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Abstract. The paper proposes a new method for the boundary representation of three-
dimensional (not necessarily convex) polyhedra, called aresolvable representation, in which
small numerical errors do not violate the symbolic part of the representation. In this repre-
sentation, numerical data are represented partly by the coordinates of vertices and partly by
the coefficients of face equations in such a way that the polyhedron can be reconstructed
from the representation in a step-by-step manner. It is proved that any polyhedron ho-
meomorphic to a sphere has a resolvable representation, and an algorithm for finding such a
representation is constructed.

1. Introduction

Establishing numerically robust algorithms is one of the most important problems in
practical geometric design systems [3], [4], and indeed many methods have been pro-
posed for this purpose [1], [2], [5], [9], [12], [13]. However, those algorithms are valid
only when the inputs are given correctly. Hence, it is another important problem to
guarantee the consistency of the inputs to geometric algorithms. This problem is not
trivial if the inputs are polyhedra. This paper concentrates on the way of representing
three-dimensional polyhedral objects which gives no inconsistency if numerical errors
are small in comparison with the minimum separation of geometric elements.

The boundary representation of a polyhedron consists of symbolic data and numerical
data [4], [8]. The symbolic data describe the combinatorial topological structure of the
polyhedron; they include the incidence relations among vertices, edges, and faces, and
the nesting relations between faces and holes. The numerical data, on the other hand,
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describe the location of geometric elements; typical data include the coordinates of
vertices and/or the coefficients of the equations of the planes containing faces.

Numerical errors sometimes give inconsistency in the representation. For example, if
the locations of all the vertices are specified by their coordinates, the errors may violate
the coplanarity of four vertices that are symbolically on a common face. This kind of
difficulty mainly stems from redundancy of the numerical data; each part of redundant
data is contaminated by errors independently and thus becomes inconsistent with other
parts. Hence, to choose a subset of numerical data that is nonredundant and that is still
enough to specify the polyhedron unambiguously is one of the most important problems
for establishing numerically robust representations of polyhedra.

In this paper we define one way of nonredundant representation, called “resolvable
representations,” for polyhedral objects, and show that a certain class of polyhedra al-
ways have such representations. We also present an algorithm for finding a resolvable
representation.

2. Step-by-Step Reconstructibility

Throughout this paper apolyhedronmeans a closed set of points in the three-dimensional
Euclidean space bounded by a finite number of planar faces, and its boundary consists
of a finite number of closed 2-manifolds.

First, we consider a simple example of a polyhedron, a pyramid with a quadrilateral
base depicted in Fig. 1, and describe the basic idea of our new representation. This
polyhedron has five verticesv1, v2, . . . , v5 and five facesf1, f2, . . . , f5, among which
v1 is on four faces andf5 has four vertices.

Suppose that, for each vertexvi (i = 1,2, . . . ,5), the three-dimensional coordinates
(xi , yi , zi ) are given, and, for each facef j ( j = 1,2, . . . ,5), the coefficientsaj ,bj , cj ,dj

of the equation

aj x + bj y+ cj z+ dj = 0

of the plane containingf j are given.

Fig. 1. Pyramid with a quadrilateral base.
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Since the data are of finite precision, they may have rounding errors and consequently
they may not be consistent with the symbolic data; the four points(xi , yi , zi ) (i =
2,3,4,5) may not be coplanar, or the four planes specified by(aj ,bj , cj ,dj ) ( j =
1,2,3,4)may not have a common point of intersection. So we consider these numerical
data “tentative,” and seek a mechanism for defining the polyhedron without inconsistency.

Let Sbe the sequence of the vertices and the faces defined by

S= (v1, f5, v2, v3, v4, v5, f1, f2, f3, f4).

The vertices and the planes can be placed in the space one by one in the order specified
by S in the following manner. First,v1 is placed at the point defined by(x1, y1, z1). Next,
f5 is placed as the plane specified bya5x+b5y+c5z+d5 = 0. Then vertexv2, the third
element inS, cannot in general be placed at(x2, y2, z2), becausev2 should be onf5 and
f5 has already been placed. So we placev2 at the foot of the perpendicular dropped from
(x2, y2, z2) to the planef5. Similarlyv3, v4, andv5 are placed onf5 nearest to(xi , yi , zi )

(i = 3,4,5). Next, planef1, the seventh element inS, is placed in such a way that it
containsv1, v2, andv3. Planesf2, f3, and f4 are placed similarly.

