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Abstract. We considen caps on the sphere such that none of them contains in its interior
the center of another. We give an upper bound for the total area of the caps, which is sharp
forn =3, 4, 6, and 12 and is asymptotically sharp for great values of

1. Introduction, Results

A set of ballgs said to be Minkowskiset if none of its elements contains in its interior
the center of another. Replacing in a Minkowski set of balls each ball with a concentric
ball of radius half as big as the original, we obtain a packing of balls which we call a
Minkowski packingMinkowski sets, Minkowski packings of balls, and their variants
have been investigated because of their connection with the geometry of numbers and
the theory of functions [1], [2] as well as because of their intrinsic interest [3]-[9]. This
paper deals with Minkowski sets and Minkowski packings of circles (spherical caps) on
the sphere.

In Section 2 we prove two theorems.

Theorem 1. The density of a Minkowski packing ofsn 2 circles on the sphere is at
most

n -
E(l — Lsin wp), (1)
where
n
n-—-2

wnp =

ol

Theorem 2. The density of a Minkowski set ofn 2 circles on the sphere is at most

n(l— Fsin?wy). 2)
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Both bounds are sharp for = 3, 4, 6, and 12, and asymptotically sharp for great
values ofn.
Section 3 contains some open problems and remarks.

2. Proof of Theorems 1 and 2

Throughout this section we operate on the unit sphere. We use the same symbol for a
domain and its area.

Letcy, ..., c, be circles with radirq, ..., r, and center®©q, ..., O,, which form a
Minkowski packing. We start the proof of Theorem 1 with the case of three circles. We
may suppose that > /3. ThenO, and O3 lie in a circle of radiust — 2r; which
implies thatr, < 7 — 2r; andrz < & — 2r;. It follows that

CL+C+C3

< 2(3—cosry +2cos2y),
4

which is less than the density bound 0.75 obtained from (1 fer3.

Now we show that it is enough to prove Theorem 1 fflor- 3 circles such that
max(ry, ..., r,) < 584°. Suppose that; = 58.4° and thatO; is the north pole. Then
the center€,, ..., Oy lie in a circlel’ of radiusR = 180 — 2 x 58.4° = 63.2° with
center at the south pole. L& be the maximum total area kfcircles which along with
1 constitute a Minkowski packing. It is not difficult to show that, foe= 3, 4, and 5,
Tk consists ok congruent circles whose radigg = arcsin(sin(zz/k) sinR) is half of
the side length of a regul&rgon inscribed i Ty is attained by six circles of radius
R/2 = 31.6°. (Note thatR/2 is just a little bit smaller thaps ~ 31.64.) We list the
approximate values off:

k 3 4 5 6
Tk 6.8913 5.6383 4.6710 5.5898

Obviously, the biggest radius of the circles yieldifigfor k > 6 is less tharR/2. Thus,
for k > 6, T is certainly smaller than

21 (1 — cos?) ~ 6.8089

showing that fok > 3 we havel, < Ts. Therefore the density of the packing is at most

21 (1 —cos584°) + T3

~ 0.7864
4

This is smaller than the bound835. .. obtained from (1) fom = 4 and hence, by
the monotonity of (1), smaller than the bound obtained for mny 4. In the case of
r; > 584°, similar considerations yield even smaller density bounds.

Let c andc’ be two disjoint circles with radii andr’ and center© andO’, respec-
tively. Let o be the (spherical) segme@O’. Let M be the midpoint of the segment
with endpointsy Nbdc ando Nbdc'. Letl be the line (great circle) drawn throudh
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orthogonally tos. We calll themidlineof c andc’. We say that a point liesearerto ¢
than toc’ if it lies on the same side dfasc.

Let ¢ be a circle of the packing. LeE be thecell of ¢ defined as the set of points
which are nearer to than to any other circle of the packing.

Letc’ be another circle of the packing which does not contain the point diametrically
opposite t00. Let A be the triangle bounded by the li@0’, the midline of ¢ andc’,
and a tangent to' passing througl®. Lets be the sector of lying in A, and letw be its
angle. In the case whantouchesc, we write A*, s*, andw* for A, s, andw. We show
that

c s*
Z <2 3
c S A (€)
whereC is the cell ofc.
First we prove that
S s*
—_ < — 4
A T A* @

Lett be the distance betwedd andO’, and letd = %(t +r —r’) be the distance
of O from the midline ofc andc’. Let D denote the digon defined as the convex hull of
O, ¢/, and the point opposite t0. Consider the array of circles inscribedl In this
array,d is an increasing function df Approachingc’ towardc, s remains constant but
A decreases so thaf A increases. It < »*, we stop approaching at the moment
whent = 2r. If, on the other handy > «*, we approactt’ towardc until it touchesc
and observe that in this situatian A is a decreasing function ef. Therefore, replacing
w by w*, s/ A increases on.

Fort = 2r we have

S w(1 — cosr)

A~ o — arcsircosd sinw) Fr (@), ®

whered = (3r —r’)/2 and sir’ = sinwsin2. A computer investigation oF; (w)
and its derivative—kindly performed by J. Linhart (Salzburg)—has shown that, for
(0,584°), F(w) is, for 0 < w < w*, strictly increasing, confirming (4). (For =
58.4°, the maximum ofF; (w) is attained atv ~ 73.009, which is less tham* =
arcsin(sinr/sin ) ~ 73.125.)

