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Abstract. A rhombohedral tiling of al-zonotopeZ is said to becoherentif it may be
obtained by projecting the “top faces” of sorfte+ 1)-zonotope ont&. We classify those
3-zonotopes with five or fewer distinct zones which have all rhombohedral tilings coherent,
and give concise enumeration formulas for the tilings of the zonotopes in each class. This
enumeration relies in equal parts on the theoryonénted matroidsand the theory of
discriminantal arrangementsf hyperplanes.

1. Introduction

A classic problem in enumerative combinatorics is MacMahon'’s plane partition problem.
An r by s plane patrtitionis anr by s array of nonnegative integers which is weakly
decreasing along rows and down columns. The problem is to determine the number
N(r, s, t) of r by s plane partitions with integer values bounded byhe answer, along

with ag-analogue, was originally given by MacMahon [Ma] in 1899:

Hr +s+tHE)H(GS)H (1)
Hr +s)Hr +t)H(Gs+t)’

N(r, s, t) =

whereH(n) = (n — 1! (n — 2)! ... 2! is the hyperfactorial function. A natural gener-
alization of this problem is to attempt to enumerate dly s by t solid partitionswith
integer values bounded hy To date, all attempts to generalize MacMahon'’s result to
higher-dimensional partition questions have failed.

However, there is a natural bijection between MacMahon’s plane partitions and

* This paper was condensed from the author’s Ph.D. thesis, written under the direction of Vic Reiner at the
University of Minnesota, and was partially supported by the Sloan Foundation and University of Minnesota
McKnight/Land Grant Fellowships.
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Fig. 1. A stack of cubes induces a rhombic tiling of a hexagon.

rhombic tilingsof a certain class afonotopeswhich suggests an avenue for attacking
guestions which concern higher-dimensional partitions. There is an immediate bijection
fromr by s plane partitions with integer values boundedthlip stacks of unit cubes in

anr by s byt box. Viewing such a stack of cubes from a point in general position, a
rhombic tiling of a centrally symmetric hexagon with side lengths t (see Fig. 1) is
seen. Such a hexagon is an example of a rank 2 zonotope.

It is this connection between plane partitions and rhombic tilings of zonotopes which
partially motivates our work. Al-zonotopemay be thought of either as the image of
some projection of th@-cube intoRY, with n > d, or as the Minkowski sum of a
collectionV of n vectors inRY containing some basis f@&?. A rhombohedral tiling
of ad-zonotopeZ = Z(V) is a decomposition of into a nondisjoint union of cells,
each of which is a translation of the Minkowski sum of some independisuibset of
V. Note that this definition generalizes tilings of zonotopes which arise in connection
with partition problems.

A rhombohedral tiling of al-zonotopeZ is said to becoherentif it can be obtained
by projecting the “top faces” of some + 1)-zonotope ont. The primary goal of this
paper is to explore and compare the enumeration and structure of

o the set of all tilings ofZ, and
o the subset of altoherenttilings of Z.

Another area of study which both motivates and facilitates the study of higher-
dimensional zonotopal tilings is that discriminantal arrangementsf hyperplanes.
Discriminantal arrangements were first defined by Manin and Schechtman [MS] in 1986
as a generalization of theraid arrangemenbf type A,_;1. This definition was itself
broadened by Bayer in 1993 [Bay]. For a particular zonotdpe Z(V), it turns out
that there is a bijection between the collection of coherent rhombohedral tiliihard
chamberdn the corresponding discriminantal arrangem®BxV/) (see [BS]). A more
comprehensive discussion of these topics and their relation to the study of zonotopes
appears in the introduction of the paper by Edelman and Reiner [ER].

In this paper, we completely classify those 3-zonotapeg) for which V, the max-
imal subset of pairwise distinct vectorsV) has cardinality at most five (multiplicities
may occur), and which have the property that all rhombohedral tilingsa& coherent.

We further provide enumeration formulas for several infinite classes of such 3-zonotopes.
The approach for this classification follows the work done by Edelman and Reiner [ER]
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Fig. 2. A zonotope with 2r 4+ 4)!/4! distinct rhombohedral tilings (Theorem 3.7).

in their classification of 2-zonotopes with this property. Given a zonoipse:

(&) Enumerate all tilings of .
(b) Enumerate akkoherenttilings of Z.
(c) Compare.

To countall tilings of Z requires combinatorial arguments together with an oriented
matroid theorem of Las Vergnas. Enumeration of the coherent tilings isfaccom-
plished by means of the aforementioned correspondence between coherent tilings of
Z = Z(V) and chambers in the discriminantal arrangenie(¥ ). By a result of Za-
slavsky [Za], this enumeration may be accomplished by finding the roots oh#drac-
teristic polynomialy (D(V), t) for D(V). Since it happens thd?(V) is afreearrange-
ment (see [Te]) for all zonotopes(V) under consideration, these roots are simply the
exponent®f D(V), by a result of Terao [OT].

The illustrations in Figs. 2-4 summarize the main results of the paper, showing
representatives from three of the four oriented matroid classes of 3-zonotopes under
consideration, and giving the appropriate enumeration formula for the tiling count in
each case.

2. Background

Let V be a multiset of vectors which contains a basisi8r and letV be the maximal
subset of pairwise distinct vectorsVh Then thed-zonotopeZ = Z(V) is equal to the
Minkowski sum of the vectors iN. The setV is called thegenerating setf Z = Z(V),
and we say tha¥ generates ZNote that every face of a zonotope is again a zonotope.
Our main objects of study amombohedral tilingsof zonotopes (Fig. 5). Given a
zonotopeZ = Z(V), asubzonotopef Z is any zonotop&’ = Z(V’), whereV’ is a
subset ofV. A tiling T of a d-zonotopeZ is the decomposition of into a union of
d-subzonotopes, called thides of T, such that any two tile, t, intersect in a proper
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Fig.3. Azonotopewith 2r +s+1)!(r +s+2)! /(s+2)! (r +2)! distinct rhombohedral tilings (Theorem 3.8).

face of each. Atilingrl' is arhombohedral tilingf each tilet is generated by a subset of
V forming a basis oRY.

The principal tools we use to study tilings agangements of hyperplanésr sim-
ply arrangementsandoriented matroidsA d-arrangementA is a finite collection of
codimension-one linear subspace®df(see [OT]). We do not rule out the possibility
that the hyperplanes in an arrangemdright appear with multiplicity, and the reader
should be aware that such collections are more commonly referrechtaléiarrange-
ments The hyperplanes il intersect in some linear subspagefrank 0<s <d—1.
Define therank of ad-arrangementl to bed —s. If s = 0, then. A is anessentiahrrange-
ment. By taking normals, there is an obvious bijection between arrangemévjsand
vector setd/, and so consequently between arrangemdiiis) and zonotopeZ (V).

We do not introduce oriented matroids formally here, but only give an abbreviated
introduction to those ideas which will be necessary in what follows. The standard refer-

Fig. 4. Azonotope with 2Zr +s+t)!(r +s+t+ 1! /r + D!(s+t + 1)! distinct rhombohedral tilings
(Theorem 3.9).
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Fig. 5. A rhombohedral tiling of a 2-zonotope.

ence for oriented matroids is the book byBjér et al. [BLS]. A discussion of oriented
matroids which is specific to polytopes and zonotopes appears in Chapters 6 and 7 of
Ziegler's book [Zi].

