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Abstract. A new paradigm for designing smooth surfaces is described. A finite set of
points with weights specifies a closed surface in space referredskoralt consists of one

or more components, each tangent continuous and free of self-intersections and intersections
with other components. The skin varies continuously with the weights and locations of the
points, and the variation includes the possibility of a topology change facilitated by the
violation of tangent continuity at a single point in space and time. Applications of the skin

to molecular modeling and to geometric deformation are discussed.

1. Introduction

This paper introduces a new paradigm for the design of smooth surfaces. The method
works in all fixed dimensiong], and generates closéd — 1)-manifolds inRY. For
pragmatic reasons the paradigm is described iz 3 dimensions and most figures
illustrate the casd = 2.

Ideas and Concepts The paradigm constructs surfaces as zero-sets of differentiable
maps. This is an old idea expressed in the preimage theorem of differential topology,
see, e.g., p. 21 of [11]. The crucial questions are computational: How do we specify
such a map compactly and how do we construct the zero-set efficiently? We describe
a mechanism that derives a differential mbpR® — R from a finite set of weighted
points inR3.

First we discuss how the zero-sét;*(0), can be constructed directly from the finite
specification, without computind. An algebra is described that generates an infinite
family of spheres from a finite set of weighted points with the property that the envelope
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Fig. 1. The skin surface defined by nine weighted point& eight at the corners and one at the center of
acube.

of the spheres is the zero-set. We call this envelopskimand the subset @2 bounded

by the envelope thbodyof the set of weighted points, see Fig. 1. Second we consider
the construction of and the deformation of the skin by taking a continuous sequence of
preimagesf ~1(r). The flexibility in choosing different map$ with the same zero-set
translates into the freedom of deforming the skin in different ways. The topology of the
skin changes when passes a critical value.

Summary of Results Whether or not skin and body are indeed useful concepts in
geometric modeling depends on the existence of efficient algorithms. We describe a
discrete framework and combinatorial algorithms constructing the skin as a collection of
guadratic patches. The framework is based on Voronoi, Delaunay, and Alpha complexes
of a finite set of points with weights [7]. The geometric and computational properties of
skin and body are summarized in the following nonexhaustive list of informal claims:

S1. decomposability: skin consists of a finite number of degree-2 patches (Theo-
rem 13, Section 6),

S2. constructibility: there are fast combinatorial algorithms constructing skin (Sec-
tion 6),

S3. symmetry: skin can be defined from the inside as well as the outside (Theorem 14,
Section 6),

S4. smoothness: in the nondegenerate case skin is everywhere tangent continuous
(Theorem 16, Section 7),

S5. economy: even a small number of weighted points can generate fairly compli-
cated skin,

S6. universality: every orientable closed surface has a skin representation,

S7. deformability: topology changes of skin can be efficiently computed (Theo-
rem 18, Section 7),

S8. continuity: skin varies continuously with points and weights (Section 8).
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An important project for the future is the comparison of the skin paradigm with other
surface design methods described in the literature, see [10].

Applications Surface design is a large part of computer-aided design and modeling,
CAD/CAM, which is an industry that reaches into many aspects of modern life. Think
of the design of automobile, aircraft, or ship parts or of geometric models for computer-
animated movies, etc. This paper describes a new paradigm for surface design and
is therefore relevant to all these activities. The question is whether the paradigm can
compete with the currently prevalent spline methods, see [10] for a comprehensive in-
troduction and [18] for one of the more recent extensions. The difference between the
skin paradigm and conventional spline methods relates to the global versus local di-
chotomy. The skin paradigm defines a surface globally as the zero-set of a differential
map; splines are implicit and derived automatically from the global definition. Conven-
tional spline methods form a surface by gluing together locally parametrized patches.
An important task now is to identify specific applications for which the skin paradigm
offers sufficiently many advantages to warrant a large-scale departure from traditional
methods.

An application where the superior properties of skin outweigh our hesitation to venture
a premature prediction is the study of small and large molecules. We argue that skin
should be substituted for the similar but geometrically ambiguous molecular surface
model [4], [19]. In this context we mention the symmetry of skin with respect to inside
and outside. This property begs to be exploited in problems on shape complementarity,
such as molecular docking which is important in drug design, see, e.g., [12]. Finally, the
continuous deformation of skin can be used to connect snapshots of molecular dynamics
simulations and to support rational arguments about change and correspondence over
time.

Outline Section 2 introduces the algebra of spheres. Section 3 applies the algebra
to create and study infinite sphere families generated from just two or three weighted
points. Section 4 defines skin and body for arbitrary finite sets of weighted points.
Section 5 introduces Voronoi and Delaunay complexes. Section 6 shows how skin can
be decomposed into finitely many patches of degree 2. Section 7 proves topological
properties of skin and body. Section 8 addresses the question of deformation and the
equivalent problem of map design. Section 9 discusses applications of skin and body to
molecular modeling. Section 10 mentions directions for further research.

2. Algebra of Spheres

Skin and body have been defined in an earlier publication by the author [8]. The algebraic
structures that we are about to introduce greatly simplify the description and warrant
a complete revision of [8], which is this paper. The origins of the algebraic structures

can be traced back to independent work by Clifford, Darboux, and Frobenius after the
middle of the last century, see the survey article [17]. The recent text by Pedoe [16] offers
a detailed treatment of the algebra of circles and many applications.
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Spheres Lifted to Points Thenormof a pointx = (&1, &, £3) in R%is

Xl = (IX;: Eiz) 1/2-

We describe aveighted point p= R® x R by itslocation z, € R® and itsweightwy, € R.
The (veighteq distancefrom p is a mapr,: R® — R defined by

2
Tp(X) = |IX — Zp[|* — wp.

For zero weight this is the square of the Euclidean distance betwaedz,. The zero-
set ofrp is the sphere with centey, and radius,/wp, and it is convenient to make no
distinction between the weighted point and this sphere. For negative weight we get an
imaginary sphere with imaginary radius. Imaginary spheres are of paramountimportance
in our theory of shape and surface. They form the key to mastering nonconvexity by filling
and lending structure to the complement space. This becomes clear and rather concrete
in later sections of this paper.

We base our algebraic structures on a bijeciitinR® x R — R* that maps each
sphere iMR? to a point inR*. Forz, = (¢1, ¢2, £3) we have

(p) = (¢1, &2, 3, 12117 — wp).

For example, ifp has radius, = wé/z = 0, thenIT(p) lies on the paraboloier: R® —
R defined by
@ (x) = x|

If p has positive real radius, thénh(p) lies belows and if it has imaginary radius, then
I1(p) lies aboverw .

Vector Space R*together with the usual componentwise addition and scalar multipli-
cation forms a vector space. We use the bijecfioto pull this vector space down to the
space of spheres.