Next, for the same pyramid, we consider another sequence

S′ = (v1, v2, v3, v4, v5, f1, f2, f3, f4, f5).

The step-by-step reconstruction based on this sequence will fail. Indeed, we first place
all five vertices, and then try to place the planes, but planef5 cannot be placed because
the four vertices,v2, v3, v4, v5, are not guaranteed to be coplanar. We need to backtrack
in order to adjust the locations of the vertices.

From the above observation, we see that some sequences allow us to reconstruct the
polyhedron in the step-by-step manner, but some do not. The goal of the present paper
is to characterize the former class of sequences and to construct an algorithm for finding
them.

3. Resolvable Sequence

Let P be a polyhedron in the three-dimensional space, and letV and F be the set of
vertices and that of faces ofP. Let R be the set of all pairs(v, f ) of vertexv (∈ V) and
face f (∈ F) such thatv is on f . If (v, f ) ∈ R, we say thatv and f are incident to
each other. TripleI = (V, F, R) is called theincidence structureof P. The incidence
structure can be visually represented by a bipartite graph having the left node setV , the
right node setF , and the arc setR.

Let n = |V ∪ F |, where|X| denotes the number of elements of setX. Let

S= (α1, α2, . . . , αn)

be a sequence obtained by giving a total order to the elements ofV ∪ F ; thusαi ∈ V ∪ F
for i = 1, . . . ,n, andαi 6= αj for i 6= j . S is said to beresolvableif the following
three conditions are satisfied:

(C1) For alli (1≤ i ≤ n), αi is incident to at most three preceding elements.
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Fig. 2. Polyhedron whose incidence structure containsK3,2.

(C2) If two faces f and f ′ are incident to three or more common vertices, bothf
and f ′ appear earlier than the third of the common vertices.

(C3) If two verticesv andv′ are incident to three or more faces, bothv andv′ appear
earlier than the third of the common faces.

Consider the pyramid in Fig. 1 again. In this polyhedron no two faces are inci-
dent to three or more common vertices and no two vertices are incident to three or
more common faces, and hence (C2) and (C3) are trivially satisfied. The sequenceS=
(v1, f5, v2, v3, v4, v5, f1, f2, f3, f4) satisfies (C1) whileS′ = (v1, v2, v3, v4, v5, f1, f2,
f3, f4, f5) does not, and henceS is resolvable whereasS′ is not.

Next, consider the polyhedron shown in Fig. 2, where two facesf and f ′ are incident
to four common verticesv1, v2, v3, andv4. The sequence

S= (· · · v1 · · · v2 · · · f · · · f ′ · · · v3 · · · v4 · · ·)
satisfies (C2), whereas the sequence

S′ = (· · · v1 · · · v2 · · · f · · · v3 · · · f ′ · · · v4 · · ·)
does not, because inS′ the facef ′ appears later than the third of the four vertices.

For the polyhedron shown in Fig. 3, the two verticesv andv′ are incident to three
common facesf1, f2, and f3. The sequence

S= (· · · f1 · · · v · · · v′ · · · f2 · · · f3 · · ·)
satisfies (C3), whereas the sequence

S′ = (· · · f1 · · · v · · · f2 · · · f3 · · · v′ · · ·)
does not, because inS′ the vertexv′ appears later than the three faces.

Suppose thatS= (α1, α2, . . . , αn) is a resolvable sequence of a polyhedronP. Then
we can locate the vertices and the planes in the space step by step in this order. This can
be understood in the following way.

