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Abstract. A polynomial time algorithm is given for deciding, for a given polyominoP,
whether there exists an isohedral tiling of the Euclidean plane by isometric copies ofP. The
decidability question for general tilings by copies of a single polyomino, or even periodic
tilings by copies of a single polyomino, remains open.

1. Introduction

Besides its place among topics in recreational mathematics, polyomino tiling of the
plane is relevant to decidability questions in logic and data storage questions in parallel
processing. Apolyominois a rookwise connected tile formed by joining unit squares
at their edges. We always assume that our polyominoes are made up of unit squares in
the Cartesian plane whose centers are lattice points and whose sides are parallel to the
coordinate axes. A polyomino consisting ofn unit squares is referred to as ann-omino.
Polyominoes were introduced in 1953 by Golomb; his bookPolyominoes, originally
published in 1965 [3], has recently been revised and reissued [5]. See also his survey
article [6] for an overview of polyomino tiling problems.

One of the first questions to arise in the subject was the following: Given a single
polyominoP, can isometric copies ofP tile the plane? It is known that everyn-omino
for n ≤ 6 tiles the plane. Of the 108 7-ominoes, only 4 of them, shown in Fig. 1, do not
tile the plane [8, pp. 501–502]. The following is a long-standing open problem.

Question 1.1. Does there exists an algorithm to determine whether a given polyomino
P tiles the plane?

∗ The first author was partially supported by NSF Grant 9500982.
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Fig. 1. Heptominoes which do not tile the plane.

Golomb [7] has shown that the problem of determining whether an arbitrary finite set
of polyominoes tiles the plane (assuming unlimited copies of each) is equivalent to the
corresponding problem for Wang tiles, a problem known to be undecidable [13]. On the
other hand, there does exist an algorithm for determining whether a single polyomino
tiles the plane by translation [14, Theorem 6.1].

A tiling of the plane by copies of ann-ominoP will be referred to as aP-tiling. For a
tiling T , define thesymmetry groupof T to be the groupG(T ) of isometries of the plane
that preserveT . A P-tiling T is calledisohedralif G(T ) acts transitively on the tiles
in T . A tiling T is periodic if G(T ) contains translations in two linearly independent
directions; otherwiseT is nonperiodic. In the case of a periodic tiling, the group of
translations that preserves the tiling is called thetranslation group. If the translation
group itself acts transitively on the tiles inT , thenT is called alattice tiling.

A lattice tiling is necessarily isohedral and an isohedral tiling is necessarily periodic.
However, as we shall see below, there are polyominoes that admit an isohedral tiling but
no lattice tiling and polyominoes that admit a periodic tiling but no isohedral tiling. A
polyominoP (not a tiling!) is calledaperiodicif there exists aP-tiling, but noP-tiling
is periodic. Figure 2(a) is a portion of a nonperiodic tiling by a 3-omino, but this 3-omino
is not aperiodic since it also has the periodic tiling shown in Fig. 2(b).

Question 1.2. Does there exist an aperiodic polyomino?

In fact, it is an open question whether there exists a single aperiodic tile, polyomino
or not. Penrose [11] has constructed aperiodicsetsof tiles, some of which have as few
as two elements. For example, there are uncountably many tilings of the plane by copies
of Penrose “kites” and “darts”, but no such tiling is periodic. In addition, Penrose has
produced an aperiodic set consisting of three polyominoes [6, Figure 27].

An affirmative answer to Question 1.2 would make Question 1.1 especially deli-
cate. On the other hand, a negative answer to Question 1.2 implies that Question 1.1 is
equivalent to Question 1.3 below. Even so, to our knowledge, no algorithm is known to
determine whether a given polyomino tiles the plane periodically.

Question 1.3. Does there exist an algorithm to determine whether a given polyomino
P tiles the plane periodically?

The following relevant question also appears to be open.
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Fig. 2. Two tilings by a 3-omino.

Question 1.4. Does there exist an integerβ, independent ofn, such that, for every
n-omino P that tiles the plane periodically, there is a periodic tilingT by copies ofP
for which (Z× Z : L) ≤ βn, whereL is the translation subgroup ofG(T )?

Given such aβ, one could devise an algorithm to decide whether a given polyomino
has a periodic tiling. Concerning positive evidence for the existence ofβ, for all the
small examples ofn-ominoes (n < 10) that appear in the literature, if there is a tiling
at all, then there is one with the property that(Z × Z : L) equalsn, 2n, 4n, or 8n.
On the negative side, there exist periodic tilings for which(Z × Z : L)/n is large. For
instance, in [2] there is an example of an asymmetric tiling of a 19× 28 rectangle by a
certain 7-ominoP. By translating this tiling of the rectangle horizontally and vertically
we get a periodic tiling of the plane whose symmetry group is a translation groupL with
(Z × Z : L) = 19 · 28= 76n. For this particularP, though, there is another periodic
tiling with translation groupL ′ such that(Z × Z : L ′) = 14 = 2n. It appears that
Question 1.4 may be difficult to answer.

Klarner [9] defines theorder of a polyominoP to be the smallest number of copies
of P which tile a rectangle. If there is no rectangle which is tiled by copies ofP, then the
order ofP is not defined. It is known that there exist polyominoes of all orders divisible
by 4 [4], and of infinitely many orders congruent to 2 modulo 8 [10]. The following
question remains open.