Let p andq be spheres i3 and lety € R be a scalar. We define spheres- g and
y - p so that

I(p+q) = M(p) + (),
Iy -p) = y-1(p),
where the operations on the right are the usual vector space operations for piifits in
The projection of the operations R, the space of centers, is the usual vector space of
R3 with z5q = zp + Zg andz,., = y - z,. The projection taR, the space of weights, is
more complicated. Let, ): R® x R® — R be the usual scalar product.

Fact1l. The weights of p- q andy - p are

Wptq = Wp + wq + 2(Zp, Zg),
wy.p = ywp+ (2= Mzl



Deformable Smooth Surface Design 91

The two formulas can be verified by straightforward algebraic manipulations. We call
the set of spheres together with addition and scalar multiplication as defineddtos
space of spheres

Changing Size Addition and scalar multiplication can be used to shrink or grow a
sphere without changing its center. gbe a sphere and lgt’ be the sphere with the
same centeg,y = zp, and with zero weight. For a parametee R, define

pPP=@1-9 p+s-p.
Use Fact 1 to determine the centers and weighygiet (1—s)- p’andp, =s- p:

Zp, = (1—9) -2,

sz S- Zp,

wp, = (% =9zl

wp, = Swp + (82 — 9)|Zp]12

Again use Fact 1 to adg; and p,:
Fact2. The center and weight off@re zs = z, andwps = s - wy.

The radius ofp® is /s times the radius, of p. If r, is a positive real, then & s means
growth, 0 < s < 1 means shrinking, ansl < 0 makes the radius imaginary.r§ is
imaginary the effect of the operation is symmetric.

Distance and Orthogonality We extend the notion of weighted distance to pairs of
weighted points or spheres:

2
Tpq = 1Zp — ZgllI” — wp — wy.

Spheresp andq areorthogonal denotedp L q, if 74 = 0. Indeed, for spheres with
positive radius this is the condition that the two spheres meet in a circle and the two
tangent planes passing through a common poian this circle form a right anglep

andq arefurther than orthogonalf 7, > 0. For each spherp let n,: R® — R be
defined by

Np(X) = [IX[I* = mp(X)

= 2(X, Zp) — 1ZpllI* + wp,

whose graph is a hyperplane Rf. If w, = 0, thenn, is tangent to the paraboloid
@ . More generally, the spher@in R? is the projection of the intersection between the
paraboloidew and the hyperplang,, see Fig. 2. The points a6 below and above,
project inside and outside the sphegreThe algebraic expression of this observation is
a trivial rearrangement of terms in the definitiorvgf

Fact 3. Let p be a sphere and let x be a pointRd. Thenmp(X) = @ (X) — np(X).
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2

R?

Fig. 2. Acircle pin R? corresponds to a plang in R3 so p is the projection ofz N np. The plane is not
explicitly shown. Furthermorep N 5p bounds the patch omr visible from IT(p) belowz, and the patch
projects to the disk bounded kpy

Orthogonality between spheres translates to incidence between points and hyperplanes:
Fact4. p L qiff II(p) € nqiff I1(Q) € np.

Consider, for example, the case where> 0 andwy = 0. Thenp L q iff z, lies on the
spherep. The hyperplangq is tangent taz and touches the paraboloid in poiri(q).
By Fact 4,nq passes through poili(p). In geometrical terms this implies that N 1,
is the silhouette of the patch em visible fromI1(p) beloww, see Fig. 2.

Shrinking Orthogonal Spheres Consider shrinking two spheres using scatats> 0
with s+t = 1. Orthogonality is the limiting case in which the shrinking pulls intersecting
spheres apart, no matter what their initial radii are, see Fig. 3.

Lemma5. Let p_L g withreal radiir,andry andletst > Owith s+t = 1. Then

X if srg = tré,
otherwise

S t __

where x= (1§ - zp+ 15 - 2)/(r; +1d).

Fig. 3. Orthogonal circlep andq with equal radiir, = rq. Circles p'/? andg®/2 touch at the midpoint
betweerg, andzq. The dashed circlep®* andq®*, are disjoint.
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Proof. Sincep L g ands+t =1 we have

re+rg

(S+DIF+T1d) — (Vstg — Virp)?

(V/STp + V/1rg)2.

Taking roots left and right implies that the radii pf andg' add up to at most the Eu-

clidean distance between the centers. We have equalifgsiff = +/tr, or equivalently
sr§ = trg, as claimed. In this case

2
1Zp = Z4ll

v

2

r
and t =34

S =
2 2 2 2’
rp+rq rp+rq

and the two shrunken spheres meet at the poiat t - z, + s - z; specified in the
claim. O

3. Flats of Spheres

The flat defined by a set of points kf* is the lowest-dimensional affine subspace that
contains the set. This section extends this concept to sphekes in

Affine Combination Theaffine hullof a set of sphereB = {po, p1,..., pn} IS

n n
aﬁP:{p=ZM-pi Zlﬁ:l},
i=0 i=0

see Fig. 4. Each spheqe € aff P is anaffine combinatiorof the p;. P is affinely
independenif p; ¢ aff (P — {p;}) for everyi. The maximum cardinality of any affinely
independent set of spherediA is 5. Ak-flatis the affine hull of an affinely independent
setP of cardinalityk 4+ 1. Itsdimensioris dim aff P = k. Flats of dimension 1 or higher
are simple examples of infinite sphere families.

For a set of spheres and a parameter € R define

Fs={p°| peF}.

If F = aff P and card® > 2, thenF? is an infinite family of spheres. Observe that
shrinking and taking the affine hull does not commute. We are interested in the envelope
of an infinite family of shrunken spheres. To convert spheres into balls let

uclp=1{qlz=2z.ri<rj}
and define theipward closureof a set of sphereB:

uclF = | Juclp.

peF
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Fig. 4. Two orthogonal 1-flats of circles iR2. Every circle in the first flat is orthogonal to every circle in
the second flat.

Keep in mind that ucF is asetof spheres; thenion of these spheres is the same as
the union of balls bounded by spheresinTheenvelopeof F3 is the boundary of the
union of balls:

envFs = bd U ucl Fs,

see Fig. 1.

Orthogonal Flats  The set of spheres orthogonal to a single spipésegp = IT-1(np),

see Fact 4y, is a three-dimensional affine subspac&éfand accordingly™ is a 3-flat
of spheres irR3. Indeed, for every point, € R® there is a unique radiug so thatp

andq are orthogonal. More generally, tbethogonal flatof a set of sphereB is

P = {q|q.L pforall pe P}

= ﬂpi,

peP

If g is orthogonal to allp € P, then it is orthogonal to alp € aff P and therefore
PL = (aff P)*. By the symmetry of Fact 4, a poimtis orthogonal to everg e P+ iff
p € aff P. In short, affP = (P1)+. The dimension oP+ is dimP+ = 3 — dimaff P.
In R?, the dimensions of orthogonal flats add up to 2, see Fig. 4.
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Let F = aff P andG = P+ be two orthogonal flats and consider the sets of sphere
centers:

F'={z | peFl}
G = {zg1qeG}.

