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Abstract. A collection ofn hyperplanes inRd forms a hyperplane arrangement. The depth
of a pointθ ∈ Rd is the smallest number of hyperplanes crossed by any ray emanating from
θ . Ford = 2 we prove that there always exists a pointθ with depth at leastdn/3e. For higher
dimensions we conjecture that the maximal depth is at leastdn/(d+1)e. For arrangements
in general position, an upper bound on the maximal depth is also established. Finally, we
discuss algorithms to compute points with maximal depth.

1. Definition of Depth

Throughout this paper we consider a hyperplane arrangementA(Hn) inRd, whereHn is
a set ofn hyperplaneshi ⊂ Rd for i = 1, . . . ,n. For brevity, we often denoteA(Hn) as
An. We say that a pointθ ∈ Rd belongs to theexteriorof An iff there exists a direction
u 6= 0 such that rayθ (u) = {θ + λu; λ ≥ 0} does not cross anyhi . Here we adopt
the convention that parallels cross at infinity. For instance, the pointsη andτ in Fig. 1
belong to the exterior ofAn, butξ does not because lines 2 and 3 are parallel.

Definition 1. The (arrangement) depth of a pointθ ∈ Rd relative toAn is defined as
the smallest number of hyperplaneshi that need to be removed to setθ free (i.e., so
that it lies in the exterior of the remaining hyperplanes). Equivalently, it is the smallest
number of hyperplanes crossed (possibly at infinity) by any rayθ (u) with u 6= 0.

For any vectoru 6= 0 we denote byncross(θ,u,An) the number of hyperplanes
crossed (possibly at infinity) by rayθ (u). Therefore

depth(θ,An) = min
u6=0

ncross(θ,u,An). (1.1)
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Fig. 1. An arrangementA5 of five hyperplanes (lines) inR2. The pointsη andτ belong to the exterior of
A5, the pointsα andξ have depth 1, whereas depth(θ,A5) = 2 and depth(β,A5) = 3.

Equivalently let the minimum in (1.1) range over all‖u‖ = 1 whereu is not parallel to
any hyperplane inAn since slightly rotating a parallelu decreasesncross(θ,u,An). (In
fact, one could even restrictu to a finite set of directions “in between” the hyperplanes.)

Consider again Fig. 1. We see that any rayθ (u) crosses at least two lines, hence
depth(θ,A5) = 2. Equivalently, we could remove lines 1 and 3 so thatθ belongs to
the exterior of the arrangement formed by the remaining lines 2, 4, and 5. Moreover,
depth(α,A5) = depth(ξ,A5) = 1 since we only have to remove line 2 to setα andξ
free. Finally,depth(β,A5) = 3 becauseβ lies on lines 3 and 4, and to setβ free we also
have to remove one of the lines{1,2,5} which form a triangle aroundβ.

Remark 1. The definition of the arrangement depth originates from the concept of the
regression depth in statistics, introduced in Rousseeuw and Hubert (1999). The goal of
linear regression analysis is to fit a data setZn = {(xi 1, . . . , xi,d−1, yi ); i = 1, . . . ,n} ⊂
Rd by a hyperplane

y = θ1x1+ · · · + θd−1xd−1+ θd,

where the fit parameters are combined in a vectorθ = (θ1, . . . , θd). This problem is
dualized as follows. The dual space is the set of all possible fit vectorsθ, hence it is
{(θ1, . . . , θd);all θj ∈ R} = Rd. Moreover, each data pointzi = (xi 1, . . . , xi,d−1, yi )

is mapped to the setD(zi ) of all θ that pass throughzi , so D(zi ) is the hyperplanehi

given by

hi = D(zi ) = {(θ1, . . . , θd); θd = −xi 1θ1− · · · − xi,d−1θd−1+ yi }. (1.2)
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The regression depth of any fitθ coincides with the depth of the pointθ in the arrangement
An := {hi ; i = 1, . . . ,n} in the sense of Definition 1 above.

Remark 2. In the definition of the arrangement depth there are no preferential di-
rections, so this notion is isotropic. One way to see this is by noting that our depth is
invariant under rotations (in fact, even under all nonsingular affine transformations). If
on the other hand we restrict ourselves to vertical directionsu in Definition 1, we would
obtain thelevelsof the arrangement (see, e.g., Chapter 3 in Edelsbrunner (1987)).