Question 1.5. Does there exist a nonrectangular polyomino of odd order?

In [12] it is shown that there are no polyominoes of order 3.
If the original problem is restricted to tilings by translations of a polyominoP (no
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Fig. 3. A nonisohedral tiling.

rotations, reflections, or glide reflections allowed), then the subtleties mentioned above
vanish. If there exists a tiling using only translations ofP, then there also exists a lattice
tiling by copies ofP [14, Theorem 5.4]. Several necessary and sufficient conditions for
the existence of a lattice tiling by a polyomino are given in [1]. An efficient algorithm
to determine whether a given polyomino admits a lattice tiling appears in Section 4 of
this paper.

The main result of this paper is an answer to Question 1.1 restricted to isohedral tilings.
In Section 4 we provide a polynomial time algorithm that determines whether a given
polyominoP admits an isohedral tiling of the plane. Note that there exist polyominoes,
such as those in Figs. 4 and 5, which tile the plane isohedrally but admit no lattice tiling.
On the other hand, there also exist polyominoes that tile the plane periodically but do
not admit an isohedral tiling, for instance the 7-omino in Fig. 3.

The basic idea underlying the algorithm is as follows. If an isohedralP-tiling T
exists, we letL denote the translation subgroup ofG(T ). There is a fundamental region
F ⊂ R2 for the action ofL which is the union of a finite number of tiles inT . In fact, we
show in Section 3 that if there is an isohedralP-tiling at all, then there is one such thatF
consists of one, two, or four copies ofP. The tilingT consists of the set of translations
of the copies ofP in F by the translation groupL ≤ Z2; in order for the tiling to be
isohedralL must satisfy certain constraints which depend onF . The algorithm has two
stages. First, it constructs configurations of copies ofP to form F ; second, for each such
F it attempts to construct an appropriate translation subgroupL.

We have implemented the algorithm using the MATLAB package. We found that for
everyn ≤ 6, everyn-omino P admits an isohedral tiling. In fact, for each suchP there
is an isohedral tiling such that the fundamental region for the translation subgroupL
consists of either a single copy ofP or two copies ofP which are mapped to each other
by a 180◦ rotation. The 7-ominoes in Fig. 1 admit no tiling, hence obviously admit no
isohedral tiling. Figure 3 shows a nonisohedral tiling of the plane by a certain 7-omino
P1. In fact, P1 admits both isohedral and nonisohedral tilings. Figure 4(a) is a diagram
from [8, p. 506] of a tiling by a certain 7-ominoP2, a tiling that is claimed to be isohedral.
In fact, this tiling is not isohedral, but there does exists an isohedralP2-tiling shown in
Fig. 4(b). Notice that the fundamental region for this tiling consists of four copies ofP2:
P2 itself, the imageP′2 of P2 under a glide reflection through an axis of slope 1, and the
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Fig. 4. Tilings by a 7-omino: Nonisohedral (a) and isohedral (b) tiling.

images ofP2 andP′2 under a 180◦ rotation. Any fundamental region for an isohedral tiling
by P2 must consists of four such copies. Figure 5 shows a tiling by a certain 8-omino
P3 where the fundamental region consists of four copies ofP3: P3 itself and the images
of P3 under 90◦, 180◦, and 270◦ rotations. For this 8-omino a fundamental region for an
isohedral tiling must consists of four such copies. Forn ≤ 7 there is non-omino which
requires these four rotations to construct an isohedral tiling.

Fig. 5. An isohedral tiling by an 8-omino.
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2. The Symmetry Group of a Polyomino Tiling

We begin by describing the group0 of isometries of the plane that preserve the standard
latticeZ × Z. Any isometry of the plane can be written uniquely in the formg(x) =
ϕ(x) + a, whereϕ is an element of the orthogonal groupO2(R) and a ∈ R2 is a
translation vector. Sinceg preservesZ2 we must haveϕ ∈ D8 anda ∈ Z2, where the
dihedral groupD8 is the group of isometries of the unit square centered at(0,0). This
leads to a homomorphism9: 0→ D8 defined by9(g) = ϕ and an exact sequence

1−→ Z2 −→ 0 −→ D8 −→ 1.

There are three basic categories of lattice-preserving isometries of the plane, namely
translations by an element ofZ2, rotations through an angle of 90◦, 180◦, or 270◦, and
glide reflections. Aglide reflectionis the composition of a reflection with a translation
in the direction of the axis of the reflection. In this terminology a reflection is the special
case of a glide reflection with trivial translation. Ifσ ∈ 0 is a glide reflection, the axis of
σ must be parallel to one of the coordinate axes, or have slope±1. The geometric type
of an element of0 (translation, rotation through a particular angle, or glide reflection
through an axis with a particular slope) is determined by its image inD8.

The group0 can be described in terms of generators and relations as follows. Let
x denote translation by one unit to the right and lety denote translation by one unit
upward. Letr denote the 90◦ counterclockwise rotation about(0,0), and let f denote
the reflection through the line of slope 1 through the origin. Thenx, y, r, f generate0
and satisfy the following relations:

r 4 = f 2 = 1, yxy−1 = x, r xr−1 = y, r yr−1 = x−1,

f x f−1 = y, f y f−1 = x, f r f −1 = r 3.

