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Abstract. A rhombohedral tiling of ad-zonotopeZ is said to becoherentif it may be
obtained by projecting the “top faces” of some(d+ 1)-zonotope ontoZ.We classify those
3-zonotopes with five or fewer distinct zones which have all rhombohedral tilings coherent,
and give concise enumeration formulas for the tilings of the zonotopes in each class. This
enumeration relies in equal parts on the theory oforiented matroidsand the theory of
discriminantal arrangementsof hyperplanes.

1. Introduction

A classic problem in enumerative combinatorics is MacMahon’s plane partition problem.
An r by s plane partitionis anr by s array of nonnegative integers which is weakly
decreasing along rows and down columns. The problem is to determine the number
N(r, s, t) of r by s plane partitions with integer values bounded byt. The answer, along
with aq-analogue, was originally given by MacMahon [Ma] in 1899:

N(r, s, t) = H(r + s+ t)H(r )H(s)H(t)

H(r + s)H(r + t)H(s+ t)
,

whereH(n) = (n − 1)! (n − 2)! · · ·2! is the hyperfactorial function. A natural gener-
alization of this problem is to attempt to enumerate allr by s by t solid partitionswith
integer values bounded byu. To date, all attempts to generalize MacMahon’s result to
higher-dimensional partition questions have failed.

However, there is a natural bijection between MacMahon’s plane partitions and
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Fig. 1. A stack of cubes induces a rhombic tiling of a hexagon.

rhombic tilingsof a certain class ofzonotopes, which suggests an avenue for attacking
questions which concern higher-dimensional partitions. There is an immediate bijection
from r by s plane partitions with integer values bounded byt to stacks of unit cubes in
an r by s by t box. Viewing such a stack of cubes from a point in general position, a
rhombic tiling of a centrally symmetric hexagon with side lengthsr, s, t (see Fig. 1) is
seen. Such a hexagon is an example of a rank 2 zonotope.

It is this connection between plane partitions and rhombic tilings of zonotopes which
partially motivates our work. Ad-zonotopemay be thought of either as the image of
some projection of then-cube intoRd, with n ≥ d, or as the Minkowski sum of a
collectionV of n vectors inRd containing some basis forRd. A rhombohedral tiling
of a d-zonotopeZ = Z(V) is a decomposition ofZ into a nondisjoint union of cells,
each of which is a translation of the Minkowski sum of some independentd-subset of
V. Note that this definition generalizes tilings of zonotopes which arise in connection
with partition problems.

A rhombohedral tiling of ad-zonotopeZ is said to becoherentif it can be obtained
by projecting the “top faces” of some(d+1)-zonotope ontoZ. The primary goal of this
paper is to explore and compare the enumeration and structure of

• the set of all tilings ofZ, and
• the subset of allcoherenttilings of Z.

Another area of study which both motivates and facilitates the study of higher-
dimensional zonotopal tilings is that ofdiscriminantal arrangementsof hyperplanes.
Discriminantal arrangements were first defined by Manin and Schechtman [MS] in 1986
as a generalization of thebraid arrangementof type An−1. This definition was itself
broadened by Bayer in 1993 [Bay]. For a particular zonotopeZ = Z(V), it turns out
that there is a bijection between the collection of coherent rhombohedral tilings ofZ and
chambersin the corresponding discriminantal arrangementD(V) (see [BS]). A more
comprehensive discussion of these topics and their relation to the study of zonotopes
appears in the introduction of the paper by Edelman and Reiner [ER].

In this paper, we completely classify those 3-zonotopesZ(V) for whichSV, the max-
imal subset of pairwise distinct vectors inV, has cardinality at most five (multiplicities
may occur), and which have the property that all rhombohedral tilings ofZ are coherent.
We further provide enumeration formulas for several infinite classes of such 3-zonotopes.
The approach for this classification follows the work done by Edelman and Reiner [ER]
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Fig. 2. A zonotope with 2(r + 4)!/4! distinct rhombohedral tilings (Theorem 3.7).

in their classification of 2-zonotopes with this property. Given a zonotopeZ, we:

(a) Enumerate all tilings ofZ.
(b) Enumerate allcoherenttilings of Z.
(c) Compare.

To countall tilings of Z requires combinatorial arguments together with an oriented
matroid theorem of Las Vergnas. Enumeration of the coherent tilings ofZ is accom-
plished by means of the aforementioned correspondence between coherent tilings of
Z = Z(V) and chambers in the discriminantal arrangementD(V). By a result of Za-
slavsky [Za], this enumeration may be accomplished by finding the roots of thecharac-
teristic polynomialχ(D(V), t) for D(V). Since it happens thatD(V) is a freearrange-
ment (see [Te]) for all zonotopesZ(V) under consideration, these roots are simply the
exponentsof D(V), by a result of Terao [OT].

The illustrations in Figs. 2–4 summarize the main results of the paper, showing
representatives from three of the four oriented matroid classes of 3-zonotopes under
consideration, and giving the appropriate enumeration formula for the tiling count in
each case.

2. Background

Let V be a multiset of vectors which contains a basis forRd, and letSV be the maximal
subset of pairwise distinct vectors inV. Then thed-zonotopeZ = Z(V) is equal to the
Minkowski sum of the vectors inV. The setV is called thegenerating setof Z = Z(V),
and we say thatV generates Z. Note that every face of a zonotope is again a zonotope.

Our main objects of study arerhombohedral tilingsof zonotopes (Fig. 5). Given a
zonotopeZ = Z(V), a subzonotopeof Z is any zonotopeZ′ = Z(V ′), whereV ′ is a
subset ofV. A tiling T of a d-zonotopeZ is the decomposition ofZ into a union of
d-subzonotopes, called thetiles of T , such that any two tilest1, t2 intersect in a proper
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Fig. 3. A zonotope with 2(r+s+1)!(r+s+2)! /(s+2)! (r+2)! distinct rhombohedral tilings (Theorem 3.8).

face of each. A tilingT is arhombohedral tilingif each tilet is generated by a subset of
V forming a basis ofRd.

The principal tools we use to study tilings arearrangements of hyperplanes(or sim-
ply arrangements) andoriented matroids. A d-arrangementA is a finite collection of
codimension-one linear subspaces ofRd (see [OT]). We do not rule out the possibility
that the hyperplanes in an arrangementAmight appear with multiplicity, and the reader
should be aware that such collections are more commonly referred to asmultiarrange-
ments. The hyperplanes inA intersect in some linear subspaceSof rank 0≤ s ≤ d−1.
Define therankof ad-arrangementA to bed−s. If s= 0, thenA is anessentialarrange-
ment. By taking normals, there is an obvious bijection between arrangementsA(V) and
vector setsV, and so consequently between arrangementsA(V) and zonotopesZ(V).

We do not introduce oriented matroids formally here, but only give an abbreviated
introduction to those ideas which will be necessary in what follows. The standard refer-

Fig. 4. A zonotope with 2(r + s+ t)! (r + s+ t + 1)! /(r + 1)!(s+ t + 1)! distinct rhombohedral tilings
(Theorem 3.9).
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Fig. 5. A rhombohedral tiling of a 2-zonotope.

ence for oriented matroids is the book by Bj¨orner et al. [BLS+]. A discussion of oriented
matroids which is specific to polytopes and zonotopes appears in Chapters 6 and 7 of
Ziegler’s book [Zi].

For a vector collectionV in Rd of cardinalityn, let v1, v2, . . . , vn be an arbitrary
ordering of the vectors inV. The arrangementA(V) partitionsRd into a disjoint union
of cones, where eachk-cone is determined by some subarrangement ofA with rank
d−k. To each of these cones is associated an orderedn-tuple in{0,+,−}n.Specifically,
then-tuple X corresponding to the coneC is defined byXi = sign(c · vi ), wherec is
any vector inC. The collection of all suchn-tuples is the set ofcovectorsL(V) which
determines the oriented matroidM(V) associated withV.