Remark 3. Although the arrangement depth has not been studied before, a notion of
the depth of a pointp ∈ Rd relative to a configuration of points{x1, . . . , xn} ⊂ Rd does
exist. In statistics this is called thelocation depth(Tukey, 1975; Donoho and Gasko,
1992; Rousseeuw and Ruts, 1996). The location depth ofp is the smallest number of
data pointsxi that lie in any closed halfspace with boundary throughp. Although the
location depth is quite different from the arrangement depth, some of their properties are
similar, e.g., it is also isotropic.

Remark 4. The notion of arrangement depth could also be used in the setting of pro-
jective space. There our convention that parallel lines cross at infinity would no longer
be needed.

2. Maximal Depth for d ≤ 2

We are interested in the highest depth that can be attained relative to a given arrangement
An in Rd. Formally, this is the integer

max
θ

depth(θ,An), (2.1)

whereθ ranges overRd. In fact, we can easily see (e.g., by looking at Fig. 1) that it
suffices to letθ range over all intersection points ofd hyperplanes. Note that (2.1) is at
mostn, which can only be attained when alln hyperplanes are concurrent (then we can
setθ equal to their common intersection point, hencedepth(θ,An) = n).

In general, there may be more than oneθ with maximal depth. Intuitively, a pointθ
attaining (2.1) can be seen as a “deepest point” or a “most central point.” The higher
depth(θ,An) the more “central”θ is. Conversely, points with the lowest possible depth
(namely zero) lie in the exterior ofAn.

Whend = 1 the arrangementAn is a set{h1, . . . , hn} of real numbers. Suppose
without loss of generality thath1 ≤ h2 ≤ · · · ≤ hn (note that somehi may coincide).
Whenn is odd we define the median set as the singleton{hdn/2e} where the ceilingdλe
denotes the smallest integer≥ λ. Whenn is even we define the median set as the closed
segment [hn/2, h(n/2)+1]. In either case, the maximal depth (2.1) is attained at anyθ in
the median set, hence

max
θ

depth(θ,An) ≥
⌈n

2

⌉
(2.2)
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for d = 1. The lower bounddn/2e is sharp (e.g., consider the case whereh1 < h2 <

· · · < hn). When severalhi coincide, the maximal depth can become strictly larger than
dn/2e.

We now consider the cased = 2, where the hyperplanes become linesl i as in Fig. 1.
We will show thatany arrangement of lines inR2 admits a point with depthdn/3e or
higher. (In the sense thatA(Hn) also contains all intersections formed byHn we can
even say that each arrangement inR2 containsa point with depth at leastdn/3e.)

Theorem 1. For any arrangementAn in R2 we have

max
θ

depth(θ,An) ≥
⌈n

3

⌉
. (2.3)

The lower bounddn/3e is sharp.

Proof. We may assume without loss of generality that none of thel i are vertical (other-
wise, we can rotateAn slightly). We start by ordering then linesl i by decreasing slopes.
If l i andl j are parallel andl i lies abovel j we putl i beforel j . (If l i = l j it does not matter
in which order we put them.) For example, the lines in Fig. 1 were ordered in this way. If
n = 3morn = 3m+1 for some integerm, we denote byA the set of the firstm lines, and
by C the set of the lastm lines. If n = 3m+ 2 we take|A| = |C| = m+ 1. The general
formula is therefore|A| = |C| = d(n− 1)/3e. In each case, the setB is formed by the
remaining lines in between. In Fig. 1 we haveA = {l1, l2}, B = {l3}, andC = {l4, l5}.

