformulation of the Problem

First we introduce notation and recall some facts, which will help us to reformulate the
problem of the determination of translative kissing numbers.
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Let A, B ⊂ Rd. We defineαA+ βB as the set{αa + βb | a ∈ A,b ∈ B} for any
α, β ∈ R. We denote byA− B the setA+ (−1)B. If v ∈ Rd, then we writeA+ v
instead ofA+ {v}. A subsetA′ of Rd is called ahomothetic copyof A if A′ = αA+ v
for a suitableα > 0 andv ∈ Rd. We denote by∂A the set of boundary points ofA. If A
is finite, then we use the notation|A| for the cardinality ofA. A map f : R3→ R3 is a
congruenceif ‖ f (x) − f (y)‖ = ‖x − y‖ for everyx, y ∈ R3, where‖ · ‖ denotes the
usual Euclidean norm.

From now on,K denotes an arbitraryd-dimensional convex body.
We recall a well-known observation, the so-called “difference body method” of Min-

kowski [13] (also see [14] for a description of the method). Letv1, v2 ∈ Rd. Then the
two translatesK + v1 andK + v2 of K are mutually nonoverlapping (resp. touching)
if and only if 1

2(K − K ) + v1 and 1
2(K − K ) + v2 are mutually nonoverlapping (resp.

touching).
A simple consequence of this observation is the following. Let{v1, v2, . . . , vn} ⊂ Rd.

The translates{K +vi }ni=1 of K are mutually nonoverlapping (resp. touchK ) if and only
if the elements of the arrangement{ 12(K − K ) + vi }ni=1 are mutually nonoverlapping
(resp. touch1

2(K − K )). From this fact it follows thatH(K ) = H(K − K ), and that it
would be enough to prove Theorem 1 forT − T instead of the tetrahedronT . However,
we choose another way for the proof. We consider the set{v1, v2, . . . , vn} of centers of
the translates of12(K − K ) to get another description forH(K ).

We use the notation‖ · ‖K−K for theMinkowski norm with unit ball K− K , i.e., if
v ∈ Rd, then‖v‖K−K = ‖v‖/‖w‖, where‖ · ‖ denotes the usual Euclidean norm, and
w is a vector parallel tov and having its endpoint on the boundary ofK − K .

Let r be a positive real number. A setS⊂ Rd is r -discrete in the metric determined
by K − K (or simply r -discrete, whenK − K is fixed) if ‖p− q‖K−K ≥ r for every
p,q ∈ S. We note that every boundedr -discrete set is finite for anyr > 0.

It is easily seen by the previous arguments thatH(K ) is equal to the maximum cardi-
nality of 1-discrete subsets of∂(K − K ) in the metric determined byK − K . Moreover,
there exists a unique arrangement ofH(K ) mutually nonoverlapping translates ofK
which all touchK if and only if there exists a unique 1-discrete subset of∂(K − K ) in
the metric determined byK − K with maximum cardinality.

On the other hand, the translative kissing numbers are affine invariant quantities, thus
it is enough to prove Theorem 1 in the case whenT is a fixed regular tetrahedron. Then
it is easy to see thatC = T−T is a cuboctahedron (i.e., the convex hull of the midpoints
of the edges of some cube). Denote byv(C) andz(C) the set of vertices and face centers
of C, respectively. Letp1, p2, p3, p4 denote the consecutive vertices of a square face of
C. Theno = 1

2(p1 + p3) ∈ z(C). DefineS0 = v(C) ∪ z(C). Let α, β be real numbers,
0 ≤ α ≤ β − 1

2 ≤ 1
2, q1 = αp1 + (1− α)p3, andq2 = βp1 + (1− β)p3. Define

Sα,β =
(
S0\{p1, p2,o}

) ∪ {q1,q2}. Let 0< γ < 1, ti = γ pi + (1− γ )pi+1, 1≤ i ≤ 4,
with the notationp5 = p1. DefineSγ =

(
S0\{p1, p2, p3, p4,o}

) ∪ {t1, t2, t3, t4}. Then
S0, Sα,β, Sγ are 1-discrete subsets of∂C, |S0| = 18 and|Sα,β | = |Sγ | = 17.

This way we have that the following theorem is the reformulation of Theorem 1 with
an additional description of the sets formed by the translation vectors of the arrangements
where there are exactly 17 mutually nonoverlapping translates of the tetrahedronT which
all touchT .
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Theorem 2. Let C be a cuboctahedron, and let S⊂ ∂C be a1-discrete set in the metric
determined by C. Then|S| ≤ 18. Moreover, if S0, Sα,β, Sγ denote the finite subsets of
∂C as defined above, then we have the following characterization.

If |S| = 18, then S= S0. If |S| = 17, then there exists a congruence f: R3 → R3

with f (∂C) = ∂C, such that one of the following holds:

(1) f (S) = Sα,β for suitableα, β ∈ R, 0≤ α ≤ β − 1
2 ≤ 1

2;
(2) f (S) = Sγ for a suitableγ ∈ R, 0< γ < 1.

3. Proof of Theorem 2

The main ideas of the proof of this theorem can be described as follows. In Section 3.1
we define several subsets of∂C and certain weighted counting measures on them. In
Section 3.2 we make a complete list of arrangements, showing where the elements of
a 1-discrete set in a “region” of∂C can be situated. Then in Section 3.3 we give upper
bounds for the weighted counting measure of a 1-discrete setSof ∂C in a “belt”, which
is the union of three regions. We also prove that|S| ≤ 16 for a special configuration.
Finally, in Section 3.4, using that the sum of some weighted counting measures ofS is
equal to|S|, we prove three propositions, which collectively imply Theorem 2.

3.1. Notation and Terminology

Let A ⊆ Rd, a,b ∈ Rd. We denote by conv(A) the convex hull ofA. We use the notation
abor [ab] for conv(a,b), [ab)or(ba] for conv(a,b)\{b}, and(ab) for conv(a,b)\{a,b}.
Assume now thatA ⊆ Rd is homeomorphic to ak-dimensional convex body, 0≤ k ≤ d.
Then we denote by ri(A) and by rb(A) the relative interior ofA and the relative boundary
of A, respectively. The set of vertices of a polytopeP is denoted by vert(P).

We denote byD the cube [−1,1]3 of R3. Denote the vertices ofD by v1, v2, . . . , v8

in such a way thatv1vi is an edge ofD for any 2≤ i ≤ 4, andvj = −v9− j for any
1≤ j ≤ 8. Let I = {(i, j ) ∈ N × N | vi vj is an edge ofD}.

