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Spatial Graphs and Oriented Matroids: the Trefoil*

J. L. Ramfez Alfonsnh

Instituto de Materaficas, Universidad Nacional Aatoma de MXico,
Area de la Investigaoii Cientifica, Circuito Exterior C.U., Mexico D.F. 04510

Abstract. Letm = m(K) be the smallest positive integer such that everyar spatial
representatiorof the complete graph with verticesn > m, contains either the kndt or

its mirror. In this paper we show that(Trefoil) = 7. The proof uses the theory of oriented
matroids.

1. Introduction

A link L with k componentsonsists ok disjoint simple smooth closed curves R¥.
A knot K is a link with one component. We say that two linksand L areisotopic
if there exists a homotoply;: S* — S® (0 < t < 1) such thathg = 1, eachh; is
a homeomorphism, anldi(K) = L. We restrict our attention ttameknots. Alink
diagram D(K) is obtained fromL by projecting it into a plane in such a way that the
projection of each component is smooth and at most two curves intersect at any point. At
each crossing point of the link diagram the curve which goes over the other is specified,
see Fig. 2.

The fundamental theorem of Reidemeister [10] states:

Theorem 1.1. Two links K and L are isotopic if and only if any link diagram(f0)
can be transformed into any link diagram(D) by a finite sequence of the moveH,
lll and their inversegsee Fig 1).

Themirror of a knotK, denoted byK*, is obtained by a reflection df in a plane.

* This work was done while the author was doing a Postdoc visiting the Unizétigtie et Marie Curie,
Paris 6, Equipe Combinatoire. His current mail address is UnieePsgfre et Marie Curie, Paris 6, Equipe
Combinatoire - Case 189, 4 Place Jussieu, Paris 75252 Cedex 05, France.
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Fig. 1. Reidemeister moves.

A knot K is calledamphicheiralif K is isotopic toK* (for further definitions and
terminology on knot theory refer to [3]).

Note that theTrefoil, T (Fig. 2(a)), and its mirrorT * (Fig. 2(b)), are not isotopic;
there is no sequence of Reidemeister moves which will transfotm T*, that is, the
Trefoil is nonamphicheiral, see [5]. It is known [10] that six straight lines are necessary
and sufficient to contruct in R®.

A graph iscompletef every pair of vertices is adjacent. A complete graph with
vertices is denoted bi¥,,. A graph is acycleif the union of all edges forms a closed path
(see [2] for further graph theory details).

A spatial representatiorR (G), of a graphG, is the embedded image & in R3,
that is, the vertices db are distinct points irR® and the edges are simple Jordan curves
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Fig. 2. The trefoil and its mirror.
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between them in such a way that any two curves are either disjoint or meet at a common
point. We understan® (G) as apolygonalrepresentation 0B, see [3].R(G) is linear
if each edge is a straight line segment. Spatial cycles are often regarded as simple closed
curves inR3. Hence, we may regard spatial cycles as a linR¥

Sacks [14] proved that any line&(K ) contains cycles isotopic tc Zthe simplest
nontrivial link). In a series of three papers, Robertson et al. [11]-[13] strengthened
the latter by proving Sacks’ conjecture [14] that a graph can be embedded in three-
dimensional space so that it contains no nontrivial link if and only if it contains as a
minor none of the seven graphs (called Betersen familyn [12]) obtainable fronKg
byY — A andA — Y exchanges.

Here, we intend to continue similar investigations. irgK ) be the smallest positive
integer such that every lined&(K,), n > m, contains either the knd{ or K*. Note
that Sacks’ result can be stateda?) = 6 since 2 is isotopic to its mirror. Our main
result in this paper is the following.

Theorem 1.2. m(Trefoil) = 7.

An old result by Conway and Gordon [4] states that &¢K;) (not necessarily
linear) contains a nontrivial knot. More precisely, they proved thatifly;) contains a
Hamiltonian cycle with nonzero Arf invariant. Notice that their method does not ensure
the existence of either the Trefoil or its mirrofRf(K ;) is linear. Therefore, Theorem 1.2
implies this result for linear embeddings.

