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Abstract. We consider a simplicial complex generalization of a result of Billera and
Myers that every nonshellable poset contains the smallest nonshellable poset as an induced
subposet. We prove that every nonshellable two-dimensional simplicial complex contains
a nonshellable induced subcomplex with less than eight vertices. We also establish CL-
shellability of interval orders and as a consequence obtain a formula for the Betti numbers
of any interval order.

Arecentresult of Billera and Myers [BM] implies that every nonshellable poset contains
as an induced subposet the four-element p@sednsisting of two disjoint two-element
chains. (Throughout this paper shellability refers to the general notion of nonpure shella-
bility introduced in [BW2].) Note thaf is the nonshellable poset with the fewest number

of elements. Of course, a shellable poset can also co@a@g., the lattice of subsets

of a three-element set. So the condition of not contairfhgs an induced subposet

is only sufficient for shellability; it does not characterize shellability. It is, however, a
well-known characterization of a class of posets called interval orders and the question
of whether all interval orders are shellable is what Billera and Myers were considering
in the first place.

In this note we suggest a way to generalize the poset result to general simplicial
complexes. We also give a simple proof of the poset result and prove the stronger result
that any poset that does not cont&lras an induced subposet is CL-shellable. This yields
a recursive formula for the Betti numbers of the poset.

We assume familiarity with the general theory of shellability [BW2], [BW3]. Recall

* This research was supported in part by NSF Grant DMS 9311805 at the University of Miami and by NSF
Grant DMS-9022140 at MSRI.
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that a simplicial complex is said to k#hellableif its facets can be arranged in linear
orderFy, F,, ..., F in such a way that the subcomplex

(FFUFRU---UFR_)NF

is pure anddim F, — 1)-dimensional forall = 2, ..., t. (For any facd= of a simplicial
complex,F denotes the subcomplex consistingradind all its subsets.) Such an ordering

is called ashelling The notation and terminology used throughout this paper is defined
in [BW2] and [BW3].

The most simple-minded conjecture one could make is that every nonshellable sim-
plicial complex contains the induced subcomplex consisting of efigés and{c, d},
wherea, b, ¢, d are distinct vertices. A simple counterexample is given by the five-vertex
simplicial complex consisting of facefs, b, c}, {c, d, €}, {a, d}. Indeed the situation for
simplicial complexes turns out to be much more complicated than it is for posets.

The most natural thing to do next is to look for other “obstructions” to simplicial
complex shellability. Is there a finite list? Below we see that the answer is no. Define an
obstructionto shellability to be a nonshellable simplicial complex all of whose proper
induced subcomplexes are shellable. The four- and five-vertex simplicial complexes
given above are examples of one- and two-dimensional obstructions, respectively. The
following observation was made by Stanley [S1].

Proposition 1. For every positive integer d there is an obstruction to shellability of
dimension d

Proof. Let K be the(d — 1)-skeleton of the simplex on vertex §dt 2,...,d + 3}
together with twal-dimensional facefl, 2, ...,d+ 1} and{3, 4, ..., d + 3}. We claim
thatK is ad-dimensional obstruction. IK were shellable, then by the Rearrangement
Lemma of [BW2] there would be a shelling order in which the maximal dimensional
facets come first; namelyl, 2,...,d + 1} and{3, 4, ..., d + 3} come first. However,
this is impossible because these two facets intersect in a face of dimensidnHence

K is not shellable.

Every proper induced subcomplex Kf is either a simplex or consists of a single
d-face in a(d + 1)-simplex together with théd — 1)-skeleton of th&d + 1)-simplex.
Certainly the simplex is shellable. Létbe the(d — 1)-skeleton of the simplex on vertex
set{1, 2,...,d + 2} together with the fac¢l, 2, ..., d + 1}. It is easy to see that the
lexicographical order on the facets d&fis a shelling ofJ. (The lexicographical order
on subsets of1,2,...,d + 2} is defined by{a; < --- < &} < {b1 < --- < by} if
the worda; - - - a is less than the world; - - - b; in lexicographical order.) Therefore alll
proper induced subcomplexesidfare shellable. O

We now consider the following problem.

Problem. Determine whether or not there is a finite numberedimensional ob-
structions to shellability for eacth. If so, find bounds on the number of vertices that a
d-dimensional obstruction can have.
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In this paper we solve this problem only for dimensians: 1, 2 and we leave open
the problem for general.