In the assumed case thBt = {z, | p € P} is affinely independent:’ andG’ are
orthogonal affine subspaces®f. The dimensions add to

dmF’ +dimG = dimF +dimG
= 3.

It follows that the two subspaces meet at a paifff) = F' N G’ called thefocusof F.
Because orthogonality is symmetric, the focuga$ also the focus dB: X(F) = x(G).

For example, in Fig. 4 the focus is the intersection point of the two orthogonal lines that
carry the centers of the circles. Lpt € F andgx € G be the two spheres with center

x = x(F). We havepx L gyx and therefore

2

2 _
o TT 0

r 4 = U

Sopy is a real sphere iffl, is imaginary. Similarly,p, is a degenerate sphere or point iff
Ox is a point. The orthogonal flats andG are completely determined B/, G’, and the
radius ofpy. Note thatz, = x is closest t@,, = x among all points ir’ and recall that
all spheres irF are orthogonal tgy. It follows that px has the smallest square radius of
any sphere ir-. Symmetricallygx has the smallest square radius of any sphef®.in

Complementarity We consider shrunken versions of the orthogonal flagndG:
F*={p°| peFl}
G' = {d'lqeG}.

If s andt satisfy the requirements of Lemma 5, tHehandG' share the same envelope
and together they cover the entire space:

Lemma6. Letst > Owiths+t=1.Then
U uclFsu U uclG! = R3,
(JuclFen JuclG' = envFs
= envG'.
Proof. LetF’ andG’ be the affine subspaces of centersxlet F' N G’, and consider
px € F andgc € G. Recall thar} +rs = 0 and assume; > 0. Sincepy has

minimum square radius iR, everyp € F has nonnegative square radius. The spheres
q € G for whichq' touchesp® satisfy
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Fig. 5. The circles in Figure 4 after shrinking with=t = % The envelope is a hyperbola that separates
the two families of circles.

which is again nonnegative, see Lemma 5. These spheres form a subsetf-tke
flat G, and the geometry of this subset i$2a— k)-dimensional sphere around The
shrunken versions of these spheres topglalong a(2 — k)-sphere inR3. The union
of the (2 — k)-spheres, over app® € F*3, is a manifold of dimensio2 — k) + k = 2.
This manifold or surface is the common envelopd6fandG!. The spheres of S and
G! touch the surface from opposite sides, and each family covers the entire space on its
side of the surface. O

A side benefit of the above argument is the observation that a sgheae touch the
envelope only if its radius is sufficiently large. In particular, the smallest sphevi¢h
g touching a spher@® € F* has square radius

which is positive ift andrgx are positive.

Envelopes We show that envelopes of flats are zero-sets of quadratic polynomials.
First consider a 1-flaf;-, and its orthogonal 2-flaG. Supposéd-' is thex;-axis andG’

is thexox3-plane. Letrg be the radius ofpg € F whose center is the focus of the two
flats:zg = 0 = F'NG'. Lets,t > 0 withs+t = 1. We parametrize the family of
spheres ir-* with = and define

f (T, X1, X2, X3) = (X1 — T)? + X3 + X2 — s(? +rd).
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The envelope consists of the poirts= (X1, X2, X3) that satisfyf = af/d9t = 0.
Observe that

of
a—(‘[, X1, X2, X3) = ‘L'(2 — 23) — 2X3.
T

Fromaf/dt = 0 we getr = x1/(1 — s), and the envelope is the zero-set of

é f (1)2-5, X1, X2, X3> = —%Xf + %(XZZ + XQZ,) - rg-
Lemma 6 implies that this is also the envelopeGdf Alternatively, we can parametrize
the spheres i! and compute the envelope as before.

There are four types of envelopesia distinguished by the dimension Bf Suppose
F is ak-flat of spheres an’ is spanned by the firdt coordinate axes. The@ is a
(3 — k)-flat and we can assunt® is spanned by the last-3 k coordinate axes. Let
be the radius ofyp € F.

Fact7. Letst > Owith s+t = 1. The common envelope of Bnd G is the zero-
set of

1 : 2 1 > 2 2
f(Xl,Xz,X3)=—?ZXi +§.Z X2 —rg.
i=1 j=k+1

Indeed, fork = 0 the envelope igj itself, which is the zero-set of (x) = I1x]1% — sré.

For k = 1 the result agrees with the preceding calculation. The casds fo12 and

k = 3 are symmetric t&k = 1 andk = 0. The polynomial in Fact 7 implies a total

of eight nondegenerate cases. They come in four pairs, each separated by a degenerate
case, see Table 1.

Table 1. The different types of envelopes com-
mon to a shrunkek-flat and the shrunken orthog-
onal (3 — k)-flat.*

k r2<0 r2=0 r2>0

0 Empty Point Sphere

1 2 sheets Double-cone 1 sheet
2 1 sheet Double-cone 2 sheets
3 Sphere Point Empty

*Fork = 1, 2 we have hyperboloids of one and
two sheets and a double-cone in the degenerate
case. Each of the six different envelope types oc-
curs twice with the spheres of the shrunkefiat

on opposite sides. In the case of the empty en-
velope this means that fér = 0 all spheres of
the shrunken O-flat are imaginary and foe= 3

the spheres of the shrunken 3-flat cover the entire
space.
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4. Skin and Body

This section extends the ideas explained for affine hulls in Section 3 to convex hulls.
As it turns out the envelope of a shrunken convex hull of spheres consists of patches of
envelopes of shrunken affine hulls. We begin with the necessary definitions.

Convex Combinatian Recallthateach sphepanthe affine hullof® = {po, p1, ..., pn}
can be written as a sum ¢f - p;, where they; add up to 1. Theonvex hulof P is

convP ={peaffP |y > 0foralli}.

Figure 4 illustrates the convex hulls of two pairs of circles, one containing the leftmost
and the rightmost circles, the other containing the topmost and the bottommost circles.
Eachp € convP is aconvex combinationf the p;. Clearly, con# C aff P. Although

the convex hull ofP contains many more spheres thanthey are all contained in the
union of balls defined byr:

Fact8. |JuclconvP = JuclP.

Let p be a convex combination of two sphergs, and p;. To prove the claim it is
sufficient to show thap is contained in the union of the two balls boundeddgyand p;.
To see this is indeed the case observe that the sgheasses through the circfg N py
and that its center lies between the centerpgoéind p;. If pg and p; are disjoint, then
their common circle is imaginary anglis either imaginary or it is contained in one of
the two balls.

The two most important new concepts in this paper are obtained from convex hulls
by shrinking and taking the union and the envelope. Far9< 1 we define tha-body
and thes-skinof P as

bdy* P = chl (convP)s,
skifP = bd bdy P.

See Fig. 1 for an example ®® and Fig. 10 for an example R?.

