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Abstract. The paper proposes a new method for the boundary representation of three-
dimensional (not necessarily convex) polyhedra, caltedalvable representatiom which

small numerical errors do not violate the symbolic part of the representation. In this repre-
sentation, numerical data are represented partly by the coordinates of vertices and partly by
the coefficients of face equations in such a way that the polyhedron can be reconstructed
from the representation in a step-by-step manner. It is proved that any polyhedron ho-
meomorphic to a sphere has a resolvable representation, and an algorithm for finding such a
representation is constructed.

1. Introduction

Establishing numerically robust algorithms is one of the most important problems in
practical geometric design systems [3], [4], and indeed many methods have been pro-
posed for this purpose [1], [2], [5], [9], [12], [13]. However, those algorithms are valid
only when the inputs are given correctly. Hence, it is another important problem to
guarantee the consistency of the inputs to geometric algorithms. This problem is not
trivial if the inputs are polyhedra. This paper concentrates on the way of representing
three-dimensional polyhedral objects which gives no inconsistency if numerical errors
are small in comparison with the minimum separation of geometric elements.

The boundary representation of a polyhedron consists of symbolic data and numerical
data [4], [8]. The symbolic data describe the combinatorial topological structure of the
polyhedron; they include the incidence relations among vertices, edges, and faces, and
the nesting relations between faces and holes. The numerical data, on the other hand,
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describe the location of geometric elements; typical data include the coordinates of
vertices angdor the coefficients of the equations of the planes containing faces.

Numerical errors sometimes give inconsistency in the representation. For example, if
the locations of all the vertices are specified by their coordinates, the errors may violate
the coplanarity of four vertices that are symbolically on a common face. This kind of
difficulty mainly stems from redundancy of the numerical data; each part of redundant
data is contaminated by errors independently and thus becomes inconsistent with other
parts. Hence, to choose a subset of numerical data that is nonredundant and that is still
enough to specify the polyhedron unambiguously is one of the most important problems
for establishing numerically robust representations of polyhedra.

In this paper we define one way of nonredundant representation, called “resolvable
representations,” for polyhedral objects, and show that a certain class of polyhedra al-
ways have such representations. We also present an algorithm for finding a resolvable
representation.

2. Step-by-Step Reconstructibility

Throughout this paper@olyhedrommeans a closed set of points in the three-dimensional
Euclidean space bounded by a finite number of planar faces, and its boundary consists
of a finite number of closed 2-manifolds.

First, we consider a simple example of a polyhedron, a pyramid with a quadrilateral
base depicted in Fig. 1, and describe the basic idea of our new representation. This
polyhedron has five vertices, v, ..., vs and five facesf;, f,, ..., fs, among which
vy is on four faces ands has four vertices.

Suppose that, for each vertex(i = 1, 2, ..., 5), the three-dimensional coordinates
(Xi, ¥i, z) are given, and, foreachfade(j = 1,2, ..., 5), the coefficientsy, b;, ¢;, d;
of the equation

an—i—bjy—i-CjZ—i-dj =0
of the plane containingj are given.

v1

V4

fs

v3

Fig. 1. Pyramid with a quadrilateral base.
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Since the data are of finite precision, they may have rounding errors and consequently
they may not be consistent with the symbolic data; the four paiatsyi, z) (i =
2,3,4,5) may not be coplanar, or the four planes specifiedd@yb;, ¢j, dj) (j =
1, 2, 3, 4) may not have a common point of intersection. So we consider these numerical
data“tentative,” and seek a mechanism for defining the polyhedron withoutinconsistency.

Let Sbe the sequence of the vertices and the faces defined by

S = (v1, f5, v, v3, va, vs, 1, fa, f3, f4).

The vertices and the planes can be placed in the space one by one in the order specified
by Sin the following manner. Firsiy; is placed at the point defined Io¥1, y1, z1). Next,
fs is placed as the plane specifieddax + bsy + csz+ ds = 0. Then vertex,, the third
element inS, cannot in general be placed@, y», z»), because, should be onfs and
fs has already been placed. So we placat the foot of the perpendicular dropped from
(X2, Y2, Z2) to the planefs. Similarly vs, v4, andus are placed orfs nearest tax;, Vi, z)
(i = 3,4,5). Next, planef;, the seventh element i§, is placed in such a way that it
containsvy, vz, andvs. Planesf;, f3, and f, are placed similarly.

