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Abstract. We give two alternative proofs leading to different generalizations of the fol-
lowing theorem of [1]. Givenn convex sets in the plane, such that the boundaries of each
pair of sets cross at most twice, then the boundary of their union consists of at most 6n−12
arcs. (Anarc is a connected piece of the boundary of one of the sets.) In the generalizations
we allow pairs of boundaries to cross more than twice.

1. Introduction

Let C be a collection ofn ≥ 3 nondegenerate convex sets (bodies) in the plane, any
two of which have at most a finite number of boundary points in common. Assume for
simplicity that the sets are ingeneral position, i.e., no two boundary curves are tangent to
each other, and no three pass through the same point. If two members ofC have exactly
two boundary points in common, then these points are calledregular verticesof the
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Fig. 1. Regular vertices are shown on the left, and irregular vertices on the right.

arrangementA(C). All other intersection points of the boundary curves are said to be
irregular. See Fig. 1.

Let U = ⋃ C denote the union of all members ofC. Let R and I denote the set of
regular and irregular vertices ofA(C), respectively, lying on∂U , the boundary ofU .
Further, putV = R ∪ I . If the sets inC are bounded, then|V | is equal to the number of
arcs that compose∂U .

It was shown in [1] that if any two members ofC have at most two boundary points
in common (i.e., if there are no irregular vertices), then|R| = |V | ≤ 6n− 12, and this
bound is tight in the worst case. In Section 2 of this note, we generalize this result as
follows:

Theorem 1. With the above notation, for any collection of n≥ 3nondegenerate convex
sets in general position in the plane satisfying the above assumptions, we have

|R| ≤ 2|I | + 6n− 12.

Actually, in [1] the members ofC were not required to be convex, and it is very likely
that Theorem 1 also generalizes to that case.

Whitesides and Zhao [4] introduced the following definition. A collection of closed
Jordan curves is calledk-admissibleif no two curves touch each other, any two curves
intersect in at mostk points, and the interior of no curve disconnects the interior of
another. Clearly, we can restrict our attention to the case whenk is even. In Section 5 we
give a new proof of the following result of [4], which provides yet another generalization
of the above mentioned theorem of [1].

Theorem 2. The number of vertices on the boundary of the union of the interiors of
n ≥ 3 Jordan curves that form a k-admissible family, is at most k(3n− 6); this bound
is tight in the worst case.

The methods used here are quite different from those used in [1] and [4].

2. Proof of Theorem 1

Preliminaries. We can assume without loss of generality that every member ofC is
bounded and that its boundary is smooth. It is sufficient to establish the theorem in
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the case whenU = ⋃
C is connected; otherwise, arguing for each component ofU

separately, we obtain the stronger inequality|R| ≤ 2|I | + 6n − 12k≥3 − 10k2 − 6k1,
wherek1 (resp.k2, k≥3) is the number of connected components ofU formed by one
(resp. two, at least three) sets ofC.

A connected componentH of the complement ofU is called ahole. LetV(H) denote
the set of vertices along the boundary of a holeH . These vertices divide the boundary of
H into |V(H)| arcs, which form a set denoted by0(H). The set of all arcs composing
∂U is denoted by0ext =

⋃
H 0(H). Note that every bounded hole has at least three

vertices. The unique unbounded hole may have fewer vertices (zero or two), but then
|V | ≤ 2. We may therefore assume that every hole has at least three vertices, so the
numberh of holes is at most|V |/3.

Orient the boundary of everyc ∈ C in the counterclockwise direction. Accordingly,
every (unit) tangent vector toc will be oriented so thatc lies on its left-hand side.

Consider now two setsc, c′ ∈ C whose boundaries intersect in exactly two points
v andv′. (These areregular vertices of the arrangement.) Thenc ∩ c′ is a lens-like
region, whose boundary is a counterclockwise oriented closed curveξcc′ , with the two
“breakpoints” (nonsmooth points)v andv′. Denote the turning angles of (the tangents
to) ξcc′ at v andv′ by a(v) anda(v′), respectively. (Note thata(v), a(v′) are always
positive. See Fig. 2.) A similar definition applies when the boundaries ofc andc′ meet
irregularly atv: we then definea(v) to be the turning angle of the boundary ofc∩c′ atv.