For a vector collectioV in RY of cardinalityn, let vy, v, ..., v, be an arbitrary
ordering of the vectors i. The arrangementi(V) partitionsR into a disjoint union
of cones, where eadk-cone is determined by some subarrangementl afith rank
d —k. To each of these cones is associated an ordetagdle in{0, +, —}". Specifically,
then-tuple X corresponding to the cor@ is defined byX; = sign(c - v;), wherec is
any vector inC. The collection of all suci-tuples is the set afovectorsZ (V) which
determines the oriented matral (V) associated withv.

With the notion of covectors foM (V) in place, we can now explicitly define a
correspondence between cones in the decompositi@®{ afiduced by.A(V) and the
faces ofZ(V), one which exhibits the polar duality o4(V) and Z(V). Specifically,
supposeC is a cone induced byl with covectorX. Define

XT={i|Xi=-}, XO={i|Xi=0, X" ={i|X =+

Thenthe face oZ corresponding t€ will be the Minkowski sum of those vectors € V
with i € X%, translated by, .y vi — Y jx- vi. This construction also demonstrates
how to determine the covectors 8f(V) directly from Z(V). In particular, the one-
dimensional rays induced by(V) and the maximal dimension faces @{V) each
correspond to theocircuits of M (V). We denote the collection of cocircuits of an
oriented matroid by*.

We next consider zonotopal tilings. Suppagde= Z(V) is ad-zonotope under a
fixed choice of coordinates, so that one may write= (Xyi, X2, ..., Xg,;) for each
v € V C RY. It is possible to add & + 1)st coordinatd,, = X441, to eachy; € V
and add the basis vectey, ; to V to obtain the generating sétfor a (d + 1)-zonotope
7z = Z(\7). Informally, the generating vectoié of Z(V) are “lifted” into R4+1, and
the standard basis vectey, ; is added.

Let F denote the collection afpper facet®f Z, those rankd faces corresponding to
cocircuits with valuet or 0 oney, 1, or, informally, the rankd faces which are visible
from the pointkey, 1 with k large. Letrq., 1 denote the projection af along the basis
vectorey, ;. Then the collectiofry1(F) | F € F} constitutes a tiling oZ.

Definition 2.1. If atiling T of ad-zonotopeZ can be obtained in the above manner
for some choice ofl,},ev, thenT is coherent(see Fig. 6). Otherwisd, is incoherent

Similarly, if Z is such thafT is coherent for all tilingsT, then we say thaZ itself
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Fig. 6. A coherent tiling of a hexagon is obtained by “looking at” a 3-zonotope.

is coherent otherwiseincoherent If T is a coherent tiling of @-zonotopeZ = Z(V)
obtained fromZ = Z(\7), then the oriented matroidt = M(\7) is asingle-element
lifting of M (V) and the vector = (,,, l,,, ..., l,,) is called difting vector.

The principal tool for studying coherent rhombohedral tilings of a zono®BPA) is
thediscriminantal arrangemer® (V) (see [Bay]). Then-arrangemenD(V) is defined
by the minimally dependent setséfas follows. The hyperplan@y, a, ..., a,)* isin
D(V) if and only if the selV’ = {v; | & # 0} satisfies

Zavizo

v eV’

andV” is independent for all proper subs&t$ of V’;
Billera and Sturmfels showed [BS]

Theorem 2.2. LetV be a vector configuratiokJp to a choice of order on the parallel
vectors of \ the set of coherent rhombohedral tilings of\) is in bijective correspon-
dence with the set chamberspr open cones of maximal dimensjamthe arrangement
D) (Fig. 7).

It is clear that each chamber Bf(V) corresponds to an equivalence class of lifting
vectors. HoweverZ may also have an incoherent tilig in which case no such lifting

—2z0+z3—14=0 —2z14+z3—T4=0

1

1,2 g
¥ 1 1
3 3 2

V: D(V) : z1—z2=0

Fig. 7. For a given vector configuratiol, the chambers of>(V) correspond to the distinct coherent
rhombohedral tilings oZ (V).
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vectorl exists (the hexagonal tiling on p. 120 is incoherent, for example). Bohne and
Dress[BD, see also [RZ]] showed by passing to pseudosphere arrangements (sgg [BLS
that T nevertheless corresponds to a single-element liftiigf the oriented matroid
M= MV):

Theorem 2.3(The Bohne—Dress Theorem)Let Z = Z(V) be a zonotop€eTlhere is a
bijection between the zonotopal tilings of Z and single-element liftingg 0¥ ).

By means of oriented matroid duality, we may enumerate the single-element liftings
of M(V) by applying Las Vergnas’ theorem characterizéimgle-element extensioos
an oriented matroid to the dual oriented matrait{V*) [LV]. For an oriented matroid
M(V) given by a vector collectioV, the extension o/ by a single element, ;
will assign the symbol sigi€ - v,,1) to each cocircuitX of M(V), whereC is the
ray corresponding t&X. The cocircuit signature,, ,: C* — {4, —, 0} defined in this
manner is one example of lacalization However, many oriented matroids possess
single-element extensions which are reslizable and consequently have localizations
which do not arise in this manner. Las Vergnas’ theorem states that a cocircuit signature
o: C* — {4+, —,0} is a localization for the oriented matroit1 if and only if the
restrictiono | r is alocalization for everyank 2 contraction Rof M. A rank 2 contraction
of a realizable oriented matroid may be thought of as a collection of cocircuits whose
corresponding rays are all contained in a rank 2 subspace arising as the intersection of
elements ofA(V).

Theorem 2.4. Let M be an oriented matroicand let
0. C* = {+,—,0}

be a cocircuit signaturesatisfyingo (—Y) = —o (Y) forall Y € C*. Then the following
statements are equivalent

(1) o is a localization there exists a single-element extensiehof M such that
(Y, o(Y)IY €C*} S C~.

(2) o defines a single-element extension on every contractigr of rank2. That is
the signature on every rarikcontraction is one of the typesll, and 11l shown in
Fig. 8.

(3) The signatures produces none of the three excluded subconfiguraijorsorg
of rank2 on three elementss given by Fig9.

These theorems are the principal tools used in the classification. For each of the major
results, we:

e Provide a description of the vector 3étin a certaimmormal form.

e Classify thecircuits of M(V), which are both the minimal dependences among
elements ol and the cocircuits oM (V*).

e Describe the resultintank 2 contractions of M (V*).
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Fig. 8. The three types of allowable cocircuit signature for a rank 2 oriented matroid.

Use the obstructions given in Theorem 2.4 to determine necessary and sufficient

conditions for a cocircuit signature to bécgalization.

Express the conditions in terms bijections to tableaux (or other combinatorial

objects) for which enumeration formulas are known.

e Comparethis total to the number of coherent tilings, using Theorem 2.2 and results
from the author’s thesis [Bai], available online or upon request.

e Give minimalincoherent zonotopedor each infinite family.