Next, for the same pyramid, we consider another sequence

S = (v1, v2, v3, V4, s, 1, T2, fa, fa, ).

The step-by-step reconstruction based on this sequence will fail. Indeed, we first place
all five vertices, and then try to place the planes, but pl@annot be placed because

the four verticesy,, vs, vs, vs, are not guaranteed to be coplanar. We need to backtrack
in order to adjust the locations of the vertices.

From the above observation, we see that some sequences allow us to reconstruct the
polyhedron in the step-by-step manner, but some do not. The goal of the present paper
is to characterize the former class of sequences and to construct an algorithm for finding
them.

3. Resolvable Sequence

Let P be a polyhedron in the three-dimensional space, an¥ labd F be the set of
vertices and that of faces &f. Let R be the set of all pairév, ) of vertexv (¢ V) and
face f (e F) such thatv ison f. If (v, f) € R, we say that and f areincidentto
each other. Tripld = (V, F, R) is called thencidence structuref P. The incidence
structure can be visually represented by a bipartite graph having the left nodgetket
right node sef, and the arc seR.

Letn = |V U F|, where| X| denotes the number of elements of XetLet

S= (a1, a2,...,0n)

be a sequence obtained by giving a total order to the elemeXtsidf; thuse; € VUF
for i =1,...,n ande; # «; for i # j. Sis said to baesolvableif the following
three conditions are satisfied:

(C1) Foralli (1 <i <n),q;isincident to at most three preceding elements.
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Fig. 2. Polyhedron whose incidence structure contdas.

V4

(C2) If two facesf and f’ are incident to three or more common vertices, bbth
and f” appear earlier than the third of the common vertices.

(C3) Iftwo verticesy andv’ are incident to three or more faces, botAndv’ appear
earlier than the third of the common faces.

Consider the pyramid in Fig. 1 again. In this polyhedron no two faces are inci-
dent to three or more common vertices and no two vertices are incident to three or
more common faces, and hence (C2) and (C3) are trivially satisfied. The sedhience
(v1, fs, v, v3, V4, s, f1, 2, f3, f4) satisfies (Cl) whileS' = (v1, v2, V3, V4, Us, fq, fo,
f3, T4, f5) does not, and henc®is resolvable wheredaS is not.

Next, consider the polyhedron shown in Fig. 2, where two fdcasd f’ are incident
to four common vertices;, v,, vs, andvs. The sequence

S:(...vl...vz...f...f/...vg...v4...)
satisfies (C2), whereas the sequence
S:(...vl...vz...f...vs...f/...UA...)

does not, because Bi the facef’ appears later than the third of the four vertices.
For the polyhedron shown in Fig. 3, the two vertiaeandv’ are incident to three
common faced;, f,, and f3. The sequence

S=(--freovet e fyeen fze00)
satisfies (C3), whereas the sequence
S=(--frooov---fpeoefg-amv/ 00

does not, because Bi the vertexv’ appears later than the three faces.
Suppose tha® = (a1, ay, ..., o) is aresolvable sequence of a polyhedRarThen
we can locate the vertices and the planes in the space step by step in this order. This can
be understood in the following way.
First, assume thaf; is a face. Condition (C1) guarantees thais incident to at most
three preceding vertices.df is incident to no preceding vertex; is placed as the plane
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v'

ey

Fig. 3. Polyhedron whose incidence structure cont¥ns.

ax+by+cz+d =0.If o is incident to one preceding vertex, say thenc; is
placed as the plargx + bjy + ¢;z+ d = 0 whered is chosen in such a way that the
plane containg;. If «; is incident to two preceding vertices, sayanduy, thene; is
placed as the plane that containsindv, and whose normal is nearest to the normal of
the planea;x + by + ciz+d = 0. If o is incident to three preceding vertices, sgy
vk, anduy, theng; is placed as the plane containing vy, andu;; this procedure fails if
there is a preceding fack, which is also incident to all three vertices vy, andy (an
example of this case arisesif = f, vj = vy, v = v2, v = v3, andem = f’in Fig. 2),
but this does not happen because of condition (C2).