Proposition 2. The only one-dimensional obstruction to shellability is the complex J
generated by facetfs, b}, {c, d} where a b, ¢, d are distinct

Proof. A one-dimensional simplicial complex is shellable if and only if it has at most
one connected component with more than one verteX lis a nonshellable one-
dimensional simplicial complex, then I¢f, b} be an edge in one component kf
and let{c, d} be an edge in another component. The subcomplex inducediiy, d

is J. HenceK is an obstruction if and only K = J. O

Already in dimension 2 the situation is much more complicated. We use the following

notation: For any subset of V and simplicial compleX on vertex seV, let K (U) be

the subcomplex oK induced byU. Also let thepure partof K, denoted purgl), be

the subcomplex oK generated by the facets of maximum dimension. #erV, the

link of v in K is denoted Ik (v) and is definedto bg- € K | FU{v} € K andv ¢ F}.

For anyv € V and subcomplex of Ikk (v), thejoin of v andJ is denoted * J and is
defined to bgdF € K | v € F andF\{v} € J}. Theith reduced simplicial homology

of K over the ring of integers is denoted by(K).

Theorem 3. The number of vertices in a two-dimensional obstruction is eitherdixe
or seven

Proof. It is easy to see that any two-dimensional simplicial complexes with less than
five vertices is shellable and hence cannot be an obstruction.

Let K be a two-dimensional simplicial complex on vertex ¥etvhere|V| > 7.
Assume all induced proper subcomplexes are shellable. We shall shdwithstiellable
by showing that purg) is shellable and the 1-skeleton Kfis connected (except for
isolated points). That the 1-skeleton is connected follows immediately from the fact that
no induced subcomplex consists only of a pair of disjoint edges.

To prove that pureK) is shellable, choose any vertexof purg K). Let

K1 = pura K (V\{v})).

Since the pure part of a shellable complex is shellable (by the Rearrangement Lemma
of [BW2]), K; is shellable. Let

K2 = v * purelkg (v)).

We claim that purék (v)) is a connected one-dimensional complex. If not there would
be distinct vertices, b, ¢, d € V\{v} such that edge&, b} and{c, d} are in different
components of puktkk (v)). Since|V| > 5, the induced subcompld«({v, a, b, c, d})
would be shellable which would imply thatdlg, a b,y (v) is shellable since the link of

any vertex in a shellable complex is shellable [BW3]. However, this is impossible since
Kk (v,a,b,c.dp (v) has only two facetéa, b} and{c, d}. It follows from this claim thak,

is shellable and two-dimensional.
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Next we dispose of the special cases thais zero or one-dimensional. Clearky;
cannot be zero-dimensional sinedelongs to a 2-face. IK; is one-dimensional, then
purgK) = K, which is shellable.

Now we can assume thit andK, are both shellable and two-dimensional. It follows
that

purgK) = K1 U Ko.
Let
A=KiNnKy.

We shall show tha# is connected and one-dimensional. Suppose not. Then either
(1) A = {7}, (2) A contains an isolated point, or (3) there are edges in different com-
ponents ofA. For the first case, choose distinct vertieed, c, d, e such that{a, b} €
purglkk (v)) and{c, d, e} € Kj. Since|V| > 6, K({v, a, b, c, d, €}) is shellable. It
follows that{v, a, b} and{c, d, e} cannot be the only 2-faces & ({v, a, b, ¢, d, €}).
Hence there is a third 2-fade. Notev ¢ F because otherwise one of the other vertices
of F would be inA. SoF e Kj. Since eithera or b is a vertex ofF as well as of
purglkg (v)), a orbis a vertex ofK; N K,. HenceA cannot bg@}.

For the second case, latbe the isolated point. Thek; and K, contain 2-faces
{a,c,d} and {v, a, b}, respectively, which intersect only a&. Since|V| > 5,
K({v, a, b, c,d}) is shellable. This means that there is a third 2-face in the induced
subcomplex that intersects each of the 2-faces along edges that canifaihe third
2-face contain®, then it is eithef{v, a, ¢} or {v, a, d}. This implies that eithefa, c}
or {a,d} is in A, which contradicts the fact thda} is a facet ofA. Hence the third
2-face must bga, b, c} or {a, b, d}. It follows that{a, b} is a facet ofA, which is still a
contradiction.

