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Abstract. We show that, using theL∞ metric, the minimum Hausdorff distance under
translation between two point sets of cardinalityn in d-dimensional space can be computed
in time O(n(4d−2)/3 log2 n) for 3 < d ≤ 8, and in timeO(n5d/4 log2 n) for any d > 8.
Thus we improve the previous time bound ofO(n2d−2 log2 n) due to Chew and Kedem. For
d = 3 we obtain a better result ofO(n3 log2 n) time by exploiting the fact that the union
of n axis-parallel unit cubes can be decomposed intoO(n) disjoint axis-parallel boxes.
We prove that the number of different translations that achieve the minimum Hausdorff
distance ind-space is2(nb3d/2c). Furthermore, we present an algorithm which computes
the minimum Hausdorff distance under theL2 metric ind-space in timeO(nd3d/2e+1+δ), for
anyδ > 0.

1. Introduction

We consider the problem of finding the resemblance, under translation, of two point sets
in d-dimensional space ford ≥ 3. In many matching applications, objects are described
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by d parameters; thus a single object corresponds to a point ind-dimensional space. One
would like the ability to determine whether two sets of such objects resemble each other.
A three-dimensional example comes from molecular matching, where a molecule can
be described by its atoms, represented as points in 3-space.

The tool that we suggest here for measuring resemblance is the well-researched
minimum Hausdorff distance under translation. The distance function we use (except in
Section 8) is theL∞metric. One advantage of using the Hausdorff distance is that it does
not assume equal cardinality of the point sets. It measures the maximalmismatchbetween
the sets when one point set is allowed to translate in order to minimize this mismatch.
Two point sets are considered to be similar if this mismatch is small. To simplify our
presentation, we assume that the cardinalities of the sets aren andm = O(n) and we
express our results in terms ofn.

There have been several papers on the subject of point set resemblance using the
minimum Hausdorff distance under translation. Huttenlocher et al. [9], [10] find the
minimum Hausdorff distance for point sets in the plane in timeO(n3 logn) under the
L1, L2, or L∞ metrics. For point sets in three-dimensional space their algorithm, using
the L2 metric, runs in timeO(n5+ε). The method used in [10] cannot be extended to
work underL∞.

Chew and Kedem [6] show that, when using theL∞metric in the plane, the minimum
Hausdorff distance can be computed in timeO(n2 log2 n). This is a somewhat surprising
result, since there can beÄ(n3) different translations that achieve the (same) minimum
[6], [14]. They [6] further extend their technique to compute the minimum Hausdorff
distance between two point sets ind-dimensional space using theL∞ metric, achieving
a time bound ofO(n2d−2 log2 n) for a fixed dimensiond.

We show in this paper that, using theL∞ metric, the minimum Hausdorff distance
between two point sets can be found in timeO(n3 log2 n) for d = 3, and in time
O(n5d/4 log2 n) for d > 3. In an earlier version of this paper [5], we have shown how a
time bound ofO(n(4d−2)/3 log2 n) can be achieved ford > 3. For 3< d < 8, the time
bound of [5] is slightly better than the one we present here.

To estimate the quality of the time complexity of our algorithms, it is natural to seek
the number of different translations that achieve the minimum Hausdorff distance. More
precisely, the number of connected components in the set of feasible translations in the
d-dimensional translation space. We show that this number is2(nb3d/2c) in the worst
case. Note that, as for the planar case solved in [6], the runtime of the algorithms which
we present for a fixedd ≥ 3 is significantly lower than the number of the connected
components in thed-dimensional translation space.

Many optimization problems are solved parametrically by finding an oracle for a
decision problemand then using this oracle in some parametric optimization scheme.
In this paper we follow this line by developing an algorithm for theHausdorff distance
decision problem(see definition in the next section) and then using it as an oracle in the
Frederickson and Johnson [8] optimization scheme. For the oracle in 3-space we prove
that a set ofn unit cubes can be decomposed intoO(n) disjoint axis-parallel boxes. We
then apply the orthogonal partition trees (OPTs) described by Overmars and Yap [13]
to find the maximal depth of disjoint axis-parallel boxes. We show that this suffices
to answer the Hausdorff distance decision problem in 3-space. Ford > 3 there is a
superlinear lower bound on the number of boxes obtained by disjoint decomposition of a
union of boxes (see [3]); thus we cannot use a disjoint decomposition of unit hypercubes.
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Instead, we build a decision-problem oracle by developing and using a modified, nested
version of the OPT.

When usingL2 as the underlying metric we show that there can beÄ(nb3d/2c) con-
nected components in the translation space, and that the complexity of the space of
feasible translations isO(nd3d/2e). We present an algorithm which computes the mini-
mum Hausdorff distance under theL2 metric ind-space in timeO(nd3d/2e+1+δ) for any
δ > 0.

The paper is organized as follows: In Section 2 we define theminimum Hausdorff
distance problem, and describe theHausdorff distance decision problem. In Section 3
we show that the union ofn axis-parallel unit cubes in 3-space can be decomposed
into O(n) disjoint axis-parallel boxes, and use the orthogonal partition trees of [13] to
solve the Hausdorff distance decision problem in 3-space. Ford > 3, our algorithm
is more involved and hence its description is separated into two sections: Section 4
contains a relaxed version of our data structures and an oracle which runs in time
O(n3d/2−1 logn); in Section 5 we modify the data structures of the relaxed version
and obtain anO(n5d/4 logn) runtime oracle. In Section 6 we show briefly how we plug
the decision algorithm into the Frederickson and Johnson optimization scheme. Bounds
on the number of translations that minimize the Hausdorff distance are presented in
Section 7. The algorithm for the minimum Hausdorff distance under theL2 metric is
discussed in Section 8. Conclusions and open questions appear in Section 9.