First, assume thatαi is a face. Condition (C1) guarantees thatαi is incident to at most
three preceding vertices. Ifαi is incident to no preceding vertex,αi is placed as the plane
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Fig. 3. Polyhedron whose incidence structure containsK2,3.

ai x + bi y + ci z+ di = 0. If αi is incident to one preceding vertex, sayvj , thenαi is
placed as the planeai x + bi y + ci z+ d = 0 whered is chosen in such a way that the
plane containsvj . If αi is incident to two preceding vertices, sayvj andvk, thenαi is
placed as the plane that containsvj andvk and whose normal is nearest to the normal of
the planeai x + bi y+ ci z+ di = 0. If αi is incident to three preceding vertices, sayvj ,
vk, andvl , thenαi is placed as the plane containingvj , vk, andvl ; this procedure fails if
there is a preceding facefm which is also incident to all three verticesvj , vk, andvl (an
example of this case arises ifαi = f , vj = v1, vk = v2, vl = v3, andαm = f ′ in Fig. 2),
but this does not happen because of condition (C2).

Next, assume thatαi is a vertex. Condition (C1) guarantees thatαi is incident to at
most three preceding faces, and the situation is dual to the case whereαi is a face. Ifαi

is incident to none, one, two, or three preceding faces, thenαi is placed at the point on
the associated plane(s) nearest to(xi , yi , zi ). The procedure fails ifαi is incident to three
preceding faces and there is another vertexαj that precedesαi and that is also incident to
all three faces (an example of this case arises ifαi = v andαj = v′ in Fig. 3); however,
this situation does not happen because of (C3).

Thus, the resolvable sequence indicates the way to specify the locations of the vertices
and the faces in a step-by-step manner. We say a polyhedronP is resolvableif it has
a resolvable sequenceS. The next question we ask is: what class of polyhedra have
resolvable sequences and how can they be found?

4. Resolvable Polyhedra

A polyhedron is not necessarily resolvable. An example of an unresolvable polyhedron
is shown in Fig. 4. This polyhedron is composed of three triangular prisms connected
together, forming an object homeomorphic to a torus. Every vertex is incident to four
faces and every face is incident to four vertices. Hence, for any order(α1, α2, . . . , αn)

of elements inV ∪ F , the last elementαn is incident to four preceding elements, which
violates the condition for a resolvable sequence. Difficulty in numerical specification of
this object was also pointed out from another point of view [11].
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Fig. 4. Unresolvable polyhedron.

Let V andE be the set of vertices and that of edges of polyhedronP. The pair(V, E)
can be considered a graph. We call this graph theskeletonof P. GraphG is said to be
planar if G can be embedded in the plane without any intersection of edges except at
their end vertices. For positive integeri , G is said to bei -connectedif deletion of any
(i −1) vertices does not make the resulting graph disconnected. “1-connected” is simply
called “connected.”

A polyhedron is said to besimply connectedif it is homeomorphic to a ball. This
definition is equivalent to saying that a polyhedron is simply connected if its boundary
is homeomorphic to a sphere.

The next theorem is well known.

Theorem 1[10]. A graph G is the skeleton of a convex polyhedron if and only if G
has at least four vertices, and G is planar and3-connected.

In the textbook [7], Lyusternik proved the next theorem and used it as a lemma to
prove Theorem 1 (though he did not use the term “resolvable”).

Theorem 2[7]. Any polyhedron whose skeleton is planar and3-connected is
resolvable.

Theorem 2 together with Theorem 1 implies that every convex polyhedron is re-
solvable. The proof of Theorem 2 is rather complicated. Here, we prove the following
stronger theorem; the proof also gives a much simpler proof to Theorem 2.

Theorem 3. Any simply connected polyhedron is resolvable.

In Section 5 we give a new and simpler proof to Theorem 2, and in Section 6 we
prove Theorem 3.
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5. Proof of Theorem 2

Let P be a polyhedron having the vertex setV and the face setF , and letI = (V, F, R)be
the incidence structure ofP. For any subsetsV ′ ⊆ V andF ′ ⊆ F , we defineR(V ′, F ′)
as the set of incidence pairs related to the vertices and the faces inV ′ ∪ F ′. That is,

R(V ′, F ′) = R∩ (V ′ × F ′).

The triple (V ′, F ′, R(V ′, F ′)) is called thesubstructureof the incidence structure
(V, F, R) induced byV ′ and F ′. Recall that(V, F, R) can be considered a bipartite
graph; hence the substructure(V ′, F ′, R(V ′, F ′)) can be considered a subgraph of the
bipartite graph, and so it is also bipartite.

