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Abstract. A polynomial time algorithm is given for deciding, for a given polyomiRo
whether there exists an isohedral tiling of the Euclidean plane by isometric cogte3bé
decidability question for general tilings by copies of a single polyomino, or even periodic
tilings by copies of a single polyomino, remains open.

1. Introduction

Besides its place among topics in recreational mathematics, polyomino tiling of the
plane is relevant to decidability questions in logic and data storage questions in parallel
processing. Apolyominois a rookwise connected tile formed by joining unit squares
at their edges. We always assume that our polyominoes are made up of unit squares in
the Cartesian plane whose centers are lattice points and whose sides are parallel to the
coordinate axes. A polyomino consistingrofinit squares is referred to as aomino.
Polyominoes were introduced in 1953 by Golomb; his b&okyominoesoriginally
published in 1965 [3], has recently been revised and reissued [5]. See also his survey
article [6] for an overview of polyomino tiling problems.

One of the first questions to arise in the subject was the following: Given a single
polyomino P, can isometric copies d? tile the plane? It is known that evensomino
for n < 6 tiles the plane. Of the 108 7-ominoes, only 4 of them, shown in Fig. 1, do not
tile the plane [8, pp. 501-502]. The following is a long-standing open problem.

Question 1.1. Does there exists an algorithm to determine whether a given polyomino
P tiles the plane?

* The first author was partially supported by NSF Grant 9500982.
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Fig. 1. Heptominoes which do not tile the plane.

Golomb [7] has shown that the problem of determining whether an arbitrary finite set
of polyominoes tiles the plane (assuming unlimited copies of each) is equivalent to the
corresponding problem for Wang tiles, a problem known to be undecidable [13]. On the
other hand, there does exist an algorithm for determining whether a single polyomino
tiles the plane by translation [14, Theorem 6.1].

A tiling of the plane by copies of amomino P will be referred to as #®-tiling. For a
tiling 7, define thesymmetry groupf 7 to be the grou|is(7") of isometries of the plane
that preserve . A P-tiling 7 is calledisohedralif G(7') acts transitively on the tiles
in 7. A tiling 7 is periodicif G(7) contains translations in two linearly independent
directions; otherwis€ is nonperiodic In the case of a periodic tiling, the group of
translations that preserves the tiling is called ttamslation group If the translation
group itself acts transitively on the tiles i, then7 is called dattice tiling.

A lattice tiling is necessarily isohedral and an isohedral tiling is necessarily periodic.
However, as we shall see below, there are polyominoes that admit an isohedral tiling but
no lattice tiling and polyominoes that admit a periodic tiling but no isohedral tiling. A
polyominoP (not a tiling!) is calledaperiodicif there exists &-tiling, but no P-tiling
is periodic. Figure 2(a) is a portion of a nonperiodic tiling by a 3-omino, but this 3-omino
is not aperiodic since it also has the periodic tiling shown in Fig. 2(b).

Question 1.2. Does there exist an aperiodic polyomino?

In fact, it is an open question whether there exists a single aperiodic tile, polyomino
or not. Penrose [11] has constructed aperiagitsof tiles, some of which have as few
as two elements. For example, there are uncountably many tilings of the plane by copies
of Penrose “kites” and “darts”, but no such tiling is periodic. In addition, Penrose has
produced an aperiodic set consisting of three polyominoes [6, Figure 27].

An affirmative answer to Question 1.2 would make Question 1.1 especially deli-
cate. On the other hand, a negative answer to Question 1.2 implies that Question 1.1 is
equivalent to Question 1.3 below. Even so, to our knowledge, no algorithm is known to
determine whether a given polyomino tiles the plane periodically.

Question 1.3. Does there exist an algorithm to determine whether a given polyomino
P tiles the plane periodically?

The following relevant question also appears to be open.
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Fig. 2. Two tilings by a 3-omino.

Question 1.4. Does there exist an integ@r;, independent ofl, such that, for every
n-omino P that tiles the plane periodically, there is a periodic tiliAighy copies ofP
forwhich (Z x Z : L) < gn, wherelL is the translation subgroup &(7)?

Given such &, one could devise an algorithm to decide whether a given polyomino
has a periodic tiling. Concerning positive evidence for the existeng® &ir all the
small examples ofi-ominoes § < 10) that appear in the literature, if there is a tiling
at all, then there is one with the property thdt x Z : L) equalsn, 2n, 4n, or 8n.