For the remainder of the paper, the tetiing means a rhombohedral tiling. Such
tilings correspond taniformlocalizationss, those which mag* to {4, —}.

3. Coherent 3-Zonotopes
3.1. Introduction

In 1996 Edelman and Reiner [ER] gave a completely combinatorial classification of
coherent 2-zonotoped = Z(V) in terms of the underlying s&f = (vq, vo, ..., vm)

and the corresponding-tuple(ry, ro, ..., ry) of vector multiplicities. The work in this
section begins such a classification for 3-zonotopes. Specifically, we provide a completely
combinatorial classification of coherent 3-zonotoges Z (V) for those vector setg

with |V| < 5.

Fig. 9. The three forbidden rank 2 cocircuit signatures.
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The oriented matroid equivalence classesZoY) with |V | < 5 are as follows:

|V| = 4, which yields theMacMahon3-zonotopes.

|V| = 5 and the elements &f are in general position.

V| =5 andV contains exactly one 3-subset of coplanar vectors.

V| = 5 andV contains exactly two 3-subsets of coplanar vectors, with exactly
one vector common to each 3-subset.

The remaining possibilities, in which four or five vectorsMinare coplanar, reduce
to the rank 2 case. The technique used is quite straightforward; gideroaotopeZ:

(a) Enumerate all tilings of using the Bohne—Dress Theorem (Theorem 2.3) and
Las Vergnas’ localization theorem (Theorem 2.4).

(b) Enumerate theoherenttilings of Z using the result of Billera and Sturmfels
(Theorem 2.2), along with techniques for counting chambers in hyperplane ar-
rangements.

(c) Compare.

Although this is the same technique employed by Edelman and Reiner, they had the
advantage that the tiling counts for step (a) were already extant in the literature. This is
the first time that the computational technique in step (a) has been explained, together
with sample computations. It is also, so far as we know, the first time the Las Vergnhas
result has been used to solve such a problem.

Enumerating theoherenttilings of ad-zonotopeZ = Z(V) is relatively straight-
forward. By Theorem 2.2, the set of all coherent tilingsZql/) is in bijective corre-
spondence with the chambers§V). In all cases considered belol®(V) is freewith
exponents b by, ..., by. Terao showed [Te] that these exponents are the roots of the
characteristic polynomiay (D(V), t) of D(V). Zaslavsky [Za] showed that the number
of chambers in an arrangemestis computed by (A, —1)|. Thus we have

Theorem 3.1. If D(V) is a free arrangementhen the number of coherent tilings of
Z(V) is counted by
[Ja+b.

where{by, by, ..., by} are the exponents @ (V).

In the cases presented beld(V) lies in one of two infinite classes of free arrange-
ments. One of these families was shown to be free by Athanasiadis [At]. The proof that
the other family is free, together with an explanation linking Athanasiadis’ work to the
following results, may be found in [Bali].

3.2. Coherent MacMahon Zonotopes

A d-zonotopeZ (V) is aMacMahonzonotope ifV consists ofl + 1 distinct vectors in
general position. It is clear thit is projectively equivalent to thigamein RY, namely

the standard basis vectors together with the vegiot, . .., 1). Thus any MacMahon
d-zonotopeZ is uniquely determined by the multiplicities of its generating vectors, and
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it is reasonable to discuss “th@’;, ro, ..., rq41} MacMahond-zonotope, wherd is
the frame.
Theorem 3.2. The MacMahorry,ry, ..., rqy1} d-zonotope Z is coherent if and only

if
e 1; > 2 for at most three indices and
e r; > 3for at most two indices
Furthermore the MacMahorr, s, 2,1, ..., 1} d-zonotope has exactly

2 +s+ D! (r +9)!
r 4+ s+ D!

tilings, and the MacMahotr, s, 1, ..., 1} d-zonotope has exactly + s)! tilings.

We begin by showing that the set all tilings of the{ry, r», ..., rq;1} MacMahon
d-zonotope is in bijection with the number of ways of stacking it 1)-hypercubes
“flush into the corner” of amy x ry x - - - x rgy1 hyperbox.

Proposition 3.3. The collection oftilings ofthg 1, ro, . .., rq;1} MacMahon d-zonotope
is in bijection with the set

d+1 d+1
i=1 i=1

where[r;] denotes the poset chain of length &7 (P) denotes the set of order ideals of
the poset PandS;, is the symmetric group on elements

The product of symmetric groups appears because two tilingswhich “look” the
same are considered distinct if one is obtained from the other by reordering parallel
zones. We continue to enumerate tilings in this manner for the remainder of the paper.
We present a somewhat detailed proof, in order to provide a template for the more
difficult results which follow.

Normal Form Order the elements &f such that, v,, . . ., vgq are the standard basis
vectors forRY, andvg;1 = —(1, 1, ..., 1). ThenV may be represented by tidex n
matrix:
r ra g fd+1
111---1 000---0 --- --- 000---0 -1-1-1--- -1
v 000---0 111---1 -vv«-- 000---0 -1-1-1--- -1
000---0000---0 ------ 000---0 -1-1-1--- -1

000---0000---0 «----- 111---1 -1 -1-1--- -1
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Circuits. A minimal linear dependence among vector¥ifs either

(a) the difference of two (identical) vectors in the same block, or
(b) the sum ofl + 1 vectors, one from each block.

Whenever vectors il occur with multiplicity greater than one, dependences of type (a)
will occur. These dependences can be easily described in terbnaidfarrangements
Thebraid arrangement A_; is arankn—1 arrangement iR" defined by the hyperplanes
normal to

fe—gll<i<j=<n}

where{g } is the collection of standard basis vector&ih Let h; denote théth partial
sumZ}:l r; (in particularhg = 0 andhg;1 = n). We define; = On,_, x Ar,—1 X On_p,.
Then the discriminantal arrangemé@ntV ) has as its set of defining vectors the columns
of

DNV) = Qi 2l [ du1 | A

where the collectiorA is the set of all possible Cartesian produ]E[%;Ll1 e;, and{e,},
1 <ij <rj, are the standard basis vectors®r, 1 < j <d + 1.

Rank2 Contractions A rank 2 contractionof a realizable rank oriented matroid
M = M(V) is a rank 2 subspace of the arrangemdiiV) which arises from the
intersection ofl —2) independent elements df(V) (here we assumd(V) is essential).
For any pairX, Y of cocircuits inC*, defineOy y to be the set of indicelssuch that
Xi =Y =0. DefineV;g’Y to be the set of vectorf; € V* | i € Oxy}. ThenX
andY define a rank 2 contractioR of the oriented matroid\(V*) if and only if
dim(sparfVy y)) =n—d — 2, wheren = ) r;.

