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Abstract. We considern caps on the sphere such that none of them contains in its interior
the center of another. We give an upper bound for the total area of the caps, which is sharp
for n = 3, 4, 6, and 12 and is asymptotically sharp for great values ofn.

1. Introduction, Results

A set of ballsis said to be aMinkowskiset if none of its elements contains in its interior
the center of another. Replacing in a Minkowski set of balls each ball with a concentric
ball of radius half as big as the original, we obtain a packing of balls which we call a
Minkowski packing. Minkowski sets, Minkowski packings of balls, and their variants
have been investigated because of their connection with the geometry of numbers and
the theory of functions [1], [2] as well as because of their intrinsic interest [3]–[9]. This
paper deals with Minkowski sets and Minkowski packings of circles (spherical caps) on
the sphere.

In Section 2 we prove two theorems.

Theorem 1. The density of a Minkowski packing of n> 2 circles on the sphere is at
most

n

2
(1− 1

2 sin−1ωn), (1)

where

ωn = n

n− 2

π

6
.

Theorem 2. The density of a Minkowski set of n> 2 circles on the sphere is at most

n(1− 1
4 sin−2ωn). (2)
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Both bounds are sharp forn = 3, 4, 6, and 12, and asymptotically sharp for great
values ofn.

Section 3 contains some open problems and remarks.

2. Proof of Theorems 1 and 2

Throughout this section we operate on the unit sphere. We use the same symbol for a
domain and its area.

Let c1, . . . , cn be circles with radiir1, . . . , rn and centersO1, . . . ,On, which form a
Minkowski packing. We start the proof of Theorem 1 with the case of three circles. We
may suppose thatr1 > π/3. ThenO2 and O3 lie in a circle of radiusπ − 2r1 which
implies thatr2 < π − 2r1 andr3 < π − 2r1. It follows that

c1+ c2+ c3

4π
< 1

2(3− cosr1+ 2 cos 2r1),

which is less than the density bound 0.75 obtained from (1) forn = 3.
Now we show that it is enough to prove Theorem 1 forn > 3 circles such that

max(r1, . . . , rn) ≤ 58.4◦. Suppose thatr1 = 58.4◦ and thatO1 is the north pole. Then
the centersO2, . . . ,On lie in a circle0 of radiusR = 180◦ − 2× 58.4◦ = 63.2◦ with
center at the south pole. LetTk be the maximum total area ofk circles which along with
c1 constitute a Minkowski packing. It is not difficult to show that, fork = 3, 4, and 5,
Tk consists ofk congruent circles whose radius%k = arcsin(sin(π/k) sinR) is half of
the side length of a regulark-gon inscribed in0. T6 is attained by six circles of radius
R/2 = 31.6◦. (Note thatR/2 is just a little bit smaller than%5 ≈ 31.64.) We list the
approximate values ofTk:

k 3 4 5 6
Tk 6.8913 5.6383 4.6710 5.5898

Obviously, the biggest radius of the circles yieldingTk for k > 6 is less thanR/2. Thus,
for k > 6, Tk is certainly smaller than

2π

(
1− cos

3R

2

)
≈ 6.8089

showing that fork ≥ 3 we haveTk ≤ T3. Therefore the density of the packing is at most

2π(1− cos 58.4◦)+ T3

4π
≈ 0.7864.

This is smaller than the bound 0.845. . . obtained from (1) forn = 4 and hence, by
the monotonity of (1), smaller than the bound obtained for anyn ≥ 4. In the case of
r1 > 58.4◦, similar considerations yield even smaller density bounds.

Let c andc′ be two disjoint circles with radiir andr ′ and centersO andO′, respec-
tively. Let σ be the (spherical) segmentOO′. Let M be the midpoint of the segment
with endpointsσ ∩ bdc andσ ∩ bdc′. Let l be the line (great circle) drawn throughM
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orthogonally toσ . We calll themidlineof c andc′. We say that a point liesnearerto c
than toc′ if it lies on the same side ofl asc.

Let c be a circle of the packing. LetC be thecell of c defined as the set of points
which are nearer toc than to any other circle of the packing.