On the negative side, there exist periodic tilings for whizhx Z : L)/n is large. For
instance, in [2] there is an example of an asymmetric tiling of & B rectangle by a
certain 7-omindP. By translating this tiling of the rectangle horizontally and vertically
we get a periodic tiling of the plane whose symmetry group is a translation greuiih

(Z x Z : L) = 19- 28 = 76n. For this particulaiP, though, there is another periodic
tiling with translation groupL’ such that(Z x Z : L) = 14 = 2n. It appears that
Question 1.4 may be difficult to answer.

Klarner [9] defines therder of a polyominoP to be the smallest number of copies
of P which tile a rectangle. If there is no rectangle which is tiled by copid®,afien the
order of P is not defined. It is known that there exist polyominoes of all orders divisible
by 4 [4], and of infinitely many orders congruent to 2 modulo 8 [10]. The following
guestion remains open.

Question 1.5. Does there exist a nonrectangular polyomino of odd order?

In [12] it is shown that there are no polyominoes of order 3.
If the original problem is restricted to tilings by translations of a polyomihéno
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Fig. 3. A nonisohedral tiling.

rotations, reflections, or glide reflections allowed), then the subtleties mentioned above
vanish. If there exists a tiling using only translationdfthen there also exists a lattice
tiling by copies ofP [14, Theorem 5.4]. Several necessary and sufficient conditions for
the existence of a lattice tiling by a polyomino are given in [1]. An efficient algorithm
to determine whether a given polyomino admits a lattice tiling appears in Section 4 of
this paper.

The main result of this paper is an answer to Question 1.1 restricted to isohedral tilings.
In Section 4 we provide a polynomial time algorithm that determines whether a given
polyomino P admits an isohedral tiling of the plane. Note that there exist polyominoes,
such as those in Figs. 4 and 5, which tile the plane isohedrally but admit no lattice tiling.
On the other hand, there also exist polyominoes that tile the plane periodically but do
not admit an isohedral tiling, for instance the 7-omino in Fig. 3.

The basic idea underlying the algorithm is as follows. If an isoheBréiling 7
exists, we leL denote the translation subgroup®€7). There is a fundamental region
F c R? for the action ofL which is the union of a finite number of tiles#h. In fact, we
show in Section 3 that if there is an isohedpatiling at all, then there is one such that
consists of one, two, or four copies Bf The tiling7 consists of the set of translations
of the copies ofP in F by the translation group < Z?; in order for the tiling to be
isohedralL must satisfy certain constraints which dependroThe algorithm has two
stages. First, it constructs configurations of copieB & form F; second, for each such
F it attempts to construct an appropriate translation subgtoup

We have implemented the algorithm using the MATLAB package. We found that for
everyn < 6, everyn-omino P admits an isohedral tiling. In fact, for each suehhere
is an isohedral tiling such that the fundamental region for the translation subgroup
consists of either a single copy Bfor two copies ofP which are mapped to each other
by a 180 rotation. The 7-ominoes in Fig. 1 admit no tiling, hence obviously admit no
isohedral tiling. Figure 3 shows a nonisohedral tiling of the plane by a certain 7-omino
P:. In fact, P, admits both isohedral and nonisohedral tilings. Figure 4(a) is a diagram
from [8, p. 506] of a tiling by a certain 7-omin®,, a tiling that is claimed to be isohedral.
In fact, this tiling is not isohedral, but there does exists an isohd¥réling shown in
Fig. 4(b). Notice that the fundamental region for this tiling consists of four copi®s:of
P, itself, the imageP; of P, under a glide reflection through an axis of slope 1, and the
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Fig. 4. Tilings by a 7-omino: Nonisohedral (a) and isohedral (b) tiling.

images of?, andP; under a 180rotation. Any fundamental region for an isohedral tiling
by P, must consists of four such copies. Figure 5 shows a tiling by a certain 8-omino
P; where the fundamental region consists of four copieB;0P; itself and the images

of P; under 90, 180, and 270 rotations. For this 8-omino a fundamental region for an
isohedral tiling must consists of four such copies. ket 7 there is nar-omino which
requires these four rotations to construct an isohedral tiling.

=L
il

Fig. 5. Anisohedral tiling by an 8-omino.
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2. The Symmetry Group of a Polyomino Tiling

We begin by describing the grouipof isometries of the plane that preserve the standard
lattice Z x Z. Any isometry of the plane can be written uniquely in the fagm) =

¢(X) + a, whereg is an element of the orthogonal gro@y(R) anda € R? is a
translation vector. Sincg preserve.?> we must havey € Dg anda e Z2, where the
dihedral groupDyg is the group of isometries of the unit square centere@®,dl). This
leads to a homomorphisii: I' — Dg defined by (g) = ¢ and an exact sequence

1—>Zz—>F—>D8—>1.