Thus in order to determine the rank 2 contractionsmust be computed. We do not
computeV* explicitly here, but only describe for the reader an easy method for obtaining
V* in order to check the description of the rank 2 contractions. Oriented matroid theory
states that angn — d) x n matrix which has full row rank with rows pairwise orthogonal
to the rows ofV will serve asvV*. Thus an easy way to obtain an expressiorMoétis to
rewrite V in the form

V=_(qg| M.
ThenV* may be written

V* = (=MT [ I(nq)) -

Finally, we may replace MT with M T, since doing so onlyeorientsthe correspond-
ing oriented matroid, and does not alter any of the properties of concern to us. When
checking rank 2 contractions, however, it is important to reorder the column vectors in
V* to ensure that they correspond to the vector ordering given imdireal form for V.
Weconsider only rank 2 contractions which contain three or more cocircuits, since
that is the minimum number of cocircuits required for the obstructions in Fig. 9. In the
case ofD(V), the only relevant rank 2 contractions are those which are defined by a
triple of vectors in somé;, or by a triple of vectors, two of which are #, and the third
in someJ;. See Fig. 10.
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€p—€q

Y

Fig. 10. Arank 2 contraction containing three cocircuits.

HereX,Y € A, e — €5 € Jforsomel<i <d+1 and(e, —eg) +Y = X. For
notational convenience, all future rank 2 contractions will be presented as

X1V XV .- v Xg

to indicate thatXy, X5, ..., X, all lie in a common rank 2 contractioR, and that, for
eachtriple(i —1,i, i +1), there exist positive scalaasb suchthad X _1+bXi 1 = X;.
We say that a cocircuit signatuserespects Rf o |r is a localization orR.

Let R denote the collection of rank 2 contractions arising from triples of cocircuits
X1V Xy Vv Xz, whereXq, X, X3 € J; for somei, and letR, denote the collection of
rank 2 contractions of the kind shown in Fig. 10. It is a routine matter to verify that this
catalogues all rank 2 contractions.

Localization To prove the proposition, we must show that every elemeﬁtdﬁ[idil1

[ri]) x ,d:ll Sy, corresponds to a unique uniform localization®nand that all uniform
localizations are obtained in this manner.

Recall that a uniform localizatios is simply a cocircuit signature: C* — {+, —}
with special properties. Specifically, for each rank 2 contracRarf M(V*), o must
assign a signature to the cocircuitsiin a realizable manner. That is, must be a
signature of the type in Fig. 8(lll) or, equivalentty,mustavoid the uniform signature
in Fig. 9.

If o respects all rank 2 contractionsRy, theno induces an ordering on the coor-
dinates ofR" for 1 <i < d + 1. This ordering is defined by

o(ep—€) =+ ifandonly if e, > &;.

Sinceo respects alR € Ro, these pairwise order relations may be extended to a linear
order on the coordinates, e, . . ., &, (cycles cannot occur). Conversely, itis clear that
every such coordinate ordering corresponds to a cocircuit signatwtrech respects all

R € Ro. Thus we may fix an ordering on the coordinate®bffor eachi and multiply

the localization count by;!ry!---rg4q!. It remains to show that for each coordinate
orderingp in []S;,, there ard 7 ([][ri])| distinct localizations which induce.

Bijection Without loss of generality, suppose the order relation on the coordinates
of R" is fixed to bee, > g if and only if p < g. Then each cocircuiX; € J has
o(Xj) =+ foralll <i <d+ 1. Consequently, when considering rank 2 contractions
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in R4, it follows that
o(ep—€) =+ implies o(X) > o(Y) (%)

(in the orderingt- > 0 > —), whereg, — &g, X, andY are as in Fig. 10. To see how
this yields a bijection with elements @f(]‘[id:f[ri]), we adopt a different notation for

the elements oA. Recall A is the collection of all Cartesian products of the form

d+1

[]e:-
j=1

whereeg; is any standard basis vector Itii. There is an obvious bijection between
elements ofA and orderedd + 1)-tuples(us, Uo, . . ., Ug41), Where 1< u; < r; denotes
the position of a unique nonzero entry among the coordinates in the intervat1, h;].
Then the conditiorix) is equivalent to the statement:

o((Ug, Uz, ..., Ui—1, U, Ui11, ..., Ud+1))
> o ((Ug, Uz, ... Uj_1, Ui, Uiz, ..., Ugs1)) ifand only if uj <u;.

Taking the set of such relations where= u; + 1 forall1 <i < d+ 1, we obtain the

cover relations for the IatticE[id:ll[ri]. In particular, those cocircuits with o (X) = +

form an order ideal in the lattice. Thus for a fixed orderingof the coordinates, each

localizationo is determined by an order ide&lof cocircuits in]'[idjll[ri] satisfying
o(X) =+ forall X € I. This completes the proof of the proposition. O

Compare Since the count in Proposition 3.3 holds for MacMahon zonotopes of any
size and rank, it is a fairly straightforward matter to determine which MacMahon zono-
topes are coherent. Suppogeés an{r, s, 2,1, 1, ..., 1} MacMahond-zonotope, where
possiblyr, s > 2. Since the elements &f are in general position, it makes no difference
which vectors appear with multiplicity. For such a zonotaheProposition 3.3 states
that there are

[T (Jr] x [s] x [2]) x & x Ss x S|

total tilings of Z, since the additional singleton zones do not contribute any factors to
the count. By MacMahon’s original formula (see p. 120), this number is

(r+s+1)!(r+s)!' | |_2(r+s+1)!(r+s)!
r+DIs+Dirtst = 7 +DI(s+ D!

The discriminantal arrangement gfis projectively equivalent to one of the arrange-
ments studied by Athanasiadis [At], which interpolate between the cone over the braid
arrangement of typé\, .s_1 and the cone over th8hi arrangemenof type Ar s 1.
Athanasiadis has shown [At, Theorem 4.1] that this class of arrangements is free with
exponents

O 0L,r+1r+2....r+s—1,s+1s+2,...,r +s}L

By Theorem 3.1, we conclude that all tilings Bfare coherent.
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By Lemma 3.4, the MacMaham, s, 1, .. ., 1} d-zonotopeZ’ is coherent as well. All
tilings of Z’ are counted by

[T(r] < [sD]|-r!s!,

and itis well known that7 ([r] x [s]) has cardinality"{®).

Incoherent Zonotopes One nice property oincoherent zonotopes is that they must
always contain some “minimal” incoherent zonotope.

Lemma 3.4(Bai, Lemma 5.4). The zonotope Z= Z(V) is coherent if and only if
Z' = Z(V') is coherent for every VC V.

Lemma 3.4 is true even i¥ and Z’ are zonotopes of different dimensions. As a
consequence, large infinite families of zonotopes can be dismissed as incoherent once
some few relatively small obstructions are found.

Lemma 3.5. Suppose Z isafry, ra, ..., rqgr1} MacMahon d-zonotopé& is incoher-
ent ifr; > 3 for three distinct values of i

Proof. To show that a localizatioa yields an incoherent tiling requires proving that
no chamber oD (V) corresponds te. If C is a chamber oD(V) with | € C, then the
signatures induced byl is given bya; (X;) = sign( - ¢;), whereg; is theith column
of D(V).

