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Abstract. It is proved that two convex bodiesK1, K2 ⊂ Ed are homothetic simplices
if and only if thed-dimensional intersectionsK1 ∩ (z+ K2), z ∈ Ed, belong to at most
countably many homothety equivalence classes of convex bodies inEd.

1. Introduction

In 1956 Choquet [4] defined asimplex(afterwards called aChoquet simplex) as a convex
setS in linear spaceE such that for any two homothetic copies ofS their intersection,
if nonempty, is again a homothetic copy ofS:

(z+ µS) ∩ (y+ νS) = x + λS, z, y, x ∈ E, µ, ν, λ ≥ 0. (1)

By using the technique of representing measures (see, e.g., [19]), it was shown later that
a finite-dimensional compact Choquet simplex is a simplex in the usual sense, i.e., it is
the convex hull of finitely many affinely independent points.

Independently of Choquet, Rogers and Shephard [20] gave a geometric proof of the
assertion that a convex bodyK in thed-dimensional linear spaceEd is a simplex if and
only if every nonempty intersection ofK and a translate ofK is homothetic toK :

K ∩ (z+ K ) = x + λK , z, x ∈ Ed, λ ≥ 0. (2)

In fact, analysis of their proof shows that a convex bodyK ⊂ Ed is a simplex provided
all d-dimensional intersectionsK ∩ (z + K ), z ∈ Ed, are homothetic copies ofK .
The original proof of Rogers and Shephard is rather long. A shorter proof for convex
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polytopes was given by Eggleston et al. [8], and for arbitrary convex bodies by Martini
[17] (see also pp. 411–412 of [23]).

These two approaches were developed in various directions. Gruber [12] has shown
that vectorsz from (2) can be chosen within an arbitrarily small neighborhood of the
origin of Ed. He also proved thatK can be considered a priori as a compact set with
nonempty interior, not necessarily convex (see [15] for additional results).

For further development of Rogers and Shephard’s assertion, leading to characteriza-
tions of direct linear sums of simplices and simplicial cones, see [21], [22], [13], [14],
[16], and [18]. We mention here the following result by Gruber [13], [16]: a convex body
K ⊂ Ed is the direct sum of simplices if and only if alld-dimensional intersections
K ∩ (z+ K ), z ∈ Ed, are affine images ofK .

In 1970 Simons [24] proved that a bounded Choquet simplex inEd is the intersection
of d + 1 half-spaces, each of them being open or closed. Independently, this assertion
was strengthened by Eggleston [7] who showed, confirming a conjecture of Gruber [12],
that a bounded measurable set of positive measure inEd satisfying condition (2) is the
interior of ad-simplex together with the relative interiors of some of its faces. Bair and
Fourneau [2] proved that a closed, unbounded, and line-free Choquet simplex inEd is
a convex cone whose base is ak-simplex(k ≤ d). Fourneau [9]–[11] studied nonclosed
unbounded Choquet simplices inEd (see also [1] and [3]).

In what follows, by a convex body inEd we mean a compact convex set with nonempty
interior. The usual abbreviations intK and expK are taken for the interior and the set of
exposed points of a convex bodyK , respectively; rintF serves for the relative interior
of a convex setF ⊂ Ed, and [v,w], ]v,w[ stand for closed and open line segments,
both with the endpointsv,w. By a convexd-polytope we mean a convex polytope of
dimensiond. A facet of a convexd-polytope is any of its(d−1)-dimensional faces. We
denote byN(Q) the family of outward unit normals to the facets of a convexd-polytope
Q ⊂ Ed.

Two convex bodiesK , L ⊂ Ed are calledhomotheticprovidedK = x + λL for a
vectorx ∈ Ed and a real numberλ > 0. Clearly, the relation of homothety is reflexive,
symmetric, and transitive, i.e., it is a relation of equivalence. Hence the family of convex
bodies inEd can be considered as the union of pairwise disjoint subfamilies such that any
two convex bodies inEd belong to the same subfamily if and only if they are homothetic.
We call these subfamilieshomothety classes.

2. Main Result

The assertion by Rogers and Shephard can be formulated in terms of the homothety
relation as follows: a convex bodyK ⊂ Ed is a simplex if and only if thed-dimensional
intersectionsK ∩ (z+ K ), z ∈ Ed, belong to a unique homothety class (namely, the
class containingK ). Based on this, we formulate the main result of the paper.