Negami [9] showed that for any given knot, link, B(G), (not necessarily linear)
of a graphG, there is a sufficiently large complete graldh such that every linear
R(K;) always contains a subdivision &(G). In [8] Miyauchi generalizes this result
for complete multipartite graphs and conjectures that/ai¢s) (not necessarily linear)
containsT .

Our technique to prove Theorem 1.2 lies completely on the theory of oriented ma-
troids. The theory of oriented matroids provides a broad setting to describe geometric
configurations. This theory considers the structure of dependencies in vector spaces over
orderedfields.

Indeed, itis well known that there iswturalway to associate an oriented matroid (a
set ofcircuits) to a given configuration of points. Thus, in order to prove Theorem 1.2,
we may proceed as follows. Lat([R (K )] be the oriented matroid associated to the set
of points of a lineaR (K ,). We propose three sets of conditions (in terms of circuits) and
show that if M[R(K7)] satisfies at least one of these conditions, tRaK ;) is forced
to contain a cycle isotopic to eith@ror T*.

Finally, with help of a computer program, we are able to check R (K;)]
satisfies at least one of the above conditions for any lirfe@€;) (possibly after a
suitable permutation of elements). Also, we show that the analogu€gfig not true.
Hencem(Trefoil) = 7. We mention as well that we found that there exist lifgéK 7)
not containing eithe or T* using only six of the vertices.

The paper is organized as follows: In the next section we introduce briefly some
basic notions of oriented matroids needed for the rest of the paper. In Section 3 we give
the proof of Theorem 1.2. Finally, in the Appendix we discusscirecking conditions
program.
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2. Oriented Matroid Session

We give some basic definitions of oriented matroids (see [1Bighed sets a setX
together with a partition into two distinguished subsétsand X ~. Theoppositeof X
is the signed set X such that—X)* = X~ and(—X)™ = X*.

An oriented matroid M on a finite setE is defined by its collectio of signed
circuits satisfying the following two properties:

1. ForallC, € C,Cy # ¢, and—C; € C, and for allC,, C, € C, C, C C; implies
C,=Cior-C,

2. (Elimination property For allCy, C, € C with C; # —Cp and allx € (C{ NCy),
there existC; € C such thaC; € (C UCJ)\x andC; < (C; U C,)\x.

By ignoring signs, a (nonorientedhderlying matroidM is clearly attached to each
oriented matroidM. Thebasesof M are the maximal subsets &f which contain no
circuit, that is, they are the bases.bf. Therank functionof M is the rank function of
M and is denoted by.

Let Abe a subset oE. We set_ AC = {_aC : C € C}, where_,C is the signed set
with (_AC)T = (CH\A)U(C NA)and(_aC)™ = (C"\A)U(CTNA). Itis clear from
the axioms that AC is also a set of circuits of an oriented matroid, denoted f1.

We say that M is obtained fromM by reorientationon A. The equivalence classes
for the relationM ~ M’ if and only if there existA C E such thatM’ =_, M are
calledorientation classes

Another characterization of oriented matroids was given by Lawrence [7] in terms of
basis orientations. More formally, lebe an integer 1 andletE = {1, ..., n} be a set.
Amappingy: E" — {—1, 0, +1} is a basis orientation of an oriented matroid of rank
on E if and only if x is achirotope that is, a special alternating mapping not identically
zero (see also [6] for a different characterization of oriented matroids). An oriented
matroid M is uniformif x: E" — {—1, +1}. Finally, we use the following notation:
(e1, &, 8, &4, &) denotes the signed sKtwith Xt = {e, &4} and X~ = {e, &3, &5}.