There are three basic categories of lattice-preserving isometries of the plane, namely
translations by an element @#, rotations through an angle of 9L.8C, or 270", and
glide reflections. Aglide reflectionis the composition of a reflection with a translation
in the direction of the axis of the reflection. In this terminology a reflection is the special
case of a glide reflection with trivial translationdlfe T is a glide reflection, the axis of
o must be parallel to one of the coordinate axes, or have sldp& he geometric type
of an element of” (translation, rotation through a particular angle, or glide reflection
through an axis with a particular slope) is determined by its imad#sin

The groupI’ can be described in terms of generators and relations as follows. Let
x denote translation by one unit to the right and yedenote translation by one unit
upward. Letr denote the 90counterclockwise rotation abodd, 0), and letf denote
the reflection through the line of slope 1 through the origin. Thepn r, f generatd”
and satisfy the following relations:

ré=f2=1, yxy ! =x, rxr—t=vy, ryr-
fxfl=y, fyfl=x, fri—t=rs

It follows thatI" = Z? x Dgis a semidirect product &2 and Dg, and that every element
g € I is written uniquely in the forng = x'yirkf' withO <k <3and 0< | < 1.In
terms of these generatois I' — Dg is given by the formulab (X' yIrk f') = r* f!.

To help us prove the next proposition we list the ten subgrouBsof

Order8: Dg=1(, f:r*=12=1, frf-1=r3).

Order4d:  (r2, fY X Zyx Zy, (r3rf) X Zy x Zyp, (1) X Zs.
Order2:  (f)y=Z,, (rf)y=Z,, (r?2f) =27, (r3f) =275, (r?) =27,
Order 1: {1}.

We say that two such subgroups are geometrically equivalent if there is an automorphism
of Dg which maps one to the other. There are six geometric equivalence classes of
subgroups oDg; in fact the first two subgroups of order 4 are geometrically equivalent
(generated by a reflection and a 186tation), and the first four subgroups of order 2
are geometrically equivalent (generated by a reflection).
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Proposition 2.1. Let7 be an isohedral P-tilingand let G < I be a group that acts
transitively on the tiles iff . Then there is a subgroup H of G that acts simply transitively
on the tiles in7 .

Proof. Let Py be a tile in7 and letK < G be the stabilizer of?,. SinceG acts
transitively on the tiles irZ, there is a one-to-one correspondence between the left
cosets oK in G and the tiles i/, given bygK <> g(Py). Therefore it suffices to find a
subgroupH of G whose elements are a complete set of coset representativés Kar
Equivalently, we neetH K = G andH N K = {1}.

Let y: G — Dg denote the restriction t& of W: ' — Dg. SetG = ¥(G) and
K = y(K). Also letL = ker(y) denote the translation subgroup®f Suppose there
is H < G such thatH K = G andH N K = {1}; then defineH = ¢1(H) < G.
Since kefy) = L < H andy(HK) = ¥ (G) we haveHK = G. In addition, since
L N K = {1} we haveH N K = {1}. ThereforeH = y~1(H) acts simply transitively
on the tiles in7".

We now consider the question of when there exidts< G which satisfies the
conditions of the preceding paragraph. For &@y< Dg, if K = G, thenH = {1}
satisfies the conditions, whilel = {1}, thenH = G works. IfG & Z, x Z», then for
anyK < G we easily findH < G satisfying the conditions. Suppose now tBa& Dg.
Then ifK = Z, is generated by a reflectiohf we letH = (r); if K = (r) = Z, we
letH = (f); and if K = Z, x Z, we letH = (r' f), wherer' f is any reflection not
contained inK.

It remains only to consider the two casgs= (r), K = (r?) andG = Dg, K = (r?).

In these cases there is kb< G such thaH K = G andH N K = {1}, so we must use
more delicate methods to constritttLet p € G be a 90 counterclockwise rotation, and
let 71, 7, be the generators for the translation subgraupf G supplied by Lemma 2.2
below. LetH = (r172, 117, %, p); We claim thatH N K = {1}. SinceK = (r?) the only
possibility for a nontrivial element itd N K is a 180 rotation, which we can write
asny = ‘clatszz. Sinceng € H the integersaa andb must have the same parity. This
implies 7o = p2 wherepy = 7.>"®/2c>" /%) ¢ G is a 90 rotation. We then have
10(poPo) = po(n0Po) = poPo, SO by Lemma 2.3 below we gggPy = Py. This implies
po € K, which violates the assumptidg = (r?). ThereforeH N K = {1}. In the case
G = (r), K = (r?) we have(G : H) = |K| = 2 and henc#lK = G. Therefore in this
caseH acts simply transitively on the tiles ih.