Theorem. For convex bodies K1, K2 ⊂ Ed, d ≥ 1, the following conditions are
equivalent:

(1) K1 and K2 are homothetic d-simplices.
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(2) The d-dimensional intersections K1 ∩ (z+ K2), z ∈ Ed, belong to a unique
homothety class of convex bodies.

(3) The d-dimensional intersections K1 ∩ (z + K2), z ∈ Ed, belong to at most
countably many homothety classes of convex bodies.

Based on the result by Gruber mentioned above we formulate the following problem,
where affine equivalence classes are defined analogously to homothety classes.

Problem. Is it true that for convex bodiesK1, K2 ⊂ Ed, d ≥ 1, the following three
conditions are equivalent?

(1) K1 andK2 can be represented as direct sums

K1 = L1⊕ · · · ⊕ Lt , K2 = M1⊕ · · · ⊕ Mt , t ≥ 1,

such thatLi andMi are homothetic simplices for alli = 1, . . . , t .
(2) Thed-dimensional intersectionsK1∩ (z+K2), z ∈ Ed, belong to a unique affine

equivalence class of convex bodies.
(3) The d-dimensional intersectionsK1 ∩ (z + K2), z ∈ Ed, belong to at most

countably many affine equivalence classes of convex bodies.

3. Proof of the Theorem

(1)⇒ (2) We can representK1 in a suitable coordinate system ofEd as

K1 = {(ξ1, . . . , ξd) ∈ Ed : ξ1 ≥ 0, . . . , ξd ≥ 0, ξ1+ · · · + ξd ≤ 1}.
If K2 = z+ µK1, with z= (η1, . . . , ηd) ∈ Ed andµ > 0, then

K2 = {(ξ1, . . . , ξd) ∈ Ed : ξ1 ≥ η1, . . . , ξd ≥ ηd, ξ1+ · · · + ξd ≤ µ+ η1+ · · · + ηd}.
In this case

K1 ∩ K2 = {(ξ1, . . . , ξd) ∈ Ed : ξ1 ≥ max{0, η1}, . . . , ξd ≥ max{0, ηd},
ξ1+ · · · + ξd ≤ min{1, µ+ η1+ · · · + ηd}}.

Clearly, the intersectionK1 ∩ K2 is d-dimensional if and only if

min{1, µ+ η1+ · · · + ηd} > (max{0, η1} + · · · +max{0, ηd}).
One hasK1 ∩ K2 = x + λK1, wherex = (max{0, η1}, . . . ,max{0, ηd}) and

λ = min{1, µ+ η1+ · · · + ηd} − (max{0, η1} + · · · +max{0, ηd}).
(2)⇒ (3) Trivial.
(3) ⇒ (1) We prove this implication by induction ond = dim Ed. The cased = 1

trivially holds. Assume that(3)⇒ (1) for all d ≤ n−1,n ≥ 2, and letK1, K2 be convex
bodies inEn, satisfying condition (3) withn instead ofd. We divide our consideration
into a sequence of lemmas.



196 V. Soltan

Lemma 1. Both K1 and K2 are convex n- polytopes.

Proof. Assume thatK1 is not a polytope (the case whenK2 is not a polytope is con-
sidered similarly). Then the set expK1 is infinite and has at least one point, saya, of
accumulation. Denote byH1 andH ′1 parallel hyperplanes both supportingK1 such that
a ∈ H1 ∩ K1. Choose any pointa′ ∈ H ′1 ∩ K1.

Clearly, there is a translatez+ K2 such thata ∈ int(z+ K2) and one of the two
hyperplanes supportingz + K2 and parallel toH1 intersects the open line segment
]a,a′[. Denote this hyperplane byH2. Choose two distinct pointsb, c ∈ expK1 so close
to a thatb, c ∈ int(z+ K2). By a continuity argument, there is a real numberϕ > 0 such
that the set{a,b, c} lies in the interior of the bodyε(a− a′)+ z+ K2 for all ε ∈ ]0, ϕ[.