Lemma 1. Let P be a simply connected polyhedron, and let(V, F , R) be the incidence
structure of P. For any subsets V′ ⊆ V and F′ ⊆ F the next inequality holds:

|R(V ′, F ′)| ≤ 2|V ′ ∪ F ′| − 4. (1)

Proof. Let P be the polyhedron stated in the lemma, and letG = (V, E) be its skeleton.
Since the boundary ofP is homeomorphic to a sphere,G has a natural embedding in
the sphere that partitions the sphere into connected regions that have the one-to-one
correspondence to the faces ofP. From this embedding we generate another embedded
graphH = (N, A) whose node set isN = V ∪ F and whose arc set isA = R (note
that we refer tonodesandarcs, instead of vertices and edges, when we talk about the
new graphH = (N, A)). The graphH is nothing but an embedded version of the
bipartite graphI = (V, F, R). H is planar, and gives another partition of the sphere into
connected regions. Each region is bounded by exactly four arcs (note that each region
has four nodes corresponding to the two endpoints of an edge and the two side faces).

Next, we delete from the graphH = (N, A) the nodes (i.e., vertices and faces) in
V ∪ F − V ′ ∪ F ′ and the arcs incident to these nodes, and let the resulting graph be
H ′ = (N ′, A′). H ′ coincides with the bipartite graph(V ′, F ′, R(V ′, F ′)) stated in the
lemma, and henceN ′ = V ′ ∪ F ′ andA′ = R(V ′, F ′). Letc be the number of connected
components ofH ′. H ′ is also embedded on the sphere, so thatH ′ partitions the sphere
into connected regions; letW′ be the set of these connected regions.

From Euler’s formula, we get

|N ′| − |A′| + |W′| = 1+ c. (2)

Since each region inW is bounded by four or more edges, we have

2|A′| ≥ 4|W′|. (3)

From (2), (3), andc ≥ 1, we obtain 2|N ′| ≥ |A′| + 4; thus we get the lemma.

Proof of Theorem2. Suppose thatP is a polyhedron such that the skeletonG of P
is planar and 3-connected. Then, sinceG is 3-connected, no two faces are incident to
three common vertices, and no two vertices are incident to three common faces. Hence
conditions (C2) and (C3) are trivially satisfied.
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Let (V, F, R) be the incidence structure ofP. From Lemma 1, we get

2|R(V, F)|
|V ∪ F | ≤ 4− 8

|V ∪ F | < 4.

The left-hand side of this inequality represents the average number of incidence relations
per element, and the inequality implies that this average number is less than 4. Hence,
there is an element inV ∪ F that is incident to three or fewer elements. Let this element
beαn, wheren = |V ∪ F |, and considerαn the last element in the sequenceSwhich we
want to construct.

Next, we delete from the bipartite graph(V, F, R) the nodeαn and the arcs incident to
αn; let the resulting incidence structure be(V ′, F ′, R(V ′, F ′)). From Lemma 1, we get

2|R(V ′, F ′)|
|V ′ ∪ F ′| < 4,

which implies that there is an element inV ′∪F ′ that is incident to three or fewer elements
in V ′ ∪ F ′. We denote this elementαn−1, and add it toSas the second element from the
end. Repeating this procedure, we obtain a resolvable sequence.

6. Proof of Theorem 3

As before, we regard the incidence structureI = (V, F, R) as the bipartite graph whose
“left” node set isV and “right” node set isF . Let Ki, j be the complete bipartite graph
with i left nodes andj right nodes. For two sequencesS andS′, let S◦ S′ denote the
concatenation ofSandS′.

Lemma 2. Let G= (V, E) be a planar3-connected skeleton and let I= (V, F, R)
be the bipartite graph associated with G. Let Q⊆ V ∪ F be a subset such that the nodes
in Q form a subgraph of I isomorphic to K1,1, K1,2, K2,1, or K2,2. Let S′ be an arbitrary
sequence of all the elements of Q. There exists a sequence S′′ of all the elements of
V ∪ F − Q such that S= S′ ◦ S′′ is a resolvable sequence of I.

