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Spatial Graphs and Oriented Matroids: the Trefoil∗
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Abstract. Let m = m(K ) be the smallest positive integer such that everylinear spatial
representationof the complete graph withn vertices,n ≥ m, contains either the knotK or
its mirror. In this paper we show thatm(Trefoil) = 7. The proof uses the theory of oriented
matroids.

1. Introduction

A link L with k componentsconsists ofk disjoint simple smooth closed curves inR3.
A knot K is a link with one component. We say that two linksK and L are isotopic
if there exists a homotopyht : S3 −→ S3 (0 ≤ t ≤ 1) such thath0 = 1, eachhi is
a homeomorphism, andh1(K ) = L. We restrict our attention totameknots. A link
diagram D(K ) is obtained fromL by projecting it into a plane in such a way that the
projection of each component is smooth and at most two curves intersect at any point. At
each crossing point of the link diagram the curve which goes over the other is specified,
see Fig. 2.

The fundamental theorem of Reidemeister [10] states:

Theorem 1.1. Two links K and L are isotopic if and only if any link diagram D(K )
can be transformed into any link diagram D(L) by a finite sequence of the movesI, II,
III and their inverses(see Fig. 1).

Themirror of a knotK , denoted byK ∗, is obtained by a reflection ofK in a plane.

∗ This work was done while the author was doing a Postdoc visiting the Universit´e Pierre et Marie Curie,
Paris 6, Equipe Combinatoire. His current mail address is Universit´e Pierre et Marie Curie, Paris 6, Equipe
Combinatoire - Case 189, 4 Place Jussieu, Paris 75252 Cedex 05, France.
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Fig. 1. Reidemeister moves.

A knot K is calledamphicheiralif K is isotopic toK ∗ (for further definitions and
terminology on knot theory refer to [3]).

Note that theTrefoil, T (Fig. 2(a)), and its mirror,T∗ (Fig. 2(b)), are not isotopic;
there is no sequence of Reidemeister moves which will transformT to T∗, that is, the
Trefoil is nonamphicheiral, see [5]. It is known [10] that six straight lines are necessary
and sufficient to contructT in R3.

A graph iscompleteif every pair of vertices is adjacent. A complete graph withn
vertices is denoted byKn. A graph is acycleif the union of all edges forms a closed path
(see [2] for further graph theory details).

A spatial representationR(G), of a graphG, is the embedded image ofG in R3,
that is, the vertices ofG are distinct points inR3 and the edges are simple Jordan curves

Fig. 2. The trefoil and its mirror.
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between them in such a way that any two curves are either disjoint or meet at a common
point. We understandR(G) as apolygonalrepresentation ofG, see [3].R(G) is linear
if each edge is a straight line segment. Spatial cycles are often regarded as simple closed
curves inR3. Hence, we may regard spatial cycles as a link inR3.

Sacks [14] proved that any linearR(K6) contains cycles isotopic to 22
1 (the simplest

nontrivial link). In a series of three papers, Robertson et al. [11]–[13] strengthened
the latter by proving Sacks’ conjecture [14] that a graph can be embedded in three-
dimensional space so that it contains no nontrivial link if and only if it contains as a
minor none of the seven graphs (called thePetersen familyin [12]) obtainable fromK6

by Y −1 and1− Y exchanges.
Here, we intend to continue similar investigations. Letm(K ) be the smallest positive

integer such that every linearR(Kn), n ≥ m, contains either the knotK or K ∗. Note
that Sacks’ result can be stated asm(22

1) = 6 since 221 is isotopic to its mirror. Our main
result in this paper is the following.

Theorem 1.2. m(Trefoil) = 7.

An old result by Conway and Gordon [4] states that anyR(K7) (not necessarily
linear) contains a nontrivial knot. More precisely, they proved that anyR(K7) contains a
Hamiltonian cycle with nonzero Arf invariant. Notice that their method does not ensure
the existence of either the Trefoil or its mirror ifR(K7) is linear. Therefore, Theorem 1.2
implies this result for linear embeddings.

Negami [9] showed that for any given knot, link, orR(G), (not necessarily linear)
of a graphG, there is a sufficiently large complete graphKn such that every linear
R(Kn) always contains a subdivision ofR(G). In [8] Miyauchi generalizes this result
for complete multipartite graphs and conjectures that anyR(K8) (not necessarily linear)
containsT .