With the notion of covectors forM(V) in place, we can now explicitly define a
correspondence between cones in the decomposition ofRd induced byA(V) and the
faces ofZ(V), one which exhibits the polar duality ofA(V) and Z(V). Specifically,
supposeC is a cone induced byA with covectorX. Define

X− = {i | Xi = −}, X0 = {i | Xi = 0}, X+ = {i | Xi = +}.
Then the face ofZ corresponding toC will be the Minkowski sum of those vectorsvi ∈ V
with i ∈ X0, translated by

∑
i∈X+ vi −

∑
i∈X− vi . This construction also demonstrates

how to determine the covectors ofM(V) directly from Z(V). In particular, the one-
dimensional rays induced byA(V) and the maximal dimension faces ofZ(V) each
correspond to thecocircuits of M(V). We denote the collection of cocircuits of an
oriented matroid byC∗.

We next consider zonotopal tilings. SupposeZ = Z(V) is a d-zonotope under a
fixed choice of coordinates, so that one may writevi = (x1,i , x2,i , . . . , xd,i ) for each
vi ∈ V ⊆ Rd. It is possible to add a(d + 1)st coordinatelvi = xd+1,i to eachvi ∈ V
and add the basis vectored+1 to V to obtain the generating setV̂ for a (d+ 1)-zonotope
Ẑ = Z(V̂). Informally, the generating vectorsV of Z(V) are “lifted” into Rd+1, and
the standard basis vectored+1 is added.

LetF denote the collection ofupper facetsof Ẑ, those rankd faces corresponding to
cocircuits with value+ or 0 oned+1, or, informally, the rankd faces which are visible
from the pointked+1 with k large. Letπd+1 denote the projection of̂Z along the basis
vectored+1. Then the collection{πd+1(F) | F ∈ F} constitutes a tiling ofZ.

Definition 2.1. If a tiling T of a d-zonotopeZ can be obtained in the above manner
for some choice of{lv}v∈V , thenT is coherent(see Fig. 6). Otherwise,T is incoherent.

Similarly, if Z is such thatT is coherent for all tilingsT, then we say thatZ itself
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Fig. 6. A coherent tiling of a hexagon is obtained by “looking at” a 3-zonotope.

is coherent, otherwiseincoherent. If T is a coherent tiling of ad-zonotopeZ = Z(V)
obtained fromẐ = Z(V̂), then the oriented matroid̂M =M(V̂) is asingle-element
lifting ofM(V) and the vectorl = (lv1, lv2, . . . , lvn) is called alifting vector.

The principal tool for studying coherent rhombohedral tilings of a zonotopeZ(V) is
thediscriminantal arrangementD(V) (see [Bay]). Then-arrangementD(V) is defined
by the minimally dependent sets ofV as follows. The hyperplane(a1,a2, . . . ,an)

⊥ is in
D(V) if and only if the setV ′ = {vi | ai 6= 0} satisfies∑

vi∈V ′
ai vi = 0

andV ′′ is independent for all proper subsetsV ′′ of V ′:
Billera and Sturmfels showed [BS]

Theorem 2.2. Let V be a vector configuration. Up to a choice of order on the parallel
vectors of V, the set of coherent rhombohedral tilings of Z(V) is in bijective correspon-
dence with the set ofchambers,or open cones of maximal dimension, in the arrangement
D(V) (Fig. 7).

It is clear that each chamber ofD(V) corresponds to an equivalence class of lifting
vectors. However,Z may also have an incoherent tilingT, in which case no such lifting

Fig. 7. For a given vector configurationV, the chambers ofD(V) correspond to the distinct coherent
rhombohedral tilings ofZ(V).
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vector l exists (the hexagonal tiling on p. 120 is incoherent, for example). Bohne and
Dress [BD, see also [RZ]] showed by passing to pseudosphere arrangements (see [BLS+])
that T nevertheless corresponds to a single-element liftingM̂ of the oriented matroid
M =M(V):

Theorem 2.3(The Bohne–Dress Theorem).Let Z= Z(V) be a zonotope. There is a
bijection between the zonotopal tilings of Z and single-element liftings ofM(V).

By means of oriented matroid duality, we may enumerate the single-element liftings
ofM(V) by applying Las Vergnas’ theorem characterizingsingle-element extensionsof
an oriented matroid to the dual oriented matroidM(V∗) [LV]. For an oriented matroid
M(V) given by a vector collectionV, the extension ofV by a single elementvn+1

will assign the symbol sign(C · vn+1) to each cocircuitX of M(V), whereC is the
ray corresponding toX. The cocircuit signatureσvn+1: C∗ → {+,−,0} defined in this
manner is one example of alocalization. However, many oriented matroids possess
single-element extensions which are notrealizable, and consequently have localizations
which do not arise in this manner. Las Vergnas’ theorem states that a cocircuit signature
σ : C∗ → {+,−,0} is a localization for the oriented matroidM if and only if the
restrictionσ |R is a localization for everyrank2contraction RofM.A rank 2 contraction
of a realizable oriented matroid may be thought of as a collection of cocircuits whose
corresponding rays are all contained in a rank 2 subspace arising as the intersection of
elements ofA(V).

Theorem 2.4. LetM be an oriented matroid, and let

σ : C∗ → {+,−,0}

be a cocircuit signature, satisfyingσ(−Y) = −σ(Y) for all Y ∈ C∗. Then the following
statements are equivalent:

(1) σ is a localization: there exists a single-element extensioñM ofM such that

{(Y, σ (Y))|Y ∈ C∗} ⊆ C̃∗.

(2) σ defines a single-element extension on every contraction ofM of rank2.That is,
the signature on every rank2 contraction is one of the types I, II , and III shown in
Fig. 8.

(3) The signatureσ produces none of the three excluded subconfigurations(minors)
of rank2 on three elements, as given by Fig. 9.

These theorems are the principal tools used in the classification. For each of the major
results, we:

• Provide a description of the vector setV in a certainnormal form .
• Classify thecircuits ofM(V), which are both the minimal dependences among

elements ofV and the cocircuits ofM(V∗).
• Describe the resultingrank 2 contractions ofM(V∗).
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Fig. 8. The three types of allowable cocircuit signature for a rank 2 oriented matroid.

• Use the obstructions given in Theorem 2.4 to determine necessary and sufficient
conditions for a cocircuit signature to be alocalization.
• Express the conditions in terms ofbijections to tableaux (or other combinatorial

objects) for which enumeration formulas are known.
• Comparethis total to the number of coherent tilings, using Theorem 2.2 and results

from the author’s thesis [Bai], available online or upon request.
• Give minimalincoherent zonotopesfor each infinite family.

For the remainder of the paper, the termtiling means a rhombohedral tiling. Such
tilings correspond touniform localizationsσ, those which mapC∗ to {+,−}.

3. Coherent 3-Zonotopes

3.1. Introduction

In 1996 Edelman and Reiner [ER] gave a completely combinatorial classification of
coherent 2-zonotopesZ = Z(V) in terms of the underlying setSV = (v1, v2, . . . , vm)

and the correspondingm-tuple(r1, r2, . . . , rm) of vector multiplicities. The work in this
section begins such a classification for 3-zonotopes. Specifically, we provide a completely
combinatorial classification of coherent 3-zonotopesZ = Z(V) for those vector setsV
with |SV | ≤ 5.

Fig. 9. The three forbidden rank 2 cocircuit signatures.
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The oriented matroid equivalence classes forZ(V) with |SV | ≤ 5 are as follows:

• |SV | = 4, which yields theMacMahon3-zonotopes.
• |SV | = 5 and the elements ofSV are in general position.
• |SV | = 5 andSV contains exactly one 3-subset of coplanar vectors.
• |SV | = 5 andSV contains exactly two 3-subsets of coplanar vectors, with exactly

one vector common to each 3-subset.

The remaining possibilities, in which four or five vectors inSV are coplanar, reduce
to the rank 2 case. The technique used is quite straightforward; given ad-zonotopeZ:

(a) Enumerate all tilings ofZ using the Bohne–Dress Theorem (Theorem 2.3) and
Las Vergnas’ localization theorem (Theorem 2.4).