It follows that0 ∼= Z2oD8 is a semidirect product ofZ2 andD8, and that every element
g ∈ 0 is written uniquely in the formg = xi y j r k f l with 0 ≤ k ≤ 3 and 0≤ l ≤ 1. In
terms of these generators9: 0→ D8 is given by the formula9(xi y j r k f l ) = r k f l .

To help us prove the next proposition we list the ten subgroups ofD8:

Order 8: D8 = 〈r, f : r 4 = f 2 = 1, f r f −1 = r 3〉.
Order 4: 〈r 2, f 〉 ∼= Z2× Z2, 〈r 2, r f 〉 ∼= Z2× Z2, 〈r 〉 ∼= Z4.

Order 2: 〈 f 〉 ∼= Z2, 〈r f 〉 ∼= Z2, 〈r 2 f 〉 ∼= Z2, 〈r 3 f 〉 ∼= Z2, 〈r 2〉 ∼= Z2.

Order 1: {1}.

We say that two such subgroups are geometrically equivalent if there is an automorphism
of D8 which maps one to the other. There are six geometric equivalence classes of
subgroups ofD8; in fact the first two subgroups of order 4 are geometrically equivalent
(generated by a reflection and a 180◦ rotation), and the first four subgroups of order 2
are geometrically equivalent (generated by a reflection).
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Proposition 2.1. LetT be an isohedral P-tiling, and let G≤ 0 be a group that acts
transitively on the tiles inT . Then there is a subgroup H of G that acts simply transitively
on the tiles inT .

Proof. Let P0 be a tile inT and let K ≤ G be the stabilizer ofP0. SinceG acts
transitively on the tiles inT , there is a one-to-one correspondence between the left
cosets ofK in G and the tiles inT , given bygK ↔ g(P0). Therefore it suffices to find a
subgroupH of G whose elements are a complete set of coset representatives forG/K .
Equivalently, we needH K = G andH ∩ K = {1}.

Let ψ : G → D8 denote the restriction toG of 9: 0 → D8. SetG = ψ(G) and
K = ψ(K ). Also let L = ker(ψ) denote the translation subgroup ofG. Suppose there
is H ≤ G such thatH K = G and H ∩ K = {1}; then defineH = ψ−1(H) ≤ G.
Since ker(ψ) = L ≤ H andψ(HK) = ψ(G) we haveHK = G. In addition, since
L ∩ K = {1} we haveH ∩ K = {1}. ThereforeH = ψ−1(H) acts simply transitively
on the tiles inT .

We now consider the question of when there existsH ≤ G which satisfies the
conditions of the preceding paragraph. For anyG ≤ D8, if K = G, then H = {1}
satisfies the conditions, while ifK = {1}, thenH = G works. If G ∼= Z2× Z2, then for
anyK ≤ G we easily findH ≤ G satisfying the conditions. Suppose now thatG = D8.
Then if K ∼= Z2 is generated by a reflectionr i f we let H = 〈r 〉; if K = 〈r 〉 ∼= Z4 we
let H = 〈 f 〉; and if K ∼= Z2 × Z2 we let H = 〈r i f 〉, wherer i f is any reflection not
contained inK .

It remains only to consider the two casesG = 〈r 〉, K = 〈r 2〉 andG = D8, K = 〈r 2〉.
In these cases there is noH ≤ G such thatH K = G andH ∩ K = {1}, so we must use
more delicate methods to constructH . Letρ ∈ G be a 90◦ counterclockwise rotation, and
let τ1, τ2 be the generators for the translation subgroupL of G supplied by Lemma 2.2
below. LetH = 〈τ1τ2, τ1τ

−1
2 , ρ〉; we claim thatH ∩ K = {1}. SinceK = 〈r 2〉 the only

possibility for a nontrivial element inH ∩ K is a 180◦ rotation, which we can write
asη0 = τ a

1 τ
b
2ρ

2. Sinceη0 ∈ H the integersa andb must have the same parity. This
implies η0 = ρ2

0 whereρ0 = τ
(b+a)/2
1 τ

(b−a)/2
2 ρ ∈ G is a 90◦ rotation. We then have

η0(ρ0P0) = ρ0(η0P0) = ρ0P0, so by Lemma 2.3 below we getρ0P0 = P0. This implies
ρ0 ∈ K , which violates the assumptionK = 〈r 2〉. ThereforeH ∩ K = {1}. In the case
G = 〈r 〉, K = 〈r 2〉 we have(G : H) = |K | = 2 and henceHK = G. Therefore in this
caseH acts simply transitively on the tiles inT .