Total Turning Angles of Piecewise Smooth Curves. Let ξ be an oriented continuous
curve in the plane. If at some pointw of ξ , there is no unique tangent line, thenw is called
abreakpoint. We say thatξ is piecewise smooth, if it has finitely many breakpoints, and
every piece ofξ between two consecutive breakpoints is differentiable (including at its
endpoints).

Define thetotal turning angleθ(ξ) of a piecewise smooth, oriented curveξ as follows.
If necessary, subdivideξ into smaller differentiable oriented arcsξ1, . . . , ξm, such that
eachξi is smooth and any two tangents to the same arcξi , oriented according to the
orientation of the curve, differ in their orientations by less thanπ . Let−π < θ(ξi ) < +π

Fig. 2. Two setsc, c′ intersecting regularly, and the curveξcc′ , shown in bold. Also shown are the turning
angleθ(γ ) along the curveγ and the turning anglea(v) at the vertexv.
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be the smaller angle from the tangent vector at the starting point ofξi to the tangent vector
at the endpoint ofξi , taken with positive sign if the change is counterclockwise and with
negative sign otherwise (see, e.g., Fig. 2). At each pointwi separating two pieces,ξi and
ξi+1, let θ(wi ) be the smaller angle from the tangent toξi atwi to the tangent toξi+1 at
wi , with positive sign if and only if it is counterclockwise. Ifwi is not a breakpoint, then,
by construction,θ(wi ) = 0. Finally, let the total turning angleθ(ξ) be defined as the
sum ofθ(ξi ) over all piecesξi plus the sum ofθ(wi ) over all verticeswi . Evidently, this
definition of the turning angle is independent of the particular subdivision ofξ . θ(ξi ) and
θ(wi ) are called, respectively, theturning angleof ξ along the arcξi and at the pointwi .

The following lemma summarizes the elementary properties of the total turning angle.
We omit the trivial proof.

Lemma 3. Letξ be a piecewise smooth, oriented curve in the plane with total turning
angleθ(ξ).

(i) If ξ is a closed curve, thenθ(ξ) is an integer multiple of2π .
(ii) If ξ is a counterclockwise(resp. clockwise) oriented closed curve which does

not intersect itself, thenθ(ξ) = 2π (resp.−2π ).
(iii) If ξ intersects itself at a pointw, then it can be decomposed into two piecewise

smooth, oriented curves, ξ ′ and ξ ′′, having the common breakpointw. (If ξ is
a closed curve, then so areξ ′ andξ ′′; if ξ is open, then one of the two parts is
open and the other is closed.) In both cases we have

θ(ξ) = θ(ξ ′)+ θ(ξ ′′).

We refer to the last equality as theadditivity propertyof the total turning angle.

Turning Angles Along Holes of the Union. Notice that the orientation of the boundary
of any boundedhole H of U is clockwise, and the orientation of the boundary of the
uniqueunboundedhole is counterclockwise. At any regular vertexv on the boundary of
any hole, the turning angle of the boundary is−a(v). Thus, Lemma 3(ii) implies that,
for any fixed bounded holeH,∑

v∈V(H)

(−a(v))+
∑

γ∈0(H)
θ(γ ) = −2π,

and, for the unique unbounded hole, the left-hand side is equal to 2π . Adding all these
equations, multiplying by−1 and ignoring termsa(v) for v ∈ I , we obtain∑
v∈R

a(v)−
∑
γ∈0ext

θ(γ ) ≤ 2π(h− 1)− 2π = 2πh− 4π ≤ 2π(|R| + |I |)
3

− 4π. (1)

Let 0int denote the collection of maximal boundary arcs of the sets inC, oriented
as above, that are contained in the interior ofU . In the next section we establish the
following lemma.

Lemma 4. ∑
v∈R

(π − a(v)) ≤
∑
γ∈0int

θ(γ ). (2)
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It is easy to see that Lemma 4 implies Theorem 1. Indeed, the right-hand side of (2)
is equal to 2πn−∑γ∈0ext

θ(γ ). Summing up (1) and (2), we obtain

π |R| ≤ 2πn+ 2π(|R| + |I |)
3

− 4π,

which yields that|R| ≤ 2|I | + 6n− 12, as asserted.