Since all the spatial objects we deal with in this paper are axis-parallel cubes, axis-
parallel boxes, and axis-parallel cells, we omit from now on the words “axis-parallel”
and talk about cubes, boxes, and cells. We call a box ind-space ad-box.

2. The Hausdorff Distance Decision Problem

The well-knownHausdorff distancebetween point setsA andB is defined as

H(A, B) = max(h(A, B), h(B, A)),

where theone-wayHausdorff distance fromA to B is

h(A, B) = max
a∈A

min
b∈B

ρ(a,b).

Here,ρ(·, ·) represents a familiar metric on points: for instance, the standard Euclidean
metric (theL2 metric) or theL1 or L∞ metrics. In this paper,unless otherwise noted,
we use theL∞ metric. In dimensiond, anL∞ “sphere” (i.e., a set of points equidistant
from a given center point) is ad-cube.

The minimum Hausdorff distancebetween two point sets is the Hausdorff distance
minimized with respect to all possible translations of the point sets. Huttenlocher and
Kedem [9] observe that the minimum Hausdorff distance is a metric on point sets (and
more general shapes) that is independent of translation. Intuitively, it measures the max-
imum mismatch between two point sets after the sets have been translated to minimize
this mismatch. For the minimum Hausdorff distance the sets do not have to have the
same cardinality, although to simplify our presentation, we assume that both point sets
are of size2(n).
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As in [6] we approach this optimization problem by using theHausdorff distance
decision problemwith parameterε > 0 as a subroutine for a search in a sorted matrix
of ε values. We define theHausdorff distance decision problemfor a givenε to be the
question of whether the minimum Hausdorff distance under translation is bounded byε.
We say that the Hausdorff distance decision problem for setsA andB and forε is true
if there exists a translationt such that the Hausdorff distance betweenA andB shifted
by t is less than or equal toε.

We follow the approach taken in [6], solving the Hausdorff distance decision problem
by solving a problem of the intersection of unions of cubes in the (d-dimensional)
translation space. Let A and B be two sets of points as above, letε be a positive real
value, and letCε be ad-dimensional cube, with side size 2ε and with the origin at its center
(the L∞ “sphere” of radiusε). We define the setAε to be A⊕ Cε, where⊕ represents
the Minkowski sum. Consider the setAε ⊕ (−b) where−b represents the reflection of
point b through the origin. This set is the set of translations that mapb into Aε. The set
of translations that map all pointsb ∈ B into Aε is then

⋂
b∈B (Aε ⊕ (−b)); we denote

this set byS(A, ε, B). It can be shown [6] that the Hausdorff distance decision problem
for point setsA and B and forε is true iff S(A, ε, B) ∩ −S(B, ε, A) 6= ∅. We restrict
our attention to the problem of determining whetherS(A, ε, B) is empty; extending our
method to determining whether the intersection of this set with−S(B, ε, A) is empty is
reasonably straightforward.

Another way to look at the Hausdorff distance decision problem is to assign a different
color, call it i , to eachbi ∈ B, i = 1, . . . ,n. Now we can look atAε ⊕−bi as a union
of cubes of one color which we call alayer. We thus haven layers inn different colors,
one layer for each pointbi ∈ B. A point p ∈ Rd is coveredby a colori if p ∈ Aε⊕−bi .
Thecolor-depthof p is the number of layers that coverp. Our aim is thus to determine
if there is a pointp of color-depthn.

3. The Decision Problem in Three Dimensions

Overmars and Yap [13] address the question of determining the volume of a union of
N d-boxes (all boxes are axis-parallel). Using a data structure they call anorthogonal
partition tree, which we abbreviate as OPT, they achieve a runtime ofO(Nd/2 log N).
They also observe that their data structure can be used to report other measures within
the same time bound. One problem that can easily be solved using their data structure
is themaximum coveragefor a setS of N d-boxes. Defining thecoverageof a point
p ∈ Rd to be the number of (closed)d-boxes that containp, themaximum coverageis
max{coverage(p)‖p ∈ Rd}.

Maximum coverage is almost what we need for the Hausdorff distance decision
problem, but instead we need the maximum color-depth. The difference is that maximum
coverage counts the number of different boxes while we need to count the number of
different colors (layers). These two concepts are the same if, for each color, all the boxes
of that color are disjoint. Actually it is enough to require that all the boxes of the same
color are disjoint in theirinteriors. To achieve this, we first decompose each layer into
O(n) boxes disjoint in their interiors; then we apply the OPT method to compute the
maximum coverage (which will now equal the maximum color-depth).
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Fig. 1. E is shaded,E′ andE′′ are the thick lines onz= i andz= i + 1 respectively,F ′ andF ′′ consist of
the black points onz= i andz= i + 1 respectively.

Theorem 1. The union of n unit cubes inR3 can be decomposed, in time O(n logn),
into O(n) boxes whose interiors are disjoint.

Proof. We slice the three-dimensional space by planes parallel to thez axis atz =
0,1,2, . . . (without loss of generality, all cubes have nonnegative coordinates). For each
integer i , let ni denote the number of cubes intersected by the planez = i . Surely∑

ni ≤ n ≤ 2
∑

ni . Let E be the portion of the union of cubes that lies within the
(closed) slab bounded byz= i andz= i + 1. It is known (e.g., [3]) that the complexity
of the boundary of the union ofn unit 3-cubes is linear in the number of cubes. Therefore,
the complexity of the boundary ofE is O(ni + ni+1).