(b) Enumerate thecoherent tilings of Z using the result of Billera and Sturmfels
(Theorem 2.2), along with techniques for counting chambers in hyperplane ar-
rangements.

(c) Compare.

Although this is the same technique employed by Edelman and Reiner, they had the
advantage that the tiling counts for step (a) were already extant in the literature. This is
the first time that the computational technique in step (a) has been explained, together
with sample computations. It is also, so far as we know, the first time the Las Vergnas
result has been used to solve such a problem.

Enumerating thecoherent tilings of ad-zonotopeZ = Z(V) is relatively straight-
forward. By Theorem 2.2, the set of all coherent tilings ofZ(V) is in bijective corre-
spondence with the chambers ofD(V). In all cases considered below,D(V) is freewith
exponents b1,b2, . . . ,bm. Terao showed [Te] that these exponents are the roots of the
characteristic polynomialχ(D(V), t) ofD(V). Zaslavsky [Za] showed that the number
of chambers in an arrangementA is computed by|χ(A,−1)|. Thus we have

Theorem 3.1. If D(V) is a free arrangement, then the number of coherent tilings of
Z(V) is counted by ∏

(1+ bi ),

where{b1,b2, . . . ,bm} are the exponents ofD(V).

In the cases presented below,D(V) lies in one of two infinite classes of free arrange-
ments. One of these families was shown to be free by Athanasiadis [At]. The proof that
the other family is free, together with an explanation linking Athanasiadis’ work to the
following results, may be found in [Bai].

3.2. Coherent MacMahon Zonotopes

A d-zonotopeZ(V) is aMacMahonzonotope ifSV consists ofd + 1 distinct vectors in
general position. It is clear thatSV is projectively equivalent to theframein Rd, namely
the standard basis vectors together with the vector(1,1, . . . ,1). Thus any MacMahon
d-zonotopeZ is uniquely determined by the multiplicities of its generating vectors, and
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it is reasonable to discuss “the”{r1, r2, . . . , rd+1} MacMahond-zonotope, whereSV is
the frame.

Theorem 3.2. The MacMahon{r1, r2, . . . , rd+1} d-zonotope Z is coherent if and only
if

• ri ≥ 2 for at most three indices i, and
• ri ≥ 3 for at most two indices.

Furthermore, the MacMahon{r, s,2,1, . . . ,1} d-zonotope has exactly

2(r + s+ 1)! (r + s)!

(r + 1)! (s+ 1)!

tilings, and the MacMahon{r, s,1, . . . ,1} d-zonotope has exactly(r + s)! tilings.

We begin by showing that the set ofall tilings of the{r1, r2, . . . , rd+1} MacMahon
d-zonotope is in bijection with the number of ways of stacking unit(d+ 1)-hypercubes
“flush into the corner” of anr1× r2× · · · × rd+1 hyperbox.

Proposition 3.3. The collection of tilings of the{r1, r2, . . . , rd+1}MacMahon d-zonotope
is in bijection with the set

J
(

d+1∏
i=1

[ri ]

)
×

d+1∏
i=1

Sri ,

where[ri ] denotes the poset chain of length ri , J (P) denotes the set of order ideals of
the poset P, andSri is the symmetric group on ri elements.

The product of symmetric groups appears because two tilingst1, t2 which “look” the
same are considered distinct if one is obtained from the other by reordering parallel
zones. We continue to enumerate tilings in this manner for the remainder of the paper.

We present a somewhat detailed proof, in order to provide a template for the more
difficult results which follow.

Normal Form. Order the elements ofSV such thatv1, v2, . . . , vd are the standard basis
vectors forRd, andvd+1 = −(1,1, . . . ,1). ThenV may be represented by thed × n
matrix:

V =



r1︷ ︸︸ ︷
1 1 1 · · · 1
0 0 0 · · · 0
...
...
... · · · ...

0 0 0 · · · 0
0 0 0 · · · 0

r2︷ ︸︸ ︷
0 0 0 · · · 0
1 1 1 · · · 1
...
...
... · · · ...

0 0 0 · · · 0
0 0 0 · · · 0

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

rd︷ ︸︸ ︷
0 0 0 · · · 0
0 0 0 · · · 0
...
...
... · · · ...

0 0 0 · · · 0
1 1 1 · · · 1

rd+1︷ ︸︸ ︷
−1 −1 −1 · · · −1
−1 −1 −1 · · · −1
...

...
... · · · ...

−1 −1 −1 · · · −1
−1 −1 −1 · · · −1


.
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Circuits. A minimal linear dependence among vectors inV is either

(a) the difference of two (identical) vectors in the same block, or
(b) the sum ofd + 1 vectors, one from each block.

Whenever vectors inV occur with multiplicity greater than one, dependences of type (a)
will occur. These dependences can be easily described in terms ofbraid arrangements.
Thebraid arrangement An−1 is a rankn−1 arrangement inRn defined by the hyperplanes
normal to

{ei − ej | 1≤ i < j ≤ n},
where{ei } is the collection of standard basis vectors inRn. Let hi denote thei th partial
sum

∑i
j=1 r j (in particular,h0 = 0 andhd+1 = n). We defineJi = 0hi−1× Ari−1×0n−hi .

Then the discriminantal arrangementD(V) has as its set of defining vectors the columns
of

D(V) = (J1 | J2 | · · · | Jd+1 | SA)
where the collectionSA is the set of all possible Cartesian products

∏d+1
j=1 ei j , and{ei j },

1≤ i j ≤ r j , are the standard basis vectors forRr j , 1≤ j ≤ d + 1.

Rank2 Contractions. A rank 2 contractionof a realizable rankl oriented matroid
M = M(V) is a rank 2 subspace of the arrangementA(V) which arises from the
intersection of(l−2) independent elements ofA(V) (here we assumeA(V) is essential).
For any pairX,Y of cocircuits inC∗, defineOX,Y to be the set of indicesi such that
Xi = Yi = 0. Define V∗X,Y to be the set of vectors{vi ∈ V∗ | i ∈ OX,Y}. Then X
and Y define a rank 2 contractionR of the oriented matroidM(V∗) if and only if
dim(span(V∗X,Y)) = n− d − 2, wheren =∑ ri .

Thus in order to determine the rank 2 contractions,V∗ must be computed. We do not
computeV∗ explicitly here, but only describe for the reader an easy method for obtaining
V∗ in order to check the description of the rank 2 contractions. Oriented matroid theory
states that any(n−d)×n matrix which has full row rank with rows pairwise orthogonal
to the rows ofV will serve asV∗. Thus an easy way to obtain an expression forV∗ is to
rewriteV in the form

V = (Id | M) .
ThenV∗ may be written

V∗ = (−MT | I(n−d)
)
.

Finally, we may replace−MT with MT , since doing so onlyreorientsthe correspond-
ing oriented matroid, and does not alter any of the properties of concern to us. When
checking rank 2 contractions, however, it is important to reorder the column vectors in
V∗ to ensure that they correspond to the vector ordering given in thenormal form for V .

Weconsider only rank 2 contractions which contain three or more cocircuits, since
that is the minimum number of cocircuits required for the obstructions in Fig. 9. In the
case ofD(V), the only relevant rank 2 contractions are those which are defined by a
triple of vectors in someJi , or by a triple of vectors, two of which are inSA, and the third
in someJi . See Fig. 10.
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Fig. 10. A rank 2 contraction containing three cocircuits.

HereX,Y ∈ SA, ep − eq ∈ Ji for some 1≤ i ≤ d + 1, and(ep − eq)+ Y = X. For
notational convenience, all future rank 2 contractions will be presented as

X1 ∨ X2 ∨ · · · ∨ Xk

to indicate thatX1, X2, . . . , Xk all lie in a common rank 2 contractionR, and that, for
each triple(i−1, i, i+1), there exist positive scalarsa,bsuch thataXi−1+bXi+1 = Xi .