Next, assume that; is a vertex. Condition (C1) guarantees thais incident to at
most three preceding faces, and the situation is dual to the case ayhigi@face. Ife;
is incident to none, one, two, or three preceding faces, éhénplaced at the point on
the associated plane(s) neares4o Vi, z). The procedure fails if; is incident to three
preceding faces and there is another vestethat precedes; and that is also incident to
all three faces (an example of this case arises # v anda; = v’ in Fig. 3); however,
this situation does not happen because of (C3).

Thus, the resolvable sequence indicates the way to specify the locations of the vertices
and the faces in a step-by-step manner. We say a polyhdlienesolvableif it has
a resolvable sequenc® The next question we ask is: what class of polyhedra have
resolvable sequences and how can they be found?

4. Resolvable Polyhedra

A polyhedron is not necessarily resolvable. An example of an unresolvable polyhedron
is shown in Fig. 4. This polyhedron is composed of three triangular prisms connected
together, forming an object homeomorphic to a torus. Every vertex is incident to four
faces and every face is incident to four vertices. Hence, for any dsdeto, . . ., on)

of elements iV U F, the last element;, is incident to four preceding elements, which
violates the condition for a resolvable sequence. Difficulty in numerical specification of
this object was also pointed out from another point of view [11].
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Fig. 4. Unresolvable polyhedron.

LetV andE be the set of vertices and that of edges of polyhedtonhe pair(V, E)
can be considered a graph. We call this graphsttedetorof P. GraphG is said to be
planarif G can be embedded in the plane without any intersection of edges except at
their end vertices. For positive integerG is said to bd-connectedf deletion of any
(i —1) vertices does not make the resulting graph disconnected. “1-connected” is simply
called “connected.”

A polyhedron is said to beimply connected it is homeomorphic to a ball. This
definition is equivalent to saying that a polyhedron is simply connected if its boundary
is homeomorphic to a sphere.

The next theorem is well known.

Theorem 1[10]. A graph G is the skeleton of a convex polyhedron if and only if G
has at least four verticeand G is planar and8-connected

In the textbook [7], Lyusternik proved the next theorem and used it as a lemma to
prove Theorem 1 (though he did not use the term “resolvable”).

Theorem 2[7]. Any polyhedron whose skeleton is planar aBetonnected is
resolvable

Theorem 2 together with Theorem 1 implies that every convex polyhedron is re-
solvable. The proof of Theorem 2 is rather complicated. Here, we prove the following
stronger theorem; the proof also gives a much simpler proof to Theorem 2.

Theorem 3. Any simply connected polyhedron is resolvable

In Section 5 we give a new and simpler proof to Theorem 2, and in Section 6 we
prove Theorem 3.
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5. Proof of Theorem 2

Let P be apolyhedron having the vertex $eand the face sét, andletl = (V, F, R) be
the incidence structure ¢f. For any subset¢’ C V andF’ C F, we defineR(V’, F’)
as the set of incidence pairs related to the vertices and the fav8sifr’. That is,

RV, F'y= RN (V' x F').

The triple (V/, F’, R(V’, F)) is called thesubstructureof the incidence structure
(V, F, R) induced byV’ and F'. Recall that(V, F, R) can be considered a bipartite
graph; hence the substructu’, F’, R(V’, F’)) can be considered a subgraph of the
bipartite graph, and so it is also bipartite.

Lemma l. Let P be asimply connected polyhedrand let(V, F, R) be the incidence
structure of P For any subsets YC V and F C F the next inequality holds

IR(V', F)| <2IVVUF'| — 4. (1)

Proof. LetP bethe polyhedron statedinthe lemma, an@et (V, E) be its skeleton.
Since the boundary dP is homeomorphic to a spherg, has a natural embedding in
the sphere that partitions the sphere into connected regions that have the one-to-one
correspondence to the facesfFrom this embedding we generate another embedded
graphH = (N, A) whose node set iBl = V U F and whose arc set i8 = R (note
that we refer t;modesandarcs instead of vertices and edges, when we talk about the
new graphH = (N, A)). The graphH is nothing but an embedded version of the
bipartite graph = (V, F, R). H is planar, and gives another partition of the sphere into
connected regions. Each region is bounded by exactly four arcs (note that each region
has four nodes corresponding to the two endpoints of an edge and the two side faces).
Next, we delete from the grapH = (N, A) the nodes (i.e., vertices and faces) in
V U F — VU F’ and the arcs incident to these nodes, and let the resulting graph be
H' = (N’, A"). H’ coincides with the bipartite graptv’, F’, R(V’, F’)) stated in the
lemma, and henc’ = V'U F’ andA’ = R(V’, F’). Letc be the number of connected
components oH’. H’ is also embedded on the sphere, so thapartitions the sphere
into connected regions; I8V’ be the set of these connected regions.
From Euler’s formula, we get