If Zisthe{ry,ry, ..., rqr1} MacMahond-zonotope withr; > 3 for three distinct
values ofi, then by Proposition 3.Bi[r;] contains a sublattice isomorphic to [3][3] x
[3]. Therefore assume without loss of generality it ] = [3] x [3] x [3] and consider
the class of localizations which induce the order on coordinates within e&th of
e, > gy ifand only if p < g. There is a tiling/localizatiow corresponding to the order
ideal

1 =((1,3,2,2,1,3),(3,2,1), (2,2 2).

in 7 ([3] x [3] x[3)]) (thisis the tiling shownin Fig. 1). Thatis,(X) = +forall X e I.If
o is coherent, then there is a chamfzein D(V) such that for every = (¢, ¢, ..., C)
in C, we may take inner products X with X € | to conclude:

€1 + Cs + Cg > 0 corresponding t¢l, 3, 2)
Cy + C4 + Cg > 0O corresponding t2, 1,3) = Z ¢ > 0.
C3 + Cs + €7 > 0 corresponding t3, 2, 1)

However, sincer may also be defined by the complementary filter
1°=1(3,1,2),(231),(1273)),

a similar set of inequalities impli€s_ ¢ci < 0. Thus no chamber of the discriminantal
arrangement corresponds to the localizatignand soo is an incoherent tiling
localization. |
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A similar argument, this time using the order ideal and complementary filter

Il =(1,1,22),2,2,1,1),(2,11,2),
1°=1(1212,2121),(@1,221)

gives

Lemma 3.6. Suppose Z is afry,ro, ..., rqr1} MacMahon d-zonotop€& is incoher-
entifr; > 2 for four distinct values of.i

Proposition 3.3 and Lemmas 3.5 and 3.6 together prove Theorem 3.2. O

3.3. The Case of @ 2 Vectors in General Position ii?

LetZ = Z(V) be ad-zonotope such that tlie+ 2 elements o¥/ are in general position.
Since the oriented matroitt (V*) of the dual vector configuratior* has rank 2, there
is only one oriented matroid equivalence class of such zonotopes. Therefore, any choice
of coordinates will give an identical result when enumerating the coherent tilings of
We assume that the underlying $étfor the generating multisef of Z is the frame
togetherwith(1, a;, ay, ...,a9_1), wherel> a; > a, > --- > ag_1 > —1,anda #0
for alli. Up to projective equivalence, any collectioncbf 2 vectors in general position
in RY must be of this form, since coordinates can be chosen in such a way-thatof
the vectors constitute the frameRY, and then the final vector may be scaled to satisfy
the given inequalities.

In this section we prove that all such zonotopes are coherent if at most one generating
vector has multiplicity > 1, and argue that this is a complete classification of coherent
d-zonotopes in this class for= 3.

Theorem 3.7. Suppose Z Z(V) is ad-zonotope such th¥lt consists of &2 vectors
in general positionThen Z is coherent if at most one of the generating vectors appears
with multiplicity r > 1. If Z satisfies this conditigrthen the tilings of Z are enumerated

by

2(d +r +1)!
(d+ D!

Furthermoreifd = 3, then this condition is both necessary and sufficient to characterize
when Z is coherent

Proof. Again, since the elements df are in general position, it makes no difference
which vector appears with multiplicity. We choose to hétea,, ay, . .., ag_1) appear
with multiplicity.
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Normal Form

100 --- 0 1 1 1 1

010 .- 0 1 & a a

0 0 1 Of 1 a ap as
V = i

0 00 - 1 1a1 a-1 --- a1

Circuits.  The discriminantal arrangemeRtV) is the(r +d +1) x (1+r (d+1)+(}))
matrix

D(V) = (X |Bo|B1|Ba | Bal - | Bag, | Ay
whereX denotes the minimal dependence among vectors in the filgmethe(r +d +
1) x r matrix whose columns are all possible produdts x, a; — X, a,— X, ..., a4_1—

X, X) x —g forl <i <r, andA _, denotes the Cartesian producOof R41 with the
braid arrangemend, _;.

Rank2 Contractions Let X, denote a cocircuitim, forx € {0, 1, ay, ..., a4_1}, and,
in particular, letXy ; denote the unique cocircuit B, with nonzero entry in position
d+ j+1 sothatj € [1,r]. Lete, — g denote the appropriate cocircuit Af_,. For
the moment, assume a; > ay > --- > ag_1 > 0. The following is a complete list
of rank 2 contractions:

Ro={(€&p—€em)V (€ —€)V (En—6€)|p,gmeld+2d+r+1]}

Ri = (X1j VvV XapjVXapj VeV XapjVXojVX|L<j<r}

Ro = {(6g—€) V XyqV XxplXe{0,1,a,...,a4-1}
andp,qe[d+2,d+r +1]}.

In the cases where sonag are negative, a similar collection of rank 2 contractions
arises. As before, any localizatien when restricted to the rank 2 contractionsipg,
induces a linear order on the fimatoordinates. Thus we again restrict attention to those
localizations which have (e, — &;) = + for all cocircuits corresponding to vectors in
A _,, and multiply the final count by!.

Localization and Bijection The linear order imposed on the coordinates by the rank 2
contractions iR, together with the collectiof®,, implieso (Xxi) < o (X j) if and
only ifi < j, within eachBy. Furthermore, assume(X) = +. This requires doubling
the final count.

The rank 2 contractions iR induce an order relation

0(Xyj) £0(Xqa,j) £0(Xg,j) - 0 (Xgyy,j) <0(Xoj)

among cocircuits in distinct blocks with the same nonzero entry in thefow@drdinates.
Thus all information abowt may be completely specified by(d + 1) x r tableauL
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Fig. 11. The tableau of cocircuit signatures fibr= 3, 1 > a; > a > 0.

with rows indexed by la;, a, ..., a4_1, 0 and columns indexed by, 2, ..., r. Entry

Lx,j iso(Xx,j). The conditions from the collectior®8; andR, imply that the entries

of L must weakly increase along rows and down columns (see Fig. 11, in which shaded
boxes correspond to cocircuiswith o (X) = —). Thus the number of localizatiors

is given by the number of such arrays, whiclf i’ ). When this number is multiplied

by 2r! to allow for the possibility thatr(X) = — and for other orderings of the final
coordinates, we obtain the tiling count given in the statement of the theorem.

Compare As for coherent tilings, it happens that in this cd%@/) is supersolvable
withexponent$l, d+1, d+2, ..., d+r}[Bai,Lemma6.2]. Supersolvable arrangements
are a proper subclass of free arrangements, first defined by Stanley [St1][DTHus
has

2(r +d+1)!
(d+ 1!

chambers.

Incoherent Zonotopes All that remains is to demonstrate that= Z(V) has an inco-
herenttilingwher = 3 and exactly two of the generating vectorsZdnave multiplicity

two or greater. We know of no elegant proof of this fact. However, this is a sufficiently
small obstruction that sets of tilings and coherent tilings may be enumerated using sym-
bolic manipulation packages like MAPLE and GAP[$code available from the author
upon request). Whed = 3 and exactly two vectors have multiplicity twd, has 632

total tilings. The total number of coherent tilings is either 616, 620, or 624, depending
on the choice of values for the parametarsanda,, but is always less than 632. By
Lemma 3.4, this completes the proof. O

3.4. Five Vectors irR® Containing a Single Three-Point Line

Theorem 3.8. Let Z = Z(V) be a3-zonotope such that the arrangemettV) is pro-
jectively equivalent to the projectivized picture given in.Big.Then Z is coherent if and
only if at most two of the generating vectors have multiplicitiss* 1, and these vec-
tors with multiplicity correspond to one of the paid, 3), (1, 5), (2, 3), (2,5), (3,4),
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2
3
4
% N
Fig. 12. Five vectors ifR3 with a single three-point line.