Our technique to prove Theorem 1.2 lies completely on the theory of oriented ma-
troids. The theory of oriented matroids provides a broad setting to describe geometric
configurations. This theory considers the structure of dependencies in vector spaces over
orderedfields.

Indeed, it is well known that there is anaturalway to associate an oriented matroid (a
set ofcircuits) to a given configuration of points. Thus, in order to prove Theorem 1.2,
we may proceed as follows. LetM[R(Kn)] be the oriented matroid associated to the set
of points of a linearR(Kn). We propose three sets of conditions (in terms of circuits) and
show that ifM[R(K7)] satisfies at least one of these conditions, thenR(K7) is forced
to contain a cycle isotopic to eitherT or T∗.

Finally, with help of a computer program, we are able to check thatM[R(K7)]
satisfies at least one of the above conditions for any linearR(K7) (possibly after a
suitable permutation of elements). Also, we show that the analogue forK6 is not true.
Hence,m(Trefoil) = 7. We mention as well that we found that there exist linearR(K7)

not containing eitherT or T∗ using only six of the vertices.
The paper is organized as follows: In the next section we introduce briefly some

basic notions of oriented matroids needed for the rest of the paper. In Section 3 we give
the proof of Theorem 1.2. Finally, in the Appendix we discuss thechecking conditions
program.
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2. Oriented Matroid Session

We give some basic definitions of oriented matroids (see [1]). Asigned setis a setX
together with a partition into two distinguished subsetsX+ andX−. Theoppositeof X
is the signed set−X such that(−X)+ = X− and(−X)− = X+.

An oriented matroidM on a finite setE is defined by its collectionC of signed
circuitssatisfying the following two properties:

1. For allC1 ∈ C, C1 6= ∅, and−C1 ∈ C, and for allC1,C2 ∈ C, C2 ⊆ C1 implies
C2 = C1 or−C1

2. (Elimination property) For allC1,C2 ∈ C with C1 6= −C2 and allx ∈ (C+1 ∩C−2 ),
there existsC3 ∈ C such thatC+3 ⊆ (C+1 ∪ C+2 )\x andC−3 ⊆ (C−1 ∪ C−2 )\x.

By ignoring signs, a (nonoriented)underlying matroidM is clearly attached to each
oriented matroidM. ThebasesofM are the maximal subsets ofE which contain no
circuit, that is, they are the bases ofM. Therank functionofM is the rank function of
M and is denoted byr .

Let A be a subset ofE. We set−AC = {−AC : C ∈ C}, where−AC is the signed set
with (−AC)+ = (C+\A)∪(C−∩ A) and(−AC)− = (C−\A)∪(C+∩ A). It is clear from
the axioms that−AC is also a set of circuits of an oriented matroid, denoted by−AM.
We say that−AM is obtained fromM by reorientationon A. The equivalence classes
for the relationM ∼M′ if and only if there existsA ⊆ E such thatM′ =−A M are
calledorientation classes.

Another characterization of oriented matroids was given by Lawrence [7] in terms of
basis orientations. More formally, letr be an integer≥ 1 and letE = {1, . . . ,n} be a set.
A mappingχ : Er −→ {−1, 0, +1} is a basis orientation of an oriented matroid of rankr
on E if and only ifχ is achirotope, that is, a special alternating mapping not identically
zero (see also [6] for a different characterization of oriented matroids). An oriented
matroidM is uniform if χ : Er −→ {−1, +1}. Finally, we use the following notation:
(e1, ē2, ē3,e4, ē5) denotes the signed setX with X+ = {e1,e4} andX− = {e2,e3,e5}.

A fundamental example of oriented matroids [1] is the following. LetV denote a
finite set of points spanningRd and letC be the collection of signed subsetsC of V
which are inclusion-minimal with the propertyC 6= ∅ and there is an affine combination∑

x∈C α(x) · x = 0,
∑

x∈C α(x) = 0 such that

C+ = {x ∈ C, α(x) > 0} and C− = {x ∈ C, α(x) < 0}.
ThenC is the circuit set of an oriented matroid (called anaffine oriented matroid) of rank
d + 1 on V . In particular, an affine oriented matroidM is acyclicwhich means that it
has no circuitC with C− = ∅.