We claim that the remaining cas€ (= Dg, K = (r?)) does not actually occur.
To prove this we first show that the subgroGp = (L, p) of G acts transitively on
the tiles in7. Let ng = rfrszz € K be a 180 rotation which stabilize,. The
arguments above show thay ¢ H, and hence thaa and b have opposite parity.
Let P, be another tile irn7; we need to show there is € Gg such thato P, = P;.
The stabilizer inG of P; also contains a 18(rotationn, = rffgpz such thatc and
d have opposite parity. For any = tiz) € L we haveanor=t = r2+ar21%Pp2
and (Ap)no(p) L = 27 Pt2 %% p2. Therefore there is € Go = (L, p) such that
onoo ™t = ny. It follows thatnic Py = onoPy = o Py, so by Lemma 2.3 we have
o Py = P1. Now sinceGy acts transitively on the tiles iif we haveGoK = G. Since
Gp andK contain no glide reflections, b@ does, this is a contradiction. O
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Lemma 2.2. Let G be aninfinite subgroup af which contains &0 rotation p. Then
the translation subgroup L of G is a square lattice generated by translatipasd t,
such thatotip™! = , andpp 1 = r{l.

Proof. We may assume that = x*y'r for somek,| € Z. Lett; = x'yl € L be
a nonzero translation of minimum length. Set= prip~t = x7ly'. Thent, is a
translation with the same lengthasbut in a perpendicular direction. The gro(t, t2)

is a square lattice which is equal koby the minimality of the length of;. We have
11t = 1, by definition, andotop ! = p%11p % = rl_l. O

Lemma 2.3. Letng € G be al80 rotation. Thenng stabilizes at most one tile ih.

Proof. It suffices to show that ifyy stabilizes a tilePy, then the cente® of 7g is in
the interior of Py. Observe thaP; must be simply connected since copie$ptile the
plane. Therefore i is not in the interior ofP, there is a curvedl from O to infinity
which is a homeomorphic image of,[80) and does not interse&, except possibly at
O. ThenII U noll is invariant under), and also does not interseleg except possibly
at O. Thereforell U noIl separates the interior & into at least two components. This
violates the assumption th& is rookwise connected. Therefo® is in the interior
of Po. O

3. Nonlattice Tilings

Let7 be an isohedraP-tiling and letH < T" be a group which acts simply transitively
on the tiles in7. Let L < H be the translation subgroup &f, and lethy, ..., hy
be coset representatives fbr/L. Thenhy(P), ..., hg(P) do not overlap, andP’ =
hi1(P) U --- U hy(P) tiles the plane by translation Hy. In this section we consider this
construction in the opposite direction. Givey) . . ., h € T" suchthahy(P), ..., hg(P)
do not overlap, leP’ = hy(P)U- - - Uhy(P). We want to find &’-tiling of the plane by
translation by a lattick < Z? such thatd = Lhy U--- U Lhy is a group. Given such a
P’-tiling 7" we let7 be theP-tiling induced byZ”’. ThenH acts simply transitively on
the tiles in7, and hencd' is isohedral.

If H < I' has translation subgroup, thenH/L is isomorphic to a subgroup of
Dg = I'/Z2. Therefore we may assume thmt . . ., hy are coset representatives for the
elements of some subgroup D§. We have five cases to consider, corresponding to the
geometric equivalence classes of nontrivial subgroup3gof

Proposition 3.1. Letp € I' be al80Q rotation such that P ang (P) do not overlap
and set P= P U p(P). Let7’ be a P-tiling of the plane by translations by a lattice
L c 72, and let7 denote the P-tiling induced b¥’. Then H = (L, p) acts simply
transitively on the tiles iry .

Proof.  Sincel acts simply transitively on the tiles i/ it suffices to showH = LULp.
If ¢ € L, thenptp™® = t71, sop normalizesL. Sincep has order 2 this implies
(L,p)=LULp. O
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Proposition 3.2. Letp e I' be a90 rotation such that P p(P), p?(P), and p3(P)
do not overlapand set P = P U p(P) U p?(P) U p3(P). Let 7’ be a P-tiling of the
plane by translations by a lattice & Z?, and let7 denote the P-tiling induced ¥’
Then H= (L, p) acts simply transitively on the tiles in if and only if L is a square
lattice.

Proof. SupposeH acts simply transitively on the tiles if. Sincel acts transitively
on the tiles in7” we haveH = L U Lp U Lp? U Lp2, soL is the translation subgroup
of H. We conclude by Lemma 2.2 thhtis a square lattice.

