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Abstract. We consider a simplicial complex generalization of a result of Billera and
Myers that every nonshellable poset contains the smallest nonshellable poset as an induced
subposet. We prove that every nonshellable two-dimensional simplicial complex contains
a nonshellable induced subcomplex with less than eight vertices. We also establish CL-
shellability of interval orders and as a consequence obtain a formula for the Betti numbers
of any interval order.

A recent result of Billera and Myers [BM] implies that every nonshellable poset contains
as an induced subposet the four-element posetQ consisting of two disjoint two-element
chains. (Throughout this paper shellability refers to the general notion of nonpure shella-
bility introduced in [BW2].) Note thatQ is the nonshellable poset with the fewest number
of elements. Of course, a shellable poset can also containQ; e.g., the lattice of subsets
of a three-element set. So the condition of not containingQ as an induced subposet
is only sufficient for shellability; it does not characterize shellability. It is, however, a
well-known characterization of a class of posets called interval orders and the question
of whether all interval orders are shellable is what Billera and Myers were considering
in the first place.

In this note we suggest a way to generalize the poset result to general simplicial
complexes. We also give a simple proof of the poset result and prove the stronger result
that any poset that does not containQ as an induced subposet is CL-shellable. This yields
a recursive formula for the Betti numbers of the poset.

We assume familiarity with the general theory of shellability [BW2], [BW3]. Recall
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that a simplicial complex is said to beshellableif its facets can be arranged in linear
orderF1, F2, . . . , Ft in such a way that the subcomplex

(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i

is pure and(dim Fi −1)-dimensional for alli = 2, . . . , t . (For any faceF of a simplicial
complex,F̄ denotes the subcomplex consisting ofF and all its subsets.) Such an ordering
is called ashelling. The notation and terminology used throughout this paper is defined
in [BW2] and [BW3].

The most simple-minded conjecture one could make is that every nonshellable sim-
plicial complex contains the induced subcomplex consisting of edges{a,b} and{c,d},
wherea,b, c,d are distinct vertices. A simple counterexample is given by the five-vertex
simplicial complex consisting of facets{a,b, c}, {c,d,e}, {a,d}. Indeed the situation for
simplicial complexes turns out to be much more complicated than it is for posets.

The most natural thing to do next is to look for other “obstructions” to simplicial
complex shellability. Is there a finite list? Below we see that the answer is no. Define an
obstructionto shellability to be a nonshellable simplicial complex all of whose proper
induced subcomplexes are shellable. The four- and five-vertex simplicial complexes
given above are examples of one- and two-dimensional obstructions, respectively. The
following observation was made by Stanley [S1].

Proposition 1. For every positive integer d there is an obstruction to shellability of
dimension d.

Proof. Let K be the(d − 1)-skeleton of the simplex on vertex set{1,2, . . . ,d + 3}
together with twod-dimensional faces{1,2, . . . ,d+1} and{3,4, . . . ,d+3}. We claim
that K is ad-dimensional obstruction. IfK were shellable, then by the Rearrangement
Lemma of [BW2] there would be a shelling order in which the maximal dimensional
facets come first; namely,{1,2, . . . ,d + 1} and{3,4, . . . ,d + 3} come first. However,
this is impossible because these two facets intersect in a face of dimensiond−2. Hence
K is not shellable.

Every proper induced subcomplex ofK is either a simplex or consists of a single
d-face in a(d + 1)-simplex together with the(d − 1)-skeleton of the(d + 1)-simplex.
Certainly the simplex is shellable. LetJ be the(d−1)-skeleton of the simplex on vertex
set{1,2, . . . ,d + 2} together with the face{1,2, . . . ,d + 1}. It is easy to see that the
lexicographical order on the facets ofJ is a shelling ofJ. (The lexicographical order
on subsets of{1,2, . . . ,d + 2} is defined by{a1 < · · · < ak} ≤ {b1 < · · · < bj } if
the worda1 · · ·ak is less than the wordb1 · · ·bj in lexicographical order.) Therefore all
proper induced subcomplexes ofK are shellable.

We now consider the following problem.

Problem. Determine whether or not there is a finite number ofd-dimensional ob-
structions to shellability for eachd. If so, find bounds on the number of vertices that a
d-dimensional obstruction can have.
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In this paper we solve this problem only for dimensionsd = 1,2 and we leave open
the problem for generald.

Proposition 2. The only one-dimensional obstruction to shellability is the complex J
generated by facets{a,b}, {c,d} where a,b, c,d are distinct.