To end the proof, we show how to decomposeE into O(ni +ni+1) boxes with disjoint
interiors. As all cubes are unit cubes, the intersection of anyvertical line (parallel to the
z-axis) withE is either empty, a unit segment, or up to two “short” segments emanating
either from the planez = i or from the planez = i + 1. Let thesilhouetteof E be the
projection on bothz= i andz= i + 1 of all such vertical lines whose intersection with
E is one unit long. Clearly, the complexity of the silhouette ofE is O(ni + ni+1).

ConsiderE′, the intersection ofE with the planez = i (see Fig. 1 for a two-
dimensional illustration). For every pointpof E′, observe the vertical segment emanating
from p toward the opposite boundary ofE. Let F ′ be all pointsp of E′ at which the
length of the vertical segment changes. Clearly,F ′ forms a rectilinear shape of up to
O(ni + ni+1) vertices and edges (which are not self-intersecting) on the planez = i .
We perform in timeO((ni + ni+1) log(ni + ni+1)) a vertical decomposition ofF ′ and
extend this decomposition in thez direction until we either hit an end of a short segment
or we hit the other planez= i + 1.

Similarly, we can formE′′ (the intersections ofE with the planez= i + 1) andF ′′;
F ′′ forms a rectilinear shape of up toO(ni + ni+1) vertices and edges (which are not
self-intersecting) on the planez = i + 1. We can form a vertical decomposition ofF ′′

and extend this in thez direction (toward the planez= i ). Note that the parts ofF ′ and
F ′′ due to the silhouette ofE are identical. Since the silhouette ofE appears in both
the planar arrangements it is clear that the unit long-segments’ vertical decompositions
coincide while the short-segments’ decompositions are disjoint.
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This produces a decomposition of the slabE into O(ni + ni+1) disjoint boxes. Sum-
ming over all the slabs produces the final decomposition ofO(n) disjoint boxes.

Applying this theorem to each of then colors, we decompose each layer (recall that a
layer is the union of all cubes of a single color) intoO(n) disjoint boxes, getting a total
of N = O(n2) boxes, where boxes of the same color do not overlap in their interiors. We
can now apply the Overmars and Yap algorithm on these boxes, getting an answer to the
Hausdorff distance decision problem in timeO(n3 logn). This gives us the following
theorem.

Theorem 2. For point sets in three-space, the Hausdorff distance decision problem
can be answered in time O(n3 logn).

4. Higher Dimensions: the Relaxed Version

The decomposition method used for 3-space cannot be extended efficiently to work for
d > 3, since as Boissonnat et al. [3] have recently shown, the complexity of the union
of n d-dimensional unit cubes is2(nbd/2c); thus a single layer (the union of cubes for
a single color) cannot be decomposed intoO(n) disjoint boxes. Note that we cannot
use the Overmars and Yap data structure (OPT) and algorithm directly for the set of
n2 colored cubes because of the possible overlapping of cubes of the same color. Our
method is therefore to augment the OPT adding capabilities that efficiently handle the
overlapping of same-color cubes.

We describe very briefly the OPT of Overmars and Yap [13]. LetQ = {q1, . . . ,qN}
be a set ofN boxes contained ind-space. An OPTT defined forQ is a binary tree such
that each nodeδ is associated with a box-liked-cell Cδ that contains some part of the
d-space. For each nodeδ, the cellCδ is the disjoint union of the cells associated with
its children. Note that the ancestor/descendent relation in the treeT corresponds to the
containment relation between cells.

Consider a cellC of the OPT and a boxq ∈ Q. If C ⊆ q we say thatq covers C.
We say that boxq is apile with respect to a cellC if (1) q does not coverC and (2) for
at leastd − 1 of the axes, the projection ofq on these axes contains the projection ofC
(see Fig. 2). Intuitively,q is a pile with respect toC if q “looks like” a simple planar slab
(a thickened plane or hyperplane) from withinC. A pile q divides a cellC into at most
three parts: (1)q ∩C, (2) the portion ofC “above”q, and (3) the portion ofC “below”
q. Some attributes of the OPT are [13]:

(A1) Each cellC stores those boxes ofQ that coverC, but do not cover the parent
of C. (In this way, the OPT is an extension of the well-known segment tree.)

(A2) Every leaf-cell also stores the boxes ofQ that partially cover it (as piles) and
for each leaf-cell there areO(

√
N) such boxes.

(A3) Each boxq partially coversO(N(d−1)/2) leaf-cells. Eachq is a pile with respect
to those leaf-cells that it partially covers.

(A4) The height of the OPT tree isO(log N). The number of nodes in the tree is
O(Nd/2).
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Fig. 2. The boxq is a pile with respect to the cellC in 3-space. The shaded part represents the intersection
betweenq andC.

(A5) A box q of Q can be inserted into or deleted from the OPT in time
O(N(d−1)/2 log N).

Overmars and Yap use the OPT to compute the measure of the union ofN d-boxes in
time O(Nd/2 log N) by treating thisstatic d-dimensional problem as adynamicproblem
in dimensiond − 1. They build an OPT of dimensiond − 1, then they use it to sweep
d-space using a hyperplaneh of dimensiond−1. The setQ of boxes that they use to build
the OPT is the set of projections of their originald-boxes onto the (d−1)-hyperplaneh.
During the sweep, each boxq is inserted into the OPT when it starts intersectingh and
is deleted ash sweeps past it. Note that, because the OPT is of dimensionsd − 1 (and
notd), the time to insert/delete a single boxq is O(N(d−2)/2 log N). Both insertions and
deletions involve some computation concerning the required measure.

