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Abstract. We show that, using the ., metric, the minimum Hausdorff distance under
translation between two point sets of cardinatitys d-dimensional space can be computed

in time O(n“4-2/3]og?n) for 3 < d < 8, and in timeO(n*/4log?n) for anyd > 8.

Thus we improve the previous time bound®fn?-2 log? n) due to Chew and Kedem. For

d = 3 we obtain a better result @(n3log? n) time by exploiting the fact that the union

of n axis-parallel unit cubes can be decomposed Do) disjoint axis-parallel boxes.

We prove that the number of different translations that achieve the minimum Hausdorff
distance ind-space is®(n'3/2)), Furthermore, we present an algorithm which computes
the minimum Hausdorff distance under themetric ind-space in timeQ (n/34/21+1+5) for

anys > 0.

1. Introduction

We consider the problem of finding the resemblance, under translation, of two point sets
in d-dimensional space fat > 3. In many matching applications, objects are described
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by d parameters; thus a single object corresponds to a paiktimensional space. One
would like the ability to determine whether two sets of such objects resemble each other.
A three-dimensional example comes from molecular matching, where a molecule can
be described by its atoms, represented as points in 3-space.

The tool that we suggest here for measuring resemblance is the well-researched
minimum Hausdorff distance under translation. The distance function we use (except in
Section 8) is thé. . metric. One advantage of using the Hausdorff distance is that it does
not assume equal cardinality of the point sets. It measures the mawismhtctbetween
the sets when one point set is allowed to translate in order to minimize this mismatch.
Two point sets are considered to be similar if this mismatch is small. To simplify our
presentation, we assume that the cardinalities of the setsamdm = O(n) and we
express our results in terms iof

There have been several papers on the subject of point set resemblance using the
minimum Hausdorff distance under translation. Huttenlocher et al. [9], [10] find the
minimum Hausdorff distance for point sets in the plane in tig@?logn) under the
L, Ly, or L, metrics. For point sets in three-dimensional space their algorithm, using
the L, metric, runs in timeO(n°¢). The method used in [10] cannot be extended to
work underL .

Chew and Kedem [6] show that, when using the metric in the plane, the minimum
Hausdorff distance can be computed in tidé? log? n). This is a somewhat surprising
result, since there can Is&(n®) different translations that achieve the (same) minimum
[6], [14]. They [6] further extend their technique to compute the minimum Hausdorff
distance between two point setsdrdimensional space using the, metric, achieving
a time bound of0(n?—2log? n) for a fixed dimensiom.

We show in this paper that, using the, metric, the minimum Hausdorff distance
between two point sets can be found in ti®&n3log?n) for d = 3, and in time
0(n>/41og? n) for d > 3. In an earlier version of this paper [5], we have shown how a
time bound ofO(n“4-2/3|og? n) can be achieved fat > 3. For 3< d < 8, the time
bound of [5] is slightly better than the one we present here.

To estimate the quality of the time complexity of our algorithms, it is natural to seek
the number of different translations that achieve the minimum Hausdorff distance. More
precisely, the number of connected components in the set of feasible translations in the
d-dimensional translation space. We show that this numbex(ig34/2) in the worst
case. Note that, as for the planar case solved in [6], the runtime of the algorithms which
we present for a fixed > 3 is significantly lower than the number of the connected
components in thd-dimensional translation space.

Many optimization problems are solved parametrically by finding an oracle for a
decision problenand then using this oracle in some parametric optimization scheme.
In this paper we follow this line by developing an algorithm for Heusdorff distance
decision problenfsee definition in the next section) and then using it as an oracle in the
Frederickson and Johnson [8] optimization scheme. For the oracle in 3-space we prove
that a set ofi unit cubes can be decomposed i) disjoint axis-parallel boxes. We
then apply the orthogonal partition trees (OPTs) described by Overmars and Yap [13]
to find the maximal depth of disjoint axis-parallel boxes. We show that this suffices
to answer the Hausdorff distance decision problem in 3-spaced For3 there is a
superlinear lower bound on the number of boxes obtained by disjoint decomposition of a
union of boxes (see [3]); thus we cannot use a disjoint decomposition of unit hypercubes.
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Instead, we build a decision-problem oracle by developing and using a modified, nested
version of the OPT.

When usingL, as the underlying metric we show that there carftgal®¥/2/) con-
nected components in the translation space, and that the complexity of the space of
feasible translations i©(n39/21). We present an algorithm which computes the mini-
mum Hausdorff distance under the metric ind-space in timed(n34/21+1+9) for any
6 > 0.

The paper is organized as follows: In Section 2 we definentiémum Hausdorff
distance problemand describe thelausdorff distance decision probleim Section 3
we show that the union afi axis-parallel unit cubes in 3-space can be decomposed
into O(n) disjoint axis-parallel boxes, and use the orthogonal partition trees of [13] to
solve the Hausdorff distance decision problem in 3-spacedFsr 3, our algorithm
is more involved and hence its description is separated into two sections: Section 4
contains a relaxed version of our data structures and an oracle which runs in time
O(n%/2-1|ogn); in Section 5 we modify the data structures of the relaxed version
and obtain arD(n%/4logn) runtime oracle. In Section 6 we show briefly how we plug
the decision algorithm into the Frederickson and Johnson optimization scheme. Bounds
on the number of translations that minimize the Hausdorff distance are presented in
Section 7. The algorithm for the minimum Hausdorff distance undetthmetric is
discussed in Section 8. Conclusions and open questions appear in Section 9.