We now consider the setsH1 = A ∪ B andH2 = B ∪ C. Using the duality (1.2)
we obtain two point setsD−1(H1) andD−1(H2) in R2. By the ham-sandwich theorem
(see, e.g., Edelsbrunner (1987), page 69) there exists a lineL that simultaneously bisects
D−1(H1) andD−1(H2). This means that both of the open halfplanes determined byL
contain at mostb|H1|/2c points ofD−1(H1) and at mostb|H2|/2c points ofD−1(H2).
Note thatb|H1|/2c = b|H2|/2c = m. (Here, the floorbλc is the largest integer≤ λ.) We
may assume without loss of generality thatL is not vertical. Now put̃θ := D(L) and
denote

(A∪ B)+(θ̃) = {l i ∈ A∪ B; l i lies strictly abovẽθ},
(A∪ B)−(θ̃) = {l i ∈ A∪ B; l i lies strictly belowθ̃},
(A∪ B)0(θ̃) = {l i ∈ A∪ B; l i passes through̃θ},

and analogously for(B∪C)+(θ̃), (B∪C)−(θ̃), and(B∪C)0(θ̃). By construction of̃θ
we know that|(A∪ B)+(θ̃)| ≤ m, |(A∪ B)−(θ̃)| ≤ m, |(B∪C)+(θ̃)| ≤ m, and|(B∪
C)−(θ̃)| ≤ m.

We will now prove thatdepth(θ̃,An) ≥ dn/3e. For this we consider unit vectors
u = (u1,u2) which we can write asu = (cos(αu), sin(αu)). We may assume without
loss of generality thatu1 = cos(αu) 6= 0 because nol i is vertical. (Forαu = ±π/2 we
obtain the samencross(θ,u,An) if we replaceαu by αu ± ε for ε > 0 small enough.)
Therefore tan(αu) = u2/u1 exists.

We begin with the case where tan(αu) < minl i∈B slope(l i ). We first assume that
u1 > 0 as in Fig. 2(a). There the three linesl3, l7, andl10 belong toA∪ B, and indeed
the slope ofu is lower than the slope of those lines. Then any line inA ∪ B strictly
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Fig. 2. Illustrations of the cases (a)u1 > 0 and (b)u1 < 0 in the proof of Theorem 1.

belowθ̃ (like l3) crosses raỹθ (u), whereas the lines inA∪ B strictly aboveθ̃ (like l7) do
not cross raỹθ (u). Also the lines inA∪ B that pass through̃θ itself (like l10) obviously
cross raỹθ (u). By construction ofθ̃ we know that|(A ∪ B)−(θ̃)| ≤ m, hence at least
|(A∪B)|−m lines inA∪B cross raỹθ (u). If n = 3mwe find|A∪B|−m= m= dn/3e,
and forn = 3m+ 1 orn = 3m+ 2 we obtain|A∪ B| −m= m+ 1= dn/3e. In each
of these casesncross(θ̃,u,An) ≥ ncross(θ̃,u, A∪ B) ≥ dn/3e.

Sinceu1 6= 0 we are left withu1 < 0 as in Fig. 2(b). This time a line inA∪ B crosses
rayθ̃ (u) iff it lies strictly aboveθ̃ (like l4), and using|(A∪ B)+(θ̃)| ≤ m we again find
ncross(θ̃,u,An) ≥ dn/3e.

In the case where tan(αu) > maxl i∈B slope(l i ) we considerB ∪ C, for which |(B ∪
C)−(θ̃)| ≤ m and|(B ∪ C)+(θ̃)| ≤ m. Finally, when minl i∈B slope(l i ) ≤ tan(αu) ≤
maxl i∈B slope(l i ) we considerA∪C and use|A−(θ̃)| ≤ |(A∪ B)−(θ̃)| ≤ m as well as
|C+(θ̃)| ≤ |(B ∪ C)+(θ̃)| ≤ m.

To see why the lower bounddn/3e in Theorem 1 is sharp, consider an arrangement
An = {l1, . . . , ln} where the linesl i are given byθ2 = −ti θ1 + t2

i where 0< t1 <
· · · < tn < ∞. The duals of these lines aren different points on the moment curve
{(t, t2);0< t <∞}.

The proof of Theorem 1 constructs a pointθ̃ whose depth is always at leastdn/3e.
In highly unbalanced arrangements, such as theAn based on the moment curve above,
this is also the maximal depth. However, forAn which are more symmetric the maximal
depth becomes higher. In a sense, the maximal depth reflects how balancedAn is. Note
that the maximal depth (2.1) is invariant under affine transformations, and only depends
on the combinatorial structure ofAn (as characterized by, say, its incidence graph).