A nice geometric interpretation of the signed circuits of an affine oriented matroid is
the following. Every circuit is a minimal signed set of points such that the convex hull of
the positive elements intersect the convex hull of the negative elements. Thus, the signed
circuits of an affine point configuration are exactly theminimal Radon partitionsof the
set of points.

Note that the circuit(a,b, c,d, ē, f̄ ) of an affine oriented matroidM of rank 4 may
induce any of the four relative positions of the corresponding pointsa, . . . , f as shown
in Fig. 3. Their final position depends on the rest of the circuits ofM.
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Fig. 3. Possible point positions corresponding to the same circuit.

3. Main Result

We prove Theorem 1.2.

Proof of Theorem1.2. LetM = M[R(K7)] be the affine oriented matroid arising
from the set of points of a linearR(K7) where the points are labeled by{a, . . . , g}.
Suppose thatM satisfies conditionsQi for some 1≤ i ≤ 3:

Q1 = {(a,b, c, ē, f̄ ) ∈M, (a, f,b, c̄, d̄) ∈M, (c,d,e, ā, b̄) ∈M,

(b, c,d, ē, f̄ ) ∈M, (b, c,d, ā, ḡ) 6∈M, (b, c,d, f̄ , ḡ) 6∈M,

(d,e, f, ā, ḡ) 6∈M, (c,d,e, ā, ḡ) 6∈M, (c,d,e, f̄ , ḡ) 6∈M},

Q2 = {(a,b, c, ē, f̄ ) ∈M, (c,d,e, ā, b̄) ∈M, (a,b, f, c̄, d̄) 6∈M,

(a,b, f, d̄, ē) 6∈M, (a, f, g, c̄, d̄) ∈M, (c,d,e, ā, ḡ) 6∈M,

(a,b, f, ḡ, c̄) 6∈M},

Q3 = {(a,b, c, ē, f̄ ) ∈M, (c,d,e, ā, b̄) ∈M, (a,b, f, c̄, d̄) 6∈M,

(a,b, f, d̄, ē) 6∈M, (a, f, g, c̄, b̄) ∈M, (c,d,e, ā, ḡ) 6∈M}.
We claim thatR(K7) contains a cycle isotopic to eitherT or T∗. We consider three

cases (according to the conditionsQi satisfied byM). Each case is divided into four
subcases (according to the relative position of elementsa,b, c,e, f induced by circuit
(a,b, c, ē, f̄ )), see Fig. 3. In each subcase we show that the corresponding configuration
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of points induces a cycle isotopic to eitherT or T∗. We do so by fixing the position of
pointsa,b, c,e, f and by adding first pointd and then pointg in such a way that the set of
points satisfies the corresponding set of conditionsQi . In fact, we only have to consider
two subcases since Figs. 3(i) and (iv) are mirror images (similarly for Figs. 3(ii) and
(iii)). Indeed, if we can add pointsd andg to the already fixed pointsa,b, c,e, f (say,
corresponding to Fig. 3(i)) in such a way that the configuration of pointsa,b, c,d,e, f, g
satisfies conditionsQi and inducesT (resp.T∗), then the configuration of points, arising
from the mirror image of pointsa,b, c,d,e, f, g (and hencea,b, c,e, f correspond to
Fig. 3(iv)), satisfies conditionsQi and inducesT∗ (resp.T) as well.

Case I:M satisfies conditions Q1. Subcases (a) and (b) are shown in Fig. 4.

Case II: M satisfies conditions Q2. Subcases (a1),(b, c,d, ē, f̄ ) ∈ M, and (a2),
(b, c,d, ē, f̄ ) 6∈M, are shown in Fig. 5. Note that(c,d,e, ā, f̄ ) ∈M since(c,d,e, ā,
b̄) ∈ M and (a,b, f, c̄, d̄) 6∈ M. Subcases (b1),(a, c,d, ē, f̄ ) ∈ M, and (b2),
(a, c,d, ē, f̄ ) 6∈M, are shown in Fig. 6. Note that(c,d,e, b̄, f̄ ) ∈M since(c,d,e, ā,
b̄) ∈M and(a,b, f, c̄, d̄) 6∈M.