Since all the spatial objects we deal with in this paper are axis-parallel cubes, axis-
parallel boxes, and axis-parallel cells, we omit from now on the words “axis-parallel”
and talk about cubes, boxes, and cells. We call a balxspace al-box.

2. The Hausdorff Distance Decision Problem

The well-knownHausdorff distancé&etween point setd andB is defined as
H (A, B) = maxth(A, B), h(B, A)),

where theone-wayHausdorff distance fronA to B is

h(A, B) = gweixgllgp(a, b).

Here,p (-, -) represents a familiar metric on points: for instance, the standard Euclidean
metric (theL, metric) or theL; or L, metrics. In this papennless otherwise noted

we use thd_, metric. In dimensiord, anL , “sphere” (i.e., a set of points equidistant
from a given center point) is@cube.

The minimum Hausdorff distandeetween two point sets is the Hausdorff distance
minimized with respect to all possible translations of the point sets. Huttenlocher and
Kedem [9] observe that the minimum Hausdorff distance is a metric on point sets (and
more general shapes) that is independent of translation. Intuitively, it measures the max-
imum mismatch between two point sets after the sets have been translated to minimize
this mismatch. For the minimum Hausdorff distance the sets do not have to have the
same cardinality, although to simplify our presentation, we assume that both point sets
are of size®(n).



260 L. P. Chew, D. Dor, A. Efrat, and K. Kedem

As in [6] we approach this optimization problem by using thausdorff distance
decision problenwith parametee > 0 as a subroutine for a search in a sorted matrix
of ¢ values. We define thausdorff distance decision probléior a givene to be the
guestion of whether the minimum Hausdorff distance under translation is bounded by
We say that the Hausdorff distance decision problem for Aeted B and fore is true
if there exists a translationsuch that the Hausdorff distance betwaeand B shifted
byt is less than or equal ta

We follow the approach taken in [6], solving the Hausdorff distance decision problem
by solving a problem of the intersection of unions of cubes in thelithensional)
translation spacelLet A and B be two sets of points as above, tebe a positive real
value, and le€, be ad-dimensional cube, with side size @nd with the origin atits center
(the L, “sphere” of radiug). We define the sef, to be A & C,, where® represents
the Minkowski sum. Consider the st @ (—b) where—b represents the reflection of
pointb through the origin. This set is the set of translations that miaypo A.. The set
of translations that map all poinkse B into A, is then(",_g (A: ® (—b)); we denote
this set byS(A, ¢, B). It can be shown [6] that the Hausdorff distance decision problem
for point setsA and B and fore is true iff S(A, ¢, B) N —S(B, ¢, A) # @. We restrict
our attention to the problem of determining whetBeA, ¢, B) is empty; extending our
method to determining whether the intersection of this set wiiiB, ¢, A) is empty is
reasonably straightforward.

Another way to look at the Hausdorff distance decision problem is to assign a different
color, call iti, to eachy, € B,i = 1,...,n. Now we can look aA, ® —b; as a union
of cubes of one color which we calllayer. We thus have layers inn different colors,
one layer for each poift; € B. A point p € RY is coveredby a colori if p € A, @ —b;.
Thecolor-depthof p is the number of layers that covpr Our aim is thus to determine
if there is a pointp of color-depthn.

3. The Decision Problem in Three Dimensions

Overmars and Yap [13] address the question of determining the volume of a union of
N d-boxes (all boxes are axis-parallel). Using a data structure they calithogonal
partition treg which we abbreviate as OPT, they achieve a runtim®afl%/?log N).

They also observe that their data structure can be used to report other measures within
the same time bound. One problem that can easily be solved using their data structure
is themaximum coveragtor a setS of N d-boxes. Defining theoverageof a point

p € RY to be the number of (closedyboxes that contaip, themaximum coveragis
max{coveragep)|| p € RY}.

Maximum coverage is almost what we need for the Hausdorff distance decision
problem, but instead we need the maximum color-depth. The difference is that maximum
coverage counts the number of different boxes while we need to count the number of
different colors (layers). These two concepts are the same if, for each color, all the boxes
of that color are disjoint. Actually it is enough to require that all the boxes of the same
color are disjoint in theiinteriors. To achieve this, we first decompose each layer into
O(n) boxes disjoint in their interiors; then we apply the OPT method to compute the
maximum coverage (which will now equal the maximum color-depth).
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Fig. 1. EisshadedE’ andE” are the thick lines oz = i andz =i + 1 respectivelyF’ andF” consist of
the black points oz =i andz =i + 1 respectively.

Theorem 1. The union of n unit cubes iR® can be decomposeih time O(nlogn),
into O(n) boxes whose interiors are disjoint

Proof. We slice the three-dimensional space by planes parallel ta thés atz =

0,1, 2, ... (withoutloss of generality, all cubes have nonnegative coordinates). For each
integeri, let n; denote the number of cubes intersected by the pfare i. Surely

> ni < n <23 n;. Let E be the portion of the union of cubes that lies within the
(closed) slab bounded lzy= i andz =i + 1. Itis known (e.g., [3]) that the complexity

of the boundary of the union ofunit 3-cubes is linear in the number of cubes. Therefore,
the complexity of the boundary & is O(n; + nj11).