3. Proof of Lemma 4

Let0R denote the subset of those arcs in0int that have at least one regular endpoint. The
union of0R is decomposed into a collection of oriented cycles and paths; the vertices
(breakpoints) of the cycles and the internal vertices of the paths belong toR, and the
endpoints of the paths belong toI . In the next two subsections (A and B), we prove:

Claim. The total turning angle ofeachof these cycles and paths is at leastkπ , where
k is the number ofall vertices of a cycle or the number ofinternalvertices of a path.

In subsection C we show how Lemma 4 follows from this fact.

A: The Case of a Cycle. Let ζ = v0v1 · · · vk (vk = v0) be one of these oriented cycles,
with verticesv0, v1, . . . , vk−1 ∈ R. Let γi denote the oriented arc alongζ connecting
vi−1 to vi , and letci be the set inC whose boundary containsγi , for i = 1, . . . , k.

We first consider the simple casek = 2. In this case,v0 andv1 are the two (regular)
intersections of∂c1 and∂c2, andζ is the convex curveξc1c2 defined above (see Fig. 2).
Clearly,θ(ζ ) = 2π , as claimed.

Next suppose thatk ≥ 3. We traverseζ from v0, and consider the tangents toζ ,
oriented in accordance with the orientation ofζ (so that the sets they are tangent to lie
on their left). By construction, as we follow these tangents, they keep turning in the
counterclockwise (positive) direction, and this also holds at each vertex ofζ . See Fig. 3.

Fig. 3. Illustrating the proof of Lemma 4 for a cycle of0R.
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For eachi = 1, . . . , k, choose a very smallε > 0, and draw a circle of radiusε
around each vertexvi . Letv−i andv+i denote intersection points of this circle withγi and
γi+1, respectively (withγk+1 = γ1). Let ζ ′ denote the closed curve obtained fromζ by
replacing the portion ofγi betweenv+i−1 andv−i by a straight-line segment, for everyi .
Clearly, the total turning angle ofζ ′ is equal to the total turning angle ofζ . See Fig. 3.

We claim thatζ ′ can be decomposed intok positively (i.e., counterclockwise) oriented
loops at the verticesvi and an oriented closed polygonζ ∗ = v∗0v

∗
1 · · · v∗k ; (v∗k = v∗0).

This follows from the fact thatvi−1 andvi+1, the other endpoints of the arcsγi andγi+1,
lie on different sides of the line connectingvi and the other regular intersection pointv′i
of the boundaries ofci andci+1. (Sincek ≥ 3, v′i lies in the interior of the union, and
γi−1, γi cross each other at that point.) Consequently, ifε is sufficiently small, then the
segmentsv+i−1v

−
i andv+i v

−
i+1 must cross each other in a small neighborhood ofvi , at a

point denoted byv∗i . The i th loop ofζ ′ is its portion that starts and ends atv∗i . Again,
see Fig. 3. Thus, by the additivity of the turning angle,

θ(ζ ′) = k(2π)+ θ(ζ ∗).
By definition, at each vertex ofζ ∗, the absolute value of the turning angle ofζ ∗ is at
mostπ (and the turning angle along its edges is 0). Consequently,θ(ζ ) = θ(ζ ′) ≥ kπ .
(Actually, by Lemma 3(i), the total turning angle ofζ must be a multiple of 2π , so
θ(ζ ) ≥ 2dk/2eπ is also true. This is indeed the case shown in Fig. 3: the total turning
angle ofζ is 4π = 2d 3

2eπ .)

B: The Case of a Path. Consider now a pathζ = v0v1 · · · vkvk+1 with irregular end-
points and regular internal vertices. Letγi , ci , for i = 1, . . . , k + 1, andv−i , v

+
i , for

i = 1, . . . , k, denote the same entities as for cycles (the previous case). We also put
v+0 = v0 andv−k+1 = vk+1. In exactly the same way as before, we construct a curveζ ′

from ζ by replacing with a straight-line segment the portion ofγi betweenv+i−1 andv−i ,
for everyi = 1, . . . , k+ 1. We have thatθ(ζ ) ≥ θ(ζ ′) (we turn more alongγ1 from v0

to v−1 than by going straight fromv0 to v−1 and then turning atv−1 until we are tangent to
γ1, and similarly at the other end ofζ ; see Fig. 4). Now, arguing as in the case of cycles,
ζ ′ is decomposed intok positively oriented loops and a polygonal pathζ ∗. Again, the
additivity of the turning angle implies that

θ(ζ ) ≥ θ(ζ ′) = k(2π)+ θ(ζ ∗).
Since at each internal vertex ofζ ∗, the turning angle is between−π and+π , we have
that the total turning angle ofζ is at leastkπ .

