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Abstract. A collection ofn hyperplanesiiR® forms a hyperplane arrangement. The depth

of apointd e RY is the smallest number of hyperplanes crossed by any ray emanating from
6. Ford = 2 we prove that there always exists a p@imtith depth at leasftn/3]. For higher
dimensions we conjecture that the maximal depth is at [egst + 1)7. For arrangements

in general position, an upper bound on the maximal depth is also established. Finally, we
discuss algorithms to compute points with maximal depth.

1. Definition of Depth

Throughout this paper we consider a hyperplane arrangedigit) in RY, whereH, is
a set ofn hyperplane$;, c R%fori =1, ..., n. For brevity, we often denotd(H,) as
An. We say that a poirft € RY belongs to thexteriorof A, iff there exists a direction
u # 0 such that ray(u) = {6 + Au; A > 0} does not cross anly;. Here we adopt
the convention that parallels cross at infinity. For instance, the pgiatedr in Fig. 1
belong to the exterior afl,,, but£ does not because lines 2 and 3 are parallel.

Definition 1. The (arrangement) depth of a pothte R relative to.A,, is defined as

the smallest number of hyperplanesthat need to be removed to sfree (i.e., so

that it lies in the exterior of the remaining hyperplanes). Equivalently, it is the smallest
number of hyperplanes crossed (possibly at infinity) by any(taywith u # 0.

For any vectoru # 0 we denote byncross6, u, A,) the number of hyperplanes
crossed (possibly at infinity) by rggu). Therefore

depth@, A,) = m;ig ncrosso, u, A,). (1.1)
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Fig. 1. An arrangementds of five hyperplanes (lines) iR2. The points;y andz belong to the exterior of
As, the pointsx andé have depth 1, whereas defth.As) = 2 and depttg, As) = 3.

Equivalently let the minimum in (1.1) range over fll| = 1 whereu is not parallel to

any hyperplane itd, since slightly rotating a paralleldecreasescross6, u, Ap). (In

fact, one could even restriatto a finite set of directions “in between” the hyperplanes.)
Consider again Fig. 1. We see that any @y crosses at least two lines, hence

depth8, As) = 2. Equivalently, we could remove lines 1 and 3 so thdtelongs to

the exterior of the arrangement formed by the remaining lines 2, 4, and 5. Moreover,

depthcr, As) = depth&, As) = 1 since we only have to remove line 2 to seand&

free. Finally,depth 3, As) = 3 becaus@ lies on lines 3 and 4, and to séffree we also

have to remove one of the lin€s, 2, 5} which form a triangle aroungd.

Remark 1. The definition of the arrangement depth originates from the concept of the
regression depth in statistics, introduced in Rousseeuw and Hubert (1999). The goal of
linear regression analysis is to fit a dataZet= {(Xij1, ..., Xid-1, ¥i);i =1,...,n} C

RY by a hyperplane

y=61Xy+ -+ 63_1X4-1 + 64,

where the fit parameters are combined in a veétet (01, ..., 6y). This problem is
dualized as follows. The dual space is the set of all possible fit ve@tdnence it is
{(O1,...,69);all6; € R} = RY. Moreover, each data poiaf = (X1, ..., Xi.d_1, ¥)
is mapped to the sdd(z) of all 8 that pass through, so D(z) is the hyperpland;
given by

hi =D(@z) ={(61,...,0d); 00 = —Xi101 — - - - — Xi.d—160d—1 + Vi}. 1.2
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The regression depth of anyéitoincides with the depth of the poifitn the arrangement
A, =1{hi;i =1, ..., n}inthe sense of Definition 1 above.

Remark 2. In the definition of the arrangement depth there are no preferential di-
rections, so this notion is isotropic. One way to see this is by noting that our depth is
invariant under rotations (in fact, even under all nonsingular affine transformations). If
on the other hand we restrict ourselves to vertical directibinsDefinition 1, we would
obtain thelevelsof the arrangement (see, e.g., Chapter 3 in Edelsbrunner (1987)).

Remark 3. Although the arrangement depth has not been studied before, a notion of
the depth of a poinp € R relative to a configuration of poin{gy, . . ., X,} ¢ RY does

exist. In statistics this is called tHecation depth(Tukey, 1975; Donoho and Gasko,
1992; Rousseeuw and Ruts, 1996). The location depghisfthe smallest number of
data pointsg that lie in any closed halfspace with boundary thropglAlthough the
location depth is quite different from the arrangement depth, some of their properties are
similar, e.g., it is also isotropic.