Orthogonality and Complementarity Recall that two sphergsandq are further than
orthogonal from each otherif, 4 > 0. A sphere that is orthogonal to or further than
orthogonal from all spheres € P has the same property with respect to all spheres
in the upward closure of the convex hull Bf The following definitions are therefore
meaningful.

The set of spheres orthogonal to or further than orthogonal from a single gpiere
the half-spaceof spheres ugh*. We are interested in the intersection of all half-spaces
defined by spherep € P. For finite P this is a convex polyhedron of spheres. The
orthogonal complemerf P is the smallest set of spher€s denoted as ortR, with

uclconvQ = () ucl p*.
peP

It contains points ifR* that correspond to spheres with arbitrarily large radii. To accom-
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Fig. 6. P contains the four solid circles arfd = orth P contains the two dashed circles and four dashed
lines (infinitely large degenerate circles). The circleQitave their centers at the Voronoi verticeshof

modate these sphergd,contains among others some infinitely large spheres or planes
in R3. In the nondegenerate case, each such plane is orthogonal to three spHeres in
and further than orthogonal from all others. Similarly, each sphere with finite radius in
Q is orthogonal to four spheres iR and further than orthogonal from all others, see
Fig. 6. Observe that the construction of the orthogonal complement is symmetric. In
other words,P = orthQ = orth orthP. Furthermore, the balls bounded by spheres in
P and inQ cover the entire space:

Fact9. (JuclPUJuclQ = R3,

To see this suppose there is a poing R3 not covered by any of the balls. Théx, 0)
is a sphere further than orthogonal tojple P and not contained in the upward closure
of convQ, a contradiction to the definition @.

5. Proximity Complexes

The Delaunay complex [5] is the projection to the space of centers of the boundary
complex of conw. Similarly, the Voronoi complex [20] is the projection of the boundary
complex of con\Q. This section introduces both complexes along with subcomplexes
representing the shape bounded by the envelope of the sphd?emiahin Q.

Voronoi Complex Let P be a finite set of spheres iR® and recall thatr,(x) =
[Ix — zp||2 — rs is the weighted distance of a poifrom a spherg. TheVoronoi region
ofpePis

Vp = {x € R®| p(X) < mq(x) forallq € P}.

In the assumed nondegenerate Cdsés either empty or a three-dimensional convex
polyhedron. For a subs&t € P define

Vx = ﬂ Vp.
peX

By assumption of nondegeneragy,is either empty or a convex polyhedron of dimension
¢ = dimvyx = 4 — cardX. If vx is nonempty we call it &0oronoi¢-cell. The Voronoi
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Fig. 7. The Delaunay and Voronoi complexes of the four solid circles in Fig. 6. The Delaunay edges are solid
and the Voronoi edges are dashed. Symmetrically, the dashed edges show the Delaunay complex and the solid
edges show the Voronoi complex of the orthogonal complement.

complexs the collection of Voronoi cells:
VorP ={vx #0 | X C P}.

The Voronoi complex decomposes the union of bdllsucl P, into convex pieces.
Indeed, ifx € |JuclP belongs toV, and is enclosed by a sphege € P, then
mp(X) < mg(X) < 0 andx is also enclosed bp. This implies

Vo | JuclP =V, n | Juclp,

which is convex becausé, is convex and_J ucl p is the ball bounded by and thus
also convex, see Fig. 7.
Each Voronoi vertex or 0-cell = vy has the same weighted distanée= mp(v) from
all four spherep € X. The sphere with centerand radius is orthogonal to the € X,
further than orthogonal from all other spheresHnand it belongs t&@Q = orthP. In
fact, Q contains a sphere for each Voronoi vertex and a plane (infinitely large degenerate
sphere) for each unbounded Voronoi edge. The “center” of the plane lies at infinity in
the direction of the corresponding Voronoi edge, see Fig. 7.

Delaunay Complex For each Voronoi celby € Vor P we have éDelaunay cell
§x = convX’,

where X’ = {z, | p € X}. The assumption of nondegeneracy implies thats a
simplex inIR3. More preciselysx is a Delaunayk-simplex iff vy is a Voronoi¢-cell,
wherek = 3 — ¢ = cardX — 1. TheDelaunay compleis the collection of Delaunay
simplices:

DelP = {8x | vx € Vor P}.
How does the Delaunay complex relateR@nd toQ = orth P? Each Delaunay vertex
or O-simplex is the center of a spherefn The relation toQ is more intricate. Recall
that each spherg € Q with finite radius has its center at a Voronoi verigx X € P
contains four spheres and defines a Delaunay tetrahégrspanned by the centers of
the spheres. The same Delaunay tetrahedron can be specified through inequalities:

8x = {y e R®| mq(y) < mp(y) forall p e Q).

In words, 8x is the Voronoi region off € Q. This implies a fundamental symmetry
between Voronoi and Delaunay complexes.



Deformable Smooth Surface Design 101

Fig. 8. The Delaunay subcomplex of the four solid circles in Fig. 6 consists of four vertices and two (solid)
edges. The Voronoi subcomplex consists of two vertices and three (dashed) edges.

Fact 10. Del P = Vor Q andVor P = Del Q.

The statement is not entirely correct but we can make it correct by slightly altering the
definition of the Delaunay complex. Specifically, we add the Voronoi cells defined by
infinitely large spheres i@ to Del P. The resulting set of Delaunay cells decomposes
the union of balls bounded by sphereLQrinto convex pieces, see Fig. 7.

Subcomplexes Recall that Voronoi regions decompose a union of balls into convex
pieces. It follows that each Voronoi celly, forms a convex intersection with the union:

ox = vxﬂUUCIP

= ﬂ(vp N chl p).

peX

Clearlyox C vx, and by collecting all simplices that correspond to nonempty intersec-
tions we get a subcomplex of the Delaunay complex:

DsxP = {8x € DelP | ox # 9},

see Fig. 8. In the terminology of [7] and [9] D$Xis one of the alpha complexes Bf
namely, the one defined far= 0.

Symmetrically, the simplices in D& decompose the union of balls bounded by
spheres in the orthogonal complement. We define

VSXP:{VXGVOrP|8XﬂUUC|Q7é@},

which is a subcomplex of Vide, see Fig. 8.

It can be shown that the union of balls bounded by spher&sdavers all simplices
in Dsx P, see also Section 6. Symmetrically, the union of balls bounded by spheres in
Q covers all cells in VsyP. The two containment relations can be connected using Fact
9. To state the resulting chain of relations we denote the complement offaseR3
by A=R3— A

Fact11. Assume P is in nondegenerate positidhen

| JDsxP < | JuclQ < [ JuclP < [ JvsxP.
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6. Decomposing Space and Skin

This section returns to the body and skin of a finite set of spher@.iThe main
result is a decomposition &2 into convex cells that decompose the skin into patches
of algebraic degree 2.