We say that a cocircuit signatureσ respects Rif σ |R is a localization onR.
LetR0 denote the collection of rank 2 contractions arising from triples of cocircuits

X1 ∨ X2 ∨ X3, whereX1, X2, X3 ∈ Ji for somei, and letR1 denote the collection of
rank 2 contractions of the kind shown in Fig. 10. It is a routine matter to verify that this
catalogues all rank 2 contractions.

Localization. To prove the proposition, we must show that every element inJ (
∏d+1

i=1

[ri ])×
∏d+1

i=1 Sri corresponds to a unique uniform localization onC∗, and that all uniform
localizations are obtained in this manner.

Recall that a uniform localizationσ is simply a cocircuit signatureσ : C∗ → {+,−}
with special properties. Specifically, for each rank 2 contractionR ofM(V∗), σ must
assign a signature to the cocircuits inR in a realizable manner. That is,σ must be a
signature of the type in Fig. 8(III) or, equivalently,σ mustavoid the uniform signature
in Fig. 9.

If σ respects all rank 2 contractions inR0, thenσ induces an ordering on the coor-
dinates ofRri for 1≤ i ≤ d + 1. This ordering is defined by

σ(ep − eq) = + if and only if ep > eq.

Sinceσ respects allR ∈ R0, these pairwise order relations may be extended to a linear
order on the coordinatese1,e2, . . . ,eri (cycles cannot occur). Conversely, it is clear that
every such coordinate ordering corresponds to a cocircuit signatureσ which respects all
R ∈ R0. Thus we may fix an ordering on the coordinates ofRri for eachi and multiply
the localization count byr1! r2! · · · rd+1!. It remains to show that for each coordinate
orderingρ in

∏
Sri , there are

∣∣J (∏[ri ])
∣∣ distinct localizations which induceρ.

Bijection. Without loss of generality, suppose the order relation on the coordinates
of Rri is fixed to beep > eq if and only if p < q. Then each cocircuitXi ∈ Ji has
σ(Xi ) = + for all 1≤ i ≤ d + 1. Consequently, when considering rank 2 contractions
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inR1, it follows that

σ(ep − eq) = + implies σ(X) ≥ σ(Y) (∗)
(in the ordering+ > 0 > −), whereep − eq, X, andY are as in Fig. 10. To see how
this yields a bijection with elements ofJ (

∏d+1
i=1 [ri ]), we adopt a different notation for

the elements ofSA. RecallSA is the collection of all Cartesian products of the form

d+1∏
j=1

ei j ,

whereei j is any standard basis vector inRr j . There is an obvious bijection between
elements ofSA and ordered(d+1)-tuples(u1,u2, . . . ,ud+1),where 1≤ ui ≤ ri denotes
the position of a unique nonzero entry among the coordinates in the interval [hi−1+1, hi ].
Then the condition(∗) is equivalent to the statement:

σ((u1,u2, . . . ,ui−1,u
′
i ,ui+1, . . . ,ud+1))

≥ σ((u1,u2, . . .ui−1,ui ,ui+1, . . . ,ud+1)) if and only if u′i ≤ ui .

Taking the set of such relations whereui = u′i + 1 for all 1≤ i ≤ d + 1, we obtain the
cover relations for the lattice

∏d+1
i=1 [ri ]. In particular, those cocircuitsX with σ(X) = +

form an order idealI in the lattice. Thus for a fixed orderingρ of the coordinates, each
localizationσ is determined by an order idealI of cocircuits in

∏d+1
i=1 [ri ] satisfying

σ(X) = + for all X ∈ I . This completes the proof of the proposition.

Compare. Since the count in Proposition 3.3 holds for MacMahon zonotopes of any
size and rank, it is a fairly straightforward matter to determine which MacMahon zono-
topes are coherent. SupposeV is an{r, s,2,1,1, . . . ,1}MacMahond-zonotope, where
possiblyr, s ≥ 2. Since the elements ofSV are in general position, it makes no difference
which vectors appear with multiplicity. For such a zonotopeZ, Proposition 3.3 states
that there are

|J ([r ] × [s] × [2])× Sr × Ss × S2|
total tilings of Z, since the additional singleton zones do not contribute any factors to
the count. By MacMahon’s original formula (see p. 120), this number is

(r + s+ 1)! (r + s)!

(r + 1)! (s+ 1)! r ! s!
· 2r ! s! = 2(r + s+ 1)! (r + s)!

(r + 1)! (s+ 1)!
.

The discriminantal arrangement ofZ is projectively equivalent to one of the arrange-
ments studied by Athanasiadis [At], which interpolate between the cone over the braid
arrangement of typeAr+s−1 and the cone over theShi arrangementof type Ar+s−1.

Athanasiadis has shown [At, Theorem 4.1] that this class of arrangements is free with
exponents

{0,1, r + 1, r + 2, . . . , r + s− 1, s+ 1, s+ 2, . . . , r + s}.
By Theorem 3.1, we conclude that all tilings ofZ are coherent.
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By Lemma 3.4, the MacMahon{r, s,1, . . . ,1} d-zonotopeZ′ is coherent as well. All
tilings of Z′ are counted by

|J ([r ] × [s])| · r ! s!,

and it is well known thatJ ([r ] × [s]) has cardinality
(r+s

s

)
.

Incoherent Zonotopes. One nice property ofincoherent zonotopes is that they must
always contain some “minimal” incoherent zonotope.

Lemma 3.4(Bai, Lemma 5.4). The zonotope Z= Z(V) is coherent if and only if
Z′ = Z(V ′) is coherent for every V′ ⊆ V.

Lemma 3.4 is true even ifZ and Z′ are zonotopes of different dimensions. As a
consequence, large infinite families of zonotopes can be dismissed as incoherent once
some few relatively small obstructions are found.

Lemma 3.5. Suppose Z is an{r1, r2, . . . , rd+1}MacMahon d-zonotope. Z is incoher-
ent if ri ≥ 3 for three distinct values of i.

Proof. To show that a localizationσ yields an incoherent tiling requires proving that
no chamber ofD(V) corresponds toσ. If C is a chamber ofD(V) with l ∈ C, then the
signatureσl induced byl is given byσl (Xi ) = sign(l · ci ), whereci is thei th column
of D(V).

If Z is the{r1, r2, . . . , rd+1} MacMahond-zonotope withri ≥ 3 for three distinct
values ofi, then by Proposition 3.35[ri ] contains a sublattice isomorphic to [3]× [3]×
[3].Therefore assume without loss of generality that5[ri ] = [3]×[3]×[3] and consider
the class of localizationsσ which induce the order on coordinates within eachRri of
ep > eq if and only if p < q. There is a tiling/localizationσ corresponding to the order
ideal

I = 〈(1,3,2), (2,1,3), (3,2,1), (2,2,2)〉.
inJ ([3]×[3]×[3]) (this is the tiling shown in Fig. 1). That is,σ(X) = + for all X ∈ I . If
σ is coherent, then there is a chamberC inD(V) such that for everyl = (c1, c2, . . . , c9)

in C, we may take inner productsl · X with X ∈ I to conclude:

c1+ c6+ c8 > 0 corresponding to(1,3,2)
c2+ c4+ c9 > 0 corresponding to(2,1,3)
c3+ c5+ c7 > 0 corresponding to(3,2,1)

⇒
∑

ci > 0.

However, sinceσ may also be defined by the complementary filter

I c = 〈(3,1,2), (2,3,1), (1,2,3)〉,

a similar set of inequalities implies
∑

ci < 0. Thus no chamber of the discriminantal
arrangement corresponds to the localizationσ, and soσ is an incoherent tiling/
localization.



Coherence and Enumeration of Tilings of 3-Zonotopes 133

A similar argument, this time using the order ideal and complementary filter

I = 〈(1,1,2,2), (2,2,1,1), (2,1,1,2)〉,
I c = 〈(1,2,1,2), (2,1,2,1), (1,2,2,1)〉

gives

Lemma 3.6. Suppose Z is an{r1, r2, . . . , rd+1}MacMahon d-zonotope. Z is incoher-
ent if ri ≥ 2 for four distinct values of i.