Proof. We prove the case whereQ forms a graph isomorphic toK2,2; the other cases
are easier to prove. We name the two vertices inQ asv1 andv2, and the two faces in
Q as f1 and f2. We can constructS′′ = (α5, α6, . . . , αn) (whereαi ∈ V ∪ F − Q,
i = 5,6, . . . ,n, n = |V ∪ F |) from the tail backward in the following way. Assume
that we have chosen the lastn − k (k ≥ 5) elementsαk+1, αk+2, . . . , αn of S′′ such
that {αk+1, αk+2, . . . , αn} ∩ Q = ∅. Let V ′ = V − {αk+1, αk+2, . . . , αn}, F ′ = F −
{αk+1, αk+2, . . . , αn}, andI ′ = (V ′, F ′, R(V ′, F ′)).

Case1: Suppose that I′ is connected. For α ∈ V ′ ∪ F ′, let µ(α) be the number of
elements inV ′ ∪ F ′ that are incident toα, and letT = {α | α ∈ V ′ ∪ F ′, µ(α) ≤ 3}.
We get

2|R(V ′, F ′)| =
∑

α∈V ′∪F ′
µ(α)

≥
∑
α∈T

µ(α)+ 4|V ′ ∪ F ′ − T |. (4)
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From inequalities (1) and (4), we have∑
α∈T

(4− µ(α)) ≥ 8. (5)

On the other hand, we have ∑
α∈Q

(4− µ(α)) ≤ 7, (6)

because the nodes inQ form the complete bipartite graphK2,2 and there is at least one
arc connectingQ andV ′ ∪ F ′ − Q (recall thatI ′ is connected). From (5) and (6), we
conclude thatT − Q 6= ∅, that is, there is at least one node inV ′ ∪ F ′ that is incident to
at most three elements inV ′ ∪ F ′ and that is different fromv1, v2, f1, or f2. We name
this nodeαk.

Case2: Suppose that I′ is not connected. We rename a connected component that does
not includeQ as I ′. For this component we get inequality (5), which tells that there is a
node, sayαk, that is incident to at most three nodes inV ′ ∪ F ′.

In both cases, we addαk at the head of the sequence(αk+1, αk+2, . . . , αn), thus
obtaining a one-longer sequence(αk, αk+1, . . . , αn). Repeating this step, we finally get
the desired sequenceS= S′ ◦ (α5, α6, . . . , αn).

Let P be a simply connected polyhedron, and letG = (V, E) and I = (V, F, R) be
the skeleton and the incidence structure, respectively, ofP. SinceP is simply connected,
G can be considered a graph embedded on the sphere. This embedded graph partitions
the sphere into connected regions and their boundaries. The connected regions are in
one-to-one correspondence with the faces ofP. In order to represent this embedded
structure explicitly, we sometimes denote it byḠ = (V, E, F) instead ofG = (V, E),
whereF is the set of the faces ofP as before, and each facef ∈ F is represented by
one or more cycles corresponding to the boundary of the face. We callḠ = (V, E, F)
anembedded graph.

We decomposeG into 3-connected components. For this purpose, in the first stage
we decomposeG into connected components, next decompose them into 2-connected
components, and finally decompose them into 3-connected components. The three de-
composition stages are similar, and hence we show the decomposition of a 2-connected
component into 3-connected components.

Let G be a 2-connected component obtained in the second stage, and letI and Ḡ
be the associated incidence structure and the embedded graph. Suppose thatG is not 3-
connected. Then, as shown in Fig. 5(a), there exist two verticesv, v′ and two facesf, f ′

such thatv andv′ are on both of the boundary off and that of f ′, and thatf, f ′, v, v′

altogether separate the remaining area of the sphere into two connected areas. LetV1 and
F1 be the vertices and the faces belonging to one of the connected areas, and letV2 and
F2 be the set of the remaining vertices and that of the remaining faces. Fori = 1 and 2,
let Ei be the set of edges in the subgraph ofG induced by the vertex setVi ∪ {v, v′}.

The bipartite graph associated withI has the structure as shown in Fig. 5(b), that is,
the four nodesv, v′, f, f ′ form K2,2, and there is no arc betweenV1 andF2 or between
V2 andF1. We decomposeI = (V, F, R) into I1 = (V1 ∪ {v, v′}, F1 ∪ { f, f ′}, R1) and
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Fig. 5. Decomposition of the embedded graph into two parts with exactly two common faces and two common
vertices.