Proof. A one-dimensional simplicial complex is shellable if and only if it has at most
one connected component with more than one vertex. IfK is a nonshellable one-
dimensional simplicial complex, then let{a,b} be an edge in one component ofK
and let{c,d} be an edge in another component. The subcomplex induced bya,b, c,d
is J. HenceK is an obstruction if and only ifK = J.

Already in dimension 2 the situation is much more complicated. We use the following
notation: For any subsetU of V and simplicial complexK on vertex setV , let K (U ) be
the subcomplex ofK induced byU . Also let thepure partof K , denoted pure(K ), be
the subcomplex ofK generated by the facets of maximum dimension. Forv ∈ V , the
link of v in K is denoted lkK (v) and is defined to be{F ∈ K | F ∪ {v} ∈ K andv /∈ F}.
For anyv ∈ V and subcomplexJ of lkK (v), thejoin of v andJ is denotedv ∗ J and is
defined to be{F ∈ K | v ∈ F andF\{v} ∈ J}. The i th reduced simplicial homology
of K over the ring of integers is denoted bỹHi (K ).

Theorem 3. The number of vertices in a two-dimensional obstruction is either five, six
or seven.

Proof. It is easy to see that any two-dimensional simplicial complexes with less than
five vertices is shellable and hence cannot be an obstruction.

Let K be a two-dimensional simplicial complex on vertex setV where|V | > 7.
Assume all induced proper subcomplexes are shellable. We shall show thatK is shellable
by showing that pure(K ) is shellable and the 1-skeleton ofK is connected (except for
isolated points). That the 1-skeleton is connected follows immediately from the fact that
no induced subcomplex consists only of a pair of disjoint edges.

To prove that pure(K ) is shellable, choose any vertexv of pure(K ). Let

K1 = pure(K (V\{v})).
Since the pure part of a shellable complex is shellable (by the Rearrangement Lemma
of [BW2]), K1 is shellable. Let

K2 = v ∗ pure(lkK (v)).

We claim that pure(lkK (v)) is a connected one-dimensional complex. If not there would
be distinct verticesa,b, c,d ∈ V\{v} such that edges{a,b} and{c,d} are in different
components of pure(lkK (v)). Since|V | > 5, the induced subcomplexK ({v,a,b, c,d})
would be shellable which would imply that lkK ({v,a,b,c,d})(v) is shellable since the link of
any vertex in a shellable complex is shellable [BW3]. However, this is impossible since
lkK ({v,a,b,c,d})(v) has only two facets{a,b} and{c,d}. It follows from this claim thatK2

is shellable and two-dimensional.



98 M. L. Wachs

Next we dispose of the special cases thatK1 is zero or one-dimensional. Clearly,K1

cannot be zero-dimensional sincev belongs to a 2-face. IfK1 is one-dimensional, then
pure(K ) = K2 which is shellable.

Now we can assume thatK1 andK2 are both shellable and two-dimensional. It follows
that

pure(K ) = K1 ∪ K2.

Let

A = K1 ∩ K2.

We shall show thatA is connected and one-dimensional. Suppose not. Then either
(1) A = {∅}, (2) A contains an isolated point, or (3) there are edges in different com-
ponents ofA. For the first case, choose distinct verticesa,b, c,d,e such that{a,b} ∈
pure(lkK (v)) and {c,d,e} ∈ K1. Since|V | > 6, K ({v,a,b, c,d,e}) is shellable. It
follows that {v,a,b} and {c,d,e} cannot be the only 2-faces ofK ({v,a,b, c,d,e}).
Hence there is a third 2-faceF . Notev /∈ F because otherwise one of the other vertices
of F would be in A. So F ∈ K1. Since eithera or b is a vertex ofF as well as of
pure(lkK (v)), a or b is a vertex ofK1 ∩ K2. HenceA cannot be{∅}.

For the second case, leta be the isolated point. ThenK1 and K2 contain 2-faces
{a, c,d} and {v,a,b}, respectively, which intersect only ata. Since |V | > 5,
K ({v,a,b, c,d}) is shellable. This means that there is a third 2-face in the induced
subcomplex that intersects each of the 2-faces along edges that containa. If the third
2-face containsv, then it is either{v,a, c} or {v,a,d}. This implies that either{a, c}
or {a,d} is in A, which contradicts the fact that{a} is a facet ofA. Hence the third
2-face must be{a,b, c} or {a,b,d}. It follows that{a,b} is a facet ofA, which is still a
contradiction.