For the third case, suppose that b} and{c, d} are edges in different components of
A. Letx, y € V\{v} be such thata, b, x} and{c, d, y} are facets oK. Since|V| > 7,
J=K({v,a, b,c d,x,y}) is shellable. Let

B = (v purglk;(v))) NpuraK({a, b, c, d, x, y})).

Since B is a subcomplex ofA, {a, b} and{c, d} are in different components d.

It follows that Ho(B) # 0. Sincewv « purealk;(v)) is contractible, we also have
Hi (v * purglk;(v))) = 0 for all i. By the Rearrangement Lemma of [BW2],
purgK ({a, b, c, d, x, y})) isshellable since theinduced subcomptaxa, b, c, d, x, y})
is. HenceH; (puregK({a, b, c,d, x,y}))) =0fori < 1. Since

pure(J) = (v * purelky(v))) U puraK({a, b, ¢, d, x, y})),

by Mayer-Vietoris we have tha*ﬁl(pure(J)) = Ho(B) # 0. This contradicts the fact
that J is shellable and two-dimensional. Hence we may concludeAhiatconnected
and one-dimensional.
Since A and purélkk (v)) are connected we can get a shelling of glkie(v)) by
first listing the edges oA and then listing the remaining edges of pilke (v)) so that
each edge is connected to the previous ones. We claim that we can obtain a shelling of
purgK) by first listing the facets oK; in the order given by any shelling d¢f; and
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then listing the facets oK, = v * purglkk (v)) in the order indicated by a shelling
of purglkk (v)) in which the edges oA come first. LetF, F», ..., F be the resulting
ordered list of facets of pu(&).

If F; € Ky, thenitis clear thatF, U F, U --- U Fi_1) N F; is pure one-dimensional.
If Fi = {v,a, b} where{a,b} € A then it is easy to see thaa, b} is a facet of
(FMUFRU---UF_pN FI and that, for all but the firsE; in v x A, {v,a} or{v, b} is
also a facet otFl UFU---UF_)) NF.Hence(FLUFU---UF_y) NF is pure
one-dimensional for alF, € v % A.

Now supposeF = {v, a, b} where{a, b} ¢ A. Clearly, either{v, a} or {v, b} is a
facet of(FLU F, U - --U Fi_1) N F; assume without loss of generality tHat a} is the
facet. We claim tha{lb} is notafacet of FLUF,U---UF,_1)NF;. Suppose itis. Theh
is in some faceF; wherej < i andv,a ¢ F;. LetF; = {b, c, d}. Consider the induced
subcomplex = K({v, a, b, c, d}). SincelL is shellable and contains fac¢ts a, b} and
{b, c, d}, one of the following sets must be a facetloind therefore also of pufi):
{a, b, c}, {a,b,d}, {v, b, c}, {v,b,d}. The first two are impossible sinde, b} ¢ A.

If {v, b, c} were a facet then it would have to precedea, b} in the shelllng because
{b, c} would be inA. It would then follow that{v,b} € (FLUF, U---UF_1) N F
which contradicts the assumption thidg is a facet. Similarly{v, b, d} cannot be a
facet ofL. Hence{b} is not a facet of F, U F, U - - - U F_1) N F; which implies that
(FLUFRU---UF_1) NF; is pure one- d|menS|onaI. Therefdrg, F», ..., Fyisindeed
a shelling of pureK). O

Corollary 4. Everynonshellable two-dimensional simplicial complex has anonshellable
induced subcomplex with n vertices whére n < 7.

Lemma5. Foreachn=5, 6, 7,thereis atwo-dimensional obstruction with n vertices

Proof. Let M, be the simplicial complex on vertex dét . .., n} with facets{1, 2, 3},
(2,34}, ....,{n—2,n—-1,n}, {(n—1,n,1}, {n,1,2}. Forn > 5, M, triangulates a
cylinder whem is even and a Mbius strip whem is odd. HenceM, is not shellable. We
leave it to the reader to check that every induced proper subcomphMy & shellable
whenn < 7. O

The obstructions given in the proof of Theorem 5 are two-dimensional pseudomani-
foldswith boundary. We show next that a generalimensional pseudomanifoldthout
boundary cannot be an obstruction.