Remark 4. The notion of arrangement depth could also be used in the setting of pro-
jective space. There our convention that parallel lines cross at infinity would no longer
be needed.

2. Maximal Depth for d < 2

We are interested in the highest depth that can be attained relative to a given arrangement
A in RY. Formally, this is the integer

mgax depth 8, A,), (2.1)

where#@ ranges oveRRY. In fact, we can easily see (e.g., by looking at Fig. 1) that it
suffices to le® range over all intersection points dthyperplanes. Note that (2.1) is at
mostn, which can only be attained when alhyperplanes are concurrent (then we can
setf equal to their common intersection point, hedepth(@, A,) = n).

In general, there may be more than ¢heith maximal depth. Intuitively, a poir@
attaining (2.1) can be seen as a “deepest point” or a “most central point.” The higher
depth@, A,) the more “central® is. Conversely, points with the lowest possible depth
(namely zero) lie in the exterior oA,.

Whend = 1 the arrangement, is a set{hy, ..., hy} of real numbers. Suppose
without loss of generality thdt; < h, < --- < h, (note that somé; may coincide).
Whenn is odd we define the median set as the singl¢lgr >} where the ceilingi]
denotes the smallest integeri. Whenn is even we define the median set as the closed
segmentliin/2, hin/2+1]. In either case, the maximal depth (2.1) is attained atéaimy
the median set, hence

n
mgax depth®, An) > [E—‘ (2.2)
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for d = 1. The lower boundn/2] is sharp (e.g., consider the case whiere< h, <
-+ < hp). When severah; coincide, the maximal depth can become strictly larger than
n/2].
We now consider the case= 2, where the hyperplanes become lihess in Fig. 1.
We will show thatany arrangement of lines iR? admits a point with depttin/3] or
higher. (In the sense thatl(H,) also contains all intersections formed bl we can
even say that each arrangemenRhcontainsa point with depth at leagin/31.)

Theorem 1. For any arrangementd,, in R? we have
n
max depth(®, An) > [ﬂ . (2.3)
The lower boundn/3] is sharp

Proof. We may assume without loss of generality that none of taee vertical (other-
wise, we can rotatel,, slightly). We start by ordering thelinesl; by decreasing slopes.
If I; andl; are parallel and] lies abovd; we putl; beforel;. (If I; =|; it does not matter
in which order we put them.) For example, the lines in Fig. 1 were ordered in this way. If
n = 3morn = 3m+ 1 for some integem, we denote byA the set of the firstnlines, and
by C the set of the lagh lines. Ifn = 3m + 2 we take|A| = |C| = m+ 1. The general
formula is therefor¢ A| = |C| = [(n — 1)/3]. In each case, the s8tis formed by the
remaining lines in between. In Fig. 1 we hate= {l1, |2}, B = {I3}, andC = {l4, Is}.

We now consider the setd; = AU B andH, = B U C. Using the duality (1.2)
we obtain two point set®1(H;) andD~1(H,) in R?. By the ham-sandwich theorem
(see, e.g., Edelsbrunner (1987), page 69) there exists la timet simultaneously bisects
D~1(H;) andD~1(Hy). This means that both of the open halfplanes determineld by
contain at most|H1|/2] points of D~(H) and at most|H,|/2] points of D~1(Hy).
Note that[|H1|/2] = [|Hz|/2] = m. (Here, the floott 1 | is the largest integer 1.) We
may assume without loss of generality tthats not vertical. Now pu® := D(L) and
denote

(AUB)*(0) = {lj € AU B;I; lies strictly aboved},
(AUB)™(0) = {li € AU B; |, lies strictly belowd},
(AUB)2(0) = {l; € AU B:|; passes througé},

and analogously fafB UC)*(8), (BUC)~(8), and(BUC)°(8). By construction of
we know tha(AU B)*(8)| < m, [(AUB)~(8)| <m, [(BUC)*(§)| <m, and|(BU
C)~ (@) =m. 5

We will now prove thatdepth@, A,) > [n/3]. For this we consider unit vectors
u = (ug, Up) which we can write asl = (coqwy), Sin(ey)). We may assume without
loss of generality that; = coSw,) # 0 because nf is vertical. (Forey, = +7/2 we
obtain the samacross0, u, A,) if we replacex, by o, £ ¢ for ¢ > 0 small enough.)
Therefore tafw,) = uUy/u; exists.