Note that the proof of Theorem 1 yields a linear time algorithm to compute a point
with depth at leastdn/3e. Indeed, the point̃θ is obtained from a ham-sandwich cut,
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which can be constructed in O(n) time by the algorithm of Lo et al. (1994). Also note
that we can translate the entire proof of Theorem 1 to the dual space. The ordering of
the linesl i then corresponds to ordering the configuration of pointsD(hi ) = (xi , yi ) by
theirxi . ThenA becomes the third of that configuration with the smallestx-coordinates,
C the third with the largestx-coordinates, andB the rest. Carrying out a ham-sandwich
cut onA∪ B andB ∪ C then yields a line with equationy = θ̃1x + θ̃2.

Theorem 1 allows us to obtain a rather surprising result, which is a counterpart to
Birch’s (1959) result about a configuration of points in the plane.

Theorem 2. Consider n= 3m lines inR2, all with distinct slopes. Then the n lines
can be partitioned into m triplets(i, j, k) so that the m closed triangles4(l i , l j , lk) have
a nonempty intersection.

Proof. From Theorem 1 we know there exists a pointθ̃ with depth(θ̃,An) ≥ m. For
each linel i we now consider the orthogonal projectionξi of θ̃ onl i . Letαi be the angle of
ξi−θ̃ (whereξi = θ̃may be assigned to any angle), and rank them to 0≤ α1 < · · · < 2π .
Then take the triplets(1,m+ 1,2m+ 1), (2,m+ 2,2m+ 2), . . . , (m,2m,n). Each of
these triplets yields a closed triangle containingθ̃. Otherwise there would be somej
such that the anglesαj , . . . , αj+m range over more thanπ . (If some j + k > n we
put αj+k := αj+k−n + 2π .) Then takeαu = (αj + αj+m)/2 inside that range, yielding
ncross(θ̃,u,An) ≤ m− 1 which contradictsdepth(θ̃,An) ≥ m.

If we want to dispense with the restrictions thatn is a multiple of 3 and that all slopes
are different, we have to use more than triangles. In general we have a setI of 1, 2, 3 or
more lines, whose slopes need not be distinct. We then put

C(I ) = {θ ∈ R2;depth(θ, I ) ≥ 1}

which can be a line, the union of two lines, the union of three lines with the closed
triangle between them, etc. For instance, when|I | = 3 and two of the lines are parallel,
C(I ) is the union of the remaining line with the closed strip formed by the two parallel
lines. In general we could callC(I ) the “contractible hull” ofI because it is the smallest
set without holes that encompassesI . We now obtain:

Theorem 3. Any set of n lines in the plane can be partitioned into k= dn/3e subsets
I1, . . . , Ik such that C(I1), . . . ,C(Ik) have a nonempty intersection.

Proof. Let θ̃ be the point and letA, B, andC be the sets constructed in the proof of
Theorem 1. We will prove that we can partition then lines{l i } into k = dn/3e subsetsI j

such that̃θ belongs to eachC(I j ). If n 6= 3m both|A∪ B| and|B∪C| are odd, sõθ will
lie on at least one or two lines, denoted byL = {l1} or L = {l1, l2}. We may assume that
θ̃ does not lie on any linel i 6∈ L. Indeed, assume that a collection of linesM , distinct
from L, passes through̃θ. Then it holds that̃θ ∈ C(I j ) as soon as at least one line from
M belongs toI j . If the theorem holds when all linesl i 6∈ L are strictly above/below θ̃,
it will therefore remain true when some of these lines pass throughθ̃.
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First consider the case thatn = 3m. As in the proof of Theorem 1 we denote

A+(θ̃) = {l i ∈ A; l i lies strictly abovẽθ},
A−(θ̃) = {l i ∈ A; l i lies strictly belowθ̃},

and analogously forB+(θ̃), B−(θ̃),C+(θ̃), andC−(θ̃). If |A+| = q for some 0≤ q ≤
m, we know by construction of̃θ that|B−| = |C+| = q and|A−| = |B+| = |C−| = m−
q. We can now partitionHn intoq triplets(l i , l j , lh)with l i ∈ A+, l j ∈ B−, andlh ∈ C+

andm− q triplets (l i , l j , lh) with l i ∈ A−, l j ∈ B+, andlh ∈ C−. Finally it is easy to
see that̃θ ∈ C(Ik) for each tripletIk.