(4,5)}. If Z satisfies this conditigrthen the tilings of Z are enumerated by

20 +s+ D! (r +s+2)!
(s+2)! (r +2)!

The reason for the apparent asymmetry between hyperplanes 3, 4, and 5 is that
hyperplanes 3 and 5 “separate” hyperplane 4 from the intersection of hyperplanes 1 and
2. More precisely, leH; denote théth hyperplane for =1, ..., 5, and let denote the
intersection oH; andH,. Then anypath (point set homeomorphic to the unit interval)
originating atl and terminating aH, must also contain a point in eithét; or Hs.

Proof.

Normal Form Any arrangement in this class may be realized by the frame together
with the vectona, 1, 1), wherea # 0, 1, and so the arrangement in Fig. 12 corresponds
to

V =((0,0,1),(0,1,0),(1,0,0), (1,1, 1), (a, 1, 1)).

For the rest of this section, we assuane 1. The proof whera > 1is similar. (However,

be careful! Whera > 1, Hy andHs switch position.) By symmetry, it is clear that there

are two cases: where vectors 2 and 5 have multiplicity, and where vectors 4 and 5 have
multiplicity. We present the proof of the second case; the proof of the first case is similar.

Circuits. The vector(1, 1, 1) occurs with multiplicityr and the vecto(a, 1, 1) occurs
with multiplicity s. ThusD(V) is given by thar +s+3) x [rs+ %(r +9S)(r +s+ 1)
block matrix

Bi B, Bz By 0 0

DV)=| I 0 I alk A 0 ,
O _ls _XIS _xls 0 A57]_
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where
-1 ... -1 1 ... 1
Bij=(-1 --- -1], Bo={|1 --- 1],
-1 ... -1 a --- a
0 0 1- .. 1-—a
Bs; = 0 0 , By = 1— ... 1—a
a-—-1 --- a-—-1 0 0

with the necessary row lengths,_; andAg_; are the matrices for the braid arrangements
of rankr — 1 ands— 1, respectively, and the block paiksx —Isandal; x —Is denote all
possible Cartesian products of basis vectpi ae € R" with basis vectors-g € R?,
respectively.

Rank2 Contractions The columns ofD(V) may be partitioned into six blocks in the
obvious way, from left to right. Lef;* denote the collection of cocircuits arising from the
columns in the th block, and IetX' « denote the cocircuit in thigh block with nonzero
entries in positiong + 3 andk +r + 3, s0 thatj € [1 r] andk € [1, s]. Cocircuits in
C; andC; will be denoted byX* = X!, and X7 = X, respectively.

The reader can verify that the foIIowmg is a complete list of rank 2 contractions:

Ro={(ep—en)V(ep—€)V(Eem—e) | p.gmel[4r+3]
orp,g,mefr +4,r+s+ 3]},

Ry = (X[ ,VXiqV(ep—e)|p.gelr+4r+s+3landj e[0,r]}
for i =234,

RY = (Xgu V Xpi V(€ — &) | p.q € [4,1 + 3] andk € [0, s]}
for i =1,3 4,

Rs = (X[ vX3 vXi vXiy if 1>a>0.
A similar collectionR; arises for other possible valuesaf
Localization and Bijections As usual, when a localizatios is restricted toRy, it
corresponds to a permutationgpax Ss. We assume the ordering tobée, —e;) = + for
p < g, and multiply the final count by! s!. This ordering, together with the collections
R} andR), implies
a(X}’p)ga(X},q) for r+4<p<q<r+s+3
and
o(Xp) =o(Xy) for 4<p<qg<r+3.

The signatures of cocircuits @ andC; may each be entered into arnx s tableau
of the kind given in Fig. 13, with certain restrictions. The collecti® R3, R1, and
R3 dictate that the signatures for eactC¢fandC; be weakly increasing along rows and



138 G. D. Bailey
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signatures
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All signatures

r

Fig. 13. The tableau of cocircuit signatures for cocircuit€ior Cy.

weakly decreasing down columns. In Fig. 13, the path running from the upper left corner
to the lower right delineates the boundary between signatdi@sd signatures-.

In particular, the above inequalities hold for the cocircuitSjimndC;. Leta € [0, r]
be the greatest index such thetX}) = + (if o(X{) = — for all j, thena = 0), and
let 8 € [0, s] be the greatest index such thﬁ(txg) = —. The signatures which have
a < j <randl<k < g mustall be—, by consideration of the collectioR3, and
similarly the signatures which haved j < « andg < k < s must be+.

The pair of tableaux fo€3 andC; account for all of the information in the rank
2 contractions except for the relationship betwee{lxﬁk) anda(Xj‘fk) given by the
collectionR3. When 1< j < @ and 1< k < 8, the inequality

+=0(XH=a(X}) = (X)) = o (X)) =—

holds, so in particulan(x ) > a(X - Similarly whena < j <r andg <k <,

the collectionR3 |mpl|e50(X W =< a(X4 ). Thus all information given by the rank

2 contractions may be encoded by superlmposmg the tablead¥ famdC; upon one
another and enumerating the resulting pairs of paths in ars tableaux. That is, we
must enumerate atl x s tableaux which contain a pair of monotonically decreasing
paths from upper left to lower right, paths which may be concurrent with one another
at points, but cross only once at a distinguishaat defined byx andg (see Fig. 14).
Elnitsky [EI] has enumerated the collection of such paths in his thesis. There are

2r +s+ D! (r +s+2)!
r'st(r +2)! (s+ 2)!

such tableaux. Multiplying this count by the factdrs! yields the count given in the
statement of the theorem.

Compare To countthe coherenttilings, the reader can verify Ih@f ) is projectively
equivalent to thér +s) x [rs + %(r +s)(r + s+ 1)] block matrix

DV) ~ (Arps—1llryslaly x —=1g),
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Fig. 14. A tableau which encodes all information from the rank 2 contractions.

where, as above, the notati@ri, x —Is denotes all possible Cartesian products of
elementsag € R with elements-g; € R® (note that all columns gD(V) are distinct
sincea # 0, 1). This arrangement is free with exponents

{Lr+2r+3,....,r+s,s+2,s+3,...,r+s,r+s+1}

(see Corollary 7.6 of [Bai]), and so, consequeniljhas the number of coherent tilings
given in the statement of the theorem.

Incoherent Zonotopes It only remains to demonstrate thathas an incoherent tiling

in those cases for which a pair of vectors with multipliaitys > 1 is not one of the
pairs listed in the statement of the theorem. Again, we know of no elegant proof of this
fact. However, by the use of the programs MAPLE and GAF [8 is possible to show

that if vectors 1 and 2 occur with multiplicity two, and all other vectors are singleton,
then Z has 400 total tilings, 384 of which are coherent. If the multiplicities are placed
on any other forbidden pair, thehhas 304 total tilings, either 296 or 300 of which are
coherent, depending on the choice of valuedot his fact, together with Lemma 3.4
finishes the proof. O

Itis interesting to note that when the multiset of multiplicitie$2s2, 1, 1, 1} and the
vectors with multiplicity two are any forbidden pair other thHdn2}, thenD(V) is free
with exponents$l, 4, 4, 5} (unlessa = %). This is one of the few known counterexamples
to the tempting but false conjecture thafifV) is free, thenZ (V) is coherent.

