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Abstract. A new paradigm for designing smooth surfaces is described. A finite set of
points with weights specifies a closed surface in space referred to asskin. It consists of one
or more components, each tangent continuous and free of self-intersections and intersections
with other components. The skin varies continuously with the weights and locations of the
points, and the variation includes the possibility of a topology change facilitated by the
violation of tangent continuity at a single point in space and time. Applications of the skin
to molecular modeling and to geometric deformation are discussed.

1. Introduction

This paper