Proposition 3.3 and Lemmas 3.5 and 3.6 together prove Theorem 3.2.

3.3. The Case of d+ 2 Vectors in General Position inRd

Let Z = Z(V) be ad-zonotope such that thed+2 elements ofSV are in general position.
Since the oriented matroidM(V∗) of the dual vector configurationV∗ has rank 2, there
is only one oriented matroid equivalence class of such zonotopes. Therefore, any choice
of coordinates will give an identical result when enumerating the coherent tilings ofZ.
We assume that the underlying setSV for the generating multisetV of Z is the frame
together with(1,a1,a2, . . . ,ad−1),where 1> a1 > a2 > · · · > ad−1 ≥ −1, andai 6= 0
for all i .Up to projective equivalence, any collection ofd+2 vectors in general position
in Rd must be of this form, since coordinates can be chosen in such a way thatd+ 1 of
the vectors constitute the frame inRd, and then the final vector may be scaled to satisfy
the given inequalities.

In this section we prove that all such zonotopes are coherent if at most one generating
vector has multiplicityr > 1, and argue that this is a complete classification of coherent
d-zonotopes in this class ford = 3.

Theorem 3.7. Suppose Z= Z(V) is a d-zonotope such thatSV consists of d+2vectors
in general position. Then Z is coherent if at most one of the generating vectors appears
with multiplicity r > 1. If Z satisfies this condition, then the tilings of Z are enumerated
by

2(d + r + 1)!

(d + 1)!

Furthermore, if d = 3, then this condition is both necessary and sufficient to characterize
when Z is coherent.

Proof. Again, since the elements ofSV are in general position, it makes no difference
which vector appears with multiplicity. We choose to have(1,a1,a2, . . . ,ad−1) appear
with multiplicity.
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Normal Form.

V =



1 0 0 · · · 0
∣∣ 1

0 1 0 · · · 0
∣∣ 1

0 0 1 · · · 0
∣∣ 1

...
...

...
. . .

...

∣∣∣∣ ...

0 0 0 · · · 1
∣∣ 1

r︷ ︸︸ ︷
1 1 · · · 1
a1 a1 · · · a1

a2 a2 · · · a2
...

... · · · ...

ad−1 ad−1 · · · ad−1


.

Circuits. The discriminantal arrangementD(V) is the(r +d+1)×(1+r (d+1)+(r2))
matrix

D(V) = (SX | B0 | B1 | Ba1 | Ba2 | · · · | Bad−1 | A′r−1)

whereSX denotes the minimal dependence among vectors in the frame,Bx is the(r +d+
1)×r matrix whose columns are all possible products(1−x,a1−x,a2−x, . . . ,ad−1−
x, x)×−ei for 1≤ i ≤ r, andA′r−1 denotes the Cartesian product of0∈ Rd+1 with the
braid arrangementAr−1.

Rank2 Contractions. Let Xx denote a cocircuit inBx for x ∈ {0,1,a1, . . . ,ad−1}, and,
in particular, letXx, j denote the unique cocircuit inBx with nonzero entry in position
d + j + 1, so that j ∈ [1, r ]. Let ep − eq denote the appropriate cocircuit inA′r−1. For
the moment, assume 1> a1 > a2 > · · · > ad−1 > 0. The following is a complete list
of rank 2 contractions:

R0 = {(ep − em) ∨ (ep − eq) ∨ (em − eq) | p,q,m ∈ [d + 2,d + r + 1]},
R1 = {X1, j ∨ Xa1, j ∨ Xa2, j ∨ · · · ∨ Xad−1, j ∨ X0, j ∨ SX | 1≤ j ≤ r },
R2 = {(ep − eq) ∨ Xx,q ∨ Xx,p | x ∈ {0,1,a1, . . . ,ad−1}

and p,q ∈ [d + 2,d + r + 1]}.
In the cases where someai are negative, a similar collection of rank 2 contractions

arises. As before, any localizationσ, when restricted to the rank 2 contractions inR0,

induces a linear order on the finalr coordinates. Thus we again restrict attention to those
localizations which haveσ(ep − eq) = + for all cocircuits corresponding to vectors in
A′r−1, and multiply the final count byr !.

Localization and Bijection. The linear order imposed on the coordinates by the rank 2
contractions inR0, together with the collectionR2, impliesσ(Xx,i ) ≤ σ(Xx, j ) if and
only if i < j, within eachBx. Furthermore, assumeσ(SX) = +. This requires doubling
the final count.

The rank 2 contractions inR1 induce an order relation

σ(X1, j ) ≤ σ(Xa1, j ) ≤ σ(Xa2, j ) · · · ≤ σ(Xad−1, j ) ≤ σ(X0, j )

among cocircuits in distinct blocks with the same nonzero entry in the finalr coordinates.
Thus all information aboutσ may be completely specified by a(d + 1) × r tableauL
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Fig. 11. The tableau of cocircuit signatures ford = 3, 1> a1 > a2 > 0.

with rows indexed by 1,a1,a2, . . . ,ad−1,0 and columns indexed by 1,2, . . . , r. Entry
Lx, j is σ(Xx, j ). The conditions from the collectionsR1 andR2 imply that the entries
of L must weakly increase along rows and down columns (see Fig. 11, in which shaded
boxes correspond to cocircuitsX with σ(X) = −). Thus the number of localizationsσ
is given by the number of such arrays, which is

(r+d+1
r

)
.When this number is multiplied

by 2r ! to allow for the possibility thatσ(SX) = − and for other orderings of the finalr
coordinates, we obtain the tiling count given in the statement of the theorem.

Compare. As for coherent tilings, it happens that in this caseD(V) is supersolvable
with exponents{1,d+1,d+2, . . . ,d+r } [Bai, Lemma 6.2]. Supersolvable arrangements
are a proper subclass of free arrangements, first defined by Stanley [St1]. ThusD(V)
has

2(r + d + 1)!

(d + 1)!

chambers.

Incoherent Zonotopes. All that remains is to demonstrate thatZ = Z(V) has an inco-
herent tiling whend = 3 and exactly two of the generating vectors forZ have multiplicity
two or greater. We know of no elegant proof of this fact. However, this is a sufficiently
small obstruction that sets of tilings and coherent tilings may be enumerated using sym-
bolic manipulation packages like MAPLE and GAP [S+] (code available from the author
upon request). Whend = 3 and exactly two vectors have multiplicity two,Z has 632
total tilings. The total number of coherent tilings is either 616, 620, or 624, depending
on the choice of values for the parametersa1 anda2, but is always less than 632. By
Lemma 3.4, this completes the proof.

3.4. Five Vectors inR3 Containing a Single Three-Point Line

Theorem 3.8. Let Z= Z(V) be a3-zonotope such that the arrangementA(SV) is pro-
jectively equivalent to the projectivized picture given in Fig. 12.Then Z is coherent if and
only if at most two of the generating vectors have multiplicities r, s> 1, and these vec-
tors with multiplicity correspond to one of the pairs{(1,3), (1,5), (2,3), (2,5), (3,4),
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Fig. 12. Five vectors inR3 with a single three-point line.

(4,5)}. If Z satisfies this condition, then the tilings of Z are enumerated by

2(r + s+ 1)! (r + s+ 2)!

(s+ 2)! (r + 2)!
.

The reason for the apparent asymmetry between hyperplanes 3, 4, and 5 is that
hyperplanes 3 and 5 “separate” hyperplane 4 from the intersection of hyperplanes 1 and
2. More precisely, letHi denote thei th hyperplane fori = 1, . . . ,5, and letl denote the
intersection ofH1 andH2. Then anypath(point set homeomorphic to the unit interval)
originating atl and terminating atH4 must also contain a point in eitherH3 or H5.

Proof.