For the third case, suppose that{a,b} and{c,d} are edges in different components of
A. Let x, y ∈ V\{v} be such that{a,b, x} and{c,d, y} are facets ofK1. Since|V | > 7,
J = K ({v,a,b, c,d, x, y}) is shellable. Let

B = (v ∗ pure(lk J(v))) ∩ pure(K ({a,b, c,d, x, y})).
Since B is a subcomplex ofA, {a,b} and {c,d} are in different components ofB.
It follows that H̃0(B) 6= 0. Sincev ∗ pure(lk J(v)) is contractible, we also have
H̃i (v ∗ pure(lk J(v))) = 0 for all i . By the Rearrangement Lemma of [BW2],
pure(K ({a,b, c,d, x, y})) is shellable since the induced subcomplexK ({a,b, c,d, x, y})
is. HenceH̃i (pure(K ({a,b, c,d, x, y}))) = 0 for i ≤ 1. Since

pure(J) = (v ∗ pure(lk J(v))) ∪ pure(K ({a,b, c,d, x, y})),
by Mayer–Vietoris we have that̃H1(pure(J)) = H̃0(B) 6= 0. This contradicts the fact
that J is shellable and two-dimensional. Hence we may conclude thatA is connected
and one-dimensional.

Since A and pure(lkK (v)) are connected we can get a shelling of pure(lkK (v)) by
first listing the edges ofA and then listing the remaining edges of pure(lkK (v)) so that
each edge is connected to the previous ones. We claim that we can obtain a shelling of
pure(K ) by first listing the facets ofK1 in the order given by any shelling ofK1 and



Obstructions to Shellability 99

then listing the facets ofK2 = v ∗ pure(lkK (v)) in the order indicated by a shelling
of pure(lkK (v)) in which the edges ofA come first. LetF1, F2, . . . , Ft be the resulting
ordered list of facets of pure(K ).

If Fi ∈ K1, then it is clear that(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i is pure one-dimensional.
If Fi = {v,a,b} where {a,b} ∈ A, then it is easy to see that{a,b} is a facet of
(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i and that, for all but the firstFi in v ∗ A, {v,a} or {v,b} is
also a facet of(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i . Hence(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i is pure
one-dimensional for allFi ∈ v ∗ A.

Now supposeFi = {v,a,b} where{a,b} /∈ A. Clearly, either{v,a} or {v,b} is a
facet of(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i ; assume without loss of generality that{v,a} is the
facet. We claim that{b} is not a facet of(F̄1∪ F̄2∪· · ·∪ F̄i−1)∩ F̄i . Suppose it is. Thenb
is in some facetFj where j < i andv,a /∈ Fj . Let Fj = {b, c,d}. Consider the induced
subcomplexL = K ({v,a,b, c,d}). SinceL is shellable and contains facets{v,a,b} and
{b, c,d}, one of the following sets must be a facet ofL and therefore also of pure(K ):
{a,b, c}, {a,b,d}, {v,b, c}, {v,b,d}. The first two are impossible since{a,b} /∈ A.
If {v,b, c} were a facet then it would have to precede{v,a,b} in the shelling because
{b, c} would be inA. It would then follow that{v,b} ∈ (F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i

which contradicts the assumption that{b} is a facet. Similarly{v,b,d} cannot be a
facet ofL. Hence{b} is not a facet of(F̄1 ∪ F̄2 ∪ · · · ∪ F̄i−1) ∩ F̄i which implies that
(F̄1∪ F̄2∪ · · · ∪ F̄i−1)∩ F̄i is pure one-dimensional. ThereforeF1, F2, . . . , Fn is indeed
a shelling of pure(K ).

Corollary 4. Every nonshellable two-dimensional simplicial complex has a nonshellable
induced subcomplex with n vertices where4≤ n ≤ 7.

Lemma 5. For each n= 5,6,7,there is a two-dimensional obstruction with n vertices.

Proof. Let Mn be the simplicial complex on vertex set{1, . . . ,n} with facets{1,2,3},
{2,3,4}, . . ., {n − 2,n − 1,n}, {n − 1,n,1}, {n,1,2}. For n ≥ 5, Mn triangulates a
cylinder whenn is even and a M¨obius strip whenn is odd. HenceMn is not shellable. We
leave it to the reader to check that every induced proper subcomplex ofMn is shellable
whenn ≤ 7.

The obstructions given in the proof of Theorem 5 are two-dimensional pseudomani-
foldswithboundary. We show next that a generaln-dimensional pseudomanifoldwithout
boundary cannot be an obstruction.

Lemma 6. Let K be a simplicial complex on vertex set V. Suppose thatv ∈ V is such
that K(V\{v}) and lkK (v) are shellable and no facet oflkK (v) is a facet of K(V\{v}).
Then K is shellable.