Conversely, suppose thhtis a square lattice. Then for every= x'y! in L the 90
rotationx~!y' = ptp~! of r must also be irL. Thereforep normalizesL, and hence,
sincep has order 4, we gétl = L U Lp U Lp? U Lp®. SincelL acts simply transitively
on the tiles in7”, this implies thatH acts simply transitively on the tiles . O

Proposition 3.3. Leto € I" be a glide reflection such that P and P) do not overlap
and set P= P Uo(P). Let7’ be a P-tiling of the plane by translations by a lattice
L c Z? and letT denote the P-tiling induced b¥’. Then H= (L, o) acts simply
transitively on the tiles ir?” if and only if6? € L and L is either a rectangular lattice
with one side parallel to the axis of reflectiar contains such a lattice with index

Proof. SupposeH acts simply transitively on the tiles . Sincel acts transitively
onthetiles i’ we haveH = L U Lo, soL is the translation subgroup &f. It follows
immediately that? € L, and by Lemma 3.4 below we see thais a lattice of the
required type.

Conversely suppose thaf e L andL contains a lattice of the required type. We
assume that the axis ofis vertical, since the other cases are almost identical. Then
contains a latticéx?, y°) with index at most 2, so for every= x'y! in L the projection
x? of 2 onto thex-axis is also inL. It follows thatx 27 = x'yl = sro~tisinL.
Thereforeo normalizesL, and hence since? € L we getH = L U Lo. Sincel acts
simply transitively on the tiles iffi”’, this implies thatH acts simply transitively on the
tilesin7. O

Lemma 3.4. Let G be an infinite subgroup df which contains a glide reflectios.
Then the translation subgroup L of G is either arectangular lattice with one side parallel
to the axis ok, or contains such a lattice with index

Proof. We assume that the axis éfis vertical; the other three cases are similar. Let
T € L; then we can writer = xXy'rf andt = x'y! for somei, j,k,| € Z. Then
oto~t=x7ylisinL, and hencgoto Yt = y? and(oro 1)1t = x¥ must also
be inL. ThereforeL contains a rectangular latti¢g?, y°) with index at most 2. [

Proposition 3.5. Letp € I' be al80 rotation and letc € T" be a glide reflection
Assume that Pp(P), o(P), and po (P) do not overlapand set P = P U p(P) U
a(P) U pa(P). Let7’ be a P-tiling of the plane by translations by a lattice € 72,
and let7 denote the P-tiling induced 8. Then H= (L, p, o) acts simply transitively
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on the tiles in7Z if and only ifo? € L, (po)? € L, and L is either a rectangular lattice
with one side parallel to the axis of reflectiar contains such a lattice with index

Proof. SupposeH acts simply transitively on the tiles if. Sincel acts transitively
on the tiles in7” we getH = LU Lp U Lo U Lop andH/L = Z, x Z,. It follows
thato? € L, (po)? € L, andL is the translation subgroup &f. By Lemma 3.4 this last
statement implies that is a lattice of the required type.

Conversely suppose that € L, (0o)? € L, andL is a lattice of the required
type. In the proof of Proposition 3.1 we showed that for a°18fation p we have
(L, p) = L ULp andp normalizesL. In the proof of Proposition 3.3 we showed that
the assumption about the shapd.oimplies thato normalizesL. Thereforespo ! =
o(po)?cp%(po2p YHpisin Lp, since(po)?, p~2 = 1, ando~2 are all inL, and
o andp normalizeL. It follows thato normalizes(L, p). Sinces? € L this implies
H =LULpULo ULpo. Sincel acts simply transitively on the tiles i, this implies
thatH acts simply transitively on the tiles . O

Proposition 3.6. Letp € I"be a90 rotationandlet e I' be aglide reflectio’Assume
that P, p(P), p?(P), p3(P), o (P), pa (P), p?c(P), and p3 (P) do not overlapand
set

P '=PUp(P)Up3(P)U p3(P)Uc (P)U po(P) U p?s (P) U p3c(P).

Let7” be a P-tiling of the plane by translations by a lattice € Z?, and let7 denote
the P-tiling induced by’. Then H= (L, p, o) acts simply transitively on the tiles in
T ifand only if6? € L, (po)? € L, and L is a square lattice whose sides are either
parallel to the coordinate axes or have slopé.