Normal Form. Any arrangement in this class may be realized by the frame together
with the vector(a,1,1),wherea 6= 0,1, and so the arrangement in Fig. 12 corresponds
to

SV = ((0,0,1), (0,1,0), (1,0,0), (1,1,1), (a,1,1)).
For the rest of this section, we assumea < 1.The proof whena > 1 is similar. (However,
be careful! Whena > 1, H4 andH5 switch position.) By symmetry, it is clear that there
are two cases: where vectors 2 and 5 have multiplicity, and where vectors 4 and 5 have
multiplicity. We present the proof of the second case; the proof of the first case is similar.

Circuits. The vector(1,1,1) occurs with multiplicityr and the vector(a,1,1) occurs
with multiplicity s. ThusD(V) is given by the(r + s+ 3)× [rs+ 1

2(r + s)(r + s+ 1)]
block matrix

D(V) =
B1 B2 B3 B4 0 0

Ir 0 Ir a Ir Ar−1 0
0 −Is −× Is −× Is 0 As−1

 ,
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where

B1 =
−1 · · · −1
−1 · · · −1
−1 · · · −1

, B2 =
1 · · · 1

1 · · · 1
a · · · a

,

B3 =
 0 · · · 0

0 · · · 0
a− 1 · · · a− 1

, B4 =
1− a · · · 1− a

1− a · · · 1− a
0 · · · 0


with the necessary row lengths,Ar−1 andAs−1 are the matrices for the braid arrangements
of rankr −1 ands−1, respectively, and the block pairsIr ×−Is andaIr ×−Is denote all
possible Cartesian products of basis vectorsei or aei ∈ Rr with basis vectors−ej ∈ Rs,

respectively.

Rank2 Contractions. The columns ofD(V) may be partitioned into six blocks in the
obvious way, from left to right. LetC∗i denote the collection of cocircuits arising from the
columns in thei th block, and letXi

j,k denote the cocircuit in thei th block with nonzero
entries in positionsj + 3 andk+ r + 3, so that j ∈ [1, r ] andk ∈ [1, s]. Cocircuits in
C∗1 andC∗2 will be denoted byX1

j = X1
j,0 andX2

k = X2
0,k, respectively.

The reader can verify that the following is a complete list of rank 2 contractions:

R0 = {(ep − em) ∨ (ep − eq) ∨ (em − eq) | p,q,m ∈ [4, r + 3]

or p,q,m ∈ [r + 4, r + s+ 3]},
Ri

1 = {Xi
j,p ∨ Xi

j,q ∨ (ep − eq) | p,q ∈ [r + 4, r + s+ 3] and j ∈ [0, r ]}
for i = 2,3,4,

Ri
2 = {Xi

q,k ∨ Xi
p,k ∨ (ep − eq) | p,q ∈ [4, r + 3] andk ∈ [0, s]}

for i = 1,3,4,

R3 = {X1
j ∨ X3

j,k ∨ X4
j,k ∨ X2

k} if 1 > a > 0.

A similar collectionR3 arises for other possible values ofa.

Localization and Bijections. As usual, when a localizationσ is restricted toR0, it
corresponds to a permutation inSr×Ss.We assume the ordering to beσ(ep−eq) = + for
p < q, and multiply the final count byr ! s!. This ordering, together with the collections
Ri

1 andRi
2, implies

σ(Xi
j,p) ≤ σ(Xi

j,q) for r + 4≤ p < q ≤ r + s+ 3,

and

σ(Xi
p,k) ≥ σ(Xi

q,k) for 4≤ p < q ≤ r + 3.

The signatures of cocircuits inC∗3 andC∗4 may each be entered into anr × s tableau
of the kind given in Fig. 13, with certain restrictions. The collectionsR3

1,R3
2,R4

1, and
R4

2 dictate that the signatures for each ofC∗3 andC∗4 be weakly increasing along rows and
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Fig. 13. The tableau of cocircuit signatures for cocircuits inC∗3 or C∗4.

weakly decreasing down columns. In Fig. 13, the path running from the upper left corner
to the lower right delineates the boundary between signatures+ and signatures−.

In particular, the above inequalities hold for the cocircuits inC∗1 andC∗2 . Letα ∈ [0, r ]
be the greatest index such thatσ(X1

α) = + (if σ(X1
j ) = − for all j, thenα = 0), and

let β ∈ [0, s] be the greatest index such thatσ(X2
β) = −. The signatures which have

α < j ≤ r and 1≤ k ≤ β must all be−, by consideration of the collectionR3, and
similarly the signatures which have 1≤ j ≤ α andβ < k ≤ s must be+.

The pair of tableaux forC∗3 andC∗4 account for all of the information in the rank
2 contractions except for the relationship betweenσ(X3

j,k) andσ(X4
j,k) given by the

collectionR3. When 1≤ j ≤ α and 1≤ k ≤ β, the inequality

+ = σ(X1
j ) ≥ σ(X3

j,k) ≥ σ(X4
j,k) ≥ σ(X2

k) = −
holds, so in particularσ(X3

j,k) ≥ σ(X4
j,k). Similarly whenα < j ≤ r andβ < k ≤ s,

the collectionR3 impliesσ(X3
j,k) ≤ σ(X4

j,k). Thus all information given by the rank
2 contractions may be encoded by superimposing the tableaux forC∗3 andC∗4 upon one
another and enumerating the resulting pairs of paths in anr × s tableaux. That is, we
must enumerate allr × s tableaux which contain a pair of monotonically decreasing
paths from upper left to lower right, paths which may be concurrent with one another
at points, but cross only once at a distinguishedroot defined byα andβ (see Fig. 14).
Elnitsky [El] has enumerated the collection of such paths in his thesis. There are

2(r + s+ 1)! (r + s+ 2)!

r ! s! (r + 2)! (s+ 2)!

such tableaux. Multiplying this count by the factorr ! s! yields the count given in the
statement of the theorem.

Compare. To count the coherent tilings, the reader can verify thatD(V) is projectively
equivalent to the(r + s)× [rs+ 1

2(r + s)(r + s+ 1)] block matrix

D(V) ∼ (Ar+s−1|Ir+s|aIr ×−Is),
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Fig. 14. A tableau which encodes all information from the rank 2 contractions.

where, as above, the notationaIr × −Is denotes all possible Cartesian products of
elementsaei ∈ Rr with elements−ej ∈ Rs (note that all columns ofD(V) are distinct
sincea 6= 0,1). This arrangement is free with exponents

{1, r + 2, r + 3, . . . , r + s, s+ 2, s+ 3, . . . , r + s, r + s+ 1}
(see Corollary 7.6 of [Bai]), and so, consequently,Z has the number of coherent tilings
given in the statement of the theorem.

Incoherent Zonotopes. It only remains to demonstrate thatZ has an incoherent tiling
in those cases for which a pair of vectors with multiplicityr, s > 1 is not one of the
pairs listed in the statement of the theorem. Again, we know of no elegant proof of this
fact. However, by the use of the programs MAPLE and GAP [S+], it is possible to show
that if vectors 1 and 2 occur with multiplicity two, and all other vectors are singleton,
thenZ has 400 total tilings, 384 of which are coherent. If the multiplicities are placed
on any other forbidden pair, thenZ has 304 total tilings, either 296 or 300 of which are
coherent, depending on the choice of value fora. This fact, together with Lemma 3.4
finishes the proof.

Itis interesting to note that when the multiset of multiplicities is{2,2,1,1,1} and the
vectors with multiplicity two are any forbidden pair other than{1,2}, thenD(V) is free
with exponents{1,4,4,5} (unlessa = 1

2). This is one of the few known counterexamples
to the tempting but false conjecture that ifD(V) is free, thenZ(V) is coherent.

3.5. Five Vectors inR3 Containing Two Three-Point Lines

Finally, we consider the case in which the elements ofSV lie in two intersecting planes,
P1, P2,with a single vectorv, called thecommon vector, common to each. The remaining
vectors, theframe vectors, may naturally be partitioned into pairs, calledpartnerships,
such that the two vectorsv1, v2 of a partnership define a rank 2 space containing the



140 G. D. Bailey

Fig. 15. Five vectors lying on two three-point lines inR3.

common vector. For example, in Fig. 15, 4 is the common vector, while the frame vectors
1,2,3,5 form the partnerships{1,2} and{3,5}. This will complete the classification of
coherent 3-zonotopesZ = Z(V) with |SV | ≤ 5.