If (i, j ) ∈ I , then denote bypi j the midpoint of the edgevi vj of D (thus pi j = pji ).
Let T be a regular tetrahedron with vertices from the vertex set of1

2 D. Let C = T − T .
ThenC is a cuboctahedron, andC = conv({pi j ∈ R3 | (i, j ) ∈ I }).

Consider an arbitrary(i, j ) ∈ I . Denote byhi j the homothety with centerpi j and
with coefficient1

2. That is,hi j (x) = 1
2(x+ pi j ) for anyx ∈ R3. Let Ri j = hi j (C)∩ ∂C.

Ri j is called aregionof ∂C. From the definition ofRi j it follows thatRi j = Rji and that
{Ri j | (i, j ) ∈ I } is a collection of 12 congruent and mutually nonoverlapping regions
of ∂C (i.e., ri(Ri j ) ∩ ri(Rkl) = ∅ for every(i, j ), (k, l ) ∈ I with Ri j 6= Rkl).

For 1≤ i ≤ 8, we setBi =
⋃{Ri j | (i, j ) ∈ I ,1 ≤ j ≤ 8}. ThenBi is the union of

three regions of∂C. Bi is called abelt of ∂C. Let Ti = conv({pi j | (i, j ) ∈ I ,1 ≤ j ≤
8}). ThenTi is a triangle. Denote byMi the smaller triangle determined by the midpoints
of the sides ofTi . Let Qi = Bi ∪ Mi . Qi is called aquarterof ∂C. The reason for this
name is that ifV ⊂ vert(D) and conv(V) forms a regular tetrahedron, then{Qi | i ∈ V}
is a collection of four congruent and mutually nonoverlapping quarters, whose union
“almost” covers∂C (more precisely, it covers∂C\⋃{Mi | i /∈ V}).
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Fig. 1. The introduced notation on∂C.

In the proof we define several nonnegative real-valued functions on∂C. They corre-
spond to certain subsets of∂C. We call these functions weight functions, because they are
related to the counting measure, so we are able to consider them as some kind of weighted
counting measures. Our notation for a weight function corresponding to a setA ⊆ ∂C
is w(A, ·). If F ⊂ ∂C is a finite set, we use the notationw(A, F) for

∑
x∈F w(A, x).

We note that the method of “weight” functions, or “cost” functions, which are usually
piecewise constant, is often used in combinatorics and discrete geometry. For some nice
examples of this method, see [8] (see also [3]), [21], and [22]. Our method is a refinement
of the one used by Zong [21].

Consider the regionR12. Leto1 = 1
2(p46+ p12) ando2 = 1

2(p35+ p12). There are four
edges ofC containingp12. We introduce notation for the midpoints of these edges. Let
ai = 1

2(p12+ p1i ) for i = 3,4, andaj = 1
2(p12+ p2 j ) for j = 5,6. With this notation,

the relative boundary ofR12 is formed by the closed (nonplanar) hexagono1a4a3o2a5a6

(see Fig. 1).
We define the weight functionw(R12, ·): ∂C→ R in the following way:

w(R12, x)
def=



1, for x ∈ ri(R12) ∪ (a3a4) ∪ (a5a6),

1
2, for x ∈ (o1a4] ∪ [a3o2) ∪ (o2a5] ∪ [a6o1),

1
4, for x ∈ {o1,o2},
0, for x ∈ ∂C\R12.

Let us define the weight functionw(Ri j , ·) of an arbitrary regionRi j similarly as we
defined the weight functionw(R12, ·). More precisely, consider a congruenceg: R3→
R3 for whichg(∂C) = ∂C andg(Ri j ) = R12 hold, and definew(Ri j , x) = w(R12, g(x))
for everyx ∈ ∂C. It is easy to see that thenw(Ri j , ·) is well-defined, i.e., its value does
not depend on the selected congruenceg.

Let 1 ≤ i ≤ 8. We define the weight function corresponding toBi asw(Bi , x) =∑{w(Ri j , x) | (i, j ) ∈ I ,1 ≤ j ≤ 8} for everyx ∈ ∂C. We also define the weight
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function of the triangleMi as

w(Mi , x)
def=
{

2, for x ∈ ri(Mi ),

0, for x ∈ ∂C\ri(Mi ).

Define the weight function of the quarterQi asw(Qi , x) = w(Bi , x) + w(Mi , x) for
everyx ∈ ∂C.

Let us defineM =⋃8
i=1 ri(Mi ). Let F be an arbitrary finite subset of∂C. It follows

immediately by the definitions of the weight functions introduced above that

2|F | =
8∑

i=1

w(Qi , F) =
8∑

i=1

w(Bi , F)+ 2|M ∩ F |.

3.2. Local Case Analysis

First we recall two simple statements which will help us to decide whether the distance
between two points on∂C is less than or equal to 1 in the metric determined byC.
These statements are immediate consequences of the triangle inequality in the metric
determined byK − K . We leave their proofs to the reader.

Proposition 3.1. Let K be a d-dimensional convex body, let Z1 and Z2 be finite subsets
of Rd, p ∈ conv(Z1), q ∈ conv(Z2). Then there exist points z1 ∈ Z1 and z2 ∈ Z2 such
that

‖p− q‖K−K ≤ ‖z1− z2‖K−K .

Proposition 3.2. Let K be a d-dimensional convex body, let L be a convex set in Rd,
p,q ∈ Rd. Assume that q∈ ri(L), and that there exists a pointw ∈ L such that
‖p− w‖K−K < maxz∈L‖p− z‖K−K . Then

‖p− q‖K−K < max
z∈L
‖p− z‖K−K .

From now on, we fix the metric determined byC, i.e., we considerR3 equipped with
the metric determined by the Minkowski norm with the unit ballC.

Let S = {s1, s2, . . . , sm} be a 1-discrete subset ofR12. If |S| = 1, then we have
w(R12, S) ≤ 1. We now make a complete list (up to a congruence ofR12) of eight cases,
showing where the elements ofS can be situated inR12 if |S| ≥ 2. That is, this list
will have the property that for any 1-discrete subsetF of R12, |F | ≥ 2, there exists a
congruencef : R3 → R3 with f (R12) = R12 (and then withf (∂C) = ∂C) such that
one of the following eight cases holds forS= f (F). Moreover, since for every(i, j ) ∈ I
there exists a congruenceg: R3→ R3 with g(Ri j ) = R12 and f (∂C) = ∂C, therefore
this list will have the property that for any(i, j ) ∈ I , any 1-discrete subsetF of Ri j ,
|F | ≥ 2, there exists a congruencef : R3→ R3 with f (Ri j ) = R12 and f (∂C) = ∂C,
such that one of the following eight cases holds forS= f (F).
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Starting to make the list, we assume that|S| ≥ 2. SinceR12 ⊆ h12(C), so the distance
between any two points ofR12 is at most 1 (in the metric determined byC). First we
consider the case whenp12 ∈ S. Then it is easy to see thatS⊆ {p12,o1,o2}. Thus we
have two cases.

Case 1.S= {p12,o1}. Thenw(R12, S) = 1.25.
Case 2.S= {p12,o1,o2}. Thenw(R12, S) = 1.5.