We claim that the remaining case (G = D8, K = 〈r 2〉) does not actually occur.
To prove this we first show that the subgroupG0 = 〈L , ρ〉 of G acts transitively on
the tiles inT . Let η0 = τ a

1 τ
b
2ρ

2 ∈ K be a 180◦ rotation which stabilizesP0. The
arguments above show thatη0 6∈ H , and hence thata and b have opposite parity.
Let P1 be another tile inT ; we need to show there isσ ∈ G0 such thatσ P0 = P1.
The stabilizer inG of P1 also contains a 180◦ rotationη1 = τ c

1τ
d
2 ρ

2 such thatc and
d have opposite parity. For anyλ = τ i

1τ
j

2 ∈ L we haveλη0λ
−1 = τ 2i+a

1 τ
2 j+b
2 ρ2

and (λρ)η0(λρ)
−1 = τ 2i−b

1 τ
2 j+a
2 ρ2. Therefore there isσ ∈ G0 = 〈L , ρ〉 such that

ση0σ
−1 = η1. It follows that η1σ P0 = ση0P0 = σ P0, so by Lemma 2.3 we have

σ P0 = P1. Now sinceG0 acts transitively on the tiles inT we haveG0K = G. Since
G0 andK contain no glide reflections, butG does, this is a contradiction.
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Lemma 2.2. Let G be an infinite subgroup of0 which contains a90◦ rotationρ. Then
the translation subgroup L of G is a square lattice generated by translationsτ1 andτ2

such thatρτ1ρ
−1 = τ2 andρτ2ρ

−1 = τ−1
1 .

Proof. We may assume thatρ = xkyl r for somek, l ∈ Z. Let τ1 = xi y j ∈ L be
a nonzero translation of minimum length. Setτ2 = ρτ1ρ

−1 = x− j yi . Thenτ2 is a
translation with the same length asτ1 but in a perpendicular direction. The group〈τ1, τ2〉
is a square lattice which is equal toL by the minimality of the length ofτ1. We have
ρτ1ρ

−1 = τ2 by definition, andρτ2ρ
−1 = ρ2τ1ρ

−2 = τ−1
1 .

Lemma 2.3. Letη0 ∈ G be a180◦ rotation. Thenη0 stabilizes at most one tile inT .

Proof. It suffices to show that ifη0 stabilizes a tileP0, then the centerO of η0 is in
the interior ofP0. Observe thatP0 must be simply connected since copies ofP0 tile the
plane. Therefore ifO is not in the interior ofP0 there is a curve5 from O to infinity
which is a homeomorphic image of [0,∞) and does not intersectP0 except possibly at
O. Then5 ∪ η05 is invariant underη0 and also does not intersectP0 except possibly
at O. Therefore5∪ η05 separates the interior ofP0 into at least two components. This
violates the assumption thatP0 is rookwise connected. ThereforeO is in the interior
of P0.

3. Nonlattice Tilings

Let T be an isohedralP-tiling and letH ≤ 0 be a group which acts simply transitively
on the tiles inT . Let L ≤ H be the translation subgroup ofH , and leth1, . . . , hk

be coset representatives forH/L. Thenh1(P), . . . , hk(P) do not overlap, andP′ =
h1(P) ∪ · · · ∪ hk(P) tiles the plane by translation byL. In this section we consider this
construction in the opposite direction. Givenh1, . . . , hk ∈ 0 such thath1(P), . . . , hk(P)
do not overlap, letP′ = h1(P)∪ · · ·∪hk(P). We want to find aP′-tiling of the plane by
translation by a latticeL ≤ Z2 such thatH = Lh1 ∪ · · · ∪ Lhk is a group. Given such a
P′-tiling T ′ we letT be theP-tiling induced byT ′. ThenH acts simply transitively on
the tiles inT , and henceT is isohedral.

If H ≤ 0 has translation subgroupL, then H/L is isomorphic to a subgroup of
D8
∼= 0/Z2. Therefore we may assume thath1, . . . , hk are coset representatives for the

elements of some subgroup ofD8. We have five cases to consider, corresponding to the
geometric equivalence classes of nontrivial subgroups ofD8.

Proposition 3.1. Letρ ∈ 0 be a180◦ rotation such that P andρ(P) do not overlap,
and set P′ = P ∪ ρ(P). Let T ′ be a P′-tiling of the plane by translations by a lattice
L ⊂ Z2, and letT denote the P-tiling induced byT ′. Then H= 〈L , ρ〉 acts simply
transitively on the tiles inT .

Proof. SinceL acts simply transitively on the tiles inT ′ it suffices to showH = L∪Lρ.
If τ ∈ L, thenρτρ−1 = τ−1, so ρ normalizesL. Sinceρ has order 2 this implies
〈L , ρ〉 = L ∪ Lρ.



Isohedral Polyomino Tiling of the Plane 623

Proposition 3.2. Let ρ ∈ 0 be a90◦ rotation such that P, ρ(P), ρ2(P), andρ3(P)
do not overlap, and set P′ = P ∪ ρ(P) ∪ ρ2(P) ∪ ρ3(P). LetT ′ be a P′-tiling of the
plane by translations by a lattice L⊂ Z2, and letT denote the P-tiling induced byT ′.
Then H= 〈L , ρ〉 acts simply transitively on the tiles inT if and only if L is a square
lattice.

Proof. SupposeH acts simply transitively on the tiles inT . SinceL acts transitively
on the tiles inT ′ we haveH = L ∪ Lρ ∪ Lρ2 ∪ Lρ3, soL is the translation subgroup
of H . We conclude by Lemma 2.2 thatL is a square lattice.

Conversely, suppose thatL is a square lattice. Then for everyτ = xi y j in L the 90◦

rotationx− j yi = ρτρ−1 of τ must also be inL. Thereforeρ normalizesL, and hence,
sinceρ has order 4, we getH = L ∪ Lρ ∪ Lρ2 ∪ Lρ3. SinceL acts simply transitively
on the tiles inT ′, this implies thatH acts simply transitively on the tiles inT .