INI = AT+ [W]=1+c. (2
Since each region iW is bounded by four or more edges, we have
2N = 4W'y. 3

From (2), (3), anat > 1, we obtain 2N’| > |A’| + 4; thus we get the lemma. |

Proof of Theoren2. Suppose thaP is a polyhedron such that the skelet@nof P

is planar and 3-connected. Then, sirgdés 3-connected, no two faces are incident to
three common vertices, and no two vertices are incident to three common faces. Hence
conditions (C2) and (C3) are trivially satisfied.
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Let (V, F, R) be the incidence structure &. From Lemma 1, we get
2IR(V, F)| <4 8
IV UF]| IV UF]|
The left-hand side of this inequality represents the average number of incidence relations
per element, and the inequality implies that this average number is less than 4. Hence,
there is an element i U F that is incident to three or fewer elements. Let this element
bewa,, wheren = |V U F|, and considet, the last element in the sequer8arhich we
want to construct.
Next, we delete from the bipartite grapt, F, R) the nodex, and the arcs incident to
an; let the resulting incidence structure B¢, F’, R(V’, F’)). From Lemma 1, we get

2|R(V', F)|
22T g,
V/UF/|
which implies that there is an elemendinU F’ that is incident to three or fewer elements

in V'U F’. We denote this element,_1, and add it tdS as the second element from the
end. Repeating this procedure, we obtain a resolvable sequence. O

4.

6. Proof of Theorem 3

As before, we regard the incidence structure (V, F, R) as the bipartite graph whose
“left” node set isV and “right” node set ig=. Let K; j be the complete bipartite graph
with i left nodes and right nodes. For two sequenc8andS, let So S denote the
concatenation o andS'.

Lemma?2. Let G = (V, E) be a planar3-connected skeleton and let (V, F, R)

be the bipartite graph associated with Get Q € V U F be a subset such that the nodes
in Q form a subgraph of | isomorphic toil, K1 2, K2 1, or K3 ». Let S be an arbitrary
sequence of all the elements of There exists a sequencé &f all the elements of
VUF — Qsuchthat S S o S’ is a resolvable sequence of |

Proof. We prove the case whef@ forms a graph isomorphic tk, »; the other cases
are easier to prove. We name the two verticeQiaswv; andv,, and the two faces in

Q as f; and f,. We can construc8’ = (s, o, ..., an) (Whereo; € VU F — Q,
i =5,6,...,n,n = |V UF|) from the tail backward in the following way. Assume
that we have chosen the last- k (k > 5) elementsuy, 1, aki2, ..., an 0f S” such

that {ak+1, o2y oo vy (Xn} n Q = (. Let V' =V — {ak+1, [0 7, NN (Xn}, F =F —
{ak+l9 Qk42, « - vy an}v andl, = (V/’ F/y R(V/’ F/))

Casel: Suppose that'lis connectedForae € V' U F/, let u(a) be the number of
elements iV’ U F’ that are incident ta, and letT = {o | @« € VU F’, u(a) < 3.

We get
> @)

aeV'UF’

> @) +4V UF =T|. (4)

aeT

2[RV, F)

v
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From inequalities (1) and (4), we have

P CETCHER: 5)
aeT

On the other hand, we have
> - @) <7, ©®
aeQ

because the nodes @ form the complete bipartite gragk, » and there is at least one
arc connectingQ andV’ U F’ — Q (recall thatl’ is connected). From (5) and (6), we
conclude thall — Q # ¢, that is, there is at least one nodéhu F’ that is incident to
at most three elements W U F’ and that is different fromq, v, fq, or f,. We name
this nodexy.

Case2: Suppose that’lis not connected/NVe rename a connected component that does
not includeQ asl’. For this component we get inequality (5), which tells that there is a
node, sayyy, that is incident to at most three nodesihu F'.