We now consider the case whenS∩ (ri(R12)\{p12}
) 6= ∅, says1 ∈ ri(R12), s1 6= p12.

Then there exists a segment [p12b] ⊂ R12 such thats1 ∈ (p12b). Applying Proposi-
tion 3.2, we have‖p12− s2‖C = 1, sos2 ∈ {o1,o2}. However, a simple argument shows
that{o1,o2} * Sands1 /∈ ri(T1). Thus we can reduce the situation to the following.

Case 3.|S| = 2, s1 ∈ ri(R12) ∩ conv(o1,a4, p12,a6), s2 = o2. Thenw(R12, S) =
1.25.

In the further cases we may assume thatS∩ ri(R12) = ∅. Considering the case when
S∩ ((a3a4) ∪ (a5a6)) 6= ∅ we may assume by symmetry reasons thats1 ∈ (a3a4). Then
by Proposition 3.2 we get thatS\{s1} ⊂ [a5a6]. This way we can reduce the situation
for one of the following two cases:

Case 4.|S| = 2, s1 ∈ (a3a4), s2 ∈ (a5a6). Thenw(R12, S) = 2.
Case 5.|S| = 2, s1 ∈ (a3a4), s2 = a5. Thenw(R12, S) = 1.5.

In the remaining cases we may assume thatS⊂ [a6o1]∪[o1a4]∪[a3o2]∪[o2a5]. Then
it is clear that either|S∩ ([a6o1] ∪ [o1a4])| ≤ 1 or S∩ ([a6o1] ∪ [o1a4]) = {a4,a6}. By
symmetry ofR12 a similar result can be obtained forS∩ ([a3o2] ∪ [o2a4]). However, by
‖a3−a4‖C = 1

2 and by Proposition 3.2, it is easy to see that|S∩ ((o1a4] ∪ (o2a3])| ≤ 1,
and|S∩ ((o1a6] ∪ (o2a5])| ≤ 1. Then the reader can easily verify that these conditions
reduce the situation to the following three, essentially different cases:

Case 6.|S| = 2, s1 = a4, s2 = a6. Thenw(R12, S) = 1.
Case 7.|S| = 3, s1 = a4, s2 = a6, ands3 = o2. Thenw(R12, S) = 1.25.
Case 8.|S| = 2, s1 ∈ (o1a4], s2 ∈ (o2a5]. Thenw(R12, S) ≤ 1.

This completes the list of cases.

3.3. Lemmas

We define thesubregion R112 of the regionR12 as the relatively closed subset ofR12

bounded by the closed (nonplanar) pentagono1 p12o2a3a4. In general, we define two
subregions Rii j andRj

i j of the regionRi j . Let Ri
i j = f (R1

12), where f : R3→ R3 is the
unique congruence for whichf (R12) = Ri j , f (M1) = Mi , and det( f ) = 1. However,
Ri j = Rji , so we assigned two subregions to each regionRi j by the above definition. It
is easy to see that ri(Ri

i j ) ∩ ri(Rj
i j ) = ∅ andRi j = Ri

i j ∪ Rj
i j for every(i, j ) ∈ I .

Lemma 3.1. If S ⊂ ∂C is a 1-discrete set, (i, j ) ∈ I , and S∩ ri(Mi ) 6= ∅ (resp.
S∩ Mi 6= ∅), then S∩ Ri

i j = ∅ (resp. S∩ ri(Ri
i j ) = ∅), and|S∩ Rj

i j | ≤ 1.
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Proof of Lemma3.1. Without loss of generality we may assume thati = 1 and j = 2.
Suppose thatS∩ ri(M1) 6= ∅. Then|S∩ T1| = 1. Let{s1} = S∩ T1. We haveR1

12\T1 ⊆
conv(p12,o1,a4) ∪ conv(p12,o2,a3). We prove thatS∩ R1

12 = ∅. By symmetry it is
enough to show thatS∩ conv(p12,o1,a4) = ∅. Using Proposition 3.1, it is easy to see
that the diameter of conv(p12,o1,a4) ∪ M1 is equal to 1 (in the metric determined by
C), and applying Proposition 3.2 forp ∈ conv(p12,o1,a4), q = s1, andw = a4 we
get the wanted inequality‖p − s1‖C < 1. A similar argument shows that in the case
S∩M1 6= ∅we haveS∩ ri(R1

12) = ∅. Finally we sketch how to prove that ifS∩R1
12 = ∅,

then|S∩ R2
12| ≤ 1. Assuming the contrary, i.e.,|S∩ R2

12| ≥ 2, we get that there exists
a congruenceh: R3 → R3 such thath(R12) = R12 and one of Cases 1–8 holds for
S′ = h(S). Then eitherS′ ∩ R1

12 = ∅ or S′ ∩ R2
12 = ∅. However, both cases turn out to

be impossible after taking a closer look at each of the eight local cases forS′.

Let S ⊂ ∂C be a 1-discrete set, leti be an integer, 1≤ i ≤ 8. We introduce the
notationni (S) = |{ j | (i, j ) ∈ I , S∩ ri(Mj ) 6= ∅}|. Thus 0≤ ni (S) ≤ 3. The following
lemma is an immediate consequence of Lemma 3.1.

Lemma 3.2. Let S ⊂ ∂C be a1-discrete set, 1 ≤ i ≤ 8, S∩ ri(Mi ) 6= ∅. Then
w(Qi , S) = 2+ w(Bi , S) ≤ 5− ni (S).

Let q1 = 1
2(p14+ p46) andq2 = 1

2(p13+ p35). Let S∗ be defined as the collection
of all 1-discrete sets of∂C for which S ∈ S∗ if and only if S is 1-discrete andS∩
B1 = {s1, s2, s3, s4, s5} with s1 ∈ (a3a4), s2 ∈ (a5a6), s3 ∈ ri(conv(o1, p14,q1)), s4 ∈
ri(conv(o2, p13,q2)), ands5 = 1

2(p14 + p37). The reader can see a representation of
{si }5i=1 in Fig. 2, which shows a planar projection of∂C.

LetH = {h | h is a congruence ofR3, h(∂C) = ∂C}. We note that for everyh ∈ H
there exists an(i, j ) ∈ I such thath(R12) = Ri j . We introduce the notationS# = {h(S) |
S∈ S∗, h ∈ H}.

Lemma 3.3. Let S⊂ ∂C be a1-discrete set, 1≤ i ≤ 8. Assume that S∩ ri(Mi ) = ∅.
Then the inequalityw(Bi , S) ≤ 4.5− ni (S)/2 holds. Moreover, if w(Bi , S) = 4.5, then
either S∩ Bi ∈ S# or S∩ Bi = S0 ∩ Bi .

We remark that 2w(Bi , S) ∈ Z sincew(Bi , x) ∈ { 12,1} for everyx ∈ Bi . Thus if
w(Bi , S) < 4.5, thenw(Bi , S) ≤ 4. We also keep in mind that ifS∩ ri(Mi ) = ∅, then
w(Qi , S) = w(Bi , S).