C: Putting It Together. If ζ is a cycle, its total turning angle is, in the above notations,

k∑
i=1

a(vi )+
k∑

i=1

θ(γi ) ≥ kπ,

which implies that
k∑

i=1

(π − a(vi )) ≤
k∑

i=1

θ(γi ).
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Fig. 4. Illustrating the proof of Lemma 4 for a path of0R.

If ζ is a path, its total turning angle is, in the above notations,

k∑
i=1

a(vi )+
k+1∑
i=1

θ(γi ) ≥ kπ,

which implies that

k∑
i=1

(π − a(vi )) ≤
k+1∑
i=1

θ(γi ).

We now add these inequalities, over all cycles and paths composing0R, and obtain∑
v∈R

(π − a(v)) ≤
∑
γ∈0R

θ(γ ) ≤
∑
γ∈0int

θ(γ ),

as asserted.

4. Remarks

(A) In [1] we proved that|R| ≤ 6n− 12, under the assumption thatall vertices ofA(C)
are regular. Theorem 1 shows that the same bound holds with the weaker assumption
that there are no irregular vertices on the boundary ofU =⋃ C. (Recall, however, that
the result in [1] does not require, as we do, that all members ofC be convex.)

(B) Suppose that any two members ofC have at mosts (a constant number) of
boundary points in common. How large can|R| be? One can show that, even fors= 4,
the maximum possible value of|R| can beÄ(n4/3). To see this, take a setP of n points and
a setL of n lines, so that there are2(n4/3) incidences betweenP andL (see Chapter 11
of [3]). Replace each point inP by a disk of radiusε, for some sufficiently smallε > 0,
and replace each linè∈ L by a long rectangle whose width isε and whose long bottom
edge is parallel tò, lying above`, and at distanceε′ < ε from it. One can show that,
for an appropriate choice ofε andε′, the number of intersections between any disk and
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any rectangle is at most two, that each incidence between a point ofP and a line ofL
corresponds to an intersecting pair of a disk and a rectangle, and that each intersection
point between such a pair lies on the boundary of the union. Hence, we have a collection
of 2n disks and rectangles satisfying|R| = 2(n4/3). Is this construction asymptotically
best possible?

(C) It is not hard to see that the coefficient 2 of the term|I | in Theorem 1 cannot be
replaced by any smaller constant. To see this, taken copies of a regularn-gon, slightly
rotated around their common center, and, for each original vertex, clip the batch of its
copies with a small rectangle. This creates 2n2 regular vertices on the boundary of the
union of the resulting collection of 2n convex sets. On the other hand,|I | is aboutn2.
We also note that ifI 6= ∅ then the bound in Theorem 1 is not tight, because we have
ignored in (1) all termsa(v) for v ∈ I , so we cannot have equality any more.

5. Proof of Theorem 2

Assume without loss of generality that every curvec has a pointpc that belongs to
the boundary ofU , the union of the interiors of all family members. Letq be one of
the (at mostk) intersection points of two curves,c andc′. Connectpc to pc′ by an arc
(“edge”), going first frompc to q in clockwise direction aroundc, and then following
the boundary ofc′ in counterclockwise direction topc′ . For each pairc, c′ of family
members that contribute an intersection pointq to the boundary ofU , construct such an
edge that connectspc to pc′ via q, but do this for only one such pointq. The two pieces
an edge consists of are calledhalf-edges. It is easy to show that any two half-edges not
incident to the same pointpc intersect an even number of times. Thus, these edges form
a graph drawing with the property that any two edges not incident to the same vertexpc

intersect an even number of times. This implies that the underlying graph is planar (see
[5] or Corollary 3.1 of [2]), and, since it has no multiple edges, the number of its edges
is at most 3n− 6. The total number of vertices along the boundary ofU is obviously at
mostk times larger than that. To see that the bound is tight, use the same construction as
in [1], but replace each pair of intersection points of a pair of boundaries byk consecutive
intersections, all lying on the boundary of the union; refer to [1] for more details.
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