Proof. First list the facets ofK (V\{v}) in any shelling order and then list the facets of
v ∗ lkK (v) in the order indicated by the shelling of lkK (v). It is easy to see that this is a
shelling ofK .
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Theorem 7. Let K be a simplicial complex for which every nonfacet face is contained in
at least two facets. Then K is not an obstruction. Consequently, there are no obstructions
that are pseudomanifolds(without boundary) or triangulations of manifolds(without
boundary).

Proof. The proof is by induction on dimK . When dimK = 1 the result follows imme-
diately from Proposition 2. Suppose dimK > 1 and every proper induced subcomplex
of K is shellable. We will show thatK must also be shellable. LetV be the vertex set
of K and choose anyv ∈ V . ThenK (V\{v}) is shellable. It follows from the fact that
every nonfacet face is in at least two facets ofK that no facet of lkK (v) is a facet of
K (V\{v}).

To apply Lemma 6 we need only show that lkK (v) is shellable. Note that the property
that every nonfacet face is contained in at least two facets, is inherited by lkK (v). Hence
if lk K (v) is not shellable, then by induction it contains an obstruction lkK (v)(U ), where
U ( V\{v}. We have thatK (U∪{v}) is shellable since it is a proper induced subcomplex
of K . Since lkK (v)(U ) = lkK (U∪{v})(v) and any link in a shellable complex is shellable,
we have that lkK (v)(U ) is also shellable, contradicting the fact that lkK (v)(U ) is an
obstruction. Therefore lkK (v) is shellable and, by Lemma 6,K is shellable. SoK is not
an obstruction.

A “pure” version of Lemma 6 is used implicitly in Provan and Billera’s proof of the
shellability of matroid complexes [PB]. Amatroid complexis a simplicial complex for
which all induced subcomplexes are pure. Lemma 6 can, in fact, be used to prove the
following stronger result.

Proposition 8. If every proper induced subcomplex of a simplicial complex K is pure
then K is shellable.

Proof. The proof is by induction on the size of the vertex setV . Suppose thatK is not
a simplex. LetF be anyd-dimensional facet ofK whered = dim K . Choosev ∈ V\F .
Clearly,K (V\{v}) is pured-dimensional since it containsF . It follows that no facet of
lkK (v) is a facet ofK (V\{v}).

By induction, K (V\{v}) is shellable. To apply Lemma 6, we need only show that
lkK (v) is also shellable. For anyU ( V\{v}, K (U ∪ {v}) is pure. Since lkK (v)(U ) =
lkK (U∪{v})(v) and any link in a pure complex is pure, we have that lkK (v)(U ) is pure.
Hence every proper induced subcomplex of lkK (v) is pure. It follows by induction that
lkK (v) is shellable.

Remark. Provan and Billera [PB] prove that matroid complexes are shellable by show-
ing that they are vertex decomposable. The proof of Proposition 8 given here is a slight
modification of the Provan–Billera proof and also yields the conclusion thatK is vertex
decomposable, but in the nonpure sense described in [BW3].

Define anobstruction to purityto be a nonpure simplicial complex for which all
proper induced subcomplexes are pure. Proposition 8 extends the Provan–Billera result
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from matroid complexes to obstructions to purity. It turns out that there are really very
few obstructions to purity in each dimension.

Proposition 9. For each d≥ 1, every d-dimensional obstruction to purity has exactly
d + 2 vertices. Moreover there exists a d-dimensional obstruction to purity for each d.

Proof. Let K be ad-dimensional simplicial complex with vertex setV . Suppose|V | >
d + 2 and all proper induced subcomplexes ofK are pure. We will show thatK is also
pure.

Let v ∈ V\F , whereF is anyd-dimensional face ofK . It follows thatK (V\{v}) is
pured-dimensional. To show thatK is pure we need only show that lkK (v) is pure(d−1)-
dimensional. LetG be a face of lkK (v). Then sinceK (V\{v}) is pured-dimensional,
G is contained in somed-dimensional facetH of K (V\{v}). SinceH ∪ {v} 6= V , it
follows thatK (H ∪ {v}) is pured-dimensional. SinceG∪ {v} ∈ K (H ∪ {v}), it follows
thatG ∪ {v} is contained in a facet of dimensiond in K (H ∪ {v}). This implies thatG
is contained in a(d − 1)-dimensional face of lkK (v), which means that lkK (v) is pure
and(d − 1)-dimensional.

An example of ad-dimensional obstruction to purity is given by the(d−1)-skeleton
of the simplex on vertex set{1,2, . . . ,d + 2} together with thed-dimensional face
{1,2, . . . ,d + 1}.