We begin with the case where {a) < min, g slopgl;). We first assume that
u; > 0 as in Fig. 2(a). There the three lingsl;, andlig belong toA U B, and indeed
the slope ofu is lower than the slope of those lines. Then any lineAiy B strictly
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(@) (b)

Fig. 2. lllustrations of the cases (a) > 0 and (b)u; < O in the proof of Theorem 1.

below® (like I3) crosses rayu), whereas the lines iA U B strictly aboved (like I7) do
not cross ray(u). Also the lines inA U B that pass through itself (like 11) obviously
cross ray(u). By construction 0 we know that|(A U B)~(8)| < m, hence at least
[(AUB)|—mlinesinAUB cross ray(u). If n = 3mwe find| AUB|—m = m = [n/3],
and forn =3m+ 1 orn =3m+ 2 we obtain AUB| —m=m+ 1= [n/3]. In each
of these casescrosg0, u, A,) > ncrossé, u, AU B) > [n/3].

Sinceu; # 0we are left withu; < 0 asin Fig. 2(b). This time aline iAU B crosses
ray; (u) iff it lies strictly aboved (like 1), and using(AU B)*(8)| < m we again find
ncross6, u, A,) > [n/3].

In the case where tém,) > max, g sSlop€l;) we consideB U C, for which [(B U
C)~(0)] < mand|(BUC)*(8)| < m. Finally, when mif.g slopgl;) < tan(ay,) <
max,.s slopel;) we considerAU C and use A~ (0)| < |(AU B)~ ()| < mas well as
IC*(6)] <|(BUC)*(H)| <m.

To see why the lower bounjh/3] in Theorem 1 is sharp, consider an arrangement

An = {l1, ..., 15} where the lined; are given byg, = —tj6; + ti2 where 0< t; <
- < ty, < oo. The duals of these lines aredifferent points on the moment curve
{t,1%);0 < t < 00). O

The proof of Theorem 1 constructs a pothtvhose depth is always at legst/3].
In highly unbalanced arrangements, such as4héased on the moment curve above,
this is also the maximal depth. However, fd which are more symmetric the maximal
depth becomes higher. In a sense, the maximal depth reflects how balénisedNote
that the maximal depth (2.1) is invariant under affine transformations, and only depends
on the combinatorial structure of,, (as characterized by, say, its incidence graph).

Note that the proof of Theorem 1 yields a linear time algorithm to compute a point
with depth at leasfn/3]. Indeed, the poin® is obtained from a ham-sandwich cut,
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which can be constructed in(@) time by the algorithm of Lo et al. (1994). Also note
that we can translate the entire proof of Theorem 1 to the dual space. The ordering of
the lined; then corresponds to ordering the configuration of poins;) = (X, yi) by
theirx;. ThenA becomes the third of that configuration with the smabkesbordinates,
C the third with the largest-coordinates, an@& the rest. Carrying out a ham-sandwich
cutonAU B andB U C then yields a line with equation = 61x + 65.

Theorem 1 allows us to obtain a rather surprising result, which is a counterpart to
Birch’s (1959) result about a configuration of points in the plane.

Theorem 2. Consider n= 3m lines inR?, all with distinct slopesThen the n lines
can be partitioned into m triplet§, j, k) so that the m closed triangles(l;, |;, I) have
a nonempty intersection

Proof. From Theorem 1 we know there exists a pcénts/ith deptr(é, Ay > m. For
each lind; we now consider the orthogonal projectig§rof 6 onl;. Leto; be the angle of
& —6 (wheret; = 8 may be assignedtoany angle), and rankthemgof) < - - - < 2.
Then take the tripletél, m+ 1, 2m+ 1), (2, m+ 2, 2m+2), ..., (m, 2m, n). Each of
these triplets yields a closed triangle containéhgOtherwise there would be sonje

such that the angles;, ..., «j+m range over more than. (If somej + k > n we
putojik ‘= ojik—n + 27.) Then takexr, = (@ + @j+m)/2 inside that range, yielding
ncross, u, A,) < m — 1 which contradictslepth(d, A,) > m. O

If we want to dispense with the restrictions thas a multiple of 3 and that all slopes
are different, we have to use more than triangles. In general we havé afset2, 3 or
more lines, whose slopes need not be distinct. We then put

C(l) = {6 € R? depth®, |) > 1}

which can be a line, the union of two lines, the union of three lines with the closed
triangle between them, etc. For instance, wHen= 3 and two of the lines are parallel,
C(1) is the union of the remaining line with the closed strip formed by the two parallel
lines. In general we could call(1) the “contractible hull” ofl because it is the smallest
set without holes that encompasse¥Ve now obtain:

Theorem 3. Any set of n lines in the plane can be partitioned inte: Kn/3] subsets
l1,..., Ik such that Gly), ..., C(lx) have a nonempty intersection

Proof Let# be the point and leAA, B, andC be the sets constructed in the proof of
Theorem 1. We will prove that we can partition thénes({l; } into k = [n/3] subsetd;
such tha belongs to eacB(l)). If n # 3mboth| AU B| and|BUC| are odd, s® will

lie on at least one or two lines, denotedlby= {I1} or L = {l4, I,}. We may assume that
0 does not lie on any ling ¢ L. Indeed, assume that a collection of linds distinct
from L, passes through. Then it holds tha# < C(lj) as soon as at least one line from
M belongs tal;. If the theorem holds when all lings¢ L are strictly abovgbelow,

it will therefore remain true when some of these lines pass thréugh
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First consider the case that= 3m. As in the proof of Theorem 1 we denote

A*(0) = {I; € A lies strictly aboved},
A=(0) = {I; € A, lies strictly belowd},

and analogously foB*(8), B~(8), C*(8), andC~(0). If |A*| = q for some 0< g <

m, we know by construction @fthat|B~| = [C*| = qand|A~| = |[BT| = |C7| = m—
g. We can now partitiot, into g triplets(l;, I, In) with|; € A*,l; € B™, andl, € C*
andm — q triplets (I;, Ij, In) with [; € A™,l; € B*, andly € C~. Finally it is easy to

see thab € C(ly) for each tripletly.
If n = 3m+ 1 we know thap lies on one lind; €¢ AUB andonone ling in BUC.
This implies that we must consider two different situations:

(a) Iy = |2 andll € B,
(b) I € Aandl, € C.

(The case wheh € A andl, € B follows from (a) since thig lies on one more line than
the @ in (a). The casé, € B andl, e C is analogous.) First consider situation (a). Set
I, = {l1}, henced € C(l1). Furthermore|A| = |B\{l1}| = |C| = m, so the situation is
reduced to the cage= 3m. We can then partitiomd,\{l1} into mtripletsls,, ..., Imy1,
each satisfyingf) € C(ly). In situation (b) we choosk = {l;} andl, = {l5}. If now
|At| =q,then|B~|—1=|C*|=qgand|A"|=|Bt|—1=|C |=m-qg— 1. This
implies that we can partitiohl,\{l1, |} into g triplets in At x B~ x C* andm—q —1
tripletsin A~ x BT x C~. Finally, the two remaining observationsBmay be assigned
to any of them + 1 = [n/3] subsets.

The final case&n = 3m + 2 can be analyzed in a similar way. O

The special casa = 4 of this theorem is a counterpart to the theorem of Radon
(1921) about points in the plane.

3. Maximal Depth for d > 3

We have proved that for arrangemerisin R* the maximal depth (2.1) is at legst/2],
whereas Theorem 1 showed thatRA the lower bound i§n/3]. Moreover, inR° we
trivially obtain [n/1] = n. All these lower bounds are sharp. This would suggest the
lower boundn/(d + 1)7 for anyd.

More support for this possibility comes from the similar notion of location depth,
where for any configuration af points inRY the maximal depth is at leagt/(d + 1)].
To our knowledge this result was first obtainediA by Neumann (1945), and in the
cased > 3 by Rado (1946). The result was independently discovered by Birch (1959),
and in statistics by Donoho and Gasko (1992). Each of these proofs makes use of Helly’s
theorem or the related results of Radon (1921) and Cewdltry (see, e.g., Danzer et
al., 1963). In Edelsbrunner (1987, pages 63-66) a point with location depth at least
[n/(d + 1)] is called acenterpointhence each configuration has a centerpoint.

We now conjecture that each arrangement contains a centerpoint as well.
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Conjecture 1. For any arrangement,, in RY with d > 3 it holds that

n
max depth@, A,) > | —— | .
0 Pt n) [d + 1—‘
Remark. There cannot be a better lower bound, since we can consider hyperplanes
whose duals are different points on the moment curyé, t2, ..., t%); 0 < t < oo}.

Our attempts at generalizing the proof of Theorem 1 did notyield the desired result, nor
did attempts to “dualize” the result for centerpoints of a configuration. Helly’s theorem
itself cannot be used fad, since the relevant sets (determined by level surfaces of
rotated versions afl,) are not convex. Also, the existing dual forms of Helly’s theorem
(see, e.g., Goodman and Pollack, 1982) yield hyperplanes instead of points.