3.5. Five Vectors irR® Containing Two Three-Point Lines

Finally, we consider the case in which the element¥ die in two intersecting planes,
P1, P,, with asingle vectop, called thecommon vectgrommon to each. The remaining
vectors, thérame vectorsmay naturally be partitioned into pairs, callpdrtnerships
such that the two vectons;, v, of a partnership define a rank 2 space containing the
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Fig. 15. Five vectors lying on two three-point linesR?.

common vector. For example, in Fig. 15, 4 is the common vector, while the frame vectors
1,2, 3, 5 form the partnershipil, 2} and{3, 5}. This will complete the classification of
coherent 3-zonotopes = Z(V) with |V| < 5.

Theorem 3.9. Let Z = Z(V) be a3-zonotope such that is as given in Fig15.Z is
coherent if and only if at most two frame vectogsv, have multiplicity ts > 3, some
frame vector occurs with multiplicity onand

(1) If va, vo form a partnershipthen all other vectorsncluding the common vector
must have multiplicity onén this casethe tilings of Z are enumerated by

20 +9)! (r +s+ 1!
r 4+ s+ D!

(2) If vy, v do not form a partnershipthen the common vector may occur with
arbitrary multiplicity t, and the multiplicities of the remaining frame vectors must
be at most two and one
(a) In the case that the multiplicities afe, s, t, 1, 1}, the tilings of Z are enu-

merated by

r+s+nlh
(b) Inthe case that the multiplicities afe, s, t, 2, 1}, such that the vectar; with
multiplicity two forms a partnership with the vector with multiplicity r, the
tilings of Z are enumerated by
2r +s+t)!r +s+t+1)!
r+D'(s+t+1)!

Proof of Casg1).

Normal Form One advantage to the restricted position of the vectors in this case is that
there is, up to projective equivalence, only one such vector configurati®h ifhus for
the remainder of this section, set

V =((0,0,1),(1,1,1),(1,0,0),(1,1,0), (0,1, 0)).

Let (0, 0, 1) occur with multiplicityr and(1, 1, 1) occur with multiplicitys.
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Circuits.  The discriminantal arrangemeB(V) is given by the(r + s+ 3) x [2rs 4
(5) + (3) + 1] block matrix:

Ir |r Ar71 O 0
DNV)=|=Is ZIs 0 Ay, O],
B, B, O 0 B

where
1 ... 1 0 0 1
Bi=|0 --- 0], Bo=1]1 11, B:=1|-1],
1 ... 1 0 0 1

and all other entries are as described previously.

Rank2 Contractions As before, partition the cocircuits arising fra(V) into col-
lectionsCy, C3, C; C; from left to right, and denote the cocircuit corresponding to the
rightmost vector be As before, IetX' denote the cocircuit corresponding to the
vector inC" with nonzero entries in posmor]sandr +k, wherei =1or2 j e[1,r],
andk e [1 s]. The reader may verify that the following is a complete list of rank 2
contractions:

Ro = {(€p—€m) vV (Ep —€) V (Em — €&g)IP,q, M€ [1,r]
orp,g,me[r+1,r +s]},
= {XgxVXpk V(e —e)ll<p<qg=rkells]} for i =12,
= {X}‘p\/x}’qv(ep—eq)u e[l rl,1<p<q<s} for i=12,
= (X} v X[ vX]j e[Lr] ke [1,8]).

As usual, the elements &, correspond to an element # x Ss. So again we
enumerate all signatures which fix o(ep — &) = +forl < p < q < r and for
r+1<p<gqg=r+s, andalso (X) = +. This contributes a factor ofr2s! to the
final count.

Localization and Bijection As inthe last section, the cocircuit signatures for cocircuits

in C; andC; may be entered inx stableaux. The collectior®R} require that the entries

in each tableau must weakly decrease down columns, and the colleﬂ;ore:quire

that the entries in each tableau must weakly increase along rows. Thus the cocircuit
signatures for the collectiort%’, fori = 1, 2, are encoded by a tableau like the one in
Fig. 16.

All that remains is to take into account the elementsRaf Sinceo (X) = +, it
follows thato (X?)) < o (X{,) for all pairs{j, k}. Thus by superimposing the tableau
for C; on the tableau fo€;, all information given by the rank 2 contractions may be
encoded in a singlex s array containing two noncrossing paths from upper left to lower
right. The collection of all possible such noncrossing paths is enumerated by

r+s+DI{r+9)!
r'st r + ! (s+ 1!
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r

Fig. 16. The tableau of cocircuit signatures for cocircuit€inor C;.

(see Section 2.7 of [St2]). Multiplying by 2s! gives the count in the statement of the
theorem.

Compare As for the coherent tilingsp(V) is again projectively equivalent to an
Athanasiadis-type arrangement which is free with exponents

0,L,r+1r+2...,r+s—1s+1s+2,....r +s}

[At, Theorem 4.1]. Thus Theorem 3.1 completes the proof of case (1).

Proof of Casg?2).

Normal Form Assume the vectogl, 0, 0) appears with multiplicityr, (1,1, 1) ap-
pears with multiplicitys, (1, 1, 0) appears with multiplicity, and(0, 1, 0) appears with

multiplicity two.

Circuits.  After some row swapping, the discriminantal arrangen2i\t) is the(r +
s+t+3) x ((5) + (5) + (5) +2rt + 2rs + st+ 1) block matrix

A|’—1 O 0 Ir Ir Ir Ir 0 0
_ O A371 0 O 0 _X IS _>< IS IS O
by = 0 0 A1 =l =1t O o “It o]
0 0 0 B1 B, Bs Ba Bs Bs
where

and all other entries are as described above.
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Rank2 Contractions Asabove, the cocircuits arising from the column vecto® 07 )
may be partitioned in a natural way into eight clasSgs . ., C§, with the final, single
cocircuit denoted byX. Let X},k,l denote the cocircuit vector i with nonzero entries
in positionsj, r + k, andr +s+1, with j € [1,r], k € [1, s], andl € [1,t]. If some
cocircuit has a zero entry in all positions in the intervalr[ll for example, then set
j = 0. So all elements of; are written in the formX, |, and similarly for otheC;.
The reader may verify that the following is a complete list of rank 2 contractions:

Ro {(ep—emn)V(ep—€)V(em—elp,g.me[lrlor[r+1r 45

orfr+s+1r +s+t]},
Ry = X vV Xpw V€ —e) | p.agellrl} for i=45867
b= (X pV XiqV(@—e)Ipgelr+s+1r+s+t]} for i=458,
b= (X oV XiqoV(—e)lpagelr+Lr+s]} for i=67,
Ra = {X§qi vV Xop1 V(€—€) | p.gelr+1r+5]},
b= {X[II VX, vX)  for i=468

b = (X oV XiodVXet for i=867

Again, the elements dR, define a permutation i x Ss x S;. So we enumerate
those localizations which fix o (e, — e5) = + for p < g ando (X) = +, and multiply
this count by 2! s!' t!.