I2 = (V2 ∪ {v, v′}, F2 ∪ { f, f ′}, R2) whereRi = R∩ ((Vi ∪ {v, v′})× (Fi ∪ { f, f ′}))
(i = 1,2), as shown in Fig. 5(c).

In connection with this decomposition ofI , the embedded graph̄G is also decom-
posed.

Let the resulting 3-connected components beGi = (Vi , Ei ) and let the associated
incidence structures and the embedded graphs beIi = (Vi , Fi , Ri )andḠi = (Vi , Ei , Fi ),
i = 1,2, . . . , k. Now we are ready to construct a resolvable sequence ofP. We first
choose one component, sayG1, and construct a resolvable sequenceS1; S1 always exists
because of Theorem 2.

Next, suppose that we have already constructed a resolvable sequenceS1◦S2◦· · ·◦Si

of G1 ∪ G2 ∪ · · · ∪ Gi . We choose one of the remaining components, sayGi+1, whose
incidence structureIi+1 has at least one face in common with one ofI1, I2, . . . , Ii (here,
if necessary, we rename the component numbers).

Consider the embedded graphḠi+1 = (Vi+1, Ei+1, Fi+1). Some of the faces inFi+1

are also contained in some other componentsI1, I2, . . . , Ii−1, Ii+1, . . . , Ik. We remove
those faces. Then the remaining part ofḠi+1 forms a connected region possibly with
holes. Note thatḠi+1 is embedded on the sphere, and hence there is no distinction
between “inner holes” and the “outer hole.”

Since I j have been chosen in such a way thatFj and F1 ∪ F2 ∪ · · · ∪ Fj−1 have at
least one common face( j = 2,3, . . . , i ), all the componentsG1,G2, . . . ,Gi lie in one
and the same hole of̄Gi+1. Therefore, the vertices and the faces that are common inIi+1

andS1 ◦ S2 ◦ · · · ◦ Si are (i) only one face (this happens when a graph is decomposed
into connected components), or (ii) one vertex and one face formingK1,1 (this happens
when a connected component is decomposed into 2-connected components), or (iii) two
vertices and two faces formingK2,2 (in the case shown in Fig. 5), or (iv) a subset of
them. Therefore, Lemma 2 guarantees that there exists resolvable sequenceŜi+1 of Ii+1
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such that elements also included inS1 ◦ S2 ◦ · · · ◦ Si are at the head of̂Si+1. Let Si+1 be
the sequence that is obtained fromŜi+1 by removing those common elements. Then the
concatenationS1◦S2◦· · ·◦Si ◦Si+1 is a resolvable sequence ofG1∪G2∪· · ·∪Gi ∪Gi+1.

Repeating this procedure, we finally construct a resolvable sequence ofG. Thus,
Theorem 3 has been proved.

7. Algorithms

If the skeleton is 3-connected, finding a resolvable sequence is straightforward. Given a
polyhedronP, we first construct the associated bipartite graphI = (V, F, R) and delete
the nodes with degree 3 or less one by one, obtaining the resolvable sequence from the
tail backward. This procedure runs in O(|R| + |V ∪ F |) = O(|R| + n) = O(n) time.

If the skeleton ofP is not 3-connected, we first decompose it into 3-connected com-
ponents, and next apply the above procedure. Since the decomposition of a planar graph
into 3-connected components can be done in linear time [6], the total procedure requires
in O(n) time.

When we change the polyhedronP to P′ by some operation, we in general have to
reconstruct a resolvable sequence ofP′ from the beginning. However, for certain special
types of operations, a resolvable sequence ofP′ can be obtained by slight modification
of the resolvable representation ofP. Here, we describe two such operations; they are
duals of each other.

The first operation is to cutP by a plane into two parts and to remove one of them.
Let P′ be the polyhedron obtained by the cut operation. Letf0 be the new face ofP′

generated by the cut operation, and letv1, v2, . . . , vk be the vertices on the boundary of
f0. We call the operation anondegenerate cutif none ofv1, v2, . . . , vk is a vertex ofP.
If the cut is nondegenerate, the new verticesv1, v2, . . . , vk are generated on the middle
of edges ofP, and consequently these new vertices are incident to exactly three faces
in P′.