In both cases, we addy at the head of the sequen¢&. 1, aki2, ..., an), thus
obtaining a one-longer sequeneg, ax.1, .. . , @n). Repeating this step, we finally get
the desired sequen&= S o (as, ag, . .., an). O

Let P be a simply connected polyhedron, and@t (V, E) andl = (V, F, R) be
the skeleton and the incidence structure, respectively, &inceP is simply connected,
G can be considered a graph embedded on the sphere. This embedded graph partitions
the sphere into connected regions and their boundaries. The connected regions are in
one-to-one correspondence with the facedPofin order to represent this embedded
structure explicitly, we sometimes denote it@y= (V, E, F) instead ofG = (V, E),
whereF is the set of the faces d® as before, and each fadee F is represented by
one or more cycles corresponding to the boundary of the face. W&call(V, E, F)
anembedded graph

We decomposé& into 3-connected components. For this purpose, in the first stage
we decomposé& into connected components, next decompose them into 2-connected
components, and finally decompose them into 3-connected components. The three de-
composition stages are similar, and hence we show the decomposition of a 2-connected
component into 3-connected components.

Let G be a 2-connected component obtained in the second stage, dndndtG
be the associated incidence structure and the embedded graph. SuppGsis tiait 3-
connected. Then, as shown in Fig. 5(a), there exist two venticésand two faced, f’
such thatv andv’ are on both of the boundary df and that off’, and thatf, f’, v, v’
altogether separate the remaining area of the sphere into two connected ar¥aandet
F, be the vertices and the faces belonging to one of the connected areas,\anandt
F, be the set of the remaining vertices and that of the remaining faces #@rand 2,
let E;j be the set of edges in the subgrapitoinduced by the vertex s& U {v, v'}.

The bipartite graph associated withhas the structure as shown in Fig. 5(b), that is,
the four nodes, v, f, f' form K, », and there is no arc betwe&h andF, or between
V, andF;. We decomposé = (V, F, R)into I, = (V1 U {v, v'}, R U{f, f'}, Ry) and
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Fig.5. Decomposition of the embedded graph into two parts with exactly two common faces and two common
vertices.

l, = (VLU {v, v}, B U{f, f'}, Ry) whereR = RN ((V; U {v, v'}) x (F U{f, f'})
(i =1, 2), as shown in Fig. 5(c).

In connection with this decomposition of the embedded grap® is also decom-
posed.

Let the resulting 3-connected componentsGye= (V;, E;j) and let the associated
incidence structures and the embedded graphsbe Vi, Fi, R)andG; = (V;, E;, F),
i = 1,2, ...,k. Now we are ready to construct a resolvable sequende. éf/e first
choose one component, @y, and construct a resolvable sequeBgGeS, always exists
because of Theorem 2.

Next, suppose that we have already constructed a resolvable se@yeise- - -0 S
of G1 UG, U - -- U Gj. We choose one of the remaining components,Gay, whose
incidence structurg ;. ; has at least one face in common with onéofi,, ..., |; (here,
if necessary, we rename the component numbers).

Consider the embedded gra@h,1 = (Vi;1, Ei 1, Fi11). Some of the faces iFi 1
are also contained in some other components,, ..., li_1, liy1, ..., lk. We remove
those faces. Then the remaining part@&f,; forms a connected region possibly with
holes. Note thaG;; is embedded on the sphere, and hence there is no distinction
between “inner holes” and the “outer hole.”

Sincel; have been chosen in such a way thRatandF, U F U --- U Fj_1 have at
least one common fadg = 2,3, ...,1i), all the component&,, G, ..., Gj lie in one
and the same hole @;_,. Therefore, the vertices and the faces that are commbnin
andS o S o---0 § are (i) only one face (this happens when a graph is decomposed
into connected components), or (ii) one vertex and one face foriingthis happens
when a connected component is decomposed into 2-connected components), or (iii) two
vertices and two faces forminig, > (in the case shown in Fig. 5), or (iv) a subset of
them. Therefore, Lemma 2 guarantees that there exists resolvable se§uerufd;
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such that elements also includedSne S o - - - o § are at the head (ﬁH. Let S, be

the sequence that is obtained frd}ul by removing those common elements. Then the

concatenatios 0 So-- 0§05, isaresolvable sequence®fUG,U- - -UG; UGj ;.
Repeating this procedure, we finally construct a resolvable sequer@e Tius,

Theorem 3 has been proved.

