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Abstract. We give two alternative proofs leading to different generalizations of the fol-
lowing theorem of [1]. Givem convex sets in the plane, such that the boundaries of each
pair of sets cross at most twice, then the boundary of their union consists of atrme 26

arcs. (Anarcis a connected piece of the boundary of one of the sets.) In the generalizations
we allow pairs of boundaries to cross more than twice.

1. Introduction

Let C be a collection ohh > 3 nondegenerate convex sets (bodies) in the plane, any
two of which have at most a finite number of boundary points in common. Assume for
simplicity that the sets are general positioni.e., no two boundary curves are tangent to
each other, and no three pass through the same point. If two memliehaeé exactly

two boundary points in common, then these points are cadlgdlar verticesof the
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Fig. 1. Regular vertices are shown on the left, and irregular vertices on the right.

arrangement4(C). All other intersection points of the boundary curves are said to be
irregular. See Fig. 1.

LetU = | C denote the union of all members @f Let R and| denote the set of
regular and irregular vertices of(C), respectively, lying oroU, the boundary olJ.
Further, putv = R U I|. If the setsirC are bounded, thejV | is equal to the number of
arcs that composgU.

It was shown in [1] that if any two members 6fhave at most two boundary points
in common (i.e., if there are no irregular vertices), thBh= |V| < 6n — 12, and this
bound is tight in the worst case. In Section 2 of this note, we generalize this result as
follows:

Theorem 1. With the above notatigfior any collection of = 3nondegenerate convex
sets in general position in the plane satisfying the above assumptiertzave

IR < 2|1 +6n—12

Actually, in [1] the members af were not required to be convex, and it is very likely
that Theorem 1 also generalizes to that case.

Whitesides and Zhao [4] introduced the following definition. A collection of closed
Jordan curves is calldd-admissibléf no two curves touch each other, any two curves
intersect in at mosk points, and the interior of no curve disconnects the interior of
another. Clearly, we can restrict our attention to the case kiieaven. In Section 5 we
give a new proof of the following result of [4], which provides yet another generalization
of the above mentioned theorem of [1].

Theorem 2. The number of vertices on the boundary of the union of the interiors of
n > 3 Jordan curves that form a k-admissible famifyat most k3n — 6); this bound
is tight in the worst case

The methods used here are quite different from those used in [1] and [4].

2. Proof of Theorem 1

Preliminaries We can assume without loss of generality that every membérisf
bounded and that its boundary is smooth. It is sufficient to establish the theorem in
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the case whetd = | J C is connected; otherwise, arguing for each componend of
separately, we obtain the stronger inequallRy < 2|1 | 4+ 6n — 12k.3 — 10k, — 6Ky,
wherek; (resp.k, ks3) is the number of connected componentdjoformed by one
(resp. two, at least three) setsbf

A connected componeiit of the complement dfl is called ehole LetV (H) denote
the set of vertices along the boundary of a hidleThese vertices divide the boundary of
H into |V (H)| arcs, which form a set denoted byH). The set of all arcs composing
dU is denoted byl'exs = (J, T'(H). Note that every bounded hole has at least three
vertices. The unique unbounded hole may have fewer vertices (zero or two), but then
V| < 2. We may therefore assume that every hole has at least three vertices, so the
numberh of holes is at mosfV|/3.

Orient the boundary of every € C in the counterclockwise direction. Accordingly,
every (unit) tangent vector twill be oriented so that lies on its left-hand side.

Consider now two sets, ¢’ € C whose boundaries intersect in exactly two points
v andv’. (These areegular vertices of the arrangement.) Them ¢’ is a lens-like
region, whose boundary is a counterclockwise oriented closed éuyvevith the two
“breakpoints” (nonsmooth pointg)andv’. Denote the turning angles of (the tangents
to) & atv andv’ by a(v) anda(v’), respectively. (Note thad(v), a(v’) are always
positive. See Fig. 2.) A similar definition applies when the boundariesaofdc’ meet
irregularly atv: we then defin@(v) to be the turning angle of the boundaryoofc’ atv.

Total Turning Angles of Piecewise Smooth Curveset & be an oriented continuous
curve in the plane. If at some poimtof &, there is no unique tangentline, theris called
abreakpoint We say that is piecewise smootlif it has finitely many breakpoints, and
every piece of between two consecutive breakpoints is differentiable (including at its
endpoints).

Define thetotal turning angled (¢) of a piecewise smooth, oriented cutévas follows.
If necessary, subdividg into smaller differentiable oriented arés . . ., &m, such that
eachg; is smooth and any two tangents to the same&groriented according to the
orientation of the curve, differ in their orientations by less thahet—7 < 6(&) < +n

,UI

Fig. 2. Two setsc, ¢’ intersecting regularly, and the curgg., shown in bold. Also shown are the turning
angled(y) along the curver and the turning angla(v) at the vertex.
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be the smaller angle from the tangent vector at the starting pajntathe tangent vector
at the endpoint of;, taken with positive sign if the change is counterclockwise and with
negative sign otherwise (see, e.g., Fig. 2). At each pairseparating two piece§, and
&1, let@(wj) be the smaller angle from the tangenttat w; to the tangent tg;,; at
wi, with positive sign if and only if it is counterclockwise.uf; is not a breakpoint, then,
by constructiong(w;) = 0. Finally, let the total turning angle(§) be defined as the
sum of6 (&) over all pieceg; plus the sum of (w;) over all verticesw;. Evidently, this
definition of the turning angle is independent of the particular subdivisigna;) and
0(wj) are called, respectively, thierning angleof ¢ along the arg; and at the pointy;.