Localization and Bijections Once again, the cocircuit signatures for the cocircuits in
the remaining classe€y, . . ., C; may be entered in tableaux with entries weakly increas-
ing along rows and weakly decreasing down columns. Furthermore, as in earlier cases,
certain similar cocircuit classes can be paired off, with their tableaux superimposed upon
one another. The reader can verify that the collection of tableaux in Fig. 17 encodes the
information from all rank 2 contractions exceRf andR{.

If L, Lrs, andLs; encoded the information fromill rank 2 contractions, then the
final count would be obtained by simply enumerating all possible tableaux of each type
and taking the product. However, the information from the rank 2 contracf@rend
R¢ still has to be taken into account. It turns out that these rank 2 contractions may be
used to define a bijection between the collection of localizations and a somewhat simpler
collection of tableaux.

Each of the tableauk,; and L, s may be thought of as a collection of columns,
ordered from left to right. Specifically, each columrf each tableau may be indexed
with an ordered paij1, j2), wherej; is the greatest row index of a celllimlying above
the dotted path, anp is the greatest row index of a cell lying above the solid path. Then
a collection of columns of the same size may be partially ordered by the product partial
order on pairgj1, j2), namely,(j1, j2) < (j, j5) ifandonlyif j; < j;andj, < j5. Itis
clear that a tableal contains two noncrossing, monotonically decreasing paths if and
only if the columns ot define some linear extension of this partial order. Letthe columns
of L, be indexed byu1, az, ..., ), and the columns of, s by (81, B2, - - ., Bs).
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Fig. 17. The tableaux of cocircuit signatures far

The single pathP in Lg; defines aninterweavingof the columnsx, € L, and
Bb € L, s in the following manner. For each unit segmemif P, give z the labely, if z
is a horizontal segment adjacent to cells with column ifdexd givez the labelgy if s
is a vertical segment adjacent to cells with row inéteBy following P from the upper
left corner ofL g, to the lower right and reading off the labels, an interweavingf the
a, With the By is obtained which preserves the original linear order for each collection
of columns.

Lemma 3.10. Leto be a cocircuit signature on the cocircuits of(\2*) respecting
the restrictions imposed bRo, R}, Rb, Rb, R4, and R, and furthermore satisfying
o (e, — &) = + for all possible pq ando (X) = +.

Let Ly, Lrs, and Ls; be as described abov&he cocircuit signature respects the
rank 2 contractions ofRi6 (and thus is a localizationif and only if the interweaving
o orders the columns of Iy and L s in @ manner consistent with the partial order
on columns

Proof. Suppose the path in Ls; is such that the adjacent labeisandgy are encoun-
tered in order in a walk from the upper left corner to the lower right corner (they form a
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“northeast corner” irP). In particular, this implies tha:t(Xg’k,l) = —. The interweaving
w impliesay < Bk.

Suppose instead that eith@r > B or the two are incomparable under the partial
order on columns. This will happen if and only if the statement

there exists an indek such tha (X ) > /(X[ o)

holds for at least one 6f= 6 ori = 7. However, ifo respectsRl, then this statement
implies thato (X8, |) = +. which is a contradiction. This demonstrates the necessity of
the condition in the lemma.

To demonstrate sufficiency, suppose there exist indicks such that

U(X},k,o) = o(X}Bﬁ) =+, U(Xg,k,l) - _ (%)

fori =6o0ri = 7. If the cell (k,1) of Ls; is bordered byP above and on the right,
thenw impliesay < B. If the columnsy; and Bk satisfy this relation, then necessarily
a(x};,ﬁ) < U(X}.k,o) for all j andi = 6, 7. However, this already contradicts the
assumption).

If the cell (k, I) is not bordered by in the manner described above, then it is still
possible to move from the cek, |) to a cell(k’, I’) which is bordered by and satisfies a
condition like the one given ifk). Sinceo respects all rank 2 contractions exc@@tfor
i = 6,7, moving from(k, |) in the direction of decreasirigand increasing preserves
the signatures irgx). Then the conditior(x) for the cell(k’, ") yields a contradiction
also. This demonstrates thatifis not a localization, then the orderiagwill not agree
with the natural ordering on the columnslof; andL, s. |

As a result of Lemma 3.10, we now see that for a given localizatjall necessary
information from the rank 2 contractions may be encoded by taking a collection of
tableaux as given in Fig. 17 and interweaving the columnk,@fin L, s to obtain a
singler x (s + t) tableauL such that the columns af define a linear extension of the
partial order on columns. In particuldr,must contain two noncrossing, monotonically
decreasing paths. An example of this interweaving is given in Fig. 18.

Thus the total number of localizations is counted by multiplying the numbex ¢§+
t) tableauxL containing two noncrossing paths by the number of ways of partitioning
the columns of such a tableduinto sets of sizes andt. Again using the result of
Stanley [St2, Section 2.7], this number is

r+s+dIr+s+t+1D!  (s+t)!
N+ s+t (s+t+D! st

Multiplying this last number by 2 s! t! gives the result in the statement of the theorem.

Compare To enumeratethe coherent tilings 8f the D(V) is an Athanasiadis-type
arrangement which is free with exponents

0,L,r+1r+2,...,r+s+t—-1s+t+1,s+t+2,...,r +s+t}

[At, Theorem 4.1], and sd@ has the desired number of coherent tilings as well.
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By

=7} 7] —_
Ly; = 82 w = B, o0q,0, 0,03 B, 0

a3

B3

Fig. 18. The rank 2 contractiorTRi6 define an interweaving of the columnslof; andL s.

Next consider the case where two frame vectors have multiplicity one, and the other
multiplicities arer, s, t as in part (2a) of the theorem. By Lemma 3.4, we already know
thatZ is coherent. Her® (V) may be written in block form as

A_p O 0 Ir Iy 0
0 A; O “Is O Is
0 0 A 0 =k =]’
0 0 0 Bi B Bs

DV) =

where

1 ... 1 0O --- 0 -1 ... —
Bl=<1 1)’ BZ:(]_ 1>’ B3=<o 0)'
The reader can verify that this arrangement is projectively equivalent to the braid
arrangemené, s ,t_1, which is known to be free with exponenfts 2, ..., r +s+t—1}.

Incoherent Zonotopes Finally, we must show that is incoherent in the case that the
multiplicities on its vectors do not satisfy the hypotheses of the theorem. Again, we resort
to brute-force computation in GAP {$to show that this is the case.

First, if the vector multiplicities ar¢3, 3, 2, 1, 1} where the vectors with multiplicity
three form a partnership, theh has 211,680 tilings, 210,816 of which are coherent.
This gives the necessity of the condition in part (1) of the theorem. Furthermore, if all
frame vectors have multiplicity two and the common vector has multiplicity one,Zhen
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has 25,408 tilings, 23,136 of which are coherent. This demonstrates the necessity of the
condition that one frame vector has multiplicity one. Together, these conditions show
the necessity of the statement that at most two frame vectors may have multiplicities of
three or greater. This completes the proof of the theorem. O
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