Voronoi Regions in the Limit We begin by revisitingk-flats of spheres. LeP =

{po, P1, -- -, Px} be an affinely independent set of spheres and assume that the set of
centersP’ = {zy,, Z,, . . ., Zp} is also affinely independent. Théh= aff P is ak-flat

of spheres and

F' = aff P’
={zIpeF}

is ak-dimensional affine subspace®?. Lets, t > 0 be real parameters wigh-t = 1,
as usual. Le¥; be the Voronoi region op® among the infinitely many spheres f¥.
We construcvg using amap®: F — F’. This map associates each sphegre F with
the pointy = ¢3(p) € F’ that satisfies

ps(Y) < mgs(Y)

forallq € F. V; is the (3 — k)-dimensional affine subspace orthogonalRowith
F'NV,; =y, see Fig. 9. The point = ¢°(p) lies betweere, and the focu = x(F)
of F:

Fact12. ¢°(p) =s-X+t-zp.

In the limit whens = 0 we havep®(p) = z, for everyp € P. This corresponds to the
case where all spheres it are points and clearly every point is closest to itself. When

s grows the pointgS(p) move closer tox and meet ax in the limit whens = 1. Fact

12 can be proved with analytical calculations similar to the ones preceding Fact 7 in
Section 3.

Fig. 9. Skin construction for two circles in the plane. The vertical lines are Voronoi regions of circles in
the convex hull reduced with = %. The two extreme lines separate the circle pieces o%tlskin from the
connecting hyperbola piece.
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Shrinking and Mixing Fact 12 is significant because it can be used to decompose the
skin defined byP. Before taking on the general case consider the two cingjesnd
p; in Fig. 9. The%—skin has the shape of a dumbbell and consists of two circular arcs
connected by a hyperbola piece between the Mﬁé andell/ 2,

We generalize the construction of the strip between the two lines? beta finite set
of spheres irR3. For eachX < P with nonempty Voronoi celbx and corresponding

Delaunay simplexXy define thes-mixed cell
px =Ss-vx +t-dx,

compare with Fact 12. For & s < 1 the dimension of«% is independent of the
cardinality of X: dimu$, = dimvx + diméx = 3. There are four types of mixed cells:
forcardX = 1, 2, 3, 4the mixed celL is a Voronoi 3-cell, a prism over a Voronoi 2-cell,

a prism over a Delaunay triangle, and a Delaunay tetrahedron. Consider the collection
of s-mixed cells:

Mix® P = {u% | vx € Vor P},

see Fig. 10. Observe that Mi® = Del P, Mix* P = Vor P, and generally MiXP =
Mix' Q, whereQ = orth P.
Here is an intuitive picture of the construction. Take the interval of three-dimensional
affine subspaces @* defined byxs = s, for s € [0, 1]. Draw DelP in x4, = 0 and
Vor P in x4 = 1. For each Delaunay simplex and corresponding Voronoi cell construct

My = CONMSx U vx),

see Fig. 11. Ally are convex polyhedra of dimension 4, their interiors are mutually
disjoint, and they decompose the strip betweer- 0 andx, = 1. The subspace, = s
intersectgu in thes-mixed cell, u%.

Decomposition into Patches Mixed cells are significant because they decompose the
skin into patches of degree 2. These patches are pieces of envelopes of shrunken affine
hulls. Recall that each envelope is the zero-set of a degree-2 polynomial, see Fact 7.

Fig. 10. The mixed cells fors = 1 defined by the four circles in Fig. 6. There are three types: Voronoi
regions, rectangles, and Delaunay triangles. The cells decompasskireinto circle and hyperbola pieces.
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Fig. 11. The construction of mixed cells from the Delaunay complex in the bottom plane and the Voronoi
complex in the top plane.

Theorem 13. For each X< P and each s« [0, 1] we have

us NskitP = u$ N envaff X)°.

Proof. For each spherp € convP let VS be the Voronoi region op® in the Voronoi
complex of(convP)®. Vg is nonempty only if no other sphere with the same center has
larger square radius thgn Assumep satisfies this maximum square radius criterion and
let 6x be the Delaunay simplex of lowest dimension that contains its cestdbefine
F = aff X, which is a flat of spheres with dimensi&n= dim F and focusx = x(F).
Let G = F* be the orthogonal flat and 1&’ be the set of centers of spheresGn
G’ is a (3 — k)-dimensional affine subspace &f passing through the focusof F.
By Fact 12,
Vo Cs-G' +t-z,.

If k = 3, thenG’ consists of a single point, namely the foousf F, andV; = s-x+t-z,
is the single point Voronoi region gb®. The union of these points over all spheres
with z, € 8x is exactly thes-mixed cellx%. In the other case, when < 3, there are
Delaunay simplicesy that properly contaidy. Thesesy constrain the relevant part
of G’ to within vy, and we get\/pS = S-vx + 1 -z, To see this apply Fact 12 to the
orthogonal complement and take the union over all spheveish z, € vx. Finally take
the union of the reduced copiesigf over all spherep with z, € §x. The resultis again
thes-mixed cellu5.

To summarize we showed that for every poing 5 the spheres iiconvP)S that
minimize the weighted distance frognbelong to(conv X)s. Similarly, the spheres in
(aff X)® that minimize the weighted distance fronbelong to(conv X)3. In formulas:

ux NskrP = u§ NenvconvP)®
us NenvconvX)®
= u$ Nenvaff X)S. O

Theorem 13 is a technical statement of cl&Mnthat skin is decomposable: the mixed
cells decompose the skin into finitely many degree-2 patches. It also support$S@aim
that skin is constructible: the mixed cells and patches are readily computed from the
Voronoi complex and the Delaunay complex.
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Complementarity Thes-mixed cells decompose tlseskin into finitely many patches.
Within a cell 15, only spheres defined by the Delaunay simgigxand the Voronoi cell
vx are relevant. In other words, withjrg thes-skin of P looks the same as the envelope
of (aff X)3, and symmetrically, the-skin of Q looks the same as the envelopg %f-).
This is true for every mixed cell and together they cover the eRfftéVe conclude that
the complementarity result stated in Lemma 6 for flats generalizes to convex hulls:

Theorem 14. Letst > Owiths+t =1.Then
bdy® P U bdy Q = R3,
bdy* P Nbdy Q = skr*P
= skrfQ.

Theorem 14 is a technical statement of cl&@B8ithat skin is symmetric: skt is defined
from inside by the spheres i and from outside by the spheres@= orth P.

Mixed Cell Classification Some of the mixed cells are contained in the bodyof
some intersect the skin, and the others lie outside the body. We derive information on
this classification from the subcomplexes I%x Del P and VsxP C Vor P defined
in Section 5.

Theboundaryof Dsx P consists of all simplices contained in at least one Delaunay
simplex not in DsXP, and thenterior consists of all other simplices:

BdDsxP = {8x € DsxP | §x C éy & DsxP},
IntDsxP = DsxP — Bd DsxP.