Proof. SupposeH acts simply transitively on the tiles ifi. SincelL acts transitively
on the tiles in7” we get

H=LULpULp?ULp3ULo ULpo ULp? ULpc

andH/L = Dsg. It follows thato? € L, (po)? € L, andL is the translation subgroup of
H. Lemma 2.2 implies then that is a square lattice, and Lemma 3.4 implies that the
sides of the squares Inare either parallel to the coordinate axes or have slope
Conversely suppose that € L, (oo)? € L, andL is a lattice of the required
type. In the proof of Proposition 3.2 we showed that for & @@ationp and a square
lattice L we have(L, p) = L U Lp U Lp? U Lp®, andp normalizesL. In the proof of
Proposition 3.3 we showed that our assumptions ahautply thate normalizesL. In
addition,opo ! = (p~Y(po)2c2p)p~tisin Lp~1, since(po)? ando 2 are inL and
p normalizes.. Therefores normalizes/L, p). Sinces? € L this implies

H=LULpULp?ULp3ULc ULpo U Lp%c U Lp3c.

SinceL acts simply transitively on the tiles ifi’, we conclude thaH acts simply
transitively on the tiles i7" |
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The final result in this section shows that we can avoid tilings which involve both
glide reflections and 9Qrotations.

Proposition 3.7. Let7 be an isohedral P-tiling of the plane and let € I be a group
that acts simply transitively on the tiles . Suppose that L = Dg, where L is the
translation subgroup of HThen there is another isohedral P-tilif§y’ and a group
H’ < T that acts simply transitively on the tiles# such that H/L' = Z,, where
is the translation subgroup of H

Proof. SinceH/L = Dg the groupH contains 90 rotations and glide reflections
through axes in all four allowable directions. Therefore by Propositioh. 3s6a square
lattice whose sides are either parallel to the coordinate axes or haveislope

Suppose we are in the first case, where the square lattices sides parallel to the
coordinate axes. Then = (x2, y?) for somea > 1. Leto = xXy' f € H be a glide
reflection through an axis of slope 1 such that | has minimum absolute value. If
|k + 1| > a/2 we could reducék + || by replacings with (x®)'o for some integet,
so we must havék + 1| < a/2. Sinces? = (xy)**' € L we havea |k + | and hence
k+1 = 0. It follows thatH contains a pure reflectianthrough an axis of slope 1. Since
H acts simply transitively on the tiles ifi no tile can cross an axis of reflection li.
This is a contradiction because the tilesZirare polyominoes with sides parallel to the
coordinate axes.

Now suppose we are in the second case, where the square lattice has sides of slope
+1. ThenL = (x®y?, x2y~?) for somea > 1. An argument similar to that used in the
preceding paragraph shows thtcontains a pure reflection through a vertical axis.
Such a reflection may be written in the foem= x*rf. Sincex?®® e L foralli € Z
we see that eack®® o = x?*krf < H is a pure reflection through a vertical axis.
ThereforeH contains pure reflections through vertical axes spaced evenly at distance
Similarly we see thaH contains pure reflections through horizontal axes spaced evenly
at distancea. These axes divide the plane irto< a squares. Since no tile can cross the
axis of a pure reflection, each tile #h is contained in one of thesex a squares. Let
o € H be a 90 rotation with cente(p, q). If (p, q) lies on the axis of some reflection
o0, thenogp is a pure reflection through an axis of slop&, and we get a contradiction
as in the preceding paragraph. Therefgreq) must lie in the interior of one of thex a
squares.

Let n be the area oP. Since the area of a fundamental region fois 2a® and
(H : L) = 8, we have 8 = 2a?. It follows that ana x a square is tiled by four
copies of P rotated aboutp, g). An a x a square tiles the plane by translations by
the latticeL” = (x&, y?). This tiling by squares inducesR-tiling 7', and it follows
from Proposition 3.2 thatl” = (x?, y?, p) acts simply transitively on the tiles if". By
construction we clearly havid’ /L’ = Z,. O

4. Algorithms

In this section we give an algorithm which determines whether a polyoiadmits
an isohedral tiling, and provides such atiling if one exists. According to Proposition 2.1,
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if P admits an isohedral tiling", then there is a subgroug of the symmetry group
G(7) which acts simply transitively on the tiles1h. Let L be the translation subgroup
of H; then sinceH /L is isomorphic to a subgroup &g, the index(H : L) is equal to
1,2,4,0r8. If(H : L) = 1, then7 is a lattice tiling. To begin we give a polynomial
time algorithm that finds a lattice tiling if one exists.

The key is to find all subgroups of indexn in Z2. Suppos€Z? : L) = n, and let
{(a, b), (c, d)} be a generating set far. Then the area of a fundamental region lfois
n, so the determinant of the matrix

a c¢
2= 4
is equal ton. By interchanging the two generatorslofif necessary we may assume

that detA) = n. Conversely, giverA € M (Z) such that dgtA) = n, the columns ofA
generate a subgroupof Z? such thaZ? : L) = n.