We would like to implement a type of OPT forN = O(n2) coloredcubes (n cubes
in each of then colors) to find whether there is a point covered byn colors. It is easy
to use the OPT to count straightforward coverage, but we need to know the color-depth.
The fact that cubes of the same color can overlap makes this difficult. To determine
color-depth, we use secondary OPTs, one for each leaf of a primary OPT. Our primary
tree will be an OPT of dimensiond (instead ofd − 1 as used by Overmars and Yap).

First, note that our Hausdorff problem is more restricted than the measure problem
solved by Overmars and Yap in the sense that we do not have boxes of arbitrary size.
Instead we have only cubes. In addition they are all unit cubes. (The “unit” here is 2ε

whereε is the size parameter of our Hausdorff distance decision problem.)
Second, we do not have to look at all ofd-space. As a matter of fact we can restrict

our attention to a single unitd-cube. This is because, given point setsA andB and given
parameterε, any translationt that makes the minimum Hausdorff distance betweenA
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andB+ t less thanεmust also bring the minimumx-value ofA within ε of the minimum
x-value ofB+ t . The same holds true for each of thed axes. Thus, in translation space,
the set of translations that could potentially bringA andB within Hausdorff distanceε
of each other is restricted to a single unitd-cube, a cube of size 2ε.

Third, since leaf-cells are small (smaller than a unitd-cube as shown above), the
cubes that partially cover a leaf-cellC (the piles ofC) intersectC in a more restricted
way. Here, a pileq will divide a cell C into at most two parts since if any part ofC is
“above”q, then, sinceq is large with respect toC, there cannot be any part ofC “below”
q. Intuitively, a pileq with respect toC “looks like” a half-space from withinC.

This last observation implies that if we restrict our attention to one color, say green,
then the part of leaf-cellC that is not green (the portion left after all intersections ofC
with green cubes have been removed) is a singled-box within C. Similarly, for each
color i , the not-i portion of leaf-cellC is a singled-box withinC. We refer to thed-box
within C that is noti asGi . Note that it is possible for a particularGi to be empty or to
equal the entire cellC.

Now observe that there exists a pointp within C that is covered by all colors if
and only if there is a point inC that is outside all boxesGi . This question, in turn,
is equivalent to determining whether the measure of the union

⋃
i Gi is equal to the

measure ofC. By posing the problem in this way we have converted our color-depth
problem into a set of measure problems ind space which can be answered by applying the
algorithm of Overmars and Yap on each leaf cell separately. This gives us the following
straightforward algorithm for the Hausdorff distance decision problem:

1. Using the setQ of N = O(n2) coloredd-cubes, determine theO(Nd/2) leaf-cells
of the OPT ofQ (restricted to a unitd-cube as explained above).

2. For each cellC:
(a) For each colori , determine thed-box Gi ⊆ C that is noti .
(b) Determine (using a secondary OPT) whether the measure of

⋃
i Gi is equal

to the measure ofC. If not, then reportTrue and halt.
3. ReportFalseand halt.

Time and Space Analysis

Overmars and Yap have shown that their algorithm can work using onlyO(N) space. This
is done by creating one leaf-cell at a time and then performing the measure computation
for this leaf-cell. In our case the space requirement can be improved to justO(n) space,
even though there areN = 2(n2) d-cubes. This is because, for the Hausdorff distance
decision problem, theN cubes are generated from justO(n) points; thus, theN cubes
can be stored implicitly inO(n) space.

We can afford to be a bit sloppy in the time needed to build the primary OPT since
this portion of the algorithm is far from the most time-consuming part. We attempt to
keep space costs low. Instead of building all leaf-cells at once, we build each one as we
need it, taking timeO(N) for each leaf-cell. By property (A2), the space needed to store
a cellC along with the list of thosed-cubes that partially coverC is O(

√
N) = O(n).

In addition, we need to retain the list of colors that completely coverC, requiringO(n)
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additional space. The not-i d-boxesGi can be built in timeO(n) and there are of course
n of them, one for each color.

Once we have all the boxesGi , we build secondary OPTs to compute the measure
of their union. For each leaf-cellC of the primary OPT, this takes timeO(nd/2 logn)
and spaceO(n) [13]. Multiplying this time by the number of primary-OPT leaf-cells
O(Nd/2) = O(nd), we get the following intermediate result (which we improve in the
next section).

Lemma 3. For d > 3, the Hausdorff distance decision problem can be answered in
time O(n3d/2 logn) using O(n) space.

5. Higher Dimensions: the Improved Version

In this section we improve the relaxed algorithm described in Section 4. In the relaxed
algorithm we used two classes of OPT: a primary OPT and, for each leaf-cell, a secondary
OPT. Our final time bound was due to multiplyingO(nd), the number of leaf-cells in
the primary OPT, byO(nd/2), the time needed to compute the measure of a union ofn
d-boxes using a secondary OPT. We develop an improved algorithm by finding a better
balance between these two quantities. The idea is to decrease the number of cells in the
primary OPT, thus making more work for the secondary OPTs.

Decreasing the number of leaf-cells in the primary OPT has two effects: (1) there
are more boxes per leaf-cell and (2) some of the boxes that partially cover a leaf-cell
are nonpiles. (Recall that for a standard OPT, each box that intersects a leaf-cell either
completely covers the cell or intersects it as apile; see property (A3) in Section 4.) We
show that, as long as the number of nonpile boxes is relatively small, secondary OPTs
can be built without a severe performance penalty.