If n = 3m+1 we know that̃θ lies on one linel1 ∈ A∪ B and on one linel2 in B∪C.
This implies that we must consider two different situations:

(a) l1 = l2 andl1 ∈ B,
(b) l1 ∈ A andl2 ∈ C.

(The case whenl1 ∈ A andl2 ∈ B follows from (a) since this̃θ lies on one more line than
the θ̃ in (a). The casel1 ∈ B andl2 ∈ C is analogous.) First consider situation (a). Set
I1 = {l1}, henceθ̃ ∈ C(I1). Furthermore,|A| = |B\{l1}| = |C| = m, so the situation is
reduced to the casen = 3m. We can then partitionHn\{l1} into m triplets I2, . . . , Im+1,
each satisfying̃θ ∈ C(Ik). In situation (b) we chooseI1 = {l1} and I2 = {l2}. If now
|A+| = q, then|B−| − 1= |C+| = q and|A−| = |B+| − 1= |C−| = m− q− 1. This
implies that we can partitionHn\{l1, l2} into q triplets in A+ × B− ×C+ andm−q−1
triplets inA−× B+×C−. Finally, the two remaining observations inB may be assigned
to any of them+ 1= dn/3e subsets.

The final casen = 3m+ 2 can be analyzed in a similar way.

The special casen = 4 of this theorem is a counterpart to the theorem of Radon
(1921) about points in the plane.

3. Maximal Depth for d ≥ 3

We have proved that for arrangementsAn inR1 the maximal depth (2.1) is at leastdn/2e,
whereas Theorem 1 showed that inR2 the lower bound isdn/3e. Moreover, inR0 we
trivially obtain dn/1e = n. All these lower bounds are sharp. This would suggest the
lower bounddn/(d + 1)e for anyd.

More support for this possibility comes from the similar notion of location depth,
where for any configuration ofn points inRd the maximal depth is at leastdn/(d+ 1)e.
To our knowledge this result was first obtained inR2 by Neumann (1945), and in the
cased ≥ 3 by Rado (1946). The result was independently discovered by Birch (1959),
and in statistics by Donoho and Gasko (1992). Each of these proofs makes use of Helly’s
theorem or the related results of Radon (1921) and Carath´eodory (see, e.g., Danzer et
al., 1963). In Edelsbrunner (1987, pages 63–66) a point with location depth at least
dn/(d + 1)e is called acenterpoint, hence each configuration has a centerpoint.

We now conjecture that each arrangement contains a centerpoint as well.
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Conjecture 1. For any arrangementAn in Rd with d ≥ 3 it holds that

max
θ

depth(θ,An) ≥
⌈

n

d + 1

⌉
.

Remark. There cannot be a better lower bound, since we can consider hyperplaneshi

whose duals aren different points on the moment curve{(t, t2, . . . , td);0< t <∞}.

Our attempts at generalizing the proof of Theorem 1 did not yield the desired result, nor
did attempts to “dualize” the result for centerpoints of a configuration. Helly’s theorem
itself cannot be used forAn since the relevant sets (determined by level surfaces of
rotated versions ofAn) are not convex. Also, the existing dual forms of Helly’s theorem
(see, e.g., Goodman and Pollack, 1982) yield hyperplanes instead of points.

We can also formulate a generalization of Theorem 3:

Conjecture 2. Any set Hn of n hyperplanes inRd can be partitioned into k= dn/(d+
1)e subsets I1, . . . , Ik such that

⋂k
j=1 C(I j ) 6= ∅.

HereC(I j ) stands for{θ ∈ Rd;depth(θ, I j ) ≥ 1}. Note that Conjecture 2 would
imply Conjecture 1, because a pointθ in

⋂k
j=1 C(I j ) must satisfy

depth(θ, Hn) = depth

(
θ,

k⋃
j=1

I j

)
≥

k∑
j=1

depth(θ, I j ) ≥ k.

In fact, Conjecture 2 has the same form as the theorem of Tverberg (1966) for a config-
uration ofn points inRd, if we readC(I j ) as the convex hull instead of the contractible
hull. Tverberg used this result to give an alternative proof of the Neumann–Rado theorem
about the existence of a point with location depth≥ k.