Lemmad4.l. Let A B € My(Z) satisfydettA) = dettB) = n > 1 and A =
B (modn). Then the columns of A and the columns of B generate the same subgroup
L < Z2. Moreoverthe subgroup L satisfigg€? : L) = n.

Proof. LetL A andLg be the subgroups &? generated by the columns #fandB.
We observed above théf? : La) = (Z2 : Lg) = n, sonZ2 is contained in both. 5
andLg. SinceA = B (modn) we havel o/nZ? = Lg/nZ? and hencd o, = Lg. O

To find generating sets for all subgroups< Z?2 of indexn, it is sufficient to list all
matricesA € M(Z) with detA) = n, up to congruence modulu It is easy to obtain
such a list as follows. For each congruence clasg3mZ? choose a representative
(a,b) e Z? such that gceh, b) | n. Use the Euclidean algorithm to find all pairs of
integers(c, d) such thatad — bc = n, and choose representatives for each congruence
class modula of such pairgc, d). Denote byA(n) the finite set of matrices

a c
A= (b d)
obtained in this manner.
For ann-omino P, letC(P) c Z? denote the set of centers of the unit squares which
constituteP. SetC(P) — C(P) = {x —y | X,y € C(P)}, and define a matris with
integer entries by letting each vector@{P) — C(P) be a column oM.

Algorithm L

Input n-omino P.
Output If P admits a lattice tiling, then two vectors are provided that generate
the lattice. Otherwise the output is the message “No lattice tiling.”
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Compute the setl(n) of matrices.
For eachA € A(n),
If no column of A=*M has two integer entries,
Return the columng\;, A, of A;
PolyominoP admits a tiling by the lattice generated By, A;.
End
End
P admits no lattice tiling.

Proof of the validity of Algorithm L By Lemma 4.1 the subgroupis< Z2 of indexn
are precisely those subgroup<sfgenerated by the columns of some matkix A(n).

If (Z?: L) = n = ared P), thenP tiles by translations by if and only if the coordinates
of the unit squares oP represent distinct cosets bfin Z2. If L is generated by the
columns ofA this is equivalent téAx + p # Ay +qforall p, g € P andx, y € Z? with

X # y. By the definition ofM this is equivalent to saying no column Af*M has both
entries inZ. O

We now describe a polynomial time algorithm which determines whetheramino
P admits an isohedral tiling. The algorithm is divided into five cases that correspond to
the five geometric equivalence classes of proper subgroups.dfiote that by Propo-
sition 3.7 we do not need to consider the casd. = Dg. In each case the basic steps
in the algorithm are the same.

Algorithm |

Input n-omino P.

Output If P admits an isohedral tiling, then a sgtonsisting or one, two,

or four nonoverlapping copies &f is produced, together with two vectors
that generate a lattide. The isohedraP-tiling is obtained by translating the
tiles in Sby the latticeL. Otherwise the output is the message “No isohedral
tiling.”

For each cask = 1 to 5 successively,
Compute the collectiof?k of setsS of nonoverlapping copies d?.
Compute the setly of matrices as described in the paragraph below.
For each seSB € P,
Let P’ = Uqes Q-
Apply Algorithm L to P’ with the set4y of matrices.
If Algorithm L returns matrixA,
ReturnSand the two column vectors &.
End
End
End
P admits no isohedral tiling.

To complete the description of the above algorithm, the collectipwf tile setsS
and the collectiody of 2 x 2 matricesA must be constructed foreakh=1,...,5.In
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what follows, distinct tiles are always assumed to be nonoverlapping. Also, in each case,
the tile P’ = (o5 Q is taken to be rookwise connected; this severely limits the number
of elements irP. Note, in fact, that in each of the five cases below, the computation of
Pk and Ak is a polynomial time procedure.

Casel: Se Py if S = {P}. This s the lattice case already described in Algorithm
The setA; is precisely the setl(n) of matrices computed there.

Case2: Se P,if S={P, p(P)}, wherep is al80 rotation. The rotatiornp is taken to
be about a point on the boundaryBf The setA; is exactly the set(2n) of matrices.

Case3: Se P3if S = {P, p(P), p2(P), p3(P)}, wherep is a 90° counterclockwise
rotation. The rotationp is taken to be about a point on the boundaryPofThe setA;
consists of congruence clasgesod 41) of matrices of the form

A= <Z _2) , where detA) = a® + b? = 4n.