To end the proof, we show how to decompé@smto O(n; + nj, 1) boxes with disjoint
interiors. As all cubes are unit cubes, the intersection ofventjical line (parallel to the
z-axis) with E is either empty, a unit segment, or up to two “short” segments emanating
either from the plane =i or from the plane =i + 1. Let thesilhouetteof E be the
projection on bottz =i andz =i + 1 of all such vertical lines whose intersection with
E is one unit long. Clearly, the complexity of the silhouettekols O(nj + nj;1).

ConsiderE’, the intersection ot with the planez = i (see Fig. 1 for a two-
dimensional illustration). For every poiptof E’, observe the vertical segment emanating
from p toward the opposite boundary & Let F’ be all pointsp of E’ at which the
length of the vertical segment changes. Cledryforms a rectilinear shape of up to
O(nj + njy1) vertices and edges (which are not self-intersecting) on the @ane.

We perform in timeO((n; + nj41) log(n; + nj;1)) a vertical decomposition df’ and
extend this decomposition in tlzedirection until we either hit an end of a short segment
or we hit the other plane=1i + 1.

Similarly, we can formE” (the intersections o with the planez =i + 1) andF”;

F” forms a rectilinear shape of up ©(n; + n;1) vertices and edges (which are not
self-intersecting) on the plaree= i + 1. We can form a vertical decomposition Bf

and extend this in the direction (toward the plane= i). Note that the parts df’ and

F” due to the silhouette dE are identical. Since the silhouette Bfappears in both

the planar arrangements it is clear that the unit long-segments’ vertical decompositions
coincide while the short-segments’ decompositions are disjoint.
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This produces a decomposition of the siainto O(n; + n;;) disjoint boxes. Sum-
ming over all the slabs produces the final decompositio® @f) disjoint boxes. [

Applying this theorem to each of tlmecolors, we decompose each layer (recall that a
layer is the union of all cubes of a single color) irign) disjoint boxes, getting a total
of N = O(n?) boxes, where boxes of the same color do not overlap in their interiors. We
can now apply the Overmars and Yap algorithm on these boxes, getting an answer to the
Hausdorff distance decision problem in tir@n®logn). This gives us the following
theorem.

Theorem 2. For point sets in three-spacéhe Hausdorff distance decision problem
can be answered in time @ logn).

4. Higher Dimensions: the Relaxed Version

The decomposition method used for 3-space cannot be extended efficiently to work for
d > 3, since as Boissonnat et al. [3] have recently shown, the complexity of the union
of n d-dimensional unit cubes i®(nl%/2); thus a single layer (the union of cubes for
a single color) cannot be decomposed i) disjoint boxes. Note that we cannot
use the Overmars and Yap data structure (OPT) and algorithm directly for the set of
n? colored cubes because of the possible overlapping of cubes of the same color. Our
method is therefore to augment the OPT adding capabilities that efficiently handle the
overlapping of same-color cubes.

We describe very briefly the OPT of Overmars and Yap [13].Qet {qy, ..., On}
be a set olN boxes contained id-space. An OPT defined forQ is a binary tree such
that each nodé is associated with a box-liké-cell Cs that contains some part of the
d-space. For each node the cellC; is the disjoint union of the cells associated with
its children. Note that the ancestdescendent relation in the tréecorresponds to the
containment relation between cells.

Consider a celC of the OPT and a bog € Q. If C C q we say thay covers C
We say that boxj is apile with respect to a celC if (1) q does not cove€ and (2) for
at leastd — 1 of the axes, the projection gfon these axes contains the projectiorCof
(see Fig. 2). Intuitivelyy is a pile with respect t€ if q “looks like” a simple planar slab
(a thickened plane or hyperplane) from witt@n A pile q divides a cellC into at most
three parts: (1§ N C, (2) the portion ofC “above”q, and (3) the portion of “below”
g. Some attributes of the OPT are [13]:

(A1) Each cellC stores those boxes @ that coverC, but do not cover the parent
of C. (In this way, the OPT is an extension of the well-known segment tree.)

(A2) Every leaf-cell also stores the boxes@fthat partially cover it (as piles) and
for each leaf-cell there ai®(+/N) such boxes.

(A3) Each box partially coversO(N©@-1/2) |eaf-cells. Eacly is a pile with respect
to those leaf-cells that it partially covers.

(A4) The height of the OPT tree ®(log N). The number of nodes in the tree is
O(NY2),
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Fig. 2. The boxq is a pile with respect to the cell in 3-space. The shaded part represents the intersection
betweerg andC.

(A5) A box q of Q can be inserted into or deleted from the OPT in time
O(N@-D/210g N).

Overmars and Yap use the OPT to compute the measure of the uriibd-toxes in
time O(N%?2log N) by treating thisstatic d-dimensional problem asdynamicproblem
in dimensiond — 1. They build an OPT of dimensiah— 1, then they use it to sweep
d-space using a hyperplahef dimensiord — 1. The sef of boxes that they use to build
the OPT is the set of projections of their origimaboxes onto thed—1)-hyperplanén.
During the sweep, each baxis inserted into the OPT when it starts intersectingnd
is deleted a® sweeps past it. Note that, because the OPT is of dimendien% (and
notd), the time to inseytdelete a single bog is O(N@-2/2|og N). Both insertions and
deletions involve some computation concerning the required measure.