To explain our technique, we first discuss the way in which a standard OPT is built [13].
To make theO(Nd/2) leaf-cells, we first divided-space into 2

√
N slabs by cutting with

(d−1)-flats perpendicular to axisx1. This is done in such a way that there are
√

N
1-boundariesin each slab (ani -boundary is a cube boundary—a (d−1)-flat—that is
perpendicular to axisxi ). Now we split each of these slabs with respect tox2. We first
split at every

√
Nth 2-boundary of thosed-boxes that intersect the slab. In addition,

for each slab, we split at all those 2-boundaries that are boundaries ofd-cubes that
have a 1-boundary in the slab; there areO(

√
N) of these. Intuitively, this ensures that

the subslabs contain no “corners.” After both these kinds of splits, each slab has been
divided intoO(

√
N)subslabs, each of which containsO(

√
N)2-boundaries andO(

√
N)

1-boundaries. This process continues. At dimensioni , we first split at every
√

Nth
i -boundary. In addition, we split at all thosei -boundaries that are boundaries ofd-cubes
that have aj -boundary (forj < i ) in the current slab; there areO(

√
N) of these. The

end result is a structure that satisfies properties (A1)–(A5) in Section 4. See [13] for
additional details.

We modify this construction. We first divided-space, with (d−1)-flats perpendicular
to axisx1, intoNα slabs where each slab containsO(N1−α)1-boundaries;α is a parameter
representing a fixed constant whose value will be determined later in the proof. Now
we split each of these slabs with (d−1)-flats perpendicular to axisx2. We first split at
everyN1−αth 2-boundary, creatingO(Nα) subslabs. In addition, for each slab we split
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atsomeof those 2-boundaries ofd-cubes with 1-boundaries in the slab. We cannot afford
to split atall such boundaries as we did in the construction of the standard OPT, since
we want to have the same number of splits (O(Nα)) for each type of split. So we have to
useO(Nα) splits, leavingO(N1−2α) of these cube corners (the 2-boundaries of cubes
that also have 1-boundaries within the slab) within each subslab. In a sense, these cube
corners disrupt the OPT structure, so our solution is to set these aside. In other words, as
we continue subdividing the current slab, we ignore theseO(N1−2α) disrupting cubes.
That is not to say that these cubes are gone forever: they are only ignored for this current
slab and, even though ignored for the rest of the construction, they remain associated
with the current slab (so we can find them later).

A similar construction method is used for the other dimensions. At dimensioni ,
working on a single slab, we divide the slab with (d−1)-flats perpendicular to axisxi . We
createO(Nα) subslabs each containingN1−α i -boundaries andO(N1−2α) cube corners.
The cube corners disrupt the OPT structure so they are set aside and the construction
continues.

When this process ends, we haveO(Ndα) leaf-cells, each having (well-behaved)
partial intersections withO(N1−α) cubes; these are the cubes that intersect a leaf-cell
to form piles. In addition, we have all the disrupting cubes that were set aside during
the construction process. Each cell inheritsO(N1−2a) of these from each dimensioni ,
giving a total ofO(d N1−2a). We can ignore the constant factor ofd, absorbing it into
the big-O notation. So each leaf cell hasO(N1−a) “good” cubes (piles) that partially
intersect it andO(N1−2a) “bad” cubes that partially intersect it.

Now, as we did before, we want to build a secondary OPT for each leaf-cell. There are
N1/2 colors, so if we did not have to worry about the bad cubes, we could build a standard
OPT structure and check the leaf-cell for color-depth in timeO(Nd/4 log N) (there is
one boxGi for each of the colorsi , i = 1, . . . , N1/2). The key observation is that the
bad cubes can be handled in a naive way without significantly messing up the structure
of our secondary OPT. During the building of the secondary OPT we do some extra
splitting: basically, we split slabs at every bad cube boundary. Thus, each slab is split
O(Nmax(1/4,1−2α)) times:N1/4 due to the standard construction forN1/2 boxes,N1−2α due
to splitting at the bad-cube boundaries. In the end we haveO(Nd∗max(1/4,1−2α)) secondary
leaf-cells. Note that by splitting the slabs in this way, there are no partial intersections
of secondary leaf-cells with bad cubes: for each secondary leaf-cell and for each bad
cube, either the cube completely covers the leaf-cell or they do not intersect at all. Thus
color-depth for a primary leaf-cell can be determined in timeO(Nd∗max(1/4,1−2α) log N).

The total time for the Hausdorff distance decision problem comes from the number
of leaf-cells in the primary OPT structure (O(Ndα)) multiplied by the time to determine
color-depth in the secondary OPT structure (O(Nd∗max(1/4,1−2α) log N)). Total time is
thusO(Nd∗max(α+1/4,1−α) log N). The optimal time is whereα + 1

4 and 1− α are equal.
This occurs atα = 3

8. Total time is thenO(N5d/8 log N) or, in terms ofn, O(n5d/4 logn).
This gives us the following theorem. As in Lemma 3, we keep our space requirement

low by never building all the primary OPT leaf-cells at once. Instead, we build each
leaf-cell only as it is needed.

Theorem 4. For d > 3, the Hausdorff distance decision problem can be answered in
time O(n5d/4 logn) using O(n) space.
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Combining this result with the two-dimensional result [6], with our three-dimensional
result from Section 3, and with results descibed in an earlier version of this paper [5],
we summarize the best time bounds known.

Theorem 5. The Hausdorff distance decision problem can be answered in time
O(nd logn) for dimension d= 2 and d = 3, in time O(n(4d−2)/3 logn) for dimen-
sions4≤ d ≤ 8 and in time O(n5d/4 logn) for dimensions d≥ 8.

6. Finding the Minimum Hausdorff Distance

Now we want to determine the minimumε for which the intersection is still nonempty.
It is easy to see that the desired minimum value is achieved at someε0 for which two
cubes just touch each other.