7. Algorithms

If the skeleton is 3-connected, finding a resolvable sequence is straightforward. Given a
polyhedronP, we first construct the associated bipartite graph (V, F, R) and delete

the nodes with degree 3 or less one by one, obtaining the resolvable sequence from the
tail backward. This procedure runs i|®| + |V U F|) = O(|R| 4+ n) = O(n) time.

If the skeleton ofP is not 3-connected, we first decompose it into 3-connected com-
ponents, and next apply the above procedure. Since the decomposition of a planar graph
into 3-connected components can be done in linear time [6], the total procedure requires
in O(n) time.

When we change the polyhedréhto P’ by some operation, we in general have to
reconstruct a resolvable sequenc&b6from the beginning. However, for certain special
types of operations, a resolvable sequencE’afan be obtained by slight modification
of the resolvable representation Bf Here, we describe two such operations; they are
duals of each other.

The first operation is to cu® by a plane into two parts and to remove one of them.

Let P’ be the polyhedron obtained by the cut operation. fghe the new face oP’
generated by the cut operation, andugtuy, . . ., vk be the vertices on the boundary of

fo. We call the operation aondegenerate cuf none ofvy, v, ..., vk is a vertex ofP.

If the cut is nondegenerate, the new vertiegsv, . . ., vk are generated on the middle

of edges ofP, and consequently these new vertices are incident to exactly three faces
in P,

Theorem 4. Let S be a resolvable sequence of polyhedrohd® P’ be a polyhedron
obtained from P by nondegenerate @ud let § andvy, vo, ..., vk be the new face and
the new vertices generated by the.cthen the sequence

S = So (fo, v1,v2, ..., %)

is a resolvable sequence of,RvhereS is the sequence obtained from S by deleting the
faces and the vertices not belonging ta P

Proof. SinceSis a subsequence & Sis also a resolvable sequence. Since the new
face fo contains no old verticesS o ( fo) is a resolvable sequence. Since the cutting is
nondegenerate, each of, vy, .. ., v is incident to exactly three faces. Hen&,is a
resolvable sequence 6. O

The other operation we consider is the following. Bebe a convex polyhedron and
let vg be a point outsid®. Let P’ = CH(P U {vo}), where CHK) denotes a convex hull
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of the setX of points. The construction d?’ from P anduy is called apull operation
note that intuitivelyP’ is the result of pulling a point of elastic surface®find moving
it to vg. We say that the pull operationim®ndegeneraté vg is not coplanar of any face
of P.

Theorem 5. Let S be a resolvable sequence of convex polyhedraet be a poly-
hedron obtained from P ang by a nondegenerate pull operatiand let f, fo, ..., fx
be the new faces generated by the operafidre sequence

SIZEO(U(), fl, fz,..., fk)

is a resolvable sequence of,RvhereS is the sequence obtained from S by deleting the
faces and vertices not belonging to. P

The proof is similar to that of Theorem 4.

8. Concluding Remarks

We proposed a new method for representing polyhedra, called resolvable representation,
in which the numerical part is defined by a step-by-step manner according to a special
sequence of vertices and faces, so that numerical errors do not violate the symbolic part
of the representation. We showed that any simply connected polyhedron has a resolvable
representation, and constructed an algorithm for finding it.

In general, the resolvable sequence is not unique; we have large freedom in the choice
of the resolvable sequence of a given polyhedron. Different resolvable sequences define
different geometric shapes for the the same numerical error. Hence, the next problem is
to analyze the sensitivity, and to find the resolvable sequence that is least sensitive to
numerical errors. Other problems for the future include (1) characterizing the resolvable
polyhedra that are nothomeomorphic to the ball, (2) constructing an algorithm for finding
resolvable sequences for such polyhedra, and (3) generalizing the concept of “resolvable
representation” to curved surface objects.

If polyhedron P is not resolvable, we can modify it into a resolvable polyhedron
by inserting face diagonals (note that if all the faces are decomposed into triangles by
inserting diagonals, the polyhedron has a resolvable sequence). Hence still another future
problem is to find the minimum set of diagonals whose insertion makes the polyhedron
resolvable.
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