Proposition 3.3. Letσ ∈ 0 be a glide reflection such that P andσ(P) do not overlap,
and set P′ = P ∪ σ(P). Let T ′ be a P′-tiling of the plane by translations by a lattice
L ⊂ Z2, and letT denote the P-tiling induced byT ′. Then H= 〈L , σ 〉 acts simply
transitively on the tiles inT if and only ifσ 2 ∈ L and L is either a rectangular lattice
with one side parallel to the axis of reflection, or contains such a lattice with index2.

Proof. SupposeH acts simply transitively on the tiles inT . SinceL acts transitively
on the tiles inT ′ we haveH = L ∪ Lσ , soL is the translation subgroup ofH . It follows
immediately thatσ 2 ∈ L, and by Lemma 3.4 below we see thatL is a lattice of the
required type.

Conversely suppose thatσ 2 ∈ L and L contains a lattice of the required type. We
assume that the axis ofσ is vertical, since the other cases are almost identical. ThenL
contains a lattice〈xa, yb〉with index at most 2, so for everyτ = xi y j in L the projection
x2i of τ 2 onto thex-axis is also inL. It follows thatx−2i τ = x−i y j = στσ−1 is in L.
Thereforeσ normalizesL, and hence sinceσ 2 ∈ L we getH = L ∪ Lσ . SinceL acts
simply transitively on the tiles inT ′, this implies thatH acts simply transitively on the
tiles inT .

Lemma 3.4. Let G be an infinite subgroup of0 which contains a glide reflectionσ .
Then the translation subgroup L of G is either a rectangular lattice with one side parallel
to the axis ofσ , or contains such a lattice with index2.

Proof. We assume that the axis ofσ is vertical; the other three cases are similar. Let
τ ∈ L; then we can writeσ = xkyl r f andτ = xi y j for somei, j, k, l ∈ Z. Then
στσ−1 = x−i y j is in L, and hence(στσ−1)τ = y2 j and(στσ−1)−1τ = x2i must also
be inL. ThereforeL contains a rectangular lattice〈xa, yb〉 with index at most 2.

Proposition 3.5. Let ρ ∈ 0 be a180◦ rotation and letσ ∈ 0 be a glide reflection.
Assume that P, ρ(P), σ(P), and ρσ(P) do not overlap, and set P′ = P ∪ ρ(P) ∪
σ(P) ∪ ρσ(P). Let T ′ be a P′-tiling of the plane by translations by a lattice L⊂ Z2,
and letT denote the P-tiling induced byT ′. Then H= 〈L , ρ, σ 〉 acts simply transitively
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on the tiles inT if and only ifσ 2 ∈ L, (ρσ)2 ∈ L, and L is either a rectangular lattice
with one side parallel to the axis of reflection, or contains such a lattice with index2.

Proof. SupposeH acts simply transitively on the tiles inT . SinceL acts transitively
on the tiles inT ′ we getH = L ∪ Lρ ∪ Lσ ∪ Lσρ and H/L ∼= Z2 × Z2. It follows
thatσ 2 ∈ L, (ρσ)2 ∈ L, andL is the translation subgroup ofH . By Lemma 3.4 this last
statement implies thatL is a lattice of the required type.

Conversely suppose thatσ 2 ∈ L, (ρσ)2 ∈ L, and L is a lattice of the required
type. In the proof of Proposition 3.1 we showed that for a 180◦ rotationρ we have
〈L , ρ〉 = L ∪ Lρ andρ normalizesL. In the proof of Proposition 3.3 we showed that
the assumption about the shape ofL implies thatσ normalizesL. Thereforeσρσ−1 =
σ(ρσ)2σ−1ρ−2(ρσ−2ρ−1)ρ is in Lρ, since(ρσ)2, ρ−2 = 1, andσ−2 are all inL, and
σ andρ normalizeL. It follows thatσ normalizes〈L , ρ〉. Sinceσ 2 ∈ L this implies
H = L ∪ Lρ∪ Lσ ∪ Lρσ . SinceL acts simply transitively on the tiles inT ′, this implies
that H acts simply transitively on the tiles inT .

Proposition 3.6. Letρ ∈ 0 be a90◦ rotation and letσ ∈ 0 be a glide reflection.Assume
that P, ρ(P), ρ2(P), ρ3(P), σ(P), ρσ(P), ρ2σ(P), andρ3σ(P) do not overlap, and
set

P′ = P ∪ ρ(P) ∪ ρ2(P) ∪ ρ3(P) ∪ σ(P) ∪ ρσ(P) ∪ ρ2σ(P) ∪ ρ3σ(P).

LetT ′ be a P′-tiling of the plane by translations by a lattice L⊂ Z2, and letT denote
the P-tiling induced byT ′. Then H= 〈L , ρ, σ 〉 acts simply transitively on the tiles in
T if and only ifσ 2 ∈ L, (ρσ)2 ∈ L, and L is a square lattice whose sides are either
parallel to the coordinate axes or have slope±1.