We need to search among all possible values ofε where two cubes touch at their
boundaries. We compute the pairwise distances for the cubes for each axis separately.
We thus performd searches, each over a set ofO(n4) ε values, and find for each axis
the smallestε for which the intersection is not empty. The largestε of thesed minima is
the required minimum Hausdorff distance.

We can afford to use a simple binary search on these values for dimensiond ≥ 4
(note though that this raises the space requirement to2(n4)) because the algorithm
for finding the maximal color-depth is of the same complexity as for sorting all the
pairwise distances. Ford = 3, however, this is too costly, since the Hausdorff distance
decision problem is solved in timeO(n3 logn). Hence we apply here, as in [6], the
method of Frederickson and Johnson [8] for solving an optimization problem by using
a sorted matrix (stored implicitly): Given a sorted matrix of sizeN by N it takes time
O(N+D log N) to solve the optimization problem whereD is the runtime of the decision
problem. For us,N = n2 andD = O(n3 logn).

Theorem 6. Using the L∞ metric, the minimum Hausdorff distance under translation
between point sets A and B in d-space can be determined in time O(n3 log2 n) if d = 3,
in time O(n(4d−2)/3 log2 n) if 3 < d ≤ 8, and in time O(n5d/4 log2 n) if d ≥ 8, where
n = max{|A|, |B|}.

Proof. The proof follows directly from the discussion above and Theorem 5.

7. Combinatorial Bounds

In this section we show combinatorial results on the region (in translation space) of all
those translations that minimize the Hausdorff distance between two point sets.

Theorem 7. LetL = {L1, . . . , Lm} be a collection of layers in d-space where each
layer Li is the union of n unit cubes, and let T denote the intersection of the layers. Then
the number of vertices of T is O(mdnbd/2c).
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Proof. Assume for simplicity that the cubes are in general position. Letv be a vertex
of T , and letL′ ⊆ L denote thed or fewer layers which containv on their boundary.
Surely,v is a vertex of the intersection of the layers ofL′. However,v is also a vertex of
the union of the layers ofL′, sincev cannot lie in the interior of any of the layers ofL′.
Thus, each vertex ofT is also a vertex of a union of at mostd layers ofL.

The proof now follows from a simple counting argument. There areO(md) subsets
of L containingd or fewer of the layers. Each subset contains at mostdn cubes, and,
by the result of [3] cited above, the union ofdn unit cubes ind-space has complexity
O((nd)bd/2c). Hence the total number of vertices generated in the union ofd or fewer
layers ofL is O(md)× O((dn)bd/2c) which is the bound we are after. Note that factors
involving onlyd can be treated as constant and absorbed into the big-O notation.

Observe that since the regions ofT are all axis-parallel, the bound on the number
of vertices ofT also bounds the complexityT , and of course the number of connected
regions ofT . We now show that this bound is tight in the worst case.

Theorem 8. LetL and T be defined as in Theorem7. Then the number of connected
regions in T isÄ(mdnbd/2c).

Proof. Our construction extends an earlier construction due to Rucklidge [14] that
he developed for the two-dimensional case. We first show how to constructÄ(m2n)
connected regions inT for d = 2. We define acorridor of color i as the region enclosed
between two stairs of squares of colori , as shown in Fig. 3(a). We are assuming that
layerLi corresponds to the union of all squares of colori . Each step of the “stairs” is of
sizeδ, whereδ > 0 is a small fixed parameter (depending onn) choosen to ensure that
the entire corridor fits within a single one of our unit squares. The corridor is generated
by n cubes and hasn/2 stairs. We refer to this first corridor as thebase corridor.

Fig. 3. Lower bound construction.
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We generate two batches ofm/2 layers, where each layer has its own corridor: a
translated copy of the base corridor. Note that for layerLi , Li ’s corridor is a narrow region
that isnot covered by colori . The i th corridor in the first batch (fori = 1, . . . ,m/2)
is generated by shifting the base corridor byi δ′ (in both thex andy directions) where
δ′ = δ/2m. Thei th corridor of the second batch (fori = m/2+ 1, . . . ,m) is generated
by translating the first batch byδ/2 in both thex andy directions. See Fig. 3(b).

Note that each corridor in batch one intersects each corridor in batch twoÄ(n) times,
yielding Ä(m2n) distinct maximally colored regions. Most of these regions (all but
O(mn) of them) are convex, rectangle-shaped, and adjacent along all four sides to cor-
ridors. These rectangular regions are the ones we use in thed-dimensional construction.

We turn to the proof inRd. We first assume thatd is even, and setk = d/2. As before,
we associate layerLi with color i . We divide ourm colors intok groups, each of size
m′ = m/k. Note that we can choosem so that it is divisibe byk.

For each group ofm′ colors, we build a set ofm′n d-cubes inRd so that, for group
j ( j = 1, . . . , k), the projection of the cubes on the 2j and 2j + 1 axes produces a
set of squares and corresponding corridors identical to the two-dimensional Rucklidge
construction given above. The otherd−2 coordinates of the cube centers are identically
zero. Note that for each groupj , there is a set of maximally colored (colored with all
m′ color of group j ) d-bricks that are rectangles when projected on the 2j and 2j + 1
axes. Thesed-bricks are of unit size along all axes except for axes 2j and 2j + 1.
By the earlier construction, there areÄ((m′)2n) = Ä(m2n) suchd bricks for each
group j .

Our claim is that there areÄ(m2knk) connected components ofT whereT is the
intersection of the layers and each layerLi corresponds to the union of all the cubes of
color i . To verify this claim, consider the number ofd-bricks generated as the cross-
product of our two-dimensional rectangles. It is easy to see that there areÄ(m2knk) =
Ä(mdnd/2) of these.