Lemma6. Let K be asimplicial complex on vertex setSuppose that € V is such
that K(V\{v}) andlkk (v) are shellable and no facet tx (v) is a facet of KV \{v}).
Then K is shellable

Proof First list the facets oK (V\{v}) in any shelling order and then list the facets of
v % Ik (v) in the order indicated by the shelling ofdkv). It is easy to see that this is a
shelling ofK. |
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Theorem 7. Let K be asimplicial complex for which every nonfacet face is contained in
at least two facetsT'hen K is not an obstructiol€onsequentifthere are no obstructions
that are pseudomanifoldsvithout boundary or triangulations of manifoldgwithout
boundary.

Proof. The proofis by induction on diK. When dimK = 1 the result follows imme-
diately from Proposition 2. Suppose din> 1 and every proper induced subcomplex
of K is shellable. We will show thak must also be shellable. L&t be the vertex set
of K and choose any € V. ThenK (V\{v}) is shellable. It follows from the fact that
every nonfacet face is in at least two facetskothat no facet of Ik (v) is a facet of
K(V\{v}).

To apply Lemma 6 we need only show that llo) is shellable. Note that the property
that every nonfacet face is contained in at least two facets, is inheriteg by) lkHence
if Ik ¢ (v) is not shellable, then by induction it contains an obstructiqr(ik(U ), where
U C V\{v}. We have thaK (U U{v}) is shellable since itis a proper induced subcomplex
of K. Since Ik (v)(U) = Ikk wupy (v) and any link in a shellable complex is shellable,
we have that lk (v)(U) is also shellable, contradicting the fact thag (k)(U) is an
obstruction. Therefore |k(v) is shellable and, by Lemma B; is shellable. SK is not
an obstruction. O

A “pure” version of Lemma 6 is used implicitly in Provan and Billera’s proof of the
shellability of matroid complexes [PB]. Aatroid complexs a simplicial complex for
which all induced subcomplexes are pure. Lemma 6 can, in fact, be used to prove the
following stronger result.

Proposition 8. If every proper induced subcomplex of a simplicial complex K is pure
then K is shellable

Proof. The proofis by induction on the size of the vertex'¢eSuppose thak is not

a simplex. Let~ be anyd-dimensional facet ok whered = dimK. Choosey € V\F.
Clearly, K (V\{v}) is pured-dimensional since it contairis. It follows that no facet of
Ikk (v) is a facet ofK (V\{v}).

By induction, K (V\{v}) is shellable. To apply Lemma 6, we need only show that

Ikk (v) is also shellable. For anly C V\{v}, K(U U {v}) is pure. Since Ik (v)(U) =

lkk wupp (v) and any link in a pure complex is pure, we have that(ik (U) is pure.
Hence every proper induced subcomplex gf(k) is pure. It follows by induction that
Ikk (v) is shellable. O

Remark. Provanand Billera [PB] prove that matroid complexes are shellable by show-
ing that they are vertex decomposable. The proof of Proposition 8 given here is a slight
modification of the Provan—Billera proof and also yields the conclusiorkthatvertex
decomposable, but in the nonpure sense described in [BW3].

Define anobstruction to purityto be a nonpure simplicial complex for which all
proper induced subcomplexes are pure. Proposition 8 extends the Provan—Billera result
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from matroid complexes to obstructions to purity. It turns out that there are really very
few obstructions to purity in each dimension.

Proposition 9. For each d> 1, every d-dimensional obstruction to purity has exactly
d + 2 vertices Moreover there exists a d-dimensional obstruction to purity for each d

Proof. LetK be ad-dimensional simplicial complex with vertex Sét Suppos¢V| >
d + 2 and all proper induced subcomplexesofire pure. We will show thdf is also
pure.

Letv € V\F, whereF is anyd-dimensional face oK. It follows thatK (V\{v}) is
pured-dimensional. To show th#t is pure we need only show thaidkv) is pure(d—1)-
dimensional. LetG be a face of lk (v). Then sinceK (V\{v}) is pured-dimensional,
G is contained in somd-dimensional facetH of K(V\{v}). SinceH U {v} # V, it
follows thatK (H U {v}) is pured-dimensional. Sinc& U {v} € K(H U {v}), it follows
thatG U {v} is contained in a facet of dimensiohin K (H U {v}). This implies thatG
is contained in gd — 1)-dimensional face of lk(v), which means that Ik(v) is pure
and(d — 1)-dimensional.