Proof. SupposeH acts simply transitively on the tiles inT . SinceL acts transitively
on the tiles inT ′ we get

H = L ∪ Lρ ∪ Lρ2 ∪ Lρ3 ∪ Lσ ∪ Lρσ ∪ Lρ2σ ∪ Lρ3σ

andH/L ∼= D8. It follows thatσ 2 ∈ L, (ρσ)2 ∈ L, andL is the translation subgroup of
H . Lemma 2.2 implies then thatL is a square lattice, and Lemma 3.4 implies that the
sides of the squares inL are either parallel to the coordinate axes or have slope±1.

Conversely suppose thatσ 2 ∈ L, (ρσ)2 ∈ L, and L is a lattice of the required
type. In the proof of Proposition 3.2 we showed that for a 90◦ rotationρ and a square
lattice L we have〈L , ρ〉 = L ∪ Lρ ∪ Lρ2 ∪ Lρ3, andρ normalizesL. In the proof of
Proposition 3.3 we showed that our assumptions aboutL imply thatσ normalizesL. In
addition,σρσ−1 = (ρ−1(ρσ)2σ−2ρ)ρ−1 is in Lρ−1, since(ρσ)2 andσ−2 are inL and
ρ normalizesL. Thereforeσ normalizes〈L , ρ〉. Sinceσ 2 ∈ L this implies

H = L ∪ Lρ ∪ Lρ2 ∪ Lρ3 ∪ Lσ ∪ Lρσ ∪ Lρ2σ ∪ Lρ3σ.

Since L acts simply transitively on the tiles inT ′, we conclude thatH acts simply
transitively on the tiles inT .
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The final result in this section shows that we can avoid tilings which involve both
glide reflections and 90◦ rotations.

Proposition 3.7. LetT be an isohedral P-tiling of the plane and let H≤ 0 be a group
that acts simply transitively on the tiles inT . Suppose that H/L ∼= D8, where L is the
translation subgroup of H. Then there is another isohedral P-tilingT ′ and a group
H ′ ≤ 0 that acts simply transitively on the tiles inT ′ such that H′/L ′ ∼= Z4, where L′

is the translation subgroup of H′.

Proof. Since H/L ∼= D8 the groupH contains 90◦ rotations and glide reflections
through axes in all four allowable directions. Therefore by Proposition 3.6L is a square
lattice whose sides are either parallel to the coordinate axes or have slope±1.

Suppose we are in the first case, where the square latticeL has sides parallel to the
coordinate axes. ThenL = 〈xa, ya〉 for somea ≥ 1. Let σ = xkyl f ∈ H be a glide
reflection through an axis of slope 1 such thatk + l has minimum absolute value. If
|k + l | > a/2 we could reduce|k + l | by replacingσ with (xa)tσ for some integert ,
so we must have|k + l | ≤ a/2. Sinceσ 2 = (xy)k+l ∈ L we havea | k + l and hence
k+ l = 0. It follows thatH contains a pure reflectionσ through an axis of slope 1. Since
H acts simply transitively on the tiles inT no tile can cross an axis of reflection inH .
This is a contradiction because the tiles inT are polyominoes with sides parallel to the
coordinate axes.

Now suppose we are in the second case, where the square lattice has sides of slope
±1. ThenL = 〈xaya, xay−a〉 for somea ≥ 1. An argument similar to that used in the
preceding paragraph shows thatH contains a pure reflectionσ through a vertical axis.
Such a reflection may be written in the formσ = xkr f . Sincex2ai ∈ L for all i ∈ Z
we see that eachx2aiσ = x2ai+kr f ∈ H is a pure reflection through a vertical axis.
ThereforeH contains pure reflections through vertical axes spaced evenly at distancea.
Similarly we see thatH contains pure reflections through horizontal axes spaced evenly
at distancea. These axes divide the plane intoa× a squares. Since no tile can cross the
axis of a pure reflection, each tile inT is contained in one of thesea × a squares. Let
ρ ∈ H be a 90◦ rotation with center(p,q). If (p,q) lies on the axis of some reflection
σ0, thenσ0ρ is a pure reflection through an axis of slope±1, and we get a contradiction
as in the preceding paragraph. Therefore(p,q)must lie in the interior of one of thea×a
squares.

Let n be the area ofP. Since the area of a fundamental region forL is 2a2 and
(H : L) = 8, we have 8n = 2a2. It follows that ana × a square is tiled by four
copies ofP rotated about(p,q). An a × a square tiles the plane by translations by
the latticeL ′ = 〈xa, ya〉. This tiling by squares induces aP-tiling T ′, and it follows
from Proposition 3.2 thatH ′ = 〈xa, ya, ρ〉 acts simply transitively on the tiles inT ′. By
construction we clearly haveH ′/L ′ ∼= Z4.

4. Algorithms

In this section we give an algorithm which determines whether a polyominoP admits
an isohedral tiling, and provides such a tiling if one exists. According to Proposition 2.1,
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if P admits an isohedral tilingT , then there is a subgroupH of the symmetry group
G(T ) which acts simply transitively on the tiles inT . Let L be the translation subgroup
of H ; then sinceH/L is isomorphic to a subgroup ofD8, the index(H : L) is equal to
1, 2, 4, or 8. If(H : L) = 1, thenT is a lattice tiling. To begin we give a polynomial
time algorithm that finds a lattice tiling if one exists.