We can also formulate a generalization of Theorem 3:

Conjecture 2. Any set H of n hyperplanes iR can be partitioned into k= [n/(d +
1)] subsetsd., ..., I such that{_; C(I)) # 2.

HereC(l;) stands for{@ < RY: depth@, I;) > 1}. Note that Conjecture 2 would
imply Conjecture 1, because a poéhtn ﬂ:‘;l C(l;) must satisfy
k k
U |,-) > ) " depth®. I)) > k.
j=1 j=1

depth@, H,) = depth(@,
J:

In fact, Conjecture 2 has the same form as the theorem of Tverberg (1966) for a config-
uration ofn points inRY, if we readC(l;) as the convex hull instead of the contractible
hull. Tverberg used this result to give an alternative proof of the Neumann—Rado theorem
about the existence of a point with location deptlk.

Up to now we have considered arbitrary arrangements where it is possible that some
hyperplanes are parallel or even coincide, or that all of them pass through the same
point. For the next result we assume thtis in general positionmeaning that ang
hyperplanes intersect in exactly one poinRify and that any point iiRY lies on at most
d hyperplanes. (Hence no two hyperplanes can be parallel, addind hyperplanes
can be concurrent.) Then we have the followumperbound, for all values odl.

Theorem 4. If the arrangementd,, in RY is in general positionthen

n+dJ

max depth8, An) < L (3.1

Proof. SinceA, is in general position, the maximal depth (2.1) is reached in a point
0 that lies on exacthyd hyperplanes. (The case wherg contains fewer than hy-
perplanes is trivial.) Note thatepth@, A,) equals (1.1), where the minimum ranges
over allu # 0 such thatu (and hence alse-u) is not parallel to any hyperplane.
Now consider the arrangemeyt, 4 obtained by removing thd hyperplanes pass-
ing through®. Thenncrosg0, u, A,_q) + ncrossd, —u, A,_q) = n — d since each
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hyperplane ind,_q is crossed by either rggu) or ray,(—u), but never both. There-
fore min{ncrosg0, u, A,_q), ncrossl, —u, A,_g)} < [(n—d)/2]. Since this holds
for all admissibleu we find depth@, An_q) < L(n—d)/2] hencedepthd, A,) <
[(n—d)/2] +d=|(n+d)/2]. O

4. Computation

Computing the depth of som@ € RY relative to an arrangememt, is in general
nontrivial. Rousseeuw and Hubert (1999) and Rousseeuw and Struyf (1998) constructed
exact algorithms using @f~*logn) time. Since this takes too long for largeand/or

larged, the latter paper also proposes an approximate algorithm. We do not know whether
a faster exact algorithm is possible.

For statistical applications we are mainly interested in finding the point(s)matk:
imal depth, i.e., the deepest point(s). As of yet, we only have a very naive algorithm
for finding deepest points, which goes as follows. Any deepest point belorthbyte
perplanes. We might thus compute all intersections dfyperplanes (in O¢) time)
and determine the depth of each intersection point (infG{logn) time), yielding an
overall computation time of @€~ logn). Ford = 2 we can lower the time complexity
to O(n°) (see Rousseeuw and Hubert, 1999) since the depth of a point can be computed
in O(n) time after sorting the lines by decreasing slope. However, intuitively, we would
expect that the deepest pointdn= 2 be computable in ®€) time or less.

The naive algorithms are too slow for routine use in statistical applications. By the
duality (1.2), adeepest pointin an arrangement corresponds to a regression fit yielding the
most balanced summary of the data. For data analysis it is therefore of major importance
to obtain algorithms that can deal with largeandd in feasible time. We hope that
this paper will inspire specialists of computational geometry to construct more efficient
algorithms. We are optimistic since the computation of several other regression methods
has been dramatically improved by techniques of computational geometry. For instance,
the Theil (1950) line was originally computed by arir®) algorithm but can now be
computed in Ot log n) time by algorithms of Cole et al. (1989), Dillencourt et al. (1992),
and Matosek (1991a). Randomized ©lpg n) algorithms for the repeated median slope
estimator of Siegel (1982) were constructed by Matduét al. (1991). Finally, the least
median of squares line (Rousseeuw, 1984) would naively také)@me to compute,
but can now be found in quadratic time by the algorithm of Edelsbrunner and Souvaine
(1990). Fast randomized algorithms for the least median of squares line were recently
developed by Mount et al. (1997).