Let c′ be another circle of the packing which does not contain the point diametrically
opposite toO. Let1 be the triangle bounded by the lineOO′, themidlineof c andc′,
and a tangent toc′ passing throughO. Lets be the sector ofc lying in1, and letω be its
angle. In the case whenc′ touchesc, we write1∗, s∗, andω∗ for 1, s, andω. We show
that

c

C
≤ s∗

1∗
, (3)

whereC is the cell ofc.
First we prove that

s

1
≤ s∗

1∗
. (4)

Let t be the distance betweenO andO′, and letd = 1
2(t + r − r ′) be the distance

of O from the midline ofc andc′. Let D denote the digon defined as the convex hull of
O, c′, and the point opposite toO. Consider the array of circles inscribed inD. In this
array,d is an increasing function oft . Approachingc′ towardc, s remains constant but
1 decreases so thats/1 increases. Ifω ≤ ω∗, we stop approachingc′ at the moment
whent = 2r . If, on the other hand,ω > ω∗, we approachc′ towardc until it touchesc
and observe that in this situationω/1 is a decreasing function ofω. Therefore, replacing
ω byω∗, s/1 increases on.

For t = 2r we have

s

1
= ω(1− cosr )

ω − arcsin(cosd sinω)
= Fr (ω), (5)

whered = (3r − r ′)/2 and sinr ′ = sinω sin 2r . A computer investigation ofFr (ω)

and its derivative—kindly performed by J. Linhart (Salzburg)—has shown that, forr ∈
(0,58.4◦), Fr (ω) is, for 0 < ω ≤ ω∗, strictly increasing, confirming (4). (Forr =
58.4◦, the maximum ofFr (ω) is attained atω ≈ 73.009◦, which is less thanω∗ =
arcsin(sinr/sin 2r ) ≈ 73.125◦.)

Turning to the proof of (3), letc1 andc2 be two circles corresponding to two consec-
utive sides ofC. Let A be the angular region bounded by the half-linesOO1 andOO2.
We claim that

A∩ c

A∩ C
≤ s∗

1∗
. (6)

Assuming thatOO1 < OO2, we rotatec2 aboutO1 so thatOO2 decreases untilOO2 =
OO1. In any position ofc2 let Sbe the set of points which are nearer toc than either toc1 or
toc2. Let the initial position ofc2 be such thatOO2 touchesc1. Now A∩c/A∩S≤ s∗/1∗

with equality only ifc1 touchesc. During the rotation ofc2, A∩ c/A∩ Sdecreases until
the intersectionI of the midlines ofc andc1 andc andc2 lies outside ofA. As soon as
I gets intoA, A∩ c/A∩ S increases. In the final position, whenOO2 = OO1, c1, and
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c2 are separated from each other by the line passing throughO and the midpoint of the
segmentO1O2, so that, in view of (4),

A∩ c

A∩ C
≤ A∩ c

A∩ S
≤ s∗

1∗
,

as stated. Equality holds only ifc, c1 andc2 mutually touch each other.
In what follows, we writeω∗ = ω, keeping in mind thatω satisfies

sinω = 1

2 cosr
.

In the triangle1∗, letϕ be the angle opposite tor . Then cosϕ = sinω cosr = 1
2, so

thatϕ = π/3 and1∗ = ω − π/6. In view of (3), we have

C ≥ 2π
(
1− π

6ω

)
= f (ω).

Considerf (ω) as a functiong(c) of

c = 2π(1− 1
2 sin−1ω). (7)

We have

dg

dc
= dg

dω
:

dc

dω
= π

3

sin2ω

ω2 cosω
.

Writing h(ω) = (sin2ω)/(ω2 cosω), we have

ω4 cos2ωh′(ω) = ω sinω(2ω cos2ω + ω sin2ω − sin 2ω)

= ω sinω(2ω − sin 2ω − ω sin2ω) ≥ ω sinω

(
8ω3

6
− ω sin2ω

)
= ω2 sinω( 4

3ω
2− sin2ω) ≥ 0.