Theorem 3.9. Let Z= Z(V) be a3-zonotope such thatSV is as given in Fig. 15. Z is
coherent if and only if at most two frame vectorsv1, v2 have multiplicity r, s ≥ 3, some
frame vector occurs with multiplicity one, and

(1) If v1, v2 form a partnership, then all other vectors, including the common vector,
must have multiplicity one. In this case, the tilings of Z are enumerated by

2(r + s)! (r + s+ 1)!

(r + 1)! (s+ 1)!
.

(2) If v1, v2 do not form a partnership, then the common vector may occur with
arbitrary multiplicity t, and the multiplicities of the remaining frame vectors must
be at most two and one.
(a) In the case that the multiplicities are{r, s, t,1,1}, the tilings of Z are enu-

merated by

(r + s+ t)!.

(b) In the case that the multiplicities are{r, s, t,2,1}, such that the vectorv3 with
multiplicity two forms a partnership with the vectorv1 with multiplicity r, the
tilings of Z are enumerated by

2(r + s+ t)! (r + s+ t + 1)!

(r + 1)! (s+ t + 1)!
.

Proof of Case(1).

Normal Form. One advantage to the restricted position of the vectors in this case is that
there is, up to projective equivalence, only one such vector configuration inR3. Thus for
the remainder of this section, set

SV = ((0,0,1), (1,1,1), (1,0,0), (1,1,0), (0,1,0)).
Let (0,0,1) occur with multiplicityr and(1,1,1) occur with multiplicitys.
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Circuits. The discriminantal arrangementD(V) is given by the(r + s+ 3)× [2rs+(r
2

)+ (s
2

)+ 1] block matrix:

D(V) =
 Ir Ir Ar−1 0 0
−× Is −× Is 0 As−1 0
B1 B2 0 0 B3

 ,
where

B1 =
1 · · · 1

0 · · · 0
1 · · · 1

 , B2 =
0 · · · 0

1 · · · 1
0 · · · 0

 , B3 =
 1
−1

1

 ,
and all other entries are as described previously.

Rank2 Contractions. As before, partition the cocircuits arising fromD(V) into col-
lectionsC∗1, C∗2, C∗3 C∗4 from left to right, and denote the cocircuit corresponding to the
rightmost vector bySX. As before, letXi

j,k denote the cocircuit corresponding to the
vector inC∗i with nonzero entries in positionsj andr + k, wherei = 1 or 2, j ∈ [1, r ],
andk ∈ [1, s]. The reader may verify that the following is a complete list of rank 2
contractions:

R0 = {(ep − em) ∨ (ep − eq) ∨ (em − eq)|p,q,m ∈ [1, r ]

or p,q,m ∈ [r + 1, r + s]},
Ri

1 = {Xi
q,k ∨ Xi

p,k ∨ (ep − eq)|1≤ p < q ≤ r, k ∈ [1, s]} for i = 1,2,

Ri
2 = {Xi

j,p ∨ Xi
j,q ∨ (ep − eq)| j ∈ [1, r ],1≤ p < q ≤ s} for i = 1,2,

R3 = {X2
j,k ∨ X1

j,k ∨ SX| j ∈ [1, r ], k ∈ [1, s]}.

As usual, the elements ofR0 correspond to an element inSr × Ss. So again we
enumerate all signaturesσ which fix σ(ep − eq) = + for 1 ≤ p < q ≤ r and for
r + 1 ≤ p < q ≤ r + s, and alsoσ(SX) = +. This contributes a factor of 2r ! s! to the
final count.

Localization and Bijection. As in the last section, the cocircuit signatures for cocircuits
in C∗1 andC∗2 may be entered inr ×s tableaux. The collectionsRi

1 require that the entries
in each tableau must weakly decrease down columns, and the collectionsRi

2 require
that the entries in each tableau must weakly increase along rows. Thus the cocircuit
signatures for the collectionsC∗i , for i = 1,2, are encoded by a tableau like the one in
Fig. 16.

All that remains is to take into account the elements ofR4. Sinceσ(SX) = +, it
follows thatσ(X2

j,k) ≤ σ(X1
j,k) for all pairs{ j, k}. Thus by superimposing the tableau

for C∗1 on the tableau forC∗2, all information given by the rank 2 contractions may be
encoded in a singler ×sarray containing two noncrossing paths from upper left to lower
right. The collection of all possible such noncrossing paths is enumerated by

(r + s+ 1)! (r + s)!

r ! s! (r + 1)! (s+ 1)!
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Fig. 16. The tableau of cocircuit signatures for cocircuits inC∗1 or C∗2.

(see Section 2.7 of [St2]). Multiplying by 2r ! s! gives the count in the statement of the
theorem.

Compare. As for the coherent tilings,D(V) is again projectively equivalent to an
Athanasiadis-type arrangement which is free with exponents

{0,1, r + 1, r + 2, . . . , r + s− 1, s+ 1, s+ 2, . . . , r + s}
[At, Theorem 4.1]. Thus Theorem 3.1 completes the proof of case (1).

Proof of Case(2).

Normal Form. Assume the vector(1,0,0) appears with multiplicityr, (1,1,1) ap-
pears with multiplicitys, (1,1,0) appears with multiplicityt, and(0,1,0) appears with
multiplicity two.

Circuits. After some row swapping, the discriminantal arrangementD(V) is the(r +
s+ t + 3)× ((r2)+ (s

2

)+ (t
2

)+ 2r t + 2rs+ st+ 1) block matrix

D(V) =


Ar−1 0 0 Ir Ir Ir Ir 0 0

0 As−1 0 0 0 −× Is −× Is Is 0
0 0 At−1 −× It −× It 0 0 −× It 0
0 0 0 B1 B2 B3 B4 B5 B6

 ,
where

B1 =
0 · · · 0

1 · · · 1
0 · · · 0

 , B2 =
0 · · · 0

0 · · · 0
1 · · · 1

 , B3 =
1 · · · 1

1 · · · 1
0 · · · 0

 ,

B4 =
1 · · · 1

0 · · · 0
1 · · · 1

 , B5 =
−1 · · · −1

0 · · · 0
0 · · · 0

 , B6 =
 0

1
−1

 ,
and all other entries are as described above.
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Rank2 Contractions. As above, the cocircuits arising from the column vectors ofD(V)
may be partitioned in a natural way into eight classesC∗1, . . . , C∗8, with the final, single
cocircuit denoted bySX. Let Xi

j,k,l denote the cocircuit vector inC∗i with nonzero entries
in positions j, r + k, andr + s+ l , with j ∈ [1, r ], k ∈ [1, s], andl ∈ [1, t ]. If some
cocircuit has a zero entry in all positions in the interval [1, r ], for example, then set
j = 0. So all elements ofC∗7 are written in the formX7

0,k,l , and similarly for otherC∗i .
The reader may verify that the following is a complete list of rank 2 contractions:

R0 = {(ep − em) ∨ (ep − eq) ∨ (em − eq)|p,q,m ∈ [1, r ] or [r + 1, r + s]

or [r + s+ 1, r + s+ t ]},
Ri

1 = {Xi
q,k,l ∨ Xi

p,k,l ∨ (ep − eq) | p,q ∈ [1, r ]} for i = 4,5,6,7,

Ri
2 = {Xi

j,k,p ∨ Xi
j,k,q ∨ (ep − eq) | p,q ∈ [r + s+ 1, r + s+ t ]} for i = 4,5,8,

Ri
3 = {Xi

j,p,0 ∨ Xi
j,q,0 ∨ (ep − eq) | p,q ∈ [r + 1, r + s]} for i = 6,7,

R4 = {X8
0,q,l ∨ X8

0,p,l ∨ (ep − eq) | p,q ∈ [r + 1, r + s]},
Ri

5 = {Xi+1
j,k,l ∨ Xi

j,k,l ∨ SX} for i = 4,6,

Ri
6 = {Xi

j,k,0 ∨ Xi−2
j,0,l ∨ X8

0,k,l } for i = 6,7.