We would like to implement a type of OPT ftdf = O(n?) coloredcubes (i cubes
in each of then colors) to find whether there is a point coveredrbgolors. It is easy
to use the OPT to count straightforward coverage, but we need to know the color-depth.
The fact that cubes of the same color can overlap makes this difficult. To determine
color-depth, we use secondary OPTS, one for each leaf of a primary OPT. Our primary
tree will be an OPT of dimensiath (instead ofd — 1 as used by Overmars and Yap).

First, note that our Hausdorff problem is more restricted than the measure problem

solved by Overmars and Yap in the sense that we do not have boxes of arbitrary size.

Instead we have only cubes. In addition they are all unit cubes. (The “unit” heee is 2
wheres is the size parameter of our Hausdorff distance decision problem.)

Second, we do not have to look at alla¥space. As a matter of fact we can restrict
our attention to a single unit-cube. This is because, given point sAtandB and given
parameteg, any translatiort that makes the minimum Hausdorff distance betwéen



264 L. P. Chew, D. Dor, A. Efrat, and K. Kedem

andB +t less thare must also bring the minimum-value of A within ¢ of the minimum
x-value of B + t. The same holds true for each of thaxes. Thus, in translation space,
the set of translations that could potentially briagand B within Hausdorff distance

of each other is restricted to a single uthitube, a cube of sizes2

Third, since leaf-cells are small (smaller than a uhitube as shown above), the
cubes that partially cover a leaf-cé€ll (the piles ofC) intersectC in a more restricted
way. Here, a pileg will divide a cell C into at most two parts since if any part Gfis
“above”q, then, since is large with respect t@, there cannot be any partGf‘below”

g. Intuitively, a pileq with respect taC “looks like” a half-space from withirC.

This last observation implies that if we restrict our attention to one color, say green,
then the part of leaf-celC that is not green (the portion left after all intersection€of
with green cubes have been removed) is a sidgh®x within C. Similarly, for each
colori, the nott portion of leaf-cellC is a singled-box within C. We refer to thal-box
within C that is noti asG;. Note that it is possible for a particul&; to be empty or to
equal the entire cell.

Now observe that there exists a poimtwithin C that is covered by all colors if
and only if there is a point it€ that is outside all boxe&;. This question, in turn,
is equivalent to determining whether the measure of the upipiG; is equal to the
measure ofC. By posing the problem in this way we have converted our color-depth
problem into a set of measure problemd gpace which can be answered by applying the
algorithm of Overmars and Yap on each leaf cell separately. This gives us the following
straightforward algorithm for the Hausdorff distance decision problem:

1. Using the se@ of N = O(n?) coloredd-cubes, determine th@(N%/2) leaf-cells
of the OPT ofQ (restricted to a unitl-cube as explained above).
2. For each celC:
(a) For each color, determine th&-box G; C C thatis noti.
(b) Determine (using a secondary OPT) whether the meas\r¢ & is equal
to the measure d. If not, then reporfirue and halt.
3. Reportralseand halt.

Time and Space Analysis

Overmars and Yap have shown that their algorithm can work using®(W) space. This

is done by creating one leaf-cell at a time and then performing the measure computation
for this leaf-cell. In our case the space requirement can be improved tO {n$ispace,

even though there ald = ©(n?) d-cubes. This is because, for the Hausdorff distance
decision problem, thé&l cubes are generated from ju8tn) points; thus, theN cubes

can be stored implicitly irD(n) space.

We can afford to be a bit sloppy in the time needed to build the primary OPT since
this portion of the algorithm is far from the most time-consuming part. We attempt to
keep space costs low. Instead of building all leaf-cells at once, we build each one as we
need it, taking timeD (N) for each leaf-cell. By property (A2), the space needed to store
a cellC along with the list of thosd-cubes that partially cove® is O(v/N) = O(n).

In addition, we need to retain the list of colors that completely c&@eequiringO (n)
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additional space. The nod-boxesG; can be built in timeO (n) and there are of course
n of them, one for each color.

Once we have all the box&3;, we build secondary OPTs to compute the measure
of their union. For each leaf-cel of the primary OPT, this takes tim®(n%/2logn)
and spaceO(n) [13]. Multiplying this time by the number of primary-OPT leaf-cells
O(NY2) = O(n%), we get the following intermediate result (which we improve in the
next section).

Lemma 3. Ford > 3, the Hausdorff distance decision problem can be answered in
time O(n%¥/2logn) using Q(n) space

5. Higher Dimensions: the Improved Version

In this section we improve the relaxed algorithm described in Section 4. In the relaxed
algorithm we used two classes of OPT: a primary OPT and, for each leaf-cell, a secondary
OPT. Our final time bound was due to multiplyi@(n?), the number of leaf-cells in

the primary OPT, byO(n%?2), the time needed to compute the measure of a union of
d-boxes using a secondary OPT. We develop an improved algorithm by finding a better
balance between these two quantities. The idea is to decrease the number of cells in the
primary OPT, thus making more work for the secondary OPTs.

Decreasing the number of leaf-cells in the primary OPT has two effects: (1) there
are more boxes per leaf-cell and (2) some of the boxes that partially cover a leaf-cell
are nonpiles. (Recall that for a standard OPT, each box that intersects a leaf-cell either
completely covers the cell or intersects it gsil@; see property (A3) in Section 4.) We
show that, as long as the number of nonpile boxes is relatively small, secondary OPTs
can be built without a severe performance penalty.