Up to now we have considered arbitrary arrangements where it is possible that some
hyperplanes are parallel or even coincide, or that all of them pass through the same
point. For the next result we assume thatAn is in general position, meaning that anyd
hyperplanes intersect in exactly one point inRd, and that any point inRd lies on at most
d hyperplanes. (Hence no two hyperplanes can be parallel, and nod + 1 hyperplanes
can be concurrent.) Then we have the followingupperbound, for all values ofd.

Theorem 4. If the arrangementAn in Rd is in general position, then

max
θ

depth(θ,An) ≤
⌊

n+ d

2

⌋
. (3.1)

Proof. SinceAn is in general position, the maximal depth (2.1) is reached in a point
θ that lies on exactlyd hyperplanes. (The case whereAn contains fewer thand hy-
perplanes is trivial.) Note thatdepth(θ,An) equals (1.1), where the minimum ranges
over all u 6= 0 such thatu (and hence also−u) is not parallel to any hyperplane.
Now consider the arrangementAn−d obtained by removing thed hyperplanes pass-
ing throughθ. Thenncross(θ,u,An−d) + ncross(θ,−u,An−d) = n − d since each
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hyperplane inAn−d is crossed by either rayθ (u) or rayθ (−u), but never both. There-
fore min{ncross(θ,u,An−d),ncross(θ,−u,An−d)} ≤ b(n− d)/2c. Since this holds
for all admissibleu we find depth(θ,An−d) ≤ b(n− d)/2c hencedepth(θ,An) ≤
b(n− d)/2c + d = b(n+ d)/2c.

4. Computation

Computing the depth of someθ ∈ Rd relative to an arrangementAn is in general
nontrivial. Rousseeuw and Hubert (1999) and Rousseeuw and Struyf (1998) constructed
exact algorithms using O(nd−1 logn) time. Since this takes too long for largen and/or
larged, the latter paper also proposes an approximate algorithm. We do not know whether
a faster exact algorithm is possible.

For statistical applications we are mainly interested in finding the point(s) withmax-
imal depth, i.e., the deepest point(s). As of yet, we only have a very naive algorithm
for finding deepest points, which goes as follows. Any deepest point belongs tod hy-
perplanes. We might thus compute all intersections ofd hyperplanes (in O(nd) time)
and determine the depth of each intersection point (in O(nd−1 logn) time), yielding an
overall computation time of O(n2d−1 logn). Ford = 2 we can lower the time complexity
to O(n3) (see Rousseeuw and Hubert, 1999) since the depth of a point can be computed
in O(n) time after sorting the lines by decreasing slope. However, intuitively, we would
expect that the deepest point ind = 2 be computable in O(n2) time or less.

The naive algorithms are too slow for routine use in statistical applications. By the
duality (1.2), a deepest point in an arrangement corresponds to a regression fit yielding the
most balanced summary of the data. For data analysis it is therefore of major importance
to obtain algorithms that can deal with largern andd in feasible time. We hope that
this paper will inspire specialists of computational geometry to construct more efficient
algorithms. We are optimistic since the computation of several other regression methods
has been dramatically improved by techniques of computational geometry. For instance,
the Theil (1950) line was originally computed by an O(n2) algorithm but can now be
computed in O(n logn) time by algorithms of Cole et al. (1989), Dillencourt et al. (1992),
and Matoušek (1991a). Randomized O(n logn) algorithms for the repeated median slope
estimator of Siegel (1982) were constructed by Matouˇsek et al. (1991). Finally, the least
median of squares line (Rousseeuw, 1984) would naively take O(n3) time to compute,
but can now be found in quadratic time by the algorithm of Edelsbrunner and Souvaine
(1990). Fast randomized algorithms for the least median of squares line were recently
developed by Mount et al. (1997).

In the context of location depth in a configuration of points, several algorithms have
been proposed for finding the deepest point (Matouˇsek, 1991b; Gil et al., 1992). Unfortu-
nately, implementations of these algorithms are not yet available. Clarkson et al. (1996)
gave a fast Monte Carlo algorithm for approximating center points of a configuration.
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