Turning to the proof of (3), let; andc, be two circles corresponding to two consec-
utive sides ofC. Let A be the angular region bounded by the half-lif@3; and OO,.
We claim that

ANc s*
< —.
ANC — A*
Assuming thalDO; < OO,, we rotatec, aboutO; so thatOO, decreases untlDO, =
OO0;. Inany position ot; let Sbe the set of points which are nearectban either ta; or
toc,. Letthe initial position ot; be such tha©O, touches;. Now AnNc/ANS < s*/A*
with equality only ifc; touchesc. During the rotation o€,, AN ¢/ AN Sdecreases until
the intersection of the midlines oft andc; andc andc; lies outside ofA. As soon as
| getsintoA, AN c/AN Sincreases. In the final position, wh€0, = OO, ¢, and

(6)
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C; are separated from each other by the line passing thr@ughd the midpoint of the
segmeniO, Oy, so that, in view of (4),
ANnc ANnc s*
< < —,
ANC ~— ANS ™ A*

as stated. Equality holds onlydf c; andc, mutually touch each other.
In what follows, we writew* = w, keeping in mind thad satisfies

1
2cos’

sinw =

In the triangleA*, let ¢ be the angle opposite to Then cog = sinw cosr = % o)
thaty = n/3 andA* = w — 7/6. In view of (3), we have

Czh(l—%) = f(w).

Considerf (w) as a functiorg(c) of
c=2r(l-3sintw). (7

We have
dg dg dc 7 sifw

dc do do  3w?cose’
Writing h(w) = (sirf w)/(w? cosw), we have
w*cof wh'(w) = wsinw(2wcof w + w Sir w — sin )
= wsinw(2w — SiN2w — wsif ®) > wSsinw (8%03 — wSirT2w>
= &’ Siha)(%a)2 —sifw) > 0.
This implies thagy(c) is convex so that we can use Jensen’s inequality:

47TZC1+"~+Cn2ng(é):n2;1<1_%),

wheret is the average area of the circles. . ., ¢, andw is the pertaining value of it
according to (7).
The last inequality yields
n
n—2

C()S = Wn,

ol 9

whence
C<2r(1— 3sintwy), (8

completing the proof of Theorem 1. |
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Next we turn to the proof of Theorem 2. For any circlef radiusr, let S(c) denote
the area of the circle whose radius is 2sing the facts that = 27 (1 — cosr) and
S=2n(1-cos2), we get

ds ds_ dc
dc~ dr " dr

which implies thatS(c) is concave. Thus, by Jensen’s inequalBythe average area
of the circles in the Minkowski set of circles associated with our Minkowski packing,
satisfiesS < S(€). In view of (8),C < 27 (1 — cosr), where cos = 1/(2sinwp).
Therefore,

S<2r(l—cos2)=4rsinfr =4r(1— ;sin?wy),

as asserted in Theorem 2. O

3. Concluding Remarks

In the special case when all circles are congruent, Theorem 1 has been proved indepen-
dently from each other by Hadwiger and the author. This is the earliest result in the vast
literature about packing the sphere with equal circles.

In the Euclidean plane, the problems of the densest Minkowski circle packing and
the densest Minkowski circle arrangement are equivalent. The densest Minkowski circle
packing consists of equal circles, and the densest Minkowski circle arrangement arises
from the densest packing of equal circles by replacing each circle by a concentric one
twice as big as the original. The situation is similar on the sphere in the case of 3, 4, 6,
and 12 circles but quite different for 5 circles.

Let c be a circle with cente© and radiug > 45°. Letc’ be a circle centered at a
distance 2 from O whose tangents throughmake aright angle. The radius@fs given
by sinr’ = (sin2)/+/2. Four circles congruent t¢ along withc form a Minkowski
packing with densitya(r) = %(5 — cosr — 4 cos’). On the other hand, the density of
the associated Minkowski arrangemenbis) = %(5 —cos2 —4cos2). Itis easy
to see that the maximum af(r) andb(r) yield the density of the densest Minkowski
packing and the density of the densest Minkowski arrangement of five circles. However,
a(r) andb(r) attain their maxima at different valuesafnamely, ar ~ 48.899 and
r ~ 48590,

Are there other values af £ 5, for which the problem of the densest Minkowski
packing ofn circles is not equivalent with the problem of the densest Minkowski
arrangement afi circles?

In the Euclidean plane we define a Minkowski arrangement of centrally symmetrical
convex disks by the requirement that no disk contains in its interior the center of another
disk. Several properties of such arrangement are known [3], [4]. Special attention is due
to Minkowski arrangements of homothetic disks. Reducing in such an arrangement each
disk by a similitude about its center in the ratio 1 : 2 we obtain a Minkowski packing. Itis
very probable that the density of a Minkowski packing of centrally symmetric homothetic
convex disks never exceeds the density of the densest lattice packing of one of the disks.
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We sketch a line of attack to the problem. Let the disksc,, ... with centers
04, Oy, ... form a Minkowski packing. We assume that the disks are smoothc;Let
andc; be two of them, les be the segmen®; O;, and letM be the midpoint of the
segment joinings N bdc; ands N bdg;. We draw a lind throughM parallel to the
tangents ot; andc; at the points N bdc; ands N bdc;. We say that a poin® is nearer
to ¢; than toc; if P andc; lie on the same side &f Let C; be the set of points which lie
nearer toc; than to any other disks. Now the problem is to find the arrangement of the
disks for which the are@; attains its minimum. The above conjecture would be proved
if we could show that in this problem we can restrict ourselves to the case @hisa
hexagon.
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