To explain our technique, we first discuss the way in which a standard OPT is built [13].
To make theD(NY/?) leaf-cells, we first dividel-space into 2/N slabs by cutting with
(d—1)-flats perpendicular to axig. This is done in such a way that there ay&
1-boundariesin each slab (am-boundary is a cube boundary—ad—{1)-flat—that is
perpendicular to axig;). Now we split each of these slabs with respecktoWe first
split at every+/Nth 2-boundary of thosd-boxes that intersect the slab. In addition,
for each slab, we split at all those 2-boundaries that are boundarig@sabes that
have a 1-boundary in the slab; there &¢/N) of these. Intuitively, this ensures that
the subslabs contain no “corners.” After both these kinds of splits, each slab has been
divided intoO(+/N) subslabs, each of which contai@g+/N) 2-boundaries an®(+v/N)
1-boundaries. This process continues. At dimensiowe first split at everyy/Nth
i-boundary. In addition, we split at all thosdoundaries that are boundariesie€ubes
that have aj-boundary (forj < i) in the current slab; there a@(+/N) of these. The
end result is a structure that satisfies properties (A1)—(A5) in Section 4. See [13] for
additional details.

We modify this construction. We first dividespace, withd—1)-flats perpendicular
to axisxy, into N“ slabs where each slab conta®éN'~*) 1-boundariesy is a parameter
representing a fixed constant whose value will be determined later in the proof. Now
we split each of these slabs witt{1)-flats perpendicular to axis. We first split at
everyN1~*th 2-boundary, creatin® (N%) subslabs. In addition, for each slab we split
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atsomeof those 2-boundaries dfcubes with 1-boundaries in the slab. We cannot afford

to split atall such boundaries as we did in the construction of the standard OPT, since
we want to have the same number of spls N“)) for each type of split. So we have to
useO(N?) splits, leavingO(N1~2*) of these cube corners (the 2-boundaries of cubes
that also have 1-boundaries within the slab) within each subslab. In a sense, these cube
corners disrupt the OPT structure, so our solution is to set these aside. In other words, as
we continue subdividing the current slab, we ignore th@ghl1~2*) disrupting cubes.
Thatis not to say that these cubes are gone forever: they are only ignored for this current
slab and, even though ignored for the rest of the construction, they remain associated
with the current slab (so we can find them later).

A similar construction method is used for the other dimensions. At dimerision
working on a single slab, we divide the slab with{1)-flats perpendicular to axig. We
createO(N%) subslabs each containitf—¢ i -boundaries an® (N1-2) cube corners.

The cube corners disrupt the OPT structure so they are set aside and the construction
continues.

When this process ends, we ha@¢N%) leaf-cells, each having (well-behaved)
partial intersections witlO(N'~%) cubes; these are the cubes that intersect a leaf-cell
to form piles. In addition, we have all the disrupting cubes that were set aside during
the construction process. Each cell inhe@gN1-2?) of these from each dimension
giving a total ofO(d N'~22). We can ignore the constant factorayfabsorbing it into
the big-O notation. So each leaf cell ha&(N1~?) “good” cubes (piles) that partially
intersect it andD(N1~22) “bad” cubes that partially intersect it.

Now, as we did before, we want to build a secondary OPT for each leaf-cell. There are
N2 colors, so if we did not have to worry about the bad cubes, we could build a standard
OPT structure and check the leaf-cell for color-depth in tieN%*log N) (there is
one boxG; for each of the colors, i = 1, ..., N¥/?). The key observation is that the
bad cubes can be handled in a naive way without significantly messing up the structure
of our secondary OPT. During the building of the secondary OPT we do some extra
splitting: basically, we split slabs at every bad cube boundary. Thus, each slab is split
O(NMaxl/41-22)) times:N /4 due to the standard construction fot2 boxes N1=2* due
to splitting at the bad-cube boundaries. In the end we [gd*maX1/4.1-20y secondary
leaf-cells. Note that by splitting the slabs in this way, there are no partial intersections
of secondary leaf-cells with bad cubes: for each secondary leaf-cell and for each bad
cube, either the cube completely covers the leaf-cell or they do not intersect at all. Thus
color-depth for a primary leaf-cell can be determined in tign@ %*maX1/4.1-20) |og N),

The total time for the Hausdorff distance decision problem comes from the number
of leaf-cells in the primary OPT structur®(N9%)) multiplied by the time to determine
color-depth in the secondary OPT structu@( @ Max1/41-20 |og N)). Total time is
thus O (N#max@+1/4.1-) |og N)). The optimal time is where + ; and 1— « are equal.

This occurs atr = 2. Total time is therD(N°%/8 log N) or, in terms of1, O(n>/*logn).

This gives us the following theorem. As in Lemma 3, we keep our space requirement
low by never building all the primary OPT leaf-cells at once. Instead, we build each
leaf-cell only as it is needed.

Theorem 4. For d > 3, the Hausdorff distance decision problem can be answered in
time O(n>/4logn) using Q(n) space
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Combining this result with the two-dimensional result [6], with our three-dimensional
result from Section 3, and with results descibed in an earlier version of this paper [5],
we summarize the best time bounds known.

Theorem 5. The Hausdorff distance decision problem can be answered in time
O(n%logn) for dimension d= 2 and d = 3, in time O(n“4=2/3|ogn) for dimen-
sions4 < d < 8and in time Qn®/4logn) for dimensions &> 8.