Similarly, the boundary and the interior of V& are BdVsxP = BdDsxQ and
IntVsx P = Int Dsx Q. Note thatix belongs to the interior of DsR iff vk is contained
in | Jucl P, andéx belongs to the boundary of D$Xiff vx has nonempty intersection
with |_J ucl P but is not contained in it.

Lemma 15. Let P be a finite set of spheres in nondegenerate positi@?in

(i) If 8x € IntDsxP, thenu, C bdy® P for every se [0, 1].
(ii) If vx € IntVsx P, thenu$ Nbdy® P = ¢ for every se [0, 1].
(iii) Ifneithersx € IntDsxP norvy € IntVsx P, thenu$ N sk’ P # @ for at least
one se [0, 1].

Proof. Claims (i) and (ii) are symmetric and we prove only (i). We modify the con-
struction of mixed cells illustrated in Fig. 11 so it handles intersections with spheres. We
draw DsxP in x4 = 0 and the convex cellsx = vx N [Jucl P of Section 5 inxs = 1.
By definitionpx # @ iff §x € Dsx P and we can take the convex hull:

)‘X = conv(dx U 9x).
Clearly,Ay C py. If 8x € IntDsxP, thengx = vx andiy = uy. Consider the cross
section of the cellg., ats € [0, 1]:

A% =s-ox +t-3x.
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The union of the cells$, contains the mixed cel}s} that correspond to interior simplices
8x. To complete the proof of (i) we show that the union is contained irsthedy of P.
We rewrite the union of cell&$, as a union of balls. Recall the definition of the focus
x = xX(F) of F = aff X: it is the center of the spheng € F with minimum square
radius. Letrx be the radius op and observe thaty > 0 for elsesx would not be in
DsxP. For each poiny in the interior ofdx let b§ be the spherical ball with centgr
and radiuss - rx. To simplify notation letk = | DsxP. Then

Uk = JuelP
XCP
= (Jb}.

yeK

The cross section ate [0, 1] is

U s = U

XcP yeK

Uby®

yeK

bdy® P,

IN

IN

and (i) follows.

To prove (iii) we reformulate the premiséx ¢ IntDsxP andvy ¢ IntVsxP is
equivalent tavy € |Jucl P andsx & | Jucl Q. Take pointsy; € vx notin|Jucl P and
Yo € 8x notin|J ucl Q. The union of skins skiP over alls € [0, 1] forms an orientable
3-manifold inR3 x [0, 1]. Pointsy; andyj lie on different sides of this manifold. Singe
andyp both belong tq:, = conuéx U vx) we conclude that , intersects the manifold
and there is as € [0, 1] so thatu}, has nonempty intersection with Sk O

7. Topological Properties

The skin construction is unusual in the number and combination of mathematically
elegant and practically useful properties. In this section we show that skin is tangent
continuous, that different values efiefine isotopic skins, and that the body is homotopy
equivalent to the union of simplices in D&

Tangent Continuity Recall that the cells in MiXP decompose the-skin into patches
of the form
% = ux Nenvaff X)®,

see Theorem 13. We assum)¢ > 0 withs+t = 1 as usual. The envelope that contains
@ is the zero-set of a degree-2 functiéh: R® — R. After suitable rotation we can
write

k 3
1 1
2 2 2
fi(Xl, X2, XS)Z_YZXi +g Z Xj —Tg,
i=1 ]=k+l
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see Fact 7. Except ify = 0, the zero-set is everywhere tangent continuous. By this
we mean that each pointin the zero-set offg defines a unique plane of tangential
directions. This plane is normal to the gradient vectot:at

afg afy  ofy
Vi) = [ =2, =2 x), —=2(x) ).
x (X) (8)(1 (X, 3% (%), 3% (X)>

The plane is well defined unleSsf§ (x) vanishes, which is the case onlifs the origin

andro = 0. We considery = 0 a degenerate case and for the time being assume it does
not occur. In Section 8 this case resurfaces and plays an important role in deforming
skin.

In the nondegenerate case each paftgtof the s-skin is tangent continuous in the
interior. We give a geometric argument for this claim that also covers the boundary of
¢%. Define fs: R® — R with f3(x) = fg(x) for everyx € u% and recall that skiP is
the zero-set off 5.

Theorem 16. Let0 < s < 1and assume P is a finite set of spheres in nondegenerate
position inR3. ThenskrPP is tangent continuous

Proof. Consider a poirnt in the zero-set of 5. By Theorem 14 there are sphepes P

andg € Q so p® andq' lie on opposite sides and touch the skirkaBy assumption

of nondegeneracy both spheres have positive radius. The unique plane that sgSarates
andq' is the plane tangent to the zero-set at paint O

Theorem 16 is a more precise statement of cl&#that skin is smooth: in the
nondegenerate case skin is everywhere tangent continuous.

Skin Isotopy Consider the interval of skins skiA for 0 < s < 1. Assume nonde-
generacy so all skins except for Sih= bd (| J ucl Q) and skdP = bd(| Jucl P) are
everywhere tangent continuous, see Fig. 12. The union of all skins is a channel:

H = LJ skrPP

O<s<1

= (JuclPn| JuclQ.

Fig. 12. Six skins in the intervas € [0, 1] sweeping out the channel between the boundaries of the disk
unions defined by andQ.
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We form a fibration ofH with fibers normal to the skins. Consider the middle skin,
sknP = skn/2P, and for each point € sknP define the fiber

ox: [0,1] > H

with gx(%) = X, Ox(s) € skrPP for all s € [0, 1], andgyx normal to skiP for all

s € (0, 1). The fibers are the solutions or flow curves of the differential equation defined
by a vector fieldV: intH — R3. We haveV (x) = V fS(x) with s € (0, 1) chosen
so x belongs to the zero-set dfS. The vector field is continuous and does not vanish
anywhere in the interior off. We have a diffeomorphism

ds: sknP — skrPP

defined byd$(x) = gx(s) for everys € [0, 1].

The diffeomorphisms can be combined to form an isotopy between different skins.
Assume without loss of generality th§t< s. The isotopy between sihand skiP
consists of all intermediate diffeomorphisms:

i% sknP x [3,5] — R®,
with is(x, r) = d"(x). By transitivity we have an isotopy between every pair of skins.

Fact 17. Inthe nondegenerate case there is an isotopy betwkedrP andskrPP for
every pair of parameter8 < r,s < 1.

A possible application of the isotopy is the diffeomorphic maintenance of a pattern or
drawing on the skin while the parameteis altered.

Body Homotopy The isotopy between skins can be used to construct isotopies between
bodies. We prove a weaker result establishing that all bodi€&are homotopy equiv-
alent. Givers € [0, 1) we simplify notation by defining = bdy’ P andY = bdy® P.

Recall that the body grows with the exponent and therefoe Y. Let

D:Yx[0,1] - Y

be defined so its restriction K is the identity for allu € [0, 1]. For a pointy € Y — X
choose € [0, 1) andz € sknP so thaty = g,(r). Then

D(y,u) = g-((1 —wr),

forallu € [0, 1]. D is a homotopy between the identity &atu = 0 and a retraction
fromYtoXatu = 1. Inwords,D is a deformation retraction afilandY are homotopy
equivalent.