Proof of Lemma3.3. Without loss of generality we may assume thati = 1 and that
w(R12, S) ≥ w(R13, S) ≥ w(R14, S). We note thatB1 = R12 ∪ R13 ∪ R14. Assume
thatw(B1, S) > 4. By Cases 1–8 we have that ifw(Ri j , S) ≥ 1, thenw(Ri j , S) ∈
{1.25,1.5,2}. A simple analysis of the eight cases combining with applications of
Lemma 3.1 shows that ifw(R12, S) = 2, thenw(R13, S) andw(R14, S) are at most 1.25,
1
2(p14+ p37) ∈ S, and finally we getS∩ B1 ∈ S∗. Otherwise we havew(R12, S) ≤ 1.5.
Then, by the assumptionw(B1, S) > 4, it is clear thatw(R12, S) = w(R13, S) = 1.5.
Furthermore, considering the regionR14, we get thatp14 ∈ Smust hold. Thus we have
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Fig. 2. A planar projection of∂C.

S∩B1 = S0∩B1. It can be easily seen that in the two cases obtained forw(B1, S) > 4 the
equalityn1(S) = 0 must hold. Now assume thatn1(S) = 2. Suppose the contrary of the
conclusion, i.e., thatw(B1, S) ≥ 4. We may assume by symmetry thatS∩ ri(Mj ) 6= ∅
for j = 3,4. Then, by Lemma 3.1, we havew(R1 j , S) ≤ 1 for j = 3 and 4, so
w(R12, S) = 2 holds. ThusS∩ M1 6= ∅, thereforeS∩ ri(R1

1 j ) = ∅ for j = 3,4 by
Lemma 3.1. However,S∩ ri(R13 ∩ R14) = ∅ by Propositions 3.1 and 3.2, so we get
S∩ B1 = S∩ R12. Hencew(B1, S) = 2, which is a contradiction. Finally we assume
thatn1(S) = 3. Then, by Lemma 3.1, we havew(R1 j , S) ≤ 1 for j = 1,2, and 3. Thus
we getw(B1, S) ≤ 3.

Lemma 3.4. Let S⊂ ∂C be a1-discrete set. If S∩ Bi ∈ S# for a suitable i, 1≤ i ≤ 8,
then|S| ≤ 16.

Proof of Lemma3.4. By symmetry, we may assume thatS∩ R12 ∈ S∗. Thus we can
use the notationS = {si | 1 ≤ i ≤ m} where eachsi has the same property as in
the definition ofS∗ for 1 ≤ i ≤ 5 (see Fig. 2). Considering the position ofs2, we
have by Lemma 3.1 that ifS∩ ri(M6) 6= ∅, thenw(Q6, S) ≤ 4. If S∩ ri(M6) = ∅,
then consideringR26 and applying Lemma 3.3 we havew(Q6, S) ≤ 4. Thus we get
w(Q6, S) ≤ 4 for anyS. Similarly,w(Q5, S) ≤ 4. Considering the points ofS∩ B1, we
get by Lemma 3.1 thatS∩ ri(Mi ) = ∅ for i = 1,2,3,4, and 7, sow(Qj , S) ≤ 4.5 for
j = 2,7 andw(Qj , S) ≤ 4 for j = 3,4 by applying Lemma 3.3. We have two cases. If
w(Q8, S) = 5, then it is easy to see, by Lemma 3.3, thatw(Qj , S) ≤ 4 for j = 2,7. From
this it follows that 2|S| ≤ 33.5, i.e.,|S| ≤ 16. In the second casew(Q8, S) ≤ 4.5, so we
get the estimate 2|S| ≤ 4 · 4+ 4 · 4.5= 34. Suppose to the contrary that|S| ≥ 17. Then
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|S| = 17, and each estimate forw(Qj , S) is sharp. In particular, we havew(Q2, S) = 4.5
andw(Q6, S) = 4. However,w(R12, S) = 2, so we getS∩Q2 ∈ S# by Lemma 3.3. This
impliesw(R26, S) = 1.25. Recallq1 = 1

2(p14+ p46). Let q3 = 1
2(p26+ p46). Defineqj

(4≤ j ≤ 6) so thatq1,q4,q5,q6,q3,o1 denote consecutive vertices ofR46. Then we have
S∩ ri(conv(o1,q3, p26)) 6= ∅, so considering the position ofs3 also, we get, by applying
Propositions 3.1 and 3.2, thatS∩R46 = S∩(conv(q4,q5,q6, p46)\([q4, p46]∪[q6, p46])).
Thenw(R46, S) ≤ 1. Thusw(R68, S) ≥ 4− 1.25− 1 = 1.75, that is,w(R68, S) = 2
by Cases 1–8. However,S∩ R68 contains a square face center ofC byw(Q2, S) = 4.5,
which implies (by Cases 1–8) thatw(R68, S) < 2. This is a contradiction.

3.4. Global Case Analysis

Finished with the preparations, we now turn to the actual proof of Theorem 2 which we
carry out by the following three propositions. The reader should notice that collectively
they imply Theorem 2.

Proposition 3.3. Let S⊂ ∂C be a1-discrete set. If S∩ M 6= ∅, then|S| ≤ 16.

Proof of Proposition3.3. By Lemma 3.4 we may assume thatS∩ Bi /∈ S# for eachi ,
1 ≤ i ≤ 8. Thenw(Bi , S) = 4.5 if and only if S∩ Bi = S0 ∩ Bi . First we prove that
if |S∩ M | ≥ 2, thenS∩ ri(Mi ) = ∅ implies thatw(Qi , S) ≤ 4. This follows from
the fact that ifS∩ ri(M1) 6= ∅, then{o1,o2,o3} ∩ S = ∅, whereo3 = 1

2(p14+ p37),
but {o1,o2,o3} ∩ Bj 6= ∅ for any j 6= 8, andoi ∈ S0 for 1 ≤ i ≤ 3. Let n(S) =
|{(i, j ) ∈ I | i < j, S∩ ri(Mi ) 6= ∅, S∩ ri(Mj ) 6= ∅}|. Then, by Lemma 3.2, we have
2|S| =∑8

i=1w(Qi , S) ≤ 32+|S∩M |−2n(S) if |S∩M | ≥ 2. Using the trivial bound
n(S) ≥ 3(|S∩M | − 4), we get 2|S| ≤ 31− 5(|S∩M | − 5), which means that|S| < 16
if |S∩ M | ≥ 5.

If |S∩ M | = 1, then without loss of generality we may assume thatS∩ ri(M1) 6= ∅.
By the first part of this proof we now havew(Qi , S) ≤ 4 for any i 6= 1,8. Thus
2|S| ≤ 5+ 6 · 4+ 4.5= 33.5, i.e.,|S| ≤ 16.