6. Finding the Minimum Hausdorff Distance

Now we want to determine the minimusrfor which the intersection is still nonempty.
It is easy to see that the desired minimum value is achieved at spfoe which two
cubes just touch each other.

We need to search among all possible values wfere two cubes touch at their
boundaries. We compute the pairwise distances for the cubes for each axis separately.
We thus perfornd searches, each over a set®fn*) ¢ values, and find for each axis
the smallest for which the intersection is not empty. The largesf thesed minima is
the required minimum Hausdorff distance.

We can afford to use a simple binary search on these values for dimahsioA
(note though that this raises the space requireme@(it')) because the algorithm
for finding the maximal color-depth is of the same complexity as for sorting all the
pairwise distances. Fal = 3, however, this is too costly, since the Hausdorff distance
decision problem is solved in tim@(n®logn). Hence we apply here, as in [6], the
method of Frederickson and Johnson [8] for solving an optimization problem by using
a sorted matrix (stored implicitly): Given a sorted matrix of sigdoy N it takes time
O(N+D log N) to solve the optimization problem whelbeis the runtime of the decision
problem. For usN = n? andD = O(n3logn).

Theorem 6. Using the L., metric the minimum Hausdorff distance under translation
between point sets A and B in d-space can be determined in tim&l@? n) if d = 3,

in time O(n“4-2/3|og?n) if 3 < d < 8, and in time Qn>/*log?n) if d > 8, where
n=max|A|, |B|}.

Proof. The proof follows directly from the discussion above and Theorem 5. O

7. Combinatorial Bounds

In this section we show combinatorial results on the region (in translation space) of all
those translations that minimize the Hausdorff distance between two point sets.

Theorem 7. LetL = {Lq,...,Lm} be a collection of layers in d-space where each
layer L; is the union of n unit cubeand let T denote the intersection of the laydrisen
the number of vertices of T is@9nl9/2)),
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Proof. Assume for simplicity that the cubes are in general positionuvlist a vertex
of T, and let{’ € £ denote thel or fewer layers which contain on their boundary.
Surely,v is a vertex of the intersection of the layers®f However,v is also a vertex of
the union of the layers of’, sincev cannot lie in the interior of any of the layers 6f.
Thus, each vertex of is also a vertex of a union of at madtayers ofL.

The proof now follows from a simple counting argument. There@¢m®) subsets
of £ containingd or fewer of the layers. Each subset contains at rdostubes, and,
by the result of [3] cited above, the union @h unit cubes ind-space has complexity
O((nd)!9/2), Hence the total number of vertices generated in the uniahaffewer
layers of£ is O(m9) x O((dn)'%/2l) which is the bound we are after. Note that factors
involving onlyd can be treated as constant and absorbed into th®bigtation. O

Observe that since the regions Dfare all axis-parallel, the bound on the number
of vertices ofT also bounds the complexifly, and of course the number of connected
regions ofT. We now show that this bound is tight in the worst case.

Theorem 8. LetL and T be defined as in TheorémThen the number of connected
regions in T isQ(mdnld/2)y,

Proof. Our construction extends an earlier construction due to Rucklidge [14] that
he developed for the two-dimensional case. We first show how to conserinatn)
connected regions i for d = 2. We define @orridor of color i as the region enclosed
between two stairs of squares of colpras shown in Fig. 3(a). We are assuming that
layerL; corresponds to the union of all squares of coldEach step of the “stairs” is of
sizes, wheres > 0 is a small fixed parameter (dependingrgrchoosen to ensure that
the entire corridor fits within a single one of our unit squares. The corridor is generated
by n cubes and has/2 stairs. We refer to this first corridor as thase corridor

~
a corridor of color i

Rk

(b)

Fig. 3. Lower bound construction.
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We generate two batches of/2 layers, where each layer has its own corridor: a
translated copy of the base corridor. Note that for layet ;s corridor is a narrow region
that isnot covered by color. Theith corridor in the first batch (for = 1,..., m/2)
is generated by shifting the base corridoriBy(in both thex andy directions) where
8" = §/2m. Theith corridor of the second batch (fo= m/2+ 1, ..., m) is generated
by translating the first batch y2 in both thex andy directions. See Fig. 3(b).

Note that each corridor in batch one intersects each corridor in batcf2 fmatimes,
yielding (m?n) distinct maximally colored regions. Most of these regions (all but
O(mn) of them) are convex, rectangle-shaped, and adjacent along all four sides to cor-
ridors. These rectangular regions are the ones we use thdimaensional construction.

We turn to the proof ifR?. We first assume thatis even, and sét = d/2. As before,
we associate laydr; with colori. We divide ourm colors intok groups, each of size
m’ = m/k. Note that we can choose so that it is divisibe bk.

For each group ofY colors, we build a set afYn d-cubes inR? so that, for group
j (j =1,...,k), the projection of the cubes on thg and 2j + 1 axes produces a
set of squares and corresponding corridors identical to the two-dimensional Rucklidge
construction given above. The otheer 2 coordinates of the cube centers are identically
zero. Note that for each group there is a set of maximally colored (colored with all
m’ color of groupj) d-bricks that are rectangles when projected on thad 2j + 1
axes. Thesel-bricks are of unit size along all axes except for ax¢sad 2 + 1.

By the earlier construction, there af&((m')2n) = Q(m?n) suchd bricks for each
groupj.