Now choose two closed half-spaces, sayPb and Pc, satisfyingK1 ∩ Pb = {b} and
K1 ∩ Pc = {c}. By the construction above, both pointsb andc are exposed for every
convex body

M(ε) := K1 ∩ (ε(a− a′)+ z+ K2), ε ∈ ]0, ϕ[,

andM(ε) ∩ Pb = {b}, M(ε) ∩ Pc = {c}.
Due to condition (3), the bodiesM(ε), ε ∈ ]0, ϕ[, belong to at most countably many

homothety classes. Hence there are at least two distinct (in fact, uncountably many)
homothetic bodiesM(ε1),M(ε2), ε1, ε2 ∈ ]0, ϕ[. Let ε1 < ε2. Then the width ofM(ε1)

in the directionl orthogonal toH1 is smaller than the width ofM(ε2) in the same
direction. ThereforeM(ε1) is a smaller copy ofM(ε2):

M(ε1) = x + λM(ε2), x ∈ En, 0< λ < 1,

and fromM(ε2) ∩ Pb = {b} we deduce

M(ε1) ∩ (x + λPb) = (x + λM(ε2)) ∩ (x + λPb) = x + λ(M(ε2) ∩ Pb) = {x + λb}.

On the other hand,M(ε1)∩ Pb = {b}. Since the half-spacex+ λPb is a translate ofPb,
both Pb andx + λPb supportM(ε1) at the same exposed point, i.e.,b = x + λb.

In a similar way,c = x + λc. Thusb − c = λ(b − c), contradictingb 6= c and
0< λ < 1. HenceK1 is a convexn-polytope.

Lemma 2. The polytopes K1 and K2 have the same family of outward unit normals to
their facets: N(K1) = N(K2).

Proof. By a symmetry argument, it is sufficient to prove the inclusionN(K2) ⊂ N(K1).
Let e∈ N(K2) andF be the facet ofK2 with the outward unit normale. Choose a point
v ∈ rint F . Denote byH2 the hyperplane containingF and byP2 the closed half-space
bounded byH2 and containingK2.

Assume thate /∈ N(K1), and letP1 be the translate ofP2 containingK1 such that the
boundary hyperplaneH1 of P1 supportsK1. By the assumption, the setG = H1∩ K1 is
a face ofK1 of dimension at mostn− 2. Choose any vertexw of G. Clearly, there are
at least two distinct edges ofK1, say [w, z] and [w, z′], both intersecting intP1.
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Now consider the polytopew − v + K2. Sincev ∈ rint F , the vertexw belongs to
the relative interior of the facetw − v + F . Hence both line segments [w, z], [w, z′]
intersect the interior of the polytopew − v + K2. By a continuity argument, there is a
real numberϕ > 0 such that both line segments [w, z] and [w, z′] intersect the relative
interior of the facetε(z− w) + (w − v + F), as well as the interior of then-polytope
ε(z− w)+ (w − v + K2) for all ε ∈ ]0, ϕ[. It is easily seen that both points

a(ε) := [w, z]∩(ε(z−w)+(w−v+F)), a′(ε) := [w, z′]∩(ε(z−w)+(w−v+F))

are vertices of the convexn-polytope

M(ε) := K1 ∩ (ε(z− w)+ (w − v + K2)),

and the line segment

s(ε) := [w, z] ∩ (ε(z− w)+ (w − v + K2))

is an edge ofM(ε).
Summing up, we have that the family{M(ε), ε ∈ ]0, ϕ[} contains uncountably many

pairwise nonhomothetic convexn-polytopes. Indeed, the distance between the vertices
a(ε) anda′(ε) continuously tends to zero whenε→ 0, while the length of the edges(ε)
does not decrease. The last contradicts condition (3). Hencee ∈ N(K1) andN(K2) ⊂
N(K1).

Lemma 3. Any two facets of K1 and K2, respectively, with the same outward unit
normal are homothetic(n− 1)-simplices.

Proof. Let F1 andF2 be two facets ofK1 andK2, respectively, having the same outward
unit normal. Denote byH the hyperplane containingF1, and consider the family of
translatesz+K2, z ∈ En, having the facetsz+F2 in H . Clearly, rintF1∩ rint (z+F2) 6= ∅
implies intK1∩ int(z+K2) 6= ∅. From condition (3) it follows that the family of convex
(n−1)-polytopesF1∩ (z+ F2), being facets of then-polytopesK1∩ (z+ K2), belongs
to at most countably many homothety classes in the(n− 1)-spaceH . By the inductive
hypothesis,F1 andF2 are homothetic(n− 1)-simplices.

From Lemmas 2 and 3 we deduce the following corollary.

Corollary 1. The polytopes K1 and K2 are homothetic.

Without loss of generality, we may assume in what follows thatK1 is not larger than
K2: K1 = x + λK2 with 0< λ ≤ 1.