The following lemma summarizes the elementary properties of the total turning angle.
We omit the trivial proof.

Lemma 3. Let& be a piecewise smoqtbriented curve in the plane with total turning
angled (¢).

(i) If & is a closed curvgthend (&) is an integer multiple o2x.
(ii) If & is a counterclockwiséresp clockwis@ oriented closed curve which does
not intersect itselfthend (§) = 2r (resp —2r).
(i) If & intersects itself at a poinb, then it can be decomposed into two piecewise
smooth oriented curvest’ and&”, having the common breakpoint. (If & is
a closed curvethen so aret” and¢”; if £ is open then one of the two parts is
open and the other is closgdn both cases we have

0(&) =0(E)+0@E").
We refer to the last equality as thdditivity propertyof the total turning angle.

Turning Angles Along Holes of the UnionNotice that the orientation of the boundary
of any boundedhole H of U is clockwise, and the orientation of the boundary of the
uniqueunboundedole is counterclockwise. At any regular vertegn the boundary of
any hole, the turning angle of the boundary-a(v). Thus, Lemma 3(ii) implies that,
for any fixed bounded holkl,

. (—a)+ Y. 0(y) = —2m,
veV(H) yel(H)

and, for the unique unbounded hole, the left-hand side is equad.td@ding all these
equations, multiplying by-1 and ignoring terma(v) for v € |, we obtain

D>_a) - ZQ(V)SZF(h—l)—Zn=2nh—4n§w_

veR y €lext

4. (1)

Let Iy denote the collection of maximal boundary arcs of the sets, ioriented
as above, that are contained in the interiotJofin the next section we establish the
following lemma.

Lemma 4.
dr—aw) < Y o). )

veR Y €l int
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It is easy to see that Lemma 4 implies Theorem 1. Indeed, the right-hand side of (2)
isequalto Zn — ) 6(y). Summing up (1) and (2), we obtain

Y €lext
2r(JR| + |1
7R < 27n 4 ZURIAITD ;J" D _ 4,
which yields thatR| < 2|1 | + 6n — 12, as asserted. O

3. Proof of Lemma 4

Let "R denote the subset of those arcg'jp that have at least one regular endpoint. The
union of 'R is decomposed into a collection of oriented cycles and paths; the vertices
(breakpoints) of the cycles and the internal vertices of the paths beloRgdad the
endpoints of the paths belongtoln the next two subsections (A and B), we prove:

Claim. The total turning angle afachof these cycles and paths is at lelest where
k is the number oéll vertices of a cycle or the number ioternal vertices of a path.

In subsection C we show how Lemma 4 follows from this fact.

A: The Case of a Cycle Let¢ = vgu1 - - - vk (vk = vo) be one of these oriented cycles,
with verticesvg, v1, ..., vk_1 € R. Lety; denote the oriented arc aloggconnecting
vi_1 to v, and letc; be the set i€ whose boundary contains, fori =1, ..., k.

We first consider the simple cake= 2. In this caseyy andv; are the two (regular)
intersections ofc; andac,, and¢ is the convex curvé,, defined above (see Fig. 2).
Clearly,6(¢) = 2, as claimed.

Next suppose thadt > 3. We traverse from vg, and consider the tangents 4o
oriented in accordance with the orientationcofso that the sets they are tangent to lie
on their left). By construction, as we follow these tangents, they keep turning in the
counterclockwise (positive) direction, and this also holds at each vertexSafe Fig. 3.

Fig. 3. lllustrating the proof of Lemma 4 for a cycle &,
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For eachi = 1,...,Kk, choose a very small > 0, and draw a circle of radius
around each vertex. Letv,” andv;” denote intersection points of this circle withand
vi+1, respectively (withx, 1 = y1). Let ¢’ denote the closed curve obtained frgrby
replacing the portion of; betweenv;” ; andv,” by a straight-line segment, for eveiry
Clearly, the total turning angle @f is equal to the total turning angle of See Fig. 3.

We claim that;’ can be decomposed irkgositively (i.e., counterclockwise) oriented
loops at the vertices; and an oriented closed polygari = vgvi - - - v, (v§ = vg).
This follows from the fact that; _; andv;_ 1, the other endpoints of the argsandy; . 1,
lie on different sides of the line connectimgand the other regular intersection poifit
of the boundaries af; andci 1. (Sincek > 3, v/ lies in the interior of the union, and
¥i—1, ¥ Cross each other at that point.) Consequently,i#f sufficiently small, then the
segments;” v~ andv;" v, ; must cross each other in a small neighborhood pét a
point denoted by;*. Theith loop of¢’ is its portion that starts and endsit Again,
see Fig. 3. Thus, by the additivity of the turning angle,

0(5") = k(2m) +6(5).