Our claim is that there ar® (m?kn*) connected components @f whereT is the
intersection of the layers and each laygrcorresponds to the union of all the cubes of
colori. To verify this claim, consider the number dfbricks generated as the cross-
product of our two-dimensional rectangles. It is easy to see that thef@(@&n*) =
Q(m?n%?) of these.

If dis odd, we embed the even-dimensional construction in thetdfirst dimensions
of RY, but we use jusin/2 of the colors (this affects only the constant in the big-omega
notation)—all cubes have center-coordinate zero fordteaxis. The remainingn/2
colors are used to create a “striped” pattern ordtteaxis. For each of these colors, we
create two cubes, centered along all axes excepltthé\long thedth axis the two cubes
have a very small gap between them. The gap for each color is in a slightly different
place leading to the result that, for theeg2 colors, there are + m/2 intervals along
thedth axis that are covered by all tlne/2 colors, separated lim/2 gaps where each
gap is missing a different color. It is easy to see that each of the bricks created in the
even-dimensional construction is cut irfi@m) pieces by these gaps. This is enough to
give us the desired bound for the theorem. O

The bounds of Theorems 7 and 8 actually show that there c@igridé"/2)) translations
t that minimize theone-wayHausdorff distance betweehandB + t, whereA andB
containn points each. By slightly modifying the proofs, it can be shown that the same
bounds hold for the number of translations that minimize the two-way Hausdorff distance.
If the cubes defining are axis-parallel but not necessarily of the same size, then the
proofs of Theorems 7 and 8 can be modified to obtain the larger (upper and lower) bound
of ®(mdnld/21),
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Theorem 9. LetL = {L4,..., Ly} be a collection of layersvhere each layer Lis
the union of n axis-parallel cubes of arbitrary sizeRfl. Then the complexity gf); Li
is @(mdnld/2Ty,

Proof. The upper bound follows in a straightforward way from [3], cited above, where
itis shown that the complexity of the union@h such cubes id-space i€ ( (dn)9/21).

To show the matching lower bound, we modify the proof of Theorem 8. First, note that
no change is necessary fibeven. Fod odd, we modify the construction used to create
gaps along thdth axis. The idea is to use small cubes to create more gaps alodththe
axis. For a particular color, we can usesmall cubes of that color, arranged one after
the other along thdth axis, with small gaps between them. Similar versions, shifted
slightly along thedth axis can be arranged for each of the other colors. Combining these
we create2 (mn) all-color intervals separated by gaps. By choosirttye stair-step size,
sufficiently small, we can ensure that a@lbricks are cut by these gaps, completing the
proof of the theorem. O

8. Hausdorff Distance under theL, Norm

Our upper bound technique described above is useful for showing similar bounds for
balls instead of cubes. The following theorem turns out to have important algorithmic
implications.

Theorem 10. Letf = {L4,..., Ly} beacollection of m layersvhere each layer Lis
the union of n balls of arbitrary size iR“. Then the complexity ¢f), L; is O(mdnfd/21).

Proof. The standard lifting transformatian RY — RY*+1is defined by ((X1, . .., Xq))

= (X1, ..., Xd, X2+ -+ x3) (see, e.g., [7]). The vertices of the union of balls in each
layer can be expressed as (a subset of) the vertices of the upper enveltypefplanes

in R@+D_ The number of such vertices@(n'@+D/2ly — O(n9/21) [7]. The remainder

of the proof is similar to that of Theorem 7. O

Let A= {a,...,ay} andB = {by, ..., by} be two sets of points idl-space, for
d > 4, and letH,(A, B) denote the Hausdorff distance between them, whgeis the
underlying metric. In [9] and [10] a® (n>*%)-time algorithnt for finding a translatiom
that minimizesH,(A, B +t) whenA, B € R3 was presented. In this section we extend
this result for higher dimensions, by obtaining@iin/3¢/21+1+%)-time algorithm for the
case thaiA andB are inRY, ford > 4.

Our algorithm is analogous to the one in Section 2.d*d¢he min Ho(A, t + B), for
t € RY, and lets be a given fixed number. Our goal is to determine whethigequal to,
smaller, or larger thae*. Let D, denote a ball (under thie; norm) of radius centered

1 Throughout this sectiors, stands for a positive constant which can be chosen arbitrarily small with an
appropriate choice of other constants of the algorithms.
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at the origin. Let

T(e)=()b—- (A& D))N[)(B& D) —a).

beB acA

As discussed in Section Z,(¢) is empty, if and only ife < &*. For everya, € Awe
define the layet;(¢) = (B @ D,) — & to be the union of the-balls aboutb; — &
(for all bj € B). We denote these balls IB(L;). We obtain an oracle for determining
whetherT () = ) Li(¢) is empty. Determining whethdr(¢) is empty is obtained in
a straightforward way. The oracle consists of two phases. IG#weration Phasave
generate a s& of points which is a superset of the verticegat). In the second phase,
the Decision Phasewe check if any element & lies in (the closure of] (¢), which
implies thatT () # @.

The Generation Phase. Following the proof of Theorems 7 and 10, for each subset

L < L of d orless layers, we comput€, the set of all vertices of the union of the
balls of 5(L’). Under the lifting transform(-) described in the proof of Theorem 10, the
boundary of each ball d8(£’) is transformed into a region in a hyperplaneiif. A

vertex ofS’ corresponds to a vertex of the upper envelope of these hyperplanes. We use
the algorithm of Seidel [15], to generate this upper envelope in @@e%2! logn) for

each sucl’’. Let S denote the union of these vertices generated for each&uch’.