The key is to find all subgroupsL of indexn in Z2. Suppose(Z2 : L) = n, and let
{(a,b), (c,d)} be a generating set forL. Then the area of a fundamental region forL is
n, so the determinant of the matrix

A =
(

a c
b d

)
is equal to±n. By interchanging the two generators ofL if necessary we may assume
that det(A) = n. Conversely, givenA ∈M2(Z) such that det(A) = n, the columns ofA
generate a subgroupL of Z2 such that(Z2 : L) = n.

Lemma 4.1. Let A, B ∈ M2(Z) satisfy det(A) = det(B) = n ≥ 1 and A ≡
B (modn). Then the columns of A and the columns of B generate the same subgroup
L ≤ Z2. Moreover, the subgroup L satisfies(Z2 : L) = n.

Proof. Let L A andL B be the subgroups ofZ2 generated by the columns ofA andB.
We observed above that(Z2 : L A) = (Z2 : L B) = n, sonZ2 is contained in bothL A

andL B. SinceA ≡ B (modn) we haveL A/nZ2 = L B/nZ2, and henceL A = L B.

To find generating sets for all subgroupsL ≤ Z2 of indexn, it is sufficient to list all
matricesA ∈ M2(Z) with det(A) = n, up to congruence modulon. It is easy to obtain
such a list as follows. For each congruence class inZ2/nZ2 choose a representative
(a,b) ∈ Z2 such that gcd(a,b) |n. Use the Euclidean algorithm to find all pairs of
integers(c,d) such thatad− bc= n, and choose representatives for each congruence
class modulon of such pairs(c,d). Denote byA(n) the finite set of matrices

A =
(

a c
b d

)
obtained in this manner.

For ann-omino P, let C(P) ⊂ Z2 denote the set of centers of the unit squares which
constituteP. SetC(P) − C(P) = {x − y | x, y ∈ C(P)}, and define a matrixM with
integer entries by letting each vector inC(P)− C(P) be a column ofM .

Algorithm L

Input: n-omino P.
Output: If P admits a lattice tiling, then two vectors are provided that generate
the lattice. Otherwise the output is the message “No lattice tiling.”
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Compute the setA(n) of matrices.
For eachA ∈ A(n),

If no column ofA−1M has two integer entries,
Return the columnsA1, A2 of A;
PolyominoP admits a tiling by the lattice generated byA1, A2.

End
End
P admits no lattice tiling.

Proof of the validity of Algorithm L. By Lemma 4.1 the subgroupsL ≤ Z2 of indexn
are precisely those subgroups ofZ2 generated by the columns of some matrixA ∈ A(n).
If (Z2 : L) = n = area(P), thenP tiles by translations byL if and only if the coordinates
of the unit squares ofP represent distinct cosets ofL in Z2. If L is generated by the
columns ofA this is equivalent toAx+ p 6= Ay+ q for all p,q ∈ P andx, y ∈ Z2 with
x 6= y. By the definition ofM this is equivalent to saying no column ofA−1M has both
entries inZ.

We now describe a polynomial time algorithm which determines whether ann-omino
P admits an isohedral tiling. The algorithm is divided into five cases that correspond to
the five geometric equivalence classes of proper subgroups ofD8. Note that by Propo-
sition 3.7 we do not need to consider the caseH/L ∼= D8. In each case the basic steps
in the algorithm are the same.

Algorithm I

Input: n-omino P.
Output: If P admits an isohedral tiling, then a setSconsisting or one, two,
or four nonoverlapping copies ofP is produced, together with two vectors
that generate a latticeL. The isohedralP-tiling is obtained by translating the
tiles in Sby the latticeL. Otherwise the output is the message “No isohedral
tiling.”

For each casek = 1 to 5 successively,
Compute the collectionPk of setsSof nonoverlapping copies ofP.
Compute the setAk of matrices as described in the paragraph below.
For each setS∈ Pk,

Let P′ =⋃Q∈S Q.
Apply Algorithm L to P′ with the setAk of matrices.
If Algorithm L returns matrixA,

ReturnSand the two column vectors ofA.
End

End
End
P admits no isohedral tiling.

To complete the description of the above algorithm, the collectionPk of tile setsS
and the collectionAk of 2× 2 matricesA must be constructed for eachk = 1, . . . ,5. In
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what follows, distinct tiles are always assumed to be nonoverlapping. Also, in each case,
the tileP′ =⋃Q∈S Q is taken to be rookwise connected; this severely limits the number
of elements inPk. Note, in fact, that in each of the five cases below, the computation of
Pk andAk is a polynomial time procedure.

Case1: S ∈ P1 if S = {P}. This is the lattice case already described in AlgorithmL.
The setA1 is precisely the setA(n) of matrices computed there.

Case2: S∈ P2 if S= {P, ρ(P)}, whereρ is a180◦ rotation. The rotationρ is taken to
be about a point on the boundary ofP. The setA2 is exactly the setA(2n) of matrices.

Case3: S ∈ P3 if S = {P, ρ(P), ρ2(P), ρ3(P)}, whereρ is a 90◦ counterclockwise
rotation. The rotationρ is taken to be about a point on the boundary ofP. The setA3

consists of congruence classes(mod 4n) of matrices of the form

A =
(

a −b
b a

)
, where det(A) = a2+ b2 = 4n.