Again, the elements ofR0 define a permutation inSr × Ss × St . So we enumerate
those localizationsσ which fix σ(ep−eq) = + for p < q andσ(SX) = +, and multiply
this count by 2r ! s! t !.

Localization and Bijections. Once again, the cocircuit signatures for the cocircuits in
the remaining classesC∗4, . . . , C∗8 may be entered in tableaux with entries weakly increas-
ing along rows and weakly decreasing down columns. Furthermore, as in earlier cases,
certain similar cocircuit classes can be paired off, with their tableaux superimposed upon
one another. The reader can verify that the collection of tableaux in Fig. 17 encodes the
information from all rank 2 contractions exceptR6

6 andR7
6.

If Lr,t , Lr,s, andLs,t encoded the information fromall rank 2 contractions, then the
final count would be obtained by simply enumerating all possible tableaux of each type
and taking the product. However, the information from the rank 2 contractionsR6

6 and
R7

6 still has to be taken into account. It turns out that these rank 2 contractions may be
used to define a bijection between the collection of localizations and a somewhat simpler
collection of tableaux.

Each of the tableauxLr,t and Lr,s may be thought of as a collection of columns,
ordered from left to right. Specifically, each columnh of each tableau may be indexed
with an ordered pair( j1, j2),where j1 is the greatest row index of a cell inh lying above
the dotted path, andj2 is the greatest row index of a cell lying above the solid path. Then
a collection of columns of the same size may be partially ordered by the product partial
order on pairs( j1, j2), namely,( j1, j2) ≤ ( j ′1, j ′2) if and only if j1 ≤ j ′1 and j2 ≤ j ′2. It is
clear that a tableauL contains two noncrossing, monotonically decreasing paths if and
only if the columns ofL define some linear extension of this partial order. Let the columns
of Lr,t be indexed by(α1, α2, . . . , αt ), and the columns ofLr,s by (β1, β2, . . . , βs).
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Fig. 17. The tableaux of cocircuit signatures forZ.

The single pathP in Ls,t defines aninterweavingof the columnsαa ∈ Lr,t and
βb ∈ Lr,s in the following manner. For each unit segmentz of P, give z the labelαl if z
is a horizontal segment adjacent to cells with column indexl , and givez the labelβk if s
is a vertical segment adjacent to cells with row indexk. By following P from the upper
left corner ofLs,t to the lower right and reading off the labels, an interweavingω of the
αa with theβb is obtained which preserves the original linear order for each collection
of columns.

Lemma 3.10. Let σ be a cocircuit signature on the cocircuits of Z(V∗) respecting
the restrictions imposed byR0,Ri

1,Ri
2,Ri

3,R4, andRi
5, and furthermore satisfying

σ(ep − eq) = + for all possible p,q andσ(SX) = +.
Let Lr,t , Lr,s, and Ls,t be as described above. The cocircuit signatureσ respects the

rank 2 contractions ofRi
6 (and thus is a localization) if and only if the interweaving

ω orders the columns of Lr,t and Lr,s in a manner consistent with the partial order
on columns.

Proof. Suppose the pathP in Ls,t is such that the adjacent labelsαl andβk are encoun-
tered in order in a walk from the upper left corner to the lower right corner (they form a
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“northeast corner” inP). In particular, this implies thatσ(X8
0,k,l ) = −. The interweaving

ω impliesαl ≤ βk.

Suppose instead that eitherαl > βk or the two are incomparable under the partial
order on columns. This will happen if and only if the statement

there exists an indexj such thatσ(Xi−2
j,0,l ) > σ(Xi

j,k,0)

holds for at least one ofi = 6 or i = 7. However, ifσ respectsRi
6, then this statement

implies thatσ(X8
0,k,l ) = +, which is a contradiction. This demonstrates the necessity of

the condition in the lemma.
To demonstrate sufficiency, suppose there exist indicesj, k, l such that

σ(Xi
j,k,0) = −, σ (Xi−2

j,0,l ) = +, σ (X8
0,k,l ) = − (∗)

for i = 6 or i = 7. If the cell (k, l ) of Ls,t is bordered byP above and on the right,
thenω impliesαl ≤ βk. If the columnsαl andβk satisfy this relation, then necessarily
σ(Xi−2

j,0,l ) ≤ σ(Xi
j,k,0) for all j and i = 6,7. However, this already contradicts the

assumption (∗).
If the cell (k, l ) is not bordered byP in the manner described above, then it is still

possible to move from the cell(k, l ) to a cell(k′, l ′)which is bordered byP and satisfies a
condition like the one given in(∗).Sinceσ respects all rank 2 contractions exceptRi

6 for
i = 6,7, moving from(k, l ) in the direction of decreasingk and increasingl preserves
the signatures in(∗). Then the condition(∗) for the cell(k′, l ′) yields a contradiction
also. This demonstrates that ifσ is not a localization, then the orderingω will not agree
with the natural ordering on the columns ofLr,t andLr,s.

As a result of Lemma 3.10, we now see that for a given localizationσ, all necessary
information from the rank 2 contractions may be encoded by taking a collection of
tableaux as given in Fig. 17 and interweaving the columns ofLr,t in Lr,s to obtain a
singler × (s+ t) tableauL such that the columns ofL define a linear extension of the
partial order on columns. In particular,L must contain two noncrossing, monotonically
decreasing paths. An example of this interweaving is given in Fig. 18.

Thus the total number of localizations is counted by multiplying the number ofr×(s+
t) tableauxL containing two noncrossing paths by the number of ways of partitioning
the columns of such a tableauL into sets of sizess and t. Again using the result of
Stanley [St2, Section 2.7], this number is

(r + s+ t)! (r + s+ t + 1)!

r ! (r + 1)! (s+ t)! (s+ t + 1)!
· (s+ t)!

s! t !
.

Multiplying this last number by 2r ! s! t ! gives the result in the statement of the theorem.

Compare. To enumeratethe coherent tilings ofZ, theD(V) is an Athanasiadis-type
arrangement which is free with exponents

{0,1, r + 1, r + 2, . . . , r + s+ t − 1, s+ t + 1, s+ t + 2, . . . , r + s+ t}
[At, Theorem 4.1], and soZ has the desired number of coherent tilings as well.
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Fig. 18. The rank 2 contractionsRi
6 define an interweaving of the columns ofLr,t andLr,s.

Next consider the case where two frame vectors have multiplicity one, and the other
multiplicities arer, s, t as in part (2a) of the theorem. By Lemma 3.4, we already know
that Z is coherent. HereD(V) may be written in block form as

D(V) =


Ar−1 0 0 Ir Ir 0

0 As−1 0 −× Is 0 Is

0 0 At−1 0 −× It −× It

0 0 0 B1 B2 B3

 ,
where

B1 =
(

1 · · · 1
1 · · · 1

)
, B2 =

(
0 · · · 0
1 · · · 1

)
, B3 =

(−1 · · · −1
0 · · · 0

)
.

The reader can verify that this arrangement is projectively equivalent to the braid
arrangementAr+s+t−1,which is known to be free with exponents{1,2, . . . , r+s+t−1}.

Incoherent Zonotopes. Finally, we must show thatZ is incoherent in the case that the
multiplicities on its vectors do not satisfy the hypotheses of the theorem. Again, we resort
to brute-force computation in GAP [S+] to show that this is the case.

First, if the vector multiplicities are{3,3,2,1,1} where the vectors with multiplicity
three form a partnership, thenZ has 211,680 tilings, 210,816 of which are coherent.
This gives the necessity of the condition in part (1) of the theorem. Furthermore, if all
frame vectors have multiplicity two and the common vector has multiplicity one, thenZ
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has 25,408 tilings, 23,136 of which are coherent. This demonstrates the necessity of the
condition that one frame vector has multiplicity one. Together, these conditions show
the necessity of the statement that at most two frame vectors may have multiplicities of
three or greater. This completes the proof of the theorem.
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