This implies thatg(c) is convex so that we can use Jensen’s inequality:

4π ≥ C1+ · · · + Cn ≥ ng(c) = n2π
(
1− π

6ω

)
,

wherec is the average area of the circlesc1, . . . , cn andω is the pertaining value of it
according to (7).

The last inequality yields

ω ≤ n

n− 2

π

6
= ωn,

whence

c ≤ 2π(1− 1
2 sin−1ωn), (8)

completing the proof of Theorem 1.
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Next we turn to the proof of Theorem 2. For any circlec of radiusr , let S(c) denote
the area of the circle whose radius is 2r . Using the facts thatc = 2π(1− cosr ) and
S= 2π(1− cos 2r ), we get

dS

dc
= dS

dr
:

dc

dr
= 4 cosr,

which implies thatS(c) is concave. Thus, by Jensen’s inequality,S, the average area
of the circles in the Minkowski set of circles associated with our Minkowski packing,
satisfiesS ≤ S(c). In view of (8), c ≤ 2π(1 − cosr ), where cosr = 1/(2 sinωn).
Therefore,

S≤ 2π(1− cos 2r ) = 4π sin2 r = 4π(1− 1
4 sin−2ωn),

as asserted in Theorem 2.

3. Concluding Remarks

In the special case when all circles are congruent, Theorem 1 has been proved indepen-
dently from each other by Hadwiger and the author. This is the earliest result in the vast
literature about packing the sphere with equal circles.

In the Euclidean plane, the problems of the densest Minkowski circle packing and
the densest Minkowski circle arrangement are equivalent. The densest Minkowski circle
packing consists of equal circles, and the densest Minkowski circle arrangement arises
from the densest packing of equal circles by replacing each circle by a concentric one
twice as big as the original. The situation is similar on the sphere in the case of 3, 4, 6,
and 12 circles but quite different for 5 circles.

Let c be a circle with centerO and radiusr ≥ 45◦. Let c′ be a circle centered at a
distance 2r from O whose tangents throughO make a right angle. The radius ofc′ is given
by sinr ′ = (sin 2r )/

√
2. Four circles congruent toc′ along withc form a Minkowski

packing with densitya(r ) = 1
2(5− cosr − 4 cosr ′). On the other hand, the density of

the associated Minkowski arrangement isb(r ) = 1
2(5− cos 2r − 4 cos 2r ′). It is easy

to see that the maximum ofa(r ) andb(r ) yield the density of the densest Minkowski
packing and the density of the densest Minkowski arrangement of five circles. However,
a(r ) andb(r ) attain their maxima at different values ofr , namely, atr ∼ 48.899◦ and
r ∼ 48.590◦.

Are there other values ofn 6= 5, for which the problem of the densest Minkowski
packing of n circles is not equivalent with the problem of the densest Minkowski
arrangement ofn circles?

In the Euclidean plane we define a Minkowski arrangement of centrally symmetrical
convex disks by the requirement that no disk contains in its interior the center of another
disk. Several properties of such arrangement are known [3], [4]. Special attention is due
to Minkowski arrangements of homothetic disks. Reducing in such an arrangement each
disk by a similitude about its center in the ratio 1 : 2 we obtain a Minkowski packing. It is
very probable that the density of a Minkowski packing of centrally symmetric homothetic
convex disks never exceeds the density of the densest lattice packing of one of the disks.
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We sketch a line of attack to the problem. Let the disksc1, c2, . . . with centers
O1,O2, . . . form a Minkowski packing. We assume that the disks are smooth. Letci

andcj be two of them, lets be the segmentOi Oj , and letM be the midpoint of the
segment joinings ∩ bdci ands ∩ bdcj . We draw a linel through M parallel to the
tangents ofci andcj at the pointss∩ bdci ands∩ bdcj . We say that a pointP is nearer
to ci than tocj if P andci lie on the same side ofl . Let Ci be the set of points which lie
nearer toci than to any other disks. Now the problem is to find the arrangement of the
disks for which the areaCi attains its minimum. The above conjecture would be proved
if we could show that in this problem we can restrict ourselves to the case whenCi is a
hexagon.
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