Cased: Se P,if S={P, o(P)}, whereo is a glide reflectionThe setd, consists of
congruence classésod 2h) of matricesA with det(A) = 2n which have the forms

_(a 0 _(a a/2
A= (O b) and A= <0 b/2>
if the axis ofo is parallel to a coordinate axis, or the forms
_(a -b _(a (a-hby/2
A_<a b) and A_(a (a+b)/2
if the axis ofo has slopet1. In addition, if we assume (without loss of generality) that

the axis of the glide reflectiot has slope 0 or 1, the translation vector of the glide may
be written agg, 0) or (g, g). Then for the matrixA to be in. A4 we must have | 2g.

Caseb: Se Psif S={P, p(P),o(P), pa(P)}, wherep is a180 rotation ando is a
glide reflection The setP U o (P) is taken to be rookwise connected, and the rotation
o can be taken to be about a point on the boundar of o (P). The set4s consists

of matrices with the same forms as in Case 4 withh@placed by 4. In addition, if we
assume (without loss of generality) that the axis of the glide refleetibas slope 0 or

1, then the translation vector of the glidemay be written agg, 0) or (g, g), and the
translation vector of the glideoc may be written a0, g') or (—g’, g). Then for the
matrix A to be in.4s we must hava | 2g andb | 2g'.

Theorem 4.2. For any polyomino P it can be decided in polynomial time whether there
exists an isohedral P-tiling of the plane

Proof. We will show that Algorithml correctly decides. It is sufficient to prove that
(1) if an isohedraP-tiling exists, then the algorithm producesatiling, and (2) if the
algorithm produces &-tiling, then it is indeed isohedral.
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Assume the existence of an isohedpatiling 7. According to Proposition 2.1 there
is a subgrouH that acts simply transitively on the tiles #h. Let L be the translation
subgroup ofH. ThenH /L is isomorphic to a subgroup ddg, and we may assume
this subgroup is proper by Proposition 3.7. For any c&pyf P in 7, the setP’ =
h1(Py) U- - - Uhg(Py) is a fundamental region for the actionlobn the plane if and only
if {hy, ..., hy}is asetof coset representativedbfL. If 7" is the tiling of the plane by
translations o’ by the latticel, then the tilingZ is exactly theP-tiling induced by7”.
The possibilities for coset representativgs. . ., hy can be determined by considering
the geometric equivalence classes of proper subgroupdgofThe following list is
exhaustive.

1. H=1L.

2. H = (L, p), wherep € I is a 180 rotation. The coset representatives grep}.

3. H = (L, p), wherep € T is a 90 rotation. The coset representatives are
{1, p, 02 p3}.

4. H = (L,0), whereo € T is a glide reflection. The coset representatives are
o}.

5. H = (L, p, o), wherep € T" is a 180 rotation ands € I" is a glide reflection.
The coset representatives dlep, o, po}.

There exist coset representativgs. . ., hy for H/L such that the fundamental region
P’ = hi(Py) U --- U hg(Pp) is rookwise connected. To see this, consider Case 5; the
argument in the other cases is similar but easier. Since the subdropp= L ULp has
index 2 inH, there are two orbits for the action @f, p) on the tiles inZ. Clearly there
must exist two adjacent tilg?; andP, in different orbits. Sincéd acts transitively on the
tiles, there is an element € H, necessarily a glide reflection, such that= o'(Py).
Let Q = P, U P, denote the rookwise connected union of these two tiles. Since

H=(L,p,o')=(L,p)U(L,p)o’

we see that the orbit & under(L, p) is a tiling 7’ of the plane. There are two orbits of
tiles in 7" under the action of , and as above there must be adjacent fde&ndQ; in
different orbits. TherQ; U Q is a rookwise connected fundamental regionfomade
up of tiles in7".

We have shown that the set of possibilities for theBlen tiling 7" is exactly the sets
calledPy, k = 1,...,5, enumerated in Algorithnh. For Cases 3-5, the propositions
in Section 3 place restrictions on a corresponding lattidé an isohedral tiling is to
exist. These restrictions correspond exactly to the restrictions placed on the matrices
A € Ax whose column vectors generate the translation lattice in AlgorithiVhat
Algorithm | does is precisely this. It checks, for each of the five cases, every possible
appropriate rookwise connected fet(P), ..., hx(P)} and uses Algorithnk to search
for any viable corresponding translation lattice Therefore, if an isohedrdP-tiling
exists, Algorithml will produce aP-tiling. Conversely, if Algorithml does produce
a P-tiling 7, then the propositions in Section 3 ensure that the gtdugcts simply
transitively on the tiles of” and, therefore, thaf is indeed isohedral. |
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