By definition, at each vertex af*, the absolute value of the turning angledfis at
mostz (and the turning angle along its edges is 0). Consequéiyy,= 6(¢’) > k.
(Actually, by Lemma 3(i), the total turning angle ¢fmust be a multiple of 2, so
0(¢) > 2[k/2]x is also true. This is indeed the case shown in Fig. 3: the total turning
angle of¢ is 4r = 2[3]x.)

B: The Case of a Path Consider now a path = vgv; - - - vkvky1 With irregular end-
points and regular internal vertices. Letc, fori = 1,...,k + 1, andv", v;*, for

i = 1,...,k, denote the same entities as for cycles (the previous case). We also put
vg = vp andv, ; = vk;1. In exactly the same way as before, we construct a ctirve
from ¢ by replacing with a straight-line segment the portionidbetweeny,” ; andv;” ,
foreveryi =1,...,k+ 1. We have tha#(¢) > 6(¢’) (we turn more along; from v

to v; than by going straight frorag to v; and then turning at;  until we are tangent to

y1, and similarly at the other end ¢f see Fig. 4). Now, arguing as in the case of cycles,

¢’ is decomposed intk positively oriented loops and a polygonal pgth Again, the
additivity of the turning angle implies that

0(¢) = 0(5) =k(2r) +0(5™).

Since at each internal vertex of, the turning angle is betweenar and+m, we have
that the total turning angle afis at leaskr.

C: Putting It Together If ¢ is a cycle, its total turning angle is, in the above notations,

k k
Y aw)+ Y 0() =k,
i=1 i=1

which implies that

i=1

k k
> —amw) <) o).
i=1
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Fig. 4. lllustrating the proof of Lemma 4 for a path BfR.

If ¢ is a path, its total turning angle is, in the above notations,

k+1

k
Y aw)+ ) 0() =k,
i=1 i=1

which implies that

k+1

k
D —aw)) <Y o).
i=1 i=1

We now add these inequalities, over all cycles and paths compbS§inand obtain

Y w—aw) = Y 0= > o).

veR yelR Y €lint

as asserted. O

4. Remarks

(A) In [1] we proved thatR| < 6n — 12, under the assumption thdt vertices ofA(C)
are regular. Theorem 1 shows that the same bound holds with the weaker assumption
that there are no irregular vertices on the boundany ef | J C. (Recall, however, that
the result in [1] does not require, as we do, that all membe€shaf convex.)

(B) Suppose that any two members @fhave at moss (a constant number) of
boundary points in common. How large cid®j be? One can show that, even for 4,
the maximum possible value [0®| can be2 (n*/2). To see this, take a sBtof n points and
asetl of nlines, so that there a®(n*?) incidences betweeR andL (see Chapter 11
of [3]). Replace each point iR by a disk of radiug, for some sufficiently smal > 0,
and replace each linee L by a long rectangle whose widthdsand whose long bottom
edge is parallel td, lying abovet, and at distance’ < ¢ from it. One can show that,
for an appropriate choice efande’, the number of intersections between any disk and
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any rectangle is at most two, that each incidence between a poihtofl a line ofL
corresponds to an intersecting pair of a disk and a rectangle, and that each intersection
point between such a pair lies on the boundary of the union. Hence, we have a collection
of 2n disks and rectangles satisfying| = © (n*3). Is this construction asymptotically

best possible?

(C) Itis not hard to see that the coefficient 2 of the te¢tin Theorem 1 cannot be
replaced by any smaller constant. To see this, takepies of a regulan-gon, slightly
rotated around their common center, and, for each original vertex, clip the batch of its
copies with a small rectangle. This createg Begular vertices on the boundary of the
union of the resulting collection ofreconvex sets. On the other handl} is aboutn?.

We also note that if # ¢ then the bound in Theorem 1 is not tight, because we have
ignored in (1) all terms(v) for v € 1, so we cannot have equality any more.

5. Proof of Theorem 2

Assume without loss of generality that every cuo/éas a pointp; that belongs to

the boundary ofJ, the union of the interiors of all family members. Lgtoe one of

the (at mosk) intersection points of two curves,andc’. Connectp. to py by an arc
(“edge™), going first fromp, to q in clockwise direction around, and then following

the boundary of’ in counterclockwise direction t@.. For each paic, ¢’ of family
members that contribute an intersection pajind the boundary ofJ, construct such an
edge that connects; to pr via g, but do this for only one such poigt The two pieces

an edge consists of are callpdlf-edgeslt is easy to show that any two half-edges not
incident to the same poin; intersect an even number of times. Thus, these edges form
a graph drawing with the property that any two edges not incident to the same pgrtex
intersect an even number of times. This implies that the underlying graph is planar (see
[5] or Corollary 3.1 of [2]), and, since it has no multiple edges, the number of its edges
is at most 8 — 6. The total number of vertices along the boundaryaé obviously at
mostk times larger than that. To see that the bound is tight, use the same construction as
in [1], but replace each pair of intersection points of a pair of boundariksbgsecutive
intersections, all lying on the boundary of the union; refer to [1] for more detaild
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