To formulate the next lemma, we need a definition. LetF be a facet of ann-polytope
Q ⊂ En, and letH, H ′ be two parallel hyperplanes both supportingQ such thatF ⊂ H
(sinceF is a facet,H andH ′ are uniquely determined). The faceQ∩ H ′ of Q is called
antipodalto F .

Lemma 4. For any facet of K1 its antipodal face consists of a single point.
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Proof. Assume that for a facetF of K1, its antipodal faceF ′ contains more than one
point. Let H be the hyperplane containingF , and let H ′ be the hyperplane parallel
to H such thatH ′ ∩ K1 = F ′. Choose an edge [v1, w1] of F ′, and let [v2, w2] be
the corresponding edge ofK2 (under the homothetyK1 = x + λK2). The polytope
v1− v2+ K2 containsK1 entirely, and the edge [v1, w1] lies in the corresponding edge
[v1, v1 − v2 + w2] of v1 − v2 + K2. Let ϕ > 0 be such a small real number that rintF
has common points with every open set int(ε(w1− v1)+ v1− v2+ K2), ε ∈ ]0, ϕ[, and
the line segments

[v1, w1] and [ϕ(w1− v1)+ v1, ϕ(w1− v1)+ v1− v2+ w2]

have more than one point in common. We claim that the family{
M(ε) := K1 ∩ (ε(w1− v1)+ v1− v2+ K2), ε ∈ ]0, ϕ[

}
contains uncountably many pairwise nonhomothetic convexn-polytopes, contradicting
condition (3). Indeed, it is easily seen that the line segment

[v1, w1] ∩ [ε(w1− v1)+ v1, ε(w1− v1)+ v1− v2+ w2]

is an edge ofM(ε), whose length continuously increases whenε→ 0. At the same time,
the width ofM(ε) in the directionl orthogonal toH equals the distance betweenH and
H ′, i.e., it is independent ofε.

The next lemma and Corollary 1 give the final point in the proof of the theorem.

Lemma 5. K1 is a simplex.

Proof. Assume thatK1 is not a simplex and choose a facetF1 of K1. By Lemma 3,
F is an (n − 1)-simplex. Letv1 be the vertex ofK1 antipodal toF1 (see Lemma 4).
Denote byH the hyperplane containingF1 and byH ′ the hyperplane throughv1 parallel
to H . Let l be the direction orthogonal toH . By the assumption,K1 is distinct from the
n-simplex conv(v1 ∪ F1). Hence there is at least one facetG1 of K1, having(n − 2)-
dimensional intersection withF1 and not containingv1. PutL = F1 ∩ G1. Choose any
pointw1 ∈ rint L. Sincev1 /∈ F1 ∪ G1, we easily deduce that the open line segment
]v1, w1[ lies in int K1. Denote byz1 the vertex ofF1 which is not inL.

Now let v2, w2, andz2 be the respective vertices ofK2 (under the homothetyK1 =
x + λK2). Clearly,K1 ⊂ K ′2 := w1−w2+ K2 andv1 ∈ ]w1, w1−w2+ v2[ ⊂ int K ′2.
By a continuity argument, there is a real numberϕ > 0 such thatv1 belongs to every
translateε(z1 − w1) + K ′2, ε ∈ ]0, ϕ[. The numberϕ can be also chosen so small that
the intersection

F(ε) := F1 ∩ (ε(z1− w1)+ w1− w2+ F2)

is not empty for allε ∈ ]0, ϕ[. By Lemma 3, everyF(ε), ε ∈ ]0, ϕ[, is an(n−1)-simplex
homothetic toF1.

Finally, consider the family of convexn-polytopes{
M(ε) := K1 ∩ (ε(z1− w1)+ K ′2), ε ∈ ]0, ϕ[

}
.
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Clearly,F(ε) is the facet ofM(ε) lying in H , and the size ofF(ε) continuously increases
to the size ofF1 whenε → 0. On the other hand, the width ofM(ε) in the directionl
equals the distance betweenH andH ′, i.e., it is independent ofε.

Summing up, we deduce that the family
{
M(ε), ε ∈ ]0, ϕ[

}
contains uncountably

many pairwise nonhomothetic convexn-polytopes, contradicting (3). HenceK1 is a
simplex.
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Ann. 181(1969), 189–200.
13. Gruber P.M., Zur Charakterisierung konvexer Körper.Über einen Satz von Rogers und Shephard. II,Math.
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