The upper envelope, however, might contain edges not containing a vertex. Such an edge
could be created, for example, in the case wifigré consist only of the intersection of

less thard balls. For each such edgappearing on the upper envelope of hyperplanes,
we pick an arbitary point og, and add this point t&. The time required for generating

S is therefore

d <2> x O(n¥?logn) = O(n™¥?logn) .

As shown in the proof of Theorem 10, the verticesTak) (if it is not empty) are
contained inS.

The Decision Phase. Here we check each poinate Sto find if it lies in T (¢). The
transformatiori.(-) transforms each bal of B(£;) into a half-space.(b) € R9t1, Let

H; denote the intersection of the complements of these half-spacasdr, ..., n).
Surelyg € L ifandonlyifA(q) ¢ Hi. To checkthis condition, we preprocddsin time
O(nl4/21+%) into a point-location data structuf®, of Matowsek [11], so that determining
if g € H; isobtained intimeO (logn). Hence determining i € T (¢) is obtained in time
O(nlogn). We perform this query for each point8f(in time O(n3¥/21+1|ogn)). Note
thatD; needs to be constructed only for a single since the layers are just translation
copies of each other. This completes the description of the oracle.

Optimization

We turn now to the problem of finding*. Note that a ball ird-space is determined
by d + 1 points, and hence there afgn®9+Y) critical valuese at which the layer
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structures combinatorially changes. So in contrast td thecase, we cannot generate

all the critical values. To overcome this difficulty, we use the parametric searching
paradigm of Megiddo [12]. We assume familiarity of the reader with the technique, and
refer to [1] for a description of the technique and some of its geometric applications.
The technique requires the construction of a parallel version of the oracle. Consider the
Generation Phase. Constructing all subgits £ can be performed sequentially, since
this process is not affected fey For a subset’, we need to construct the vertices of
the intersection of the half-spacegb) (in R9*1) for each ballb € B(L’). Under the
“standard” primal—dual transformation, this intersection is transformed into the convex
hull (in R9+1) of the points dual to hyperplanes bounding these halfspaces. Itis computed
using the algorithm of Amato et al. [2] i@ (logn) parallel steps, usin@(n'%/? log® n)
processors, for some constant 0 (these bounds refer tbspace fod > 4). Applying

this procedure in parallel to eagh C £, we can generat§ in O(logn) parallel steps
usingO(n34/21 log® n) processors.

We now turn to parallel implementation of the Decision Phase. The data str@ture
can be constructed i@ (n°) parallel steps, using similar construction as in [4]. Performing
the O(n34/2+11y queries inD; is trivially done inO(logn) parallel steps. Plugging the
parallel algorithm into the parametric search paradigm, we observe that the algorithm
performsO(n?) parallel steps, consulting the oraclogn) times at each step. Hence
the total time spent for consulting the oracl@dgnd+/d4/21+1+4) \which bounds the total
time of the algorithm. Thus we have

Theorem 11. Let A and B be two point-sets of n points each in d-sigdce 4). Then
atranslation t minimizing KA, B +t) can be found in time @n/3¢/21+1+8) ‘for every
6 > 0.

9. Conclusions and Open Problems

For point sets in dimensioth the minimum Hausdorff distance under translation can be
found in time O(n%¥/4log?n) when L, is the underlying metric and in time
O(nf34/21+1+8) for any § > 0 when the underlying metric ik,. Ford = 3 under
the L, metric, we obtain the better result &f(n®log?n). For 3 < d < 8 under the
L ., metric, we can obtain a slightly better result@{n“?-2/3 log? n) as shown in our
earlier paper [5].

There are some interesting questions that remain open.

e Are L, Hausdorff distance decision problems inherently easier than the ones for
L,?Isthere asingle technique that solves both types of problems efficiently, perhaps
with better time bounds than those achieved here?

e Given ad-dimensional boxXC andn boxesGy, . .., Gy lying insideC, is it possible
to determine ifl J] Gi = C in time o(n%?)? Finding such a technique would
immediately improve the running time of the relaxed version ofloyralgorithm
and would be likely to speed up the improved version as well.

e For larged, our time bounds—and our constant factors, hidden by th&sigare
such that our exact algorithms are likely to be impractical. What kinds of nontrivial
approximations are useful?
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e The set of cubes for one color is really just a translation of the set of cubes for each
other color. Our algorithm uses this fact to reduce the storage capacity, but not to
improve the running time. Is there some way to use this information to design a
faster algorithm?

Our algorithms can be modified within the same asymptotoic time bounds to tackle
the problem ofpattern matching in the presence of spurious pgiatsnetimes called
outliers In this problem we seek a small sub3etc AU B of points (whose existence
is perhaps a result of noise) containing at most a predetermined nkrobgoints, such
that A\ X can be optimally matched, under translationBtgX. The modification needed
is the following: In the algorithm we used the assumption that our attention could be
restricted to a single unit cube in the translation space. This assumption is not valid if
we assume the existence of spurious points. To overcome this difficulty, we divide the
translationd-space into unit cubes, and solve our problem independently in each such
nonempty cube. This does notincrease the overall running time, since each original cube
hits justO(2%) of these new unit cubes.
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