An example of al-dimensional obstruction to purity is given by tfee— 1)-skeleton
of the simplex on vertex sdtl, 2, ...,d + 2} together with thed-dimensional face
{1,2,...,d+ 1} O

Lemma 6 also yields a simple proof of the shellability of interval orders which we
give below. Recall that Bounded pose a poset that has a minimum eleménand
a maximum element. If P is a bounded poset, theéd denotes the induced subposet
P\{0, 1}. Thelengthof bounded poseP is the length of the longest chain frobrto 1.
For anya < bin P, the open intervajx € P | a < X < b} is denoted bya, b) and the
closed intervalx € P | a < x < b} is denoted byd, b]. Theorder complexf P is the
simplicial complex of chains o and is denoted b\ (P).

Proposition 10[BM].  Every interval order is shellable

Proof. LetP beaninterval order. By the well-known characterization of interval orders,
P does not contair (the poset with two disjoint two-element chains) as an induced
subposet. We may assume without loss of generalityPhistbounded and th&® has
more than one atom.

The fact thatP does not contair@ enables us to choose an atansuch that each
of the covers ofa is greater than some other atom. Sincgg(a) = A((a, 1)), this

implies that no facet of Ik, (a) is a facet ofA(P\{a}). Also the interval(a, 1) and

the induced subposét\ {a} both inherit the property of not containir@as an induced
subposet. Hence by induction they are shellable. We conclud&tti&t and henceP
are shellable by Lemma 6. O

Remark. Bjorner [B] has independently used the same idea to prove more generally
that all interval orders are vertex decomposable.
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Another proof that interval orders are shellable can be obtained using the technique
of lexicographical shellability [BW?2].

Theorem 11. Every bounded interval order is CL-shellable

Proof. Let P be a bounded interval order. Partially order the atom® dfy letting

a < b if a has a cover that is not greater thanmAntisymmetry and transitivity follow
readily from the forbidden induced subposet characterization of interval order. It is
straightforward to verify that any linear extension-ofis a recursive atom ordering of

P by induction on| P|. ThereforeP is CL-shellable. O

For any bounded posétoflength atleast 2, Ieg; (P) be the th reduced Betti number
of A(P). If the length ofP is 1 then letg; (P) = O for alli except fori = —1 in which
caseg (P) = 1.

We refer to an atom of a bounded interval oréfeas aminimal atomif it is minimal
in the partial order on atoms given in the proof of Theorem 11. Such atoms can be
characterized as those atoms that are smaller than every elenfehaf is neither an
atom nor0.

Corollary 12. Let P be a bounded interval order of length 2, let A be its set of
atoms and let g be a minimal atomThen fori > 0,

B(PY= Y Bia(ai].

acA\{ag)

Proof. By Theorem 5.9 of [BW2]8; (P) is the number of falling maximal chains of
lengthi 42 with respect to the CL-labeling induced by the recursive atom ordering given
in the proof of Theorem 11. So we need to describe these falling chains. Each falling
chain from0 to 1 of lengthi + 2 is of the form{0} U ¢ wherec is a falling chain of
lengthi + 1 froma to 1 for some atona. We need to determine which atorasand
falling chainsc from a to 1 are such that0} U c is falling. The proof of Theorem 3.2

of [BW1] produces a CL-labeling from a recursive atom ordering (although it is done in
the pure case in [BW1], it easily carries over to general case, see [BW2]). A maximal
chain has a descent on the subcHain a — b if and only if b is greater than some
atom that precedes in the recursive atom ordering. This happens for every maximal
chain througha # ag and for no maximal chain througly. Hence the maximal chains

of the form{a} U ¢, wherea # ag andc is a falling chain of §, i], are the falling chains

of P. O

The problem of studying obstructions could conceivably be made easier by con-
sidering special classes of simplicial complexes that are closed under taking induced
subcomplexes. A natural class, suggested lmyrigji [B], which generalizes that of or-
der complexes is the class of flag complexedlay complexs a simplicial complex
for which every minimal nonface has exactly two elements. See [S2] for further infor-
mation on flag complexes. One might ask whether the pair of disjoint edges is the only
obstruction for flag complexes. It turns out that this is not the case. The obstrivttion
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given in the proof of Theorem 5 is a flag complex. However, obstructdasind Mg

are not flag complexes. Also the obstructions given in the proof of Proposition 1 are
not flag complexes. We leave open the question of whether there is a finite number of
obstructions that are flag complexes.
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