Lemma 6 also yields a simple proof of the shellability of interval orders which we
give below. Recall that abounded posetis a poset that has a minimum element0̂ and
a maximum element̂1. If P is a bounded poset, then̄P denotes the induced subposet
P\{0̂, 1̂}. Thelengthof bounded posetP is the length of the longest chain from̂0 to 1̂.
For anya ≤ b in P, the open interval{x ∈ P | a < x < b} is denoted by(a,b) and the
closed interval{x ∈ P | a ≤ x ≤ b} is denoted by [a,b]. Theorder complexof P is the
simplicial complex of chains ofP and is denoted by1(P).

Proposition 10[BM]. Every interval order is shellable.

Proof. Let P be an interval order. By the well-known characterization of interval orders,
P does not containQ (the poset with two disjoint two-element chains) as an induced
subposet. We may assume without loss of generality thatP is bounded and thatP has
more than one atom.

The fact thatP does not containQ enables us to choose an atoma such that each
of the covers ofa is greater than some other atom. Since lk1(P̄)(a) = 1((a, 1̂)), this

implies that no facet of lk1(P̄)(a) is a facet of1(P̄\{a}). Also the interval(a, 1̂) and
the induced subposet̄P\{a} both inherit the property of not containingQ as an induced
subposet. Hence by induction they are shellable. We conclude that1(P̄) and henceP
are shellable by Lemma 6.

Remark. Björner [B] has independently used the same idea to prove more generally
that all interval orders are vertex decomposable.
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Another proof that interval orders are shellable can be obtained using the technique
of lexicographical shellability [BW2].

Theorem 11. Every bounded interval order is CL-shellable.

Proof. Let P be a bounded interval order. Partially order the atoms ofP by letting
a ≺ b if a has a cover that is not greater thanb. Antisymmetry and transitivity follow
readily from the forbidden induced subposet characterization of interval order. It is
straightforward to verify that any linear extension of¹ is a recursive atom ordering of
P by induction on|P|. ThereforeP is CL-shellable.

For any bounded posetP of length at least 2, letβi (P) be thei th reduced Betti number
of 1(P̄). If the length ofP is 1 then letβi (P) = 0 for all i except fori = −1 in which
caseβi (P) = 1.

We refer to an atom of a bounded interval orderP as aminimal atomif it is minimal
in the partial order on atoms given in the proof of Theorem 11. Such atoms can be
characterized as those atoms that are smaller than every element ofP that is neither an
atom nor0̂.

Corollary 12. Let P be a bounded interval order of length≥ 2, let A be its set of
atoms, and let a0 be a minimal atom. Then, for i ≥ 0,

βi (P) =
∑

a∈A\{a0}
βi−1([a, 1̂]).

Proof. By Theorem 5.9 of [BW2],βi (P) is the number of falling maximal chains of
lengthi +2 with respect to the CL-labeling induced by the recursive atom ordering given
in the proof of Theorem 11. So we need to describe these falling chains. Each falling
chain from0̂ to 1̂ of lengthi + 2 is of the form{0̂} ∪ c wherec is a falling chain of
length i + 1 from a to 1̂ for some atoma. We need to determine which atomsa and
falling chainsc from a to 1̂ are such that{0̂} ∪ c is falling. The proof of Theorem 3.2
of [BW1] produces a CL-labeling from a recursive atom ordering (although it is done in
the pure case in [BW1], it easily carries over to general case, see [BW2]). A maximal
chain has a descent on the subchain0̂→ a → b if and only if b is greater than some
atom that precedesa in the recursive atom ordering. This happens for every maximal
chain througha 6= a0 and for no maximal chain througha0. Hence the maximal chains
of the form{a} ∪ c, wherea 6= a0 andc is a falling chain of [a, 1̂], are the falling chains
of P.

The problem of studying obstructions could conceivably be made easier by con-
sidering special classes of simplicial complexes that are closed under taking induced
subcomplexes. A natural class, suggested by Bj¨orner [B], which generalizes that of or-
der complexes is the class of flag complexes. Aflag complexis a simplicial complex
for which every minimal nonface has exactly two elements. See [S2] for further infor-
mation on flag complexes. One might ask whether the pair of disjoint edges is the only
obstruction for flag complexes. It turns out that this is not the case. The obstructionM7
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given in the proof of Theorem 5 is a flag complex. However, obstructionsM5 and M6

are not flag complexes. Also the obstructions given in the proof of Proposition 1 are
not flag complexes. We leave open the question of whether there is a finite number of
obstructions that are flag complexes.
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