If d is odd, we embed the even-dimensional construction in the firstd−1 dimensions
of Rd, but we use justm/2 of the colors (this affects only the constant in the big-omega
notation)—all cubes have center-coordinate zero for thedth axis. The remainingm/2
colors are used to create a “striped” pattern on thedth axis. For each of these colors, we
create two cubes, centered along all axes except thedth. Along thedth axis the two cubes
have a very small gap between them. The gap for each color is in a slightly different
place leading to the result that, for thesem/2 colors, there are 1+m/2 intervals along
thedth axis that are covered by all them/2 colors, separated bym/2 gaps where each
gap is missing a different color. It is easy to see that each of the bricks created in the
even-dimensional construction is cut intoÄ(m) pieces by these gaps. This is enough to
give us the desired bound for the theorem.

The bounds of Theorems 7 and 8 actually show that there can be2(nb3d/2c) translations
t that minimize theone-wayHausdorff distance betweenA andB + t , whereA andB
containn points each. By slightly modifying the proofs, it can be shown that the same
bounds hold for the number of translations that minimize the two-way Hausdorff distance.

If the cubes definingL are axis-parallel but not necessarily of the same size, then the
proofs of Theorems 7 and 8 can be modified to obtain the larger (upper and lower) bound
of 2(mdndd/2e).
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Theorem 9. LetL = {L1, . . . , Lm} be a collection of layers, where each layer Li is
the union of n axis-parallel cubes of arbitrary size inRd. Then the complexity of

⋂
i Li

is2(mdndd/2e).

Proof. The upper bound follows in a straightforward way from [3], cited above, where
it is shown that the complexity of the union ofdnsuch cubes ind-space isO( (dn)dd/2e).
To show the matching lower bound, we modify the proof of Theorem 8. First, note that
no change is necessary ford even. Ford odd, we modify the construction used to create
gaps along thedth axis. The idea is to use small cubes to create more gaps along thedth
axis. For a particular color, we can usen small cubes of that color, arranged one after
the other along thedth axis, with small gaps between them. Similar versions, shifted
slightly along thedth axis can be arranged for each of the other colors. Combining these
we createÄ(mn) all-color intervals separated by gaps. By choosingδ, the stair-step size,
sufficiently small, we can ensure that ourd bricks are cut by these gaps, completing the
proof of the theorem.

8. Hausdorff Distance under theL2 Norm

Our upper bound technique described above is useful for showing similar bounds for
balls instead of cubes. The following theorem turns out to have important algorithmic
implications.

Theorem 10. LetL = {L1, . . . , Lm} be a collection of m layers, where each layer Li is
the union of n balls of arbitrary size inRd. Then the complexity of

⋂
i Li is O(mdndd/2e).

Proof. The standard lifting transformationλ: Rd → Rd+1 is defined byλ((x1, . . . , xd))

≡ (x1, . . . , xd, x2
1 + · · · + x2

d) (see, e.g., [7]). The vertices of the union of balls in each
layer can be expressed as (a subset of) the vertices of the upper envelope ofn hyperplanes
in R(d+1). The number of such vertices isO(nb(d+1)/2c) = O(ndd/2e) [7]. The remainder
of the proof is similar to that of Theorem 7.

Let A = {a1, . . . ,an} and B = {b1, . . . ,bn} be two sets of points ind-space, for
d ≥ 4, and letH2(A, B) denote the Hausdorff distance between them, whenL2 is the
underlying metric. In [9] and [10] anO(n5+δ)-time algorithm1 for finding a translationt
that minimizesH2(A, B+ t) whenA, B ⊆ R3 was presented. In this section we extend
this result for higher dimensions, by obtaining anO(nd3d/2e+1+δ)-time algorithm for the
case thatA andB are inRd, for d ≥ 4.

Our algorithm is analogous to the one in Section 2. Letε∗ be mint H2(A, t + B), for
t ∈ Rd, and letε be a given fixed number. Our goal is to determine whetherε is equal to,
smaller, or larger thanε∗. Let Dε denote a ball (under theL2 norm) of radiusε centered

1 Throughout this section,δ stands for a positive constant which can be chosen arbitrarily small with an
appropriate choice of other constants of the algorithms.
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at the origin. Let

T̄(ε) ≡
⋂
b∈B

(b− (A⊕ Dε)) ∩
⋂
a∈A

((B⊕ Dε)− a).

As discussed in Section 2,̄T(ε) is empty, if and only ifε < ε∗. For everyai ∈ A we
define the layerLi (ε) ≡ (B ⊕ Dε) − ai to be the union of theε-balls aboutbj − ai

(for all bj ∈ B). We denote these balls byB(Li ). We obtain an oracle for determining
whetherT(ε) = ⋂i Li (ε) is empty. Determining whether̄T(ε) is empty is obtained in
a straightforward way. The oracle consists of two phases. In theGeneration Phasewe
generate a setS of points which is a superset of the vertices ofT(ε). In the second phase,
theDecision Phase, we check if any element ofS lies in (the closure of)T(ε), which
implies thatT(ε) 6= ∅.