Theorem 4. Let S be a resolvable sequence of polyhedron P. Let P′ be a polyhedron
obtained from P by nondegenerate cut, and let f0 andv1, v2, . . . , vk be the new face and
the new vertices generated by the cut. Then the sequence

S′ = S◦ ( f0, v1, v2, . . . , vk)

is a resolvable sequence of P′, whereS is the sequence obtained from S by deleting the
faces and the vertices not belonging to P′.

Proof. SinceS is a subsequence ofS, S is also a resolvable sequence. Since the new
face f0 contains no old vertices,S◦ ( f0) is a resolvable sequence. Since the cutting is
nondegenerate, each ofv1, v2, . . . , vk is incident to exactly three faces. Hence,S′ is a
resolvable sequence ofP′.

The other operation we consider is the following. LetP be a convex polyhedron and
let v0 be a point outsideP. Let P′ = CH(P ∪ {v0}), where CH(X) denotes a convex hull



254 K. Sugihara

of the setX of points. The construction ofP′ from P andv0 is called apull operation;
note that intuitivelyP′ is the result of pulling a point of elastic surface ofP and moving
it to v0. We say that the pull operation isnondegenerateif v0 is not coplanar of any face
of P.

Theorem 5. Let S be a resolvable sequence of convex polyhedron P. Let P′ be a poly-
hedron obtained from P andv0 by a nondegenerate pull operation, and let f1, f2, . . . , fk

be the new faces generated by the operation. The sequence

S′ = S◦ (v0, f1, f2, . . . , fk)

is a resolvable sequence of P′, whereS is the sequence obtained from S by deleting the
faces and vertices not belonging to P′.

The proof is similar to that of Theorem 4.

8. Concluding Remarks

We proposed a new method for representing polyhedra, called resolvable representation,
in which the numerical part is defined by a step-by-step manner according to a special
sequence of vertices and faces, so that numerical errors do not violate the symbolic part
of the representation. We showed that any simply connected polyhedron has a resolvable
representation, and constructed an algorithm for finding it.

In general, the resolvable sequence is not unique; we have large freedom in the choice
of the resolvable sequence of a given polyhedron. Different resolvable sequences define
different geometric shapes for the the same numerical error. Hence, the next problem is
to analyze the sensitivity, and to find the resolvable sequence that is least sensitive to
numerical errors. Other problems for the future include (1) characterizing the resolvable
polyhedra that are not homeomorphic to the ball, (2) constructing an algorithm for finding
resolvable sequences for such polyhedra, and (3) generalizing the concept of “resolvable
representation” to curved surface objects.

If polyhedron P is not resolvable, we can modify it into a resolvable polyhedron
by inserting face diagonals (note that if all the faces are decomposed into triangles by
inserting diagonals, the polyhedron has a resolvable sequence). Hence still another future
problem is to find the minimum set of diagonals whose insertion makes the polyhedron
resolvable.

Acknowledgment

The author expresses his thanks to the anonymous referees whose comments helped in
improving this paper.



Resolvable Representation of Polyhedra 255

References

1. S. Fortune, Stable maintenance of point-set triangulations in two dimensions,Proceedings of the30th IEEE
Annual Symposium on Foundations of Computer Science, Research Triangle Park, 1989, pp. 494–499.

2. D. H. Greene and F. Yao, Finite-resolution computational geometry,Proceedings of the27th IEEE Annual
Symposium on Foundations of Computer Science, Toronto, 1986, pp. 143–152.

3. C. M. Hoffmann, The problem of accuracy and robustness in geometric computation,Computer, 22(3)
(March 1988), 31–41.

4. C. M. Hoffmann,Geometric and Solid Modeling—An Introduction, Morgan Kaufmann, San Mateo,
California, 1989.

5. J. E. Hopcroft and P. J. Kahn, A paradigm for robust geometric algorithms, Technical Report TR 89-1044,
Department of Computer Science, Cornell University, Ithaca, New York, 1989.

6. J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components.SIAM Journal on Com-
puting, 2 (1973), 135–158.

7. L. A. Lyusternik (T. J. Smith, trans.),Convex Figures and Polyhedra, Dover, New York, 1963.
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