The homotopy result can be extended to the union of Hallscl P, and to the union
of simplices in Ds¥P C Del P defined in Section 5. The homotopy equivalence between
| DsxP and|_Jucl P has been established in [7].

Theorem 18. Inthe nondegenerate case all bodiels® P, fors € [0, 1], are homotopy
equivalent td_J Dsx P.
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The significance of this result is primarily computational. Psis a combinatorial object
amenable to fast algorithms. In particular, & there is an algorithm that computes
the betti numbers of JDsxP in time proportional to the cardinality of DX [6].
Theorem 18 implies that the betti numberd gDsx P and those of the bodies b
are the same.

Theorem 18 covers part of claiSv that skin is deformable: the time, place, and way
topology changes can be predicted by computing the change in the Delaunay subcomplex
DsxP.

8. Growth and Change

This section returns to the initial idea of constructing a differential hag® — R and
using a continuous sequence of preimages to deform one shape into another. We begin
with a deformation induced by growth.

Growing Spheres For each spherp € P and each parametef € R definep, =
(Zp, r§+a2). We allowa? to be negative in which cag®, is smaller tharp and possibly
imaginary. Define®, = {p, | p € P}. Note that the weighted distance of a poir¢g R3
is p(X) — o2, It follows that the Voronoi and Delaunay complexes do not vary with
Vor P, = Vor P and DelP, = Del P for all ? € R.

We fixs € (0, 1) and construct a differential map= fS: R®> — R whose preimages
f~1(«?) are thes-skins of theP,. This is done by gluing patches of mapg = fg
clipped to within their mixed cellg$,. The resultis the same mdp= fsasin Section7.
By Fact 7, we can find a coordinate system so

1 X 2 1 > 2 2
f(X1’X2’X3)=—fZXi +§AZ x? — 1
i=1 j=k+1

within u%.. Since the growth model keeps the Voronoi and Delaunay complexes invariant,
the mapF, (x) = f(x) — a? has zero-seF, 1(0) = skr’P. We can recover the-skin
of P, from f directly by taking the preimage af:

Fact 19. Letw? € Rand f: R® — R as constructedThen

skreP, = f1(a?),
bdy* P, = f1(—o0,a?].

Changing Topology To deform skAP to skrf P, for 82 > 0, we generate a continuous
interval of skinsf~1(«?), for «? € [0, g?]. It is possible that skin and body change
topology as they go through the sequence. Specifically, this happens at critical points
y e R3with vanishing gradien® f (y). These are precisely the focus poixts: x(aff X)

that belong to the corresponding Delaunay simplex and VoronoixeH:sx N vx. In

the nondegenerate case the intersection betde@ndvy is either empty or a point in

the interiors of both. In the latter cagds a critical point off and it lies in the interior

of u%.
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Table 2. The topology of the body changes in
analogy to adding &-simplex to the correspond-
ing Delaunay subcomplex, see Theorent18.

k Body change Skin change

0 Component appears ¢ to sphere

1 Bridge appears 2 sheets to 1 sheet
2 Tunnel disappears 1 sheet to 2 sheets
3 Void disappears Sphere o

*The change is described by switching from the first
to the third columnin Table 1. The second columnin
Table 1 describes the intermediate degenerate case.

The way the topology changes depends on the dimehsionliméyx = 3 — dimvy,
see Table 2. Note that cases= 0 andk = 3 are symmetric in terms of taking com-
plements or switching from bdyP to bdy Q. Similarly, casek = 1 andk = 2 are
symmetric in the same sense. It follows that the topology of skin changes only in two
ways:

(i) A sphere appears or disappears.
(i) A hyperboloid of one sheet flips over to one of two sheets or vice versa.

Each topology change requires a momentary degenerate configuration of spheres. The
change can be localized to a single point in time and space where the degeneracy leads
to a violation of tangent continuity.

The type of a topology change is completely characterized by the sign sequence of
the corresponding polynomial in Fact 7. Only the three signs of the quadratic terms are
considered, and there are four triplets that differ even after permutatiomss, — +
+, — — 4+, — — —. There are dindx minus signs and dimyx plus signs. The topology
changes when the constant term of the polynomgalpasses through zero. Under the
assumption of growtn? can only switch from negative to positive, not the other way
round.

General Deformation The growth-induced deformation can be generalized by allow-
ing spheres to change size, move, and duplicate or merge all at the same time. A frame-
work for such deformations is described in [2], and sample resulk® iand inR3 can
be found in [3] and [2]. Rather than revisiting the details of this framework we briefly
discuss the general idea from a Morse theoretic angle [14].

Consider a time interval [A], and for each time < [0, 1] let P, be a set of spheres
in R3. We expect thaP, satisfies necessary continuity requirements. LeR® — R
be defined so that

sknP, = f (1)

forall r € [0, 1]. The shape at timeis the skin ofP,, and it deforms as increases. The
deformation can be studied with a standard Morse theoretical approach that rédagres
everywhere differentiable and twice differentiable at critical points. It is also convenient
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to assume all critical points are isolated, which is the nondegenerate case. Further details
justifying claim S8 about continuous skin deformation are omitted.

9. Molecular Biology

Skin surfaces bear an unmistaken resemblance to space filling models of molecules used
in computational biology literature. This section reviews these models and compares
them with the skin as defined in this paper. We argue that skin has distinct advantages
over the other models.

Space Filling Models A popular idea in molecular biology is the geometric repre-
sentation of a molecule by filling the space around the atom centers. It is assumed that
the locations of the centers in space are known. There are three space filling models
introduced in seminal papers by Lee and Richards [13], [19]. idreder Waalor

vw modelrepresents each atorA, by a spherical ball of points at distance at most the
van der Waals radius s, from the center. Different types of atoms may have different
radii. Overlapping spheres are indicative of chemically binding. The interaction of the
vw model with a solvent sphere of radias> 0 is captured by theolvent accessible

or sA model It grows the sphere representidgto radiusr o + «. With this amount of
growth we have a solvent sphere overlappingwhemodel iff its center belongs to the

SA model.

The third is themolecular surfacer ms model In recognition of the first widely avail-
able computer program constructing it [4] the boundary ofMBenodel is sometimes
referred to as th€onnolly surfacelntuitively, thems model is obtained by rolling the
solvent sphere about thev model and filling in the space inaccessible to that sphere.
During the rolling motion, the solvent sphere stays in contact with/thesurface and
its center sweeps out tisa surface. The molecular surface consists of patches that cor-
respond to faces of thea model. We have sphere patches, torus patches, and inverse
sphere patches that correspond to sphere patches, circle arcs, and corner poirsis of the
model.