If |S∩ M | = 2, then 2|S| ≤ 32+ 2− 2n(S). So if n(S) > 0, then|S| ≤ 16. If there
exists a square face of the cubeD such thatvi andvj are opposite vertices of that face,
|S∩ ri(Mi )| = |S∩ ri(Mj )| = 1, then, denoting the indices of the other two vertices
of that face byk1 andk2, we getnkt (S) ≥ 2 for t = 1,2. By Lemma 3.3, we obtain
w(Bkt , S) ≤ 3.5 (t = 1,2), so 2|S| ≤ 2 · 5+ 2 · 3.5+ 4 · 4 = 33, i.e.,|S| ≤ 16. It is
easy to see that the only remaining case is when|S∩ ri(Mi )| = |S∩ ri(Mj )| = 1 for
i + j = 9, i.e.,vi andvj are opposite vertices ofD. Without loss of generality we may
suppose thati = 1. It is enough to show that there exists an indexz such that either
S∩ ri(Mz) = ∅ andw(Bz, S) < 4, or S∩ ri(Mz) 6= ∅ andw(Qz, S) < 5, because then
we have 2|S| < 2 · 5+ 6 · 4 = 34, which implies that|S| ≤ 16. Assume the contrary.
Then we havew(Q1, S) = w(Q8, S) = 5 andw(B2, S) = 4. Thus there exists an index
k ∈ {1,5,6} such thatw(R2k, S) ≥ 1.5, since 4w(Rz1z2, x) ∈ Z for eachx ∈ Rz1z2,
(z1, z2) ∈ I . Observing the fact that the square face centers ofC cannot belong toS,
and analyzing Cases 1–8, we get thatk 6= 1 andS∩ Mk 6= ∅. By Proposition 3.2 we
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obtainS∩ rb(Rk8) = ∅. So, by Lemma 3.1, we haveS∩ Rk8 = ∅. However, this is a
contradiction, because we assumed thatw(Q8, S) = 5, which impliesw(Rk8, S) = 1.

If |S∩ M | = 3, then 2|S| ≤ 32+ 3− 2n(S), so |S| ≤ 16 if n(S) > 0. Otherwise,
whenn(S) = 0, it is easy to see that there exists an indexj , 1 ≤ j ≤ 8, such that
S∩ ri(Mi ) 6= ∅ for anyi with (i, j ) ∈ I . Then we have that there exists a setJ of indices
such that|J| = 4, S∩ ri(Mk) = ∅, andnk(S) ≥ 2 for anyk ∈ J. Thus, by Lemma 3.3,
we getw(Bk, S) ≤ 3.5 for anyk ∈ J. This implies that 2|S| ≤ 3 · 5+ 4 · 3.5+ 4= 33,
that is|S| ≤ 16.

If |S∩ M | = 4, then 2|S| ≤ 32+ 4− 2n(S), so |S| ≤ 16 if n(S) ≥ 2. It is easily
seen that ifn(S) < 2, thenn(S) = 0 andV1 = {vi | S∩ ri(Mi ) 6= ∅} is the vertex set of
a regular tetrahedron. Thennj (S) = 3 for eachj ∈ vert(D)\V1. Applying Lemma 3.3,
we getw(Bj , S) ≤ 3 for any j ∈ vert(D)\V1. Thus we have 2|S| ≤ 4 · 5+ 4 · 3 = 32,
i.e., |S| ≤ 16.

Proposition 3.4. Let S⊂ ∂C be a1-discrete set, S∩ M = ∅. Then|S| ≤ 18 holds.
Moreover, if |S| = 18, then S= S0. If |S| = 17, then there exists a square face F of C,
such that S∩ (∂C\F) = S0 ∩ (∂C\F).

Proof of Proposition3.4. By Lemma 3.3, we have 2|S| ≤ 8 · 4.5 = 36, so|S| ≤ 18.
Furthermore, if|S| = 18, thenw(Bi , S) = 4.5 for eachi (1 ≤ i ≤ 8). By Lemmas 3.3
and 3.4, we then haveS∩ Qi = S∩ S0 (1 ≤ i ≤ 8). However,

⋃8
i=1 Qi = ∂C, so we

getS= S0.
Let |S| = 17. Then it can be easily seen that the proof can be reduced to showing

the existence of a faceF ′ of D with the propertyw(Bi , S) = 4.5 for anyi ∈ vert(F ′).
Then the square faceF of C which is opposite to the square faceF ′ ∩ C of C will
have the property required by the proposition. Denote byV1 a subset of vertices of
D whose elements form the vertices of a regular tetrahedron. LetV2 = vert(D)\V1,
Ji = { j | vj ∈ Vi } for i = 1,2. Then

∑{w(Bj , S) | j ∈ Ji } = |S| = 17 for i = 1,2.
By w(Bj , S) ≤ 4.5 and 2w(Bj , S) ∈ Z there are at least two elementsj1, j2 of J1 for
whichw(Bji , S) = 4.5 (i = 1,2). Then [vj1vj2] is not an edge ofD, and there exists
a square faceF ′ of D such thatvj1, vj2 ∈ vert(F ′). Without loss of generality we may
assume thatj1 = 2, j2 = 8, andF ′ = conv(v2, v5, v8, v6). Assume that the faceF ′ of D
does not have the required property. Then eitherw(R46, S) < 1.5 orw(R35, S) < 1.5.
By symmetry we may suppose thatw(R46, S) < 1.5. However,S∩R46 contains the two
points ofR46 with weight 0.25, so we get (by Cases 1–8 or directly) thatw(R46, S) = 0.5.
Thenw(Bi , S) = 3.5 for i = 4,6. From this it follows thatw(Bi , S) = 4.5 for any
i 6= 4,6. Let F ′′ = conv(v3, v5, v8, v7). ThenF ′′ is a face ofD which has the required
property.

Let F ⊂ R2 be a square with consecutive verticesc1, c2, c3, c4. Letα, β, γ ∈ [0,1],
bi,t = tci + (1− t)ci+2, andai,t = tci + (1− t)ci+1 for every integeri , 1 ≤ i ≤ 4,
and t ∈ [0,1] (if 5 ≤ k ≤ 8, we use the notationck for ck−4 as well). LetF1

α,β =
{b1,α,b1,β , c2, c4}, F2

α,β = {b2,α,b2,β , c1, c3}, andFα,β = {F1
α,β, F2

α,β}. Furthermore, let
Fγ = {ai,γ | 1≤ i ≤ 4}.
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Proposition 3.5. Let N ⊂ R2 be a square with center o, where o is the origin of R2.
Let F be the square determined by the midpoints of the sides of N. Let S be a1-discrete
subset of F in the metric determined by N. Then|S| ≤ 5. In particular, |S| = 5 if and
only if S= vert(F)∪{o}. Furthermore, |S| = 4 if and only if either S∈ Fα,β for suitable
α andβ, 0≤ α ≤ β − 1

2 ≤ 1
2, or S= Fγ for a suitableγ , 0< γ < 1.