Case III: M satisfies conditions Q3. Subcases (a1),(b, c,d, ē, f̄ ) ∈ M, and (a2),
(b, c,d, ē, f̄ ) 6∈M, are shown in Fig. 7. Note that(c,d,e, ā, f̄ ) ∈M since(c,d,e, ā,
b̄) ∈ M and (a,b, f, c̄, d̄) 6∈ M. Subcases (b1),(a, c,d, ē, f̄ ) ∈ M, and (b2),
(a, c,d, ē, f̄ ) 6∈M, are shown in Fig. 8. Note that(c,d,e, b̄, f̄ ) ∈M since(c,d,e, ā,
b̄) ∈M and(a,b, f, c̄, d̄) 6∈M.

Since any linearR(K7) give a uniform affine oriented matroid then it is sufficient
to check that all uniform acyclic oriented matroid of rank 4 on seven elements always
satisfy conditionsQi for some 1≤ i ≤ 3 (possibly after a suitable permutation of
elements). Indeed, this is true as was fully verified with the help of a computer program
(see the Appendix).

Fig. 4.
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Fig. 5.

Fig. 6.

Fig. 7.
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Fig. 8.

A similar checking has also been done for all uniform acyclic oriented matroids of
rank 4 on six elements. In this case we just consider the following set of conditionsQ4:

Q4 = {(ā,b, c, d̄,e) ∈M, (a, b̄, c̄,d, f ) ∈M, (a,b, c, ē, f̄ ) ∈M,

(a,b,d, ē, f̄ ) ∈M, (ā, c, d̄,e, f ) ∈M, (b̄, c̄,d,e, f ) ∈M}.

Notice that the set of circuits inQ4 (together with their opposites) gives the complete
list of circuits of the oriented matroidM. Moreover, any representation of eitherT or
T∗ with six points (the minimum number of points required) gives an oriented matroid
with the same set of circuits asM (up to a permutation of elements), see Fig. 2.

It was found that there were oriented matroids not satisfying conditionsQ4, that
is, there are linear spatial representations ofK6 containing neitherT nor T∗ (see the
Appendix). Thenm(Trefoil) = 7.

Also, we have investigated if any uniform acyclic oriented matroid of rank 4 on seven
elements always contains a subset of six elements satisfying conditionsQ4 (possibly
after a suitable permutation). In other words, is it true that any linearR(K7) contains
eitherT or T∗ on six of the vertices? We found that the anwer is negative, that is, there
exists linearR(K7) not containing eitherT or T∗ using only six of the vertices.
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Appendix

Here, we summarize the perfomance of thechecking conditionsprogram.
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Table 1. The chirotopes are ordered lexicographically.

Checking Conditions Program

(1) Read a representative chirotope from each of the eleven different orientation classes
arising from all the uniform oriented matroids of rank 4 on seven elements, see
Table 1. Construct the corresponding set of circuits.

(2) Given the circuits, generate all the 26 different oriented matroids in the class.
This can be done by reorienting the elements corresponding to all the subsets of
{1, . . . ,7} of size zero, one, two, and three.

(3) For each reorientation, verify that it gives an acyclic oriented matroid (ignore it
otherwise as it is not an affine oriented matroid). If the reorientation is acyclic,
then check if there is a suitable permutation of elements such that it satisfies one
of the conditionsQi , 1≤ i ≤ 3. Finally, output any acyclic oriented matroid not
satisfying any of conditionsQi .

The program does not output any oriented matroids. Therefore all acyclic oriented
matroid verify at least one of conditionsQi . Here, we remark that the three sets of
conditionsQi are needed, that is, there are uniform oriented matroids of rank 4 on seven
elements that satisfy only one of conditionsQi .

We have run a similar program for uniform oriented matroids of rank 4 on six elements.
In this case we just consider conditionsQ4 for the only orientation class given by
χ(λ) = + whereλ is any of the

(6
4

)
four-element subset of{1, . . . ,6}. Here, we found

that among the 25 different uniform oriented matroids (obtained by reorientations) only
two (those obtained by reorienting (3, 4) and (1, 4, 5)) satisfied conditionQ4.
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