A fundamental example of oriented matroids [1] is the following. Wetlenote a
finite set of points spannin®” and letC be the collection of signed subsegsof V
which are inclusion-minimal with the proper® # ¢ and there is an affine combination
Y oxeca(X) - x =0, ca(x) =0 such that

Ct={xeC,a(x) >0} and C ={xeC,a(xX) <0}

ThenC is the circuit set of an oriented matroid (calledadfine oriented matroigof rank
d + 1 onV. In particular, an affine oriented matraidl is acyclicwhich means that it
has no circuitC with C~ = ¢.

A nice geometric interpretation of the signed circuits of an affine oriented matroid is
the following. Every circuit is a minimal signed set of points such that the convex hull of
the positive elements intersect the convex hull of the negative elements. Thus, the signed
circuits of an affine point configuration are exactly thaimal Radon partitionsf the
set of points.

Note that the circuita, b, ¢, d, &, f) of an affine oriented matroid1 of rank 4 may
induce any of the four relative positions of the corresponding paints., f as shown
in Fig. 3. Their final position depends on the rest of the circuitdbf
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Fig. 3. Possible point positions corresponding to the same circuit.

3. Main Result

We prove Theorem 1.2.

Proof of Theoren1.2. LetM = M[R(K7)] be the affine oriented matroid arising
from the set of points of a lineaR (K;) where the points are labeled b, . .., a}.
Suppose thaM satisfies condition®; for some 1<i < 3:

Ql = {(a7 b’ C’ é’ f_) GM’ (a’ f’ b’ C’ d) EM’ (C’ d’ e’ a’ 6) EM’
(b7 Cvd’é’ f_) e M)(ba C’dva’ g) ng(b’ C’dv f_y g) ¢M,
(d,e, f,a,8) ¢ M,(c,d,ea g ¢M,(cde f, g ¢M),

Q, = {(a,b,c,& f)e M, (c,d, e ab)eM,(ab,fEd ¢M,
(a5 b? f5 dv é) ¢M5(aa f7 9767 d_) €M7(Cad?ea av g) ¢M’
(aa b? f’ g’ (_:) ¢ M}7

Qs = {(a,b,c,& f) e M, (c,d, e a,b)e M, (a,b, f,&,d) &M,
(a,b, f,d, & ¢ M, (a, f,g9,¢,b) e M, (c,d, e ag) ¢ M}.

We claim thatR(K;) contains a cycle isotopic to eith@&ror T*. We consider three
cases (according to the conditio@ satisfied byM). Each case is divided into four
subcases (according to the relative position of elemartsc, e, f induced by circuit
(a, b, c, & f)), seeFig. 3. In each subcase we show that the corresponding configuration
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of points induces a cycle isotopic to eitheror T*. We do so by fixing the position of
pointsa, b, ¢, e, f and by adding first poirt and then poing in such a way that the set of
points satisfies the corresponding set of conditi@nsin fact, we only have to consider
two subcases since Figs. 3(i) and (iv) are mirror images (similarly for Figs. 3(ii) and
(iii)). Indeed, if we can add pointd andg to the already fixed points, b, c, e, f (say,
corresponding to Fig. 3(i)) in such a way that the configuration of pairtisc, d, e, f, g
satisfies condition®; and induced (resp.T*), then the configuration of points, arising
from the mirror image of pointa, b, c, d, e, f, g (and hencey, b, c, e, f correspond to
Fig. 3(iv)), satisfies condition®; and induce§ * (resp.T) as well.

Case | M satisfies conditions @ Subcases (a) and (b) are shown in Fig. 4.

Case It M satisfies conditions § Subcases (al)p,c,d, & f) € M, and (a2),
(b,c,d, & )¢ M, are shownin Fig. 5. Note théat, d, e, a, f) € M since(c, d, e, &,
b) € M and(a,b, f,¢,d) ¢ M. Subcases (bl)a,c,d,& f) € M, and (b2),
(a,c, d, & f) ¢ M,are shown in Fig. 6. Note thét, d, e, b, f) € M since(c, d, e, &,
b) e M and(a, b, f, ¢, d) ¢ M.