Proof of Proposition3.5. Obviously vert(F) ∪ {o}, Fi
α,β (i = 1,2), and Fγ are 1-

discrete subsets ofF for any values ofα, β, andγ described in Proposition 3.5. So
we need to prove only the other direction of the proposition. Let|S| ≥ 4. If o ∈ S,
thenS ⊆ vert(F) ∪ {o}, so |S| ≤ 5. Furthermore, then in the case of|S| = 5 we get
S= vert(F)∪ {o}, while in the case of|S| = 4 we obtainS∈ F0, 1

2
∪F 1

2 ,1
∪F0,1. From

now on we may assume thato /∈ S. Let S= {s1, s2, . . . , sm}. For eachi , defineqi as the
unique point on the boundary ofF for which si ∈ [oqi ] (1 ≤ i ≤ m). Thensi = αi qi

for a suitable real numberαi , 0< αi ≤ 1 (1≤ i ≤ m). Let S′ = {q1,q2, . . . ,qm}. S′ is
a 1-discrete set since, for anyi 6= j , αi ≤ αj , we have

1≤ 1

αj
≤ 1

αj
‖si −sj ‖N ≤ αi

αj
‖qi −qj ‖N+

(
1− αi

αj

)
‖qj ‖N ≤ 1+ αi

αj
(‖qi −qj ‖N−1).

Moreover, if‖qi−qj ‖N = 1, then we have equalities in each of the preceding inequalities,
thusαj = 1 and‖o− qj ‖N = ‖qi − qj ‖N = ‖si − qj ‖ = 1. This means that ifsi 6= qi ,
then [oqi ] ⊂ ∂(N − qj ), i.e., N has a side parallel to [oqi ]. In this special case we get
thatqi andqj (= sj ) are vertices ofF .

Denote byc1, c2, c3, c4 the consecutive vertices ofF . Then |S′ ∩ [ci ci+1)| ≤ 1
(1≤ i ≤ 4), so|S| = |S′| = 4 (we use the notationcj+4 for cj as well). Without loss of
generality we may assume thatqi ∈ [ci ci+1) for eachi . Using the notationqj+4 for qj

as well, it can be shown by a simple argument that

‖qi − ci ‖N

‖ci+1− ci ‖N
≤ ‖qi+1− ci+1‖N

‖ci+2− ci+1‖N
for everyi , 1≤ i ≤ 4.

Thus
‖q1− c1‖N

‖c2− c1‖N
= ‖qi − ci ‖N

‖ci+1− ci ‖N
for everyi , 1≤ i ≤ 4.

Let γ = ‖q1− c1‖N/‖c2− c1‖N . If γ 6= 0, then we getS′ = Fγ , and‖qi+1−qi ‖N = 1
(1≤ i ≤ 4). By γ 6= 0 we have that [oq1] is not parallel to any sides ofN. This implies
thatS= S′ = Fγ . If γ = 0, then we get thatqi = si = ci andqi+2 = si+2 = ci+2 for a
suitablei , 1≤ i ≤ 2. Then it is clear that{si+1, si+3} ⊂ [ci+1ci+3]. HenceS∈ Fα,β for
suitable realsα, β ∈ [0,1]. We may assume thatα < β. However,S is a 1-discrete set,
soα ≤ β − 1

2. This completes the proof of Proposition 3.5.

4. Applications

In this section we apply Theorem 2 to determine the minimum and maximum densities
of 17+-neighbor translative packings of tetrahedra. The main idea we use is to reduce the
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proof to a problem on packings withZ-translates of a certain cluster ofR3. Finally, in
Proposition 4.3 we consider ad-dimensional generalization of this problem, but in this
case we can only prove a somewhat weaker result than in the case of the original problem
(Lemma 4.1). Thus Proposition 4.3 is not so closely connected to the other propositions
and lemmas, but it has an interest of its own.

We recall some notions from the theory of packings (see [4] and [5]). LetA, B ⊆ Rd.
B is called aZ-translateof A if B = A+ v for a suitablev ∈ Zd. A collectionP of
mutually nonoverlapping subsets ofRd with nonempty interiors is called apacking. If
all the members of the packingP are translates (resp.Z-translates) of a fixed setP, then
P is called atranslative packing(resp.Z-translative packing) of P. A packing (resp.Z-
translative packing)P of Rd is called atiling (resp.Z-tiling) if

⋃
P = Rd. Theneighbors

of an elementP of a packingP are the elements of the set{P′ ∈ P | P′ ∩ P 6= ∅}. A
k-neighbor packing(resp.k+-neighbor packing) is a packing where each element has
exactly (resp. at least)k neighbors. A packingP is calledconnectedif

⋃
P is a connected

subset ofRd. Theconnected componentsof a packingP are the subcollections ofP for
which their unions form the connected components of the set

⋃
P.

Let P be a packing inRd, andCd(r ) = [−r/2, r/2]d for everyr > 0. Theupper
density d+(P) of the packingP is defined as

d+(P) = lim sup
r→∞

(V((∪P) ∩ Cd(r ))/r
d),

whereV(·) denotes the volume inRd. Similarly, thelower density d−(P) of the packing
P is defined as

d−(P) = lim inf
r→∞ (V((∪P) ∩ Cd(r ))/r

d).

If d+(P) = d−(P), then we denote their common value byδ(P). This δ(P) is called
thedensityof the packingP.

We now start to investigate the 17+-neighbor translative packings of tetrahedra. Our
main purpose is to determine the minimum and maximum densities of these packings.
For analogous results of this kind for other convex bodies in two and three dimensions,
see [12] and the survey paper [5].

In the following proposition we prove that any 17+-neighbor translative packing of a
tetrahedron can be obtained from its unique 18+-neighbor translative packing by omitting
some elements of that packing.

Proposition 4.1. Let T ⊂ R3 be a tetrahedron. Then there exists a unique18-neighbor
translative packingT of T such that T∈ T . If T ′ is a17+-neighbor translative packing
of T with T ∈ T ′, thenT ′ ⊆ T , and for every T1 ∈ T \T ′ all the neighbors of T1 in the
packingT are elements ofT ′ as well.

Proof of Proposition4.1. Using the same argument as in the proof of Theorem 2, we
obtain that it is enough to prove the analogue of this proposition for the cuboctahedron
C0 = 1

2C, whereC is the cuboctahedron defined in Section 3.1. LetC = {C0 + v | v ∈
Z3}. ThenC is an 18-neighbor translative packing. LetC1 be an arbitrary 18-neighbor
translative packing ofC0 such thatC0 ∈ C1. Then by Theorem 1 and the fact thatC is
connected, we getC ⊆ C1. We show thatC1 = C. Otherwise there exists an element
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C1 ∈ C1\C. Then we can consider a translateC2 of C1 for whichC ∪ {C2} is a packing
andC2 touches at least one element ofC. However, then this element ofC would have at
least 19 neighbors inC∪{C2}, which contradicts Theorem 1. This proves the uniqueness
part of Proposition 4.1.