The two major advantages of thwes over thesa model are apparent smoothness
and faithful size representation. Unfortunately, the molecular surface can have self-
intersectionsresulting in a variety of ambiguities. We can clip at places of self-intersection
and thus create a honsmooth surface bounding an unambiguous subset of space. The
topology of this subset is usually not the same as that aAlmodel. Furthermore, it is
difficult to construct the clipped surface automatically in a reliable manner and no robust
software exists today. Alternatively, we can leave the surface unclipped. This helps in
the robust construction from the face complex of #semodel [1]. Observe that the
unclipped surface is still not smooth: self-intersecting torus patches connect to inverse
sphere patches in sharp forward and backward folds.

Molecular Skin Surface We advocate the body defined in Section 4 as a new space
filling model that is geometrically unambiguous and otherwise similar teghmodel:

1. The body expresses the interaction with a solvent sphere without inflating atoms.
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2. The skin or surface of the body does not intersect itself.
3. The skin is tangent continuous.

How exactly do we define and construct the body representing a molecule? First, we
settle on a shrinking facta = % This choice is suggested by considerations of com-
plementarity described below. An atofwith centerza and van der Waals radiug is
represented by the sphepg = (za, v/2r o). Let P denote the resulting set of spheres.
Theskin modebf the molecule and its surface are

bdyP = bdy"2 P,
sknP = bdbdyP.

Observe that the union of balls bounded by spherd? ig in general not the same as

the sa model. An extension of the skin concept where different spheres are reduced by
different amounts might be a worthwhile research project. The shrinking factor along
edges, triangles, and tetrahedra of spheres can be varied by linear interpolation.

Docking The docking problem for molecules is a question of shape and energy comple-
mentarity. We only comment on shape complementarity. Mostimportant in this context is
Theorem 14: for each molecuM = bdy P there exists another skin model= bdy Q
complementary tav and with perfectly matching skir is unique and given by the
orthogonal complemen® of P.

There are several reasons whialls short of modeling an actual molecule. The firstis
thatL is unbounded becauseJ M = R® andM is bounded. The second is that spheres
in Q can have arbitrary size. Still, the existence and uniqueness of the set of spheres
Q = orth P with a complementary skin model is intriguing. It gives a mathematical
justification for the heuristic construction of roughly complementary sphere packings
in the approach to docking by Kuntz [12] and coworkers. More generally, it opens new
ways of thinking about molecular complementarity. For example, notions of partial and
of imperfect shape complementarity can be related to aspects of the difference between
L and the skin model of a ligand.

Motion and Continuity An actual molecule is constantly in motion and the distances
and angles between its atoms vary with time. The study and simulation of this motion
is the subject of molecular dynamics, which is a subfield of molecular modeling. Large
numerical software packages exist that aim at the reliable simulation of one or several
molecules over time, see, e.g., [15]. These packages produce sequences of discrete
snapshots without continuous evolution between them. Depending on the amount and
size of the change the reconstruction of such an evolution ranges from seemingly obvious
to ambiguous and impossible.

A related example where motion and continuity comes up is the comparison of differ-
ent observations of the same molecule.Mebe a protein and 16?1’ be the same protein,
maybe with a side chain removed. ModelsMfand M’ are typically developed from
independent crystalizations. The removal of the side chain triggers a rearrangement and
repacking of atoms in its neighborhood. Resulting differences betieand M’ are
naturally described in causal or temporal terminology: “the side chain removal enlarges
one of the voids,” etc. This description presupposes a correspondence between the voids
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of M andM’. To claim a void is enlarged we first need to establish the sameness of a
void in M and one inM’. This can only be done with a framework that connédtand

M’ over time. Homotopies, isotopies, and the topology changing deformations of Morse
theory come to mind. If we use skin models we have access to deformation methods as
described in Section 8 and can create continuous connections necessary to argue about
motion and its effects.

10. Discussion

This paper presents a new paradigm for surface design. It has its foundations in the
combinatorial subdisciplines of geometry, topology, and algorithms. The theory is rea-
sonably complete and answers the basic questions. There are many problems that remain
and plenty of work that has to be done.

Generalizing Skin The skin concept can be extended to allow different amounts of
shrinking for different spheres. Consider the following framewd?kis a finite set of
spheres an: convP — [0, 1] assigns each sphee € convP its own shrinking
factor, S(p). The body and skin defined By andS are

U ucl pS(D)’

peconvP

skm°P = bdbdy® P.

bdy® P

Even in the most general case where the assignment is arbitrary and not even continuous,
S preserves the homotopy type of the body. What additional properties do we gain
if we require S to be continuous? Calb complementablé there is an assignment

T: convQ — [0, 1], Q = orth P, with skr°P = skn' Q. Is there a characterization of
complementable assignments in terms of local bounds on curvature?

Rendering and Triangulating Skin This paper claims that skin has the potential to be
used in a wide range of modeling applications requiring surface design and deforma-
tion. To live up to that claim it is important that fast and robust software be produced.
What exactly this software constructs depends on the targeted application. Among the
candidates, we single out the direct representation of patches and approximation through
triangulations.

If the sole purpose of the construction is the graphical display of skin we can take
advantage of available hardware that renders surfaces directly. The hardware supports
low-degree algebraic surfaces, which includes degree-2 skin patches. There is a difficulty
caused by complicated patch boundaries, which needs to be handled by surface trimming.
Each patch is the intersection of a sphere or a hyperboloid with a convex polyhedron.
It is possible that the intersection consists of several components, and components may
have holes. Furthermore, there is no a priori upper bound on the number of boundary
edges of even a single patch component.

Scientific applications require a representation supporting numerical computations.
A typical such representation is a piecewise linear surface approximating the skin. We
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have ariangulationif all linear pieces are triangles and the surface is homeomorphic to
the skin. The construction of a triangulation is helped by the tangent continuity of skin.
We propose developing an algorithm that adjusts the vertex density to the local curvature.
Local point rearrangements can be used to get angles close fbrérem 18 is used to
guarantee the approximating surface is homeomorphic to the skin by guiding decisions
about constructing and fitting triangles. Without combinatorial guidance these decisions
create robustness problems at or close to degenerate configurations.

Connecting Skin over Time Fact 17 can be extended to more general pairs of skin.
SupposeP, and P; are finite sets of spheres and we construct a ritaR® — R with

skn'/2Py = f7(0),
skn/?P; = (1),

see Section 8. The continuous sequence of preimdgéér), T € [0, 1], defines a
deformation from one skin to the other. To what extent is it possible to establish a
relationship between the points of tie'(r)?

Suppose first that the sequence of preimages avoids all critical poiht§ben there
is a one-parameter family of diffeomorphisms between the preimages [14]. Aninterval of
such diffeomorphisms forms an isotopy. What assumptions on thefnaag necessary
to construct the isotopy algorithmically? If the interval of preimages contains critical
points of f, then there is no hope of constructing an isotopy because we get preimages
of different homotopy types. Is there a weaker notion of a map that is almost an isotopy
in the sense that it violates the conditions only locally around the critical points?
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