In the context of location depth in a configuration of points, several algorithms have
been proposed for finding the deepest point (Maé1991b; Gil et al., 1992). Unfortu-
nately, implementations of these algorithms are not yet available. Clarkson et al. (1996)
gave a fast Monte Carlo algorithm for approximating center points of a configuration.

Acknowledgments

The authors are grateful to K. Clarkson, G. Koshevoy, and the reviewers for helpful
comments which improved the presentation.



176 P. J. Rousseeuw and M. Hubert

References

Birch, B.J. (1959), On B points in a plane?roceedings of the Cambridge Philosophical So¢kfy289-293.

Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., and Teng, S.-H. (1996), Approximating center
points with iterated Radon pointgiternational Journal on Computational Geometry and Applications
6, 357-377.

Cole, R., Salowe, J.S., Steiger, W.L., and SzexdgIE. (1989), An optimal-time algorithm for slope selection,
SIAM Journal on Computind 8, 792—-810.

Danzer, L., Gohbaum, B., and Klee, V. (1963), Helly's theorem and its relatiPesceedings of the American
Mathematical Society Symposium on ConveSsattle, pages 101-180.

Dillencourt, M.B., Mount, D.M., and Netanyahu, N.S. (1992), A randomized algorithm for slope selection,
International Journal on Computational Geometry and Applicatighd-27.

Donoho, D.L., and Gasko, M. (1992), Breakdown properties of location estimates based on halfspace depth
and projected outlyingnesghe Annals of Statistic0, 1803-1827.

Edelsbrunner, H. (1987RIgorithms in Combinatorial Geometr$pringer-Verlag, Berlin.

Edelsbrunner, H., and Souvaine, S. (1990), Computing least median of squares regression lines and guided
topological sweepJournal of the American Statistical Associatj@, 115-119.

Gil, J., Steiger, W., and Wigderson, A. (1992), Geometric mediaisgrete Mathematicd08 37-51.

Goodman, J.E., and Pollack, R. (1982), Helly-type theorems for pseudoline arrangemeftgddnrnal of
Combinatorial TheorySeries A32, 1-19.

Lo, C.-Y., Matowsek, J., and Steiger, W. (1994), Algorithms for ham-sandwich &itgrete and Computa-
tional Geometry11, 433-452.

Matouwsek, J. (1991a), Randomized optimal algorithm for slope seledtitormation Processing Letter39,
183-187.

Matouwsek, J. (1991b), Computing the center of planar point setdjsorete and Computational Geometry
Papers from the DIMACS Special YedrE. Goodman, R. Pollack, W. Steiger, eds., American Mathe-
matical Society, Providence, RI.

Matouwsek, J., Mount, D.M., and Netanyahu, N.S. (1998), Efficient randomized algorithms for the repeated
median line estimatoAlgorithmica 20, 136-150.

Mount, D.M., Netanyahu, N.S., Romanik, K., Silverman, R., and Wu, A.Y. (1997), A practical approximation
algorithm for the LMS line estimatoRroceedings of th8th Annual ACM—SIAM Symposium on Discrete
Algorithms pages 473-482.

Neumann, B.H. (1945), On an invariant of plane regions and mass distribufioms)al of the London
Mathematical Sociefy20, 226-237.

Rado, R. (1946), A theorem on general measilwarnal of the London Mathematical Socigdt, 291-300.

Radon, J. (1921), Mengen keexer Korper, die einen gemeinsamen Punkt enthaktathematische Annalen
83, 113-115.

Rousseeuw, P.J. (1984), Least median of squares regredsional of the American Statistical Associatjon
79, 871-880.

Rousseeuw, P.J., and Hubert, M. (1999), Regression démiinal of the American Statistical Associatjon
94, June issue.

Rousseeuw, P.J., and Ruts, I. (1996), AS 307: Bivariate location depitied Statistics45, 516-526.

Rousseeuw, P.J., and Struyf, A. (1998), Computing location depth and regression depth in higher dimensions,
Statistics and Computin@, 193-203.

Siegel, A.F. (1982), Robust regression using repeated mediamagetrikg 69, 242—-244.

Theil, H. (1950), A rank-invariant method of linear and polynomial regression anaieierlandse Akademie
Wetenschappen Series8, 386—-392, 521-525, 1397-1412.

Tukey, J.W. (1975), Mathematics and the picturing of d&mceedings of the International Congress of
MathematiciansVancouver, volume 2, pages 523-531.

Tverberg, H. (1966), A generalization of Radon’s theordaurnal of the London Mathematical Socief,
123-128.

Received Decembér 1997,and in revised form Jun@, 1998.