Let C ′ be a 17+-neighbor translative packing ofC0 such thatC0 ∈ C ′. We denote by
C ′0 the connected component ofC ′ which containsC0. We prove thatC ′0 ⊆ C. Assume
the contrary. Then there existC1 = C0 + v1 ∈ C ′0\C andC2 ∈ C ′0 ∩ C such thatC1 and
C2 are neighbors. IfC1 has 18 neighbors inC ′, thenC1 ∈ C by Theorem 1, which is a
contradiction. So, we may assume thatC1 has 17 neighbors inC ′0. Then, by Theorem 2,
for C1 − v1 we get that eitherv1 ∈ Sγ \S0 for a suitableγ , 0< γ < 1, orv1 ∈ Sα,β\S0

for suitableα andβ, (α, β) /∈ {(0, 1
2), (

1
2,1), (0,1)}. However, in this case it is easy to

see thatC2− v1 would have less than 17 neighbors inC ′0− v1, which is a contradiction.
Thus we obtain thatC ′0 ⊆ C. Therefore, ifC′ ∈ C ′0, C′ has 17 neighbors, then there exists
a neighborC′′ of C′ in C such thatC′′ /∈ C ′0, andC ′0 ∪ {C′′} is also a packing. LetC#

be an arbitrary neighbor of such aC′ andC′′ in C. Then it is easy to see thatC# ∈ C ′0.
This way we get that each neighbor ofC′′ in C is an element ofC ′0 as well. LetC ′′ be
the collection of elements ofC which have some neighbors inC belonging toC ′0 also.
Then it is clear thatC ′0 ∪ C ′′ is an 18-neighbor packing ofC0 which containsC0. Thus,
by the already proven first part of Proposition 4.1, we haveC ′0 ∪ C ′′ = C. Applying the
argument used in the proof of the first part of this proposition, we getC ′0 = C ′, and hence
C ′ ∪ C ′′ = C. ConsequentlyC ′ ⊆ C, and for everyC′′ ∈ C\C ′ all the neighbors ofC′′ in
the packingC are elements ofC ′ as well.

Let U = 1
2 D = [− 1

2,
1
2]3. ThenU = {U + v | v ∈ Z3} is a tiling of R3. A finite

subset ofU is called acluster. Let E = {v ∈ Z3 | v ∈ [−1,1]3\vert([−1,1]3)}. Define
G to be the setU + E =⋃{U + v | v ∈ E}. ThenG is a cluster, which can be obtained
from a cube formed by the union of 27 translates ofU , by leaving the 8 translates ofU
out at the vertices of the cube. Let us denote byL∗ the sublattice ofZ3 generated by the
vectors(3,1,0), (−1,3,0), (1,2,2). LetG∗ = {G+ v | v ∈ L∗}. ThenG∗ is a packing
with Z-translates ofG.

By Proposition 4.1, it is easy to see that there is a one-to-one correspondence between
the 17+-neighbor translative packings of a tetrahedron and the packings ofR3 with Z-
translates ofG. So, first we determine the maximum density of the packings mentioned
last, and then we apply this result to get the minimum density bound for 17+-neighbor
translative packings of tetrahedra.

Lemma 4.1. Let G be an arbitrary packing with Z-translates of G. Then d+(G) ≤
δ(G∗) = 0.95.

Proof of Lemma4.1. It is easy to find aZ-translateU ′ of U which touchesG and which
is not covered by any elements ofG∗. Then observe that{(G ∪ U ′) + v | v ∈ L∗} is a
tiling of R3. From this it follows thatδ(G∗) = 19

20 = 0.95.
Consider nowG. Without loss of generality, we may assume thatG ∈ G. We will find

a vectorv ∈ Z3 with ‖v‖ ≤ 2 for whichU + v is not covered by
⋃
G. If U + (0,0,2) is

not covered byG, then letv = (0,0,2). OtherwiseU + (0,0,2) ⊂ G+w for a suitable
w ∈ Z3. It is clear that the third coordinate ofw has to be 3. This way there are five
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choices forw. If w = (0,0,3), then a simple argument shows that eitherU + (1,1,1)
or U + (1,1,2) is not covered byG. Choosev = (1,1,1) if U + (1,1,1) is not covered
by G, otherwise choosev = (1,1,2). In the remaining four cases we may assume by
symmetry thatw = (1,0,3). (If w 6= (1,0,3), then we can apply a rotationr : R3→ R3

around the third coordinate axis, which sendsw to (1,0,3). Thenr−1(v)will correspond
to G, wherev is the vector defined for{r (G′) | G′ ∈ G} in the following process.) Now,
if U + (1,−1,1) is not covered byG, then letv = (1,−1,1). Otherwise, considering
U + (1,1,1), if it is not covered byG, then letv = (1,1,1). Finally, it can be easily
seen that ifU + (1,−1,1) andU + (1,1,1) are covered byG, thenG + (2,−2,1),
G + (2,2,1) are contained inG, andU + (2,0,1) cannot be covered byG. Then let
v = (2,0,1). This way we assigned a vectorv corresponding to the packingG in each
case, for whichU + v is not covered byG. Let G′ = G + w′ be an arbitrary element
of G. ThenG = G′ − w′ ∈ G − w′, so by applying the above process forG − w′, we
can define a vectorv = v(G − w′) which corresponds to the packingG − w′. Define
a function f : G → Z3 as f (G′) = v(G − w′) for any G′ ∈ G, wherew′ ∈ Z3 is the
unique vector for whichG′ = G + w′. A simple case analysis, which we leave to the
reader, shows that ifG1,G2 ∈ G, G1 6= G2, then f (G1) 6= f (G2). This way we get that
{G′ ∪ {U + f (G′)} | G′ ∈ G} is a packing ofR3, sod+(G) ≤ 19

20.

Proposition 4.2. LetT ′ be a17+-neighbor translative packing of a tetrahedron. Then

19
60 = δ(T ′′) ≤ d−(T ′) ≤ d+(T ′) ≤ δ(T ) = 1

3

holds, whereT = {T0+v | v ∈ Z3} is an18-neighbor packing, andT ′′ = {T0+v | v ∈
Z3\L∗} is a17+-neighbor packing(here T0 denotes a regular tetrahedron contained in
the cube U= [− 1

2,
1
2]3 with vert(T0) ⊂ vert(U )).