Case4: S∈ P4 if S= {P, σ (P)}, whereσ is a glide reflection. The setA4 consists of
congruence classes(mod 2n) of matricesA with det(A) = 2n which have the forms

A =
(

a 0
0 b

)
and A =

(
a a/2
0 b/2

)
if the axis ofσ is parallel to a coordinate axis, or the forms

A =
(

a −b
a b

)
and A =

(
a (a− b)/2
a (a+ b)/2

)
if the axis ofσ has slope±1. In addition, if we assume (without loss of generality) that
the axis of the glide reflectionσ has slope 0 or 1, the translation vector of the glide may
be written as(g,0) or (g, g). Then for the matrixA to be inA4 we must havea | 2g.

Case5: S∈ P5 if S= {P, ρ(P), σ (P), ρσ (P)}, whereρ is a180◦ rotation andσ is a
glide reflection. The setP ∪ σ(P) is taken to be rookwise connected, and the rotation
ρ can be taken to be about a point on the boundary ofP ∪ σ(P). The setA5 consists
of matrices with the same forms as in Case 4 with 2n replaced by 4n. In addition, if we
assume (without loss of generality) that the axis of the glide reflectionσ has slope 0 or
1, then the translation vector of the glideσ may be written as(g,0) or (g, g), and the
translation vector of the glideρσ may be written as(0, g′) or (−g′, g′). Then for the
matrix A to be inA5 we must havea | 2g andb | 2g′.

Theorem 4.2. For any polyomino P it can be decided in polynomial time whether there
exists an isohedral P-tiling of the plane.

Proof. We will show that AlgorithmI correctly decides. It is sufficient to prove that
(1) if an isohedralP-tiling exists, then the algorithm produces aP-tiling, and (2) if the
algorithm produces aP-tiling, then it is indeed isohedral.
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Assume the existence of an isohedralP-tiling T . According to Proposition 2.1 there
is a subgroupH that acts simply transitively on the tiles inT . Let L be the translation
subgroup ofH . Then H/L is isomorphic to a subgroup ofD8, and we may assume
this subgroup is proper by Proposition 3.7. For any copyP0 of P in T , the setP′ =
h1(P0)∪· · ·∪hk(P0) is a fundamental region for the action ofL on the plane if and only
if {h1, . . . , hk} is a set of coset representatives ofH/L. If T ′ is the tiling of the plane by
translations ofP′ by the latticeL, then the tilingT is exactly theP-tiling induced byT ′.
The possibilities for coset representativesh1, . . . , hk can be determined by considering
the geometric equivalence classes of proper subgroups ofD8. The following list is
exhaustive.

1. H = L.
2. H = 〈L , ρ〉, whereρ ∈ 0 is a 180◦ rotation. The coset representatives are{1, ρ}.
3. H = 〈L , ρ〉, whereρ ∈ 0 is a 90◦ rotation. The coset representatives are
{1, ρ, ρ2, ρ3}.

4. H = 〈L , σ 〉, whereσ ∈ 0 is a glide reflection. The coset representatives are
{1, σ }.

5. H = 〈L , ρ, σ 〉, whereρ ∈ 0 is a 180◦ rotation andσ ∈ 0 is a glide reflection.
The coset representatives are{1, ρ, σ, ρσ }.

There exist coset representativesh1, . . . , hk for H/L such that the fundamental region
P′ = h1(P0) ∪ · · · ∪ hk(P0) is rookwise connected. To see this, consider Case 5; the
argument in the other cases is similar but easier. Since the subgroup〈L , ρ〉 = L∪Lρ has
index 2 inH , there are two orbits for the action of〈L , ρ〉 on the tiles inT . Clearly there
must exist two adjacent tilesP1 andP2 in different orbits. SinceH acts transitively on the
tiles, there is an elementσ ′ ∈ H , necessarily a glide reflection, such thatP2 = σ ′(P1).
Let Q = P1 ∪ P2 denote the rookwise connected union of these two tiles. Since

H = 〈L , ρ, σ ′〉 = 〈L , ρ〉 ∪ 〈L , ρ〉σ ′

we see that the orbit ofQ under〈L , ρ〉 is a tilingT ′ of the plane. There are two orbits of
tiles inT ′ under the action ofL, and as above there must be adjacent tilesQ1 andQ2 in
different orbits. ThenQ1∪ Q2 is a rookwise connected fundamental region forH made
up of tiles inT .

We have shown that the set of possibilities for the tileP′ in tiling T ′ is exactly the sets
calledPk, k = 1, . . . ,5, enumerated in AlgorithmI . For Cases 3–5, the propositions
in Section 3 place restrictions on a corresponding latticeL if an isohedral tiling is to
exist. These restrictions correspond exactly to the restrictions placed on the matrices
A ∈ Ak whose column vectors generate the translation lattice in AlgorithmI . What
Algorithm I does is precisely this. It checks, for each of the five cases, every possible
appropriate rookwise connected set{h1(P), . . . , hk(P)} and uses AlgorithmL to search
for any viable corresponding translation latticeL. Therefore, if an isohedralP-tiling
exists, AlgorithmI will produce aP-tiling. Conversely, if AlgorithmI does produce
a P-tiling T , then the propositions in Section 3 ensure that the groupH acts simply
transitively on the tiles ofT and, therefore, thatT is indeed isohedral.
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