The Generation Phase. Following the proof of Theorems 7 and 10, for each subset
L′ ⊆ L of d or less layers, we computeS ′, the set of all vertices of the union of the
balls ofB(L′). Under the lifting transformλ(·) described in the proof of Theorem 10, the
boundary of each ball ofB(L′) is transformed into a region in a hyperplane inRd+1. A
vertex ofS ′ corresponds to a vertex of the upper envelope of these hyperplanes. We use
the algorithm of Seidel [15], to generate this upper envelope in timeO(ndd/2e logn) for
each suchL′. LetS denote the union of these vertices generated for each suchL′ ⊆ L.
The upper envelope, however, might contain edges not containing a vertex. Such an edge
could be created, for example, in the case where

⋂
L consist only of the intersection of

less thand balls. For each such edgee appearing on the upper envelope of hyperplanes,
we pick an arbitary point one, and add this point toS. The time required for generating
S is therefore

d

(
n

d

)
× O(ndd/2e logn) = O(nd3d/2e logn) .

As shown in the proof of Theorem 10, the vertices ofT(ε) (if it is not empty) are
contained inS.

The Decision Phase. Here we check each pointq ∈ S to find if it lies in T(ε). The
transformationλ(·) transforms each ballb of B(Li ) into a half-spaceλ(b) ⊆ Rd+1. Let
Hi denote the intersection of the complements of these half-spaces (fori = 1, . . . ,n).
Surely,q ∈ Li if and only ifλ(q) /∈ Hi . To check this condition, we preprocessHi in time
O(ndd/2e+δ) into a point-location data structureDi , of Matoušek [11], so that determining
if q ∈ Hi is obtained in timeO(logn). Hence determining ifq ∈ T(ε) is obtained in time
O(n logn). We perform this query for each point ofS (in time O(nd3d/2e+1 logn)). Note
thatDi needs to be constructed only for a singleLi , since the layers are just translation
copies of each other. This completes the description of the oracle.

Optimization

We turn now to the problem of findingε∗. Note that a ball ind-space is determined
by d + 1 points, and hence there areÄ(n2(d+1)) critical valuesε at which the layer
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structures combinatorially changes. So in contrast to theL∞ case, we cannot generate
all the critical values. To overcome this difficulty, we use the parametric searching
paradigm of Megiddo [12]. We assume familiarity of the reader with the technique, and
refer to [1] for a description of the technique and some of its geometric applications.
The technique requires the construction of a parallel version of the oracle. Consider the
Generation Phase. Constructing all subsetsL′ ⊆ L can be performed sequentially, since
this process is not affected byε. For a subsetL′, we need to construct the vertices of
the intersection of the half-spacesλ(b) (in Rd+1) for each ballb ∈ B(L ′). Under the
“standard” primal–dual transformation, this intersection is transformed into the convex
hull (inRd+1) of the points dual to hyperplanes bounding these halfspaces. It is computed
using the algorithm of Amato et al. [2] inO(logn) parallel steps, usingO(ndd/2e logc n)
processors, for some constantc > 0 (these bounds refer tod-space ford ≥ 4). Applying
this procedure in parallel to eachL′ ⊆ L, we can generateS in O(logn) parallel steps
usingO(nd3d/2e logc n) processors.

We now turn to parallel implementation of the Decision Phase. The data structureDi

can be constructed inO(nδ)parallel steps, using similar construction as in [4]. Performing
the O(nd3d/2+1e) queries inDi is trivially done inO(logn) parallel steps. Plugging the
parallel algorithm into the parametric search paradigm, we observe that the algorithm
performsO(nδ) parallel steps, consulting the oracleO(logn) times at each step. Hence
the total time spent for consulting the oracle isO(nd+dd/2e+1+δ), which bounds the total
time of the algorithm. Thus we have

Theorem 11. Let A and B be two point-sets of n points each in d-space(d ≥ 4).Then
a translation t minimizing H2(A, B+ t) can be found in time O(nd3d/2e+1+δ), for every
δ > 0.

9. Conclusions and Open Problems

For point sets in dimensiond the minimum Hausdorff distance under translation can be
found in time O(n5d/4 log2 n) when L∞ is the underlying metric and in time
O(nd3d/2e+1+δ) for any δ > 0 when the underlying metric isL2. For d = 3 under
the L∞ metric, we obtain the better result ofO(n3 log2 n). For 3< d < 8 under the
L∞ metric, we can obtain a slightly better result ofO(n(4d−2)/3 log2 n) as shown in our
earlier paper [5].

There are some interesting questions that remain open.

• Are L∞ Hausdorff distance decision problems inherently easier than the ones for
L2? Is there a single technique that solves both types of problems efficiently, perhaps
with better time bounds than those achieved here?
• Given ad-dimensional boxC andn boxesG1, . . . ,Gn lying insideC, is it possible

to determine if
⋃n

1 Gi = C in time o(nd/2)? Finding such a technique would
immediately improve the running time of the relaxed version of ourL∞ algorithm
and would be likely to speed up the improved version as well.
• For larged, our time bounds—and our constant factors, hidden by the big-O—are

such that our exact algorithms are likely to be impractical. What kinds of nontrivial
approximations are useful?
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• The set of cubes for one color is really just a translation of the set of cubes for each
other color. Our algorithm uses this fact to reduce the storage capacity, but not to
improve the running time. Is there some way to use this information to design a
faster algorithm?

Our algorithms can be modified within the same asymptotoic time bounds to tackle
the problem ofpattern matching in the presence of spurious points, sometimes called
outliers. In this problem we seek a small subsetX ⊆ A∪ B of points (whose existence
is perhaps a result of noise) containing at most a predetermined numberk of points, such
thatA\X can be optimally matched, under translation, toB\X. The modification needed
is the following: In the algorithm we used the assumption that our attention could be
restricted to a single unit cube in the translation space. This assumption is not valid if
we assume the existence of spurious points. To overcome this difficulty, we divide the
translationd-space into unit cubes, and solve our problem independently in each such
nonempty cube. This does not increase the overall running time, since each original cube
hits justO(2d) of these new unit cubes.
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