Proof of Proposition4.2. Obviously it is enough to consider the case whenT ′ is a
translative packing ofT0, andT0 ∈ T ′. Then we have, by Proposition 4.1, thatT ′ ⊆ T ,
so d+(T ′) ≤ δ(T ) = 1

3. On the other hand, ifT ′′ ∈ T \T ′, then the neighbors ofT ′′

in T , which form the set{T ′′} + (E\{o}), are contained inT ′. However,T ′ is a 17+-
neighbor packing, soT1 + E andT2 + E are mutually nonoverlapping subsets ofR3

for any T1, T2 ∈ T \T ′. From this it follows thatG = {G + v | T0 + v ∈ T \T ′} is a
Z-translative packing with13 · 1

19d+(G) = d+(T \T ′) = 1
3 −d−(T ′). By Lemma 4.1 we

haved+(G) ≤ 19
20, thusd−(T ′) ≥ 19

60. Furthermore, ifT ′ = T0 + L∗, thenG = G∗, and
therefored−(T ′) = δ(T ′) = 19

60.

The following corollary shows an interesting property of 17+-neighbor translative
packings of tetrahedra.

Corollary 4.1. If T ′ is a 17+-neighbor translative packing of tetrahedra, then there
exists a tetrahedron T′ ∈ T ′ which has18neighbors.

Proof of Corollary4.1. We use the notation of the proof of Proposition 4.2. It was
shown there thatT# = {T + (E\{o}) | T ∈ T \T ′} is a packing. We have

⋃
T# ⊆

⋃
T ′
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and
⋃
((T \T ′)∪ T#) Ã

⋃
T since

⋃
G 6= R3 = U + Z3. Thus

⋃
T# Ã

⋃
T ′, and it is

clear that for each elementT ′ of T ′ with T ′ Ã
⋃
T#, T ′ has 18 neighbors inT ′.

We formulate the analogue of the maximum density bound of Proposition 4.2 for
15+-neighbor translative packings of tetrahedra, as a conjecture.

Conjecture 4.1. LetT be a15+-neighbor translative packing of a tetrahedron. Then

d+(T ) ≤ 1
3.

We also conjecture that the upper bound for the densities of lattice packings of tetra-
hedra, proved by Hoylman [11], remains valid for all translative packings of tetrahedra.
We note that in this bound equality holds for a certain 14-neighbor lattice packing of
tetrahedra (that explains why we consider only 15+-neighbor translative packings in
Conjecture 4.1).

Conjecture 4.2. LetT be an arbitrary translative packing of a tetrahedron. Then

d+(T ) ≤ 18
49.

Finally we show a generalization of the fact (which can be easily derived from
Lemma 4.1) that there is noZ-tiling of R3 with translates ofG.

Proposition 4.3. Let Ek,d = {v ∈ Zd | v ∈ [0, k]d\vert([0, k]d)} and Gk,d =⋃{[− 1
2,

1
2]d + v | v ∈ Ek,d} for arbitrary integers k,d ≥ 2. Then there is a tiling

of Rd with translates of Gk,d if and only if d= 2 and either k= 2 or k = 3.

Proof of Proposition4.3. Let L1 ⊂ R2 be the lattice generated by the vectors(2,1)
and(−1,2). Similarly, let L2 ⊂ R2 be the lattice generated by the vectors(3,2) and
(0,4). Then it is easy to see that{G3,2} + L1 and{G2,2} + L2 are tilings ofR2.

In the following we prove the other direction of the proposition. By Theorem 4 on
p. 36 of the book by Stein and Szab´o [16], we may restrict ourselves to examining the
existence ofZ-tilings for a givenk andd. Dealing with Z-tilings only, we prove the
nonexistence of some more general tilings. LetUk,d = U + (Z3 ∩ [0, k]d). Consider an
arbitrary packingP of Z-translates ofGk,d andUk,d with the assumption thatP contains
at least one translate ofGk,d. We claim thatP is not a tiling ifd ≥ 3, ord = 2 andk ≥ 4.

We use induction ond to prove this claim. Ford = 3 andk = 2 we get by Lemma 4.1
thatP is not a tiling. Ford = 3 andk = 3 a similar argument can be applied as in the
proof of Lemma 4.1 (where we found a vectorv corresponding toG such thatU + v
was not covered byG), to find an uncovered translate ofU neighborly to an element
Gk,d + v′ ∈ P. Ford = 2 andk ≥ 4 a similar argument can be used, but everything is
much simpler in this planar case. We leave the details to the reader. We now prove that if
P is aZ-tiling with the required properties for somek andd, then there exists aZ-tiling
P ′ with the required properties fork andd − 1. Obviously this will complete the proof
of Proposition 4.3. LetGk,d + v′ ∈ P. Denote bye1 the vector(1,0,0, . . . ,0) of Rd.
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ConsiderP ′ = {(P− v′)∩ H | P ∈ P}, whereH is the hyperplane which is orthogonal
to e1 and contains the origin ofRd (thus H ∼= Rd−1 and Zd ∩ H ∼= Zd−1). Then it is
clear thatP ′ has the required properties, since ifP ∈ P ′, then(P − v′) ∩ H is either a
translate ofGk,d−1 or a translate ofUk,d−1, and we haveGk,d−1 ∈ P ′ by construction.
We also get thatP ′ is a Z-tiling. This completes the proof.

The determination of the maximum density for translative packings ofEk,d (the
analogue of Lemma 4.1) remains unsolved in general. So we pose this in the following.

Problem 4.1. Determine the maximum density of translative packings ofEk,d in Rd

for arbitrary integersk,d ≥ 2.
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Siófok, 1985)46 (1987), 373–381.
13. H. Minkowski, Dichteste gitterf¨ormige Lagerung kongruenter K¨orper,Nachr. Ges. Wiss. Göttingen(1904),

311–355.
14. C. A. Rogers,Packing and Covering, Cambridge University Press, Cambridge, 1964.
15. C. E. Shannon, Probability of error for optimal codes in a Gaussian channel,Bell Systems Tech. J. 38

(1959), 611–656.
16. S. H. Stein and S. Szab´o, Algebra and Tiling, The Mathematical Association of America, Washington,

DC, 1994.
17. H. P. F. Swinnerton-Dyer, Extremal lattices of convex bodies,Math. Proc. Cambridge Philos. Soc. 49

(1953), 161–162.



248 I. Talata

18. I. Talata, Exponential lower bound for the translative kissing numbers ofd-dimensional convex bodies,
Discrete Comput. Geom. 19 (1998), 447–455.

19. J. M. Wyner, Capabilities of bounded discrepancy decoding,Bell Systems Tech. J. 44 (1965), 1061–1122.
20. C. Zong, An example concerning the translative kissing number of a convex body,Discrete Comput.

Geom. 12 (1994), 183–188.
21. C. Zong, The kissing numbers of tetrahedra,Discrete Comput. Geom. 15 (1996) 251–264.
22. C. Zong,Strange Phenomena in Convex and Discrete Geometry, Springer-Verlag, New York, 1996.

Received November4, 1997,and in revised form February5, 1998.