Case lIt M satisfies conditions § Subcases (al)lp,c,d,& f) € M, and (a2),
(b,c,d, e f) & M, are shownin Fig. 7. Note théat, d, e, a, f) € M since(c, d, e, &,
b) ¢ M and(a,b, f,¢,d) ¢ M. Subcases (bl)a,c,d,& f) € M, and (b2),
(a,c, d, & f) ¢ M, are shown in Fig. 8. Note thét, d, e, b, f) € M since(c, d, e, &,
b) e M and(a, b, f, ¢, d) ¢ M.

Since any lineaR(K;) give a uniform affine oriented matroid then it is sufficient
to check that all uniform acyclic oriented matroid of rank 4 on seven elements always
satisfy conditionsQ; for some 1< i < 3 (possibly after a suitable permutation of
elements). Indeed, this is true as was fully verified with the help of a computer program
(see the Appendix).

(@) (b)

Fig. 4.
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Fig. 5.

Fig. 6.

Fig. 7.
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Fig. 8.

A similar checking has also been done for all uniform acyclic oriented matroids of
rank 4 on six elements. In this case we just consider the following set of cond@igins

Qs = {(@,/b,c,d,e) e M, (a,b, ¢ d, f)e M, (ab,cg f)eM,
(a,b,d, & f)e M,(ac,d,e f)eM,(b,cd,e f)e M)

Notice that the set of circuits iQ4 (together with their opposites) gives the complete
list of circuits of the oriented matroid1. Moreover, any representation of eitheror
T* with six points (the minimum number of points required) gives an oriented matroid
with the same set of circuits &gt (up to a permutation of elements), see Fig. 2.

It was found that there were oriented matroids not satisfying condit@@nsthat
is, there are linear spatial representation&gfcontaining neithef nor T* (see the
Appendix). Therm(Trefoil) = 7. O

Also, we have investigated if any uniform acyclic oriented matroid of rank 4 on seven
elements always contains a subset of six elements satisfying cond@ipfisossibly
after a suitable permutation). In other words, is it true that any lifié@d ;) contains
eitherT or T* on six of the vertices? We found that the anwer is negative, that is, there
exists linearR (K 7) not containing eithel or T* using only six of the vertices.
Acknowledgments
| would like to thank Michel Las Vergnas for welcoming me to his laboratory and for
several discussions. | also thank the anonymous referees for helpful suggestions

Appendix

Here, we summarize the perfomance of thecking conditionprogram.
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Table 1. The chirotopes are ordered lexicographically.

e o
s S M Bt T R
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L o
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e e
e e B it e P
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Checking Conditions Program

(1) Readarepresentative chirotope from each of the eleven different orientation classes
arising from all the uniform oriented matroids of rank 4 on seven elements, see
Table 1. Construct the corresponding set of circuits.

(2) Given the circuits, generate all thé different oriented matroids in the class.
This can be done by reorienting the elements corresponding to all the subsets of
{1,..., 7} of size zero, one, two, and three.

(3) For each reorientation, verify that it gives an acyclic oriented matroid (ignore it
otherwise as it is not an affine oriented matroid). If the reorientation is acyclic,
then check if there is a suitable permutation of elements such that it satisfies one
of the conditionQ;, 1 < i < 3. Finally, output any acyclic oriented matroid not
satisfying any of condition§); .

The program does not output any oriented matroids. Therefore all acyclic oriented
matroid verify at least one of conditiorng;. Here, we remark that the three sets of
conditionsQ; are needed, that is, there are uniform oriented matroids of rank 4 on seven
elements that satisfy only one of conditio@s.

We have run a similar program for uniform oriented matroids of rank 4 on six elements.
In this case we just consider conditio® for the only orientation class given by
x () = + wherea is any of the(ﬁ) four-element subset @i, ..., 6}. Here, we found
that among the 2different uniform oriented matroids (obtained by reorientations) only
two (those obtained by reorienting (3, 4) and (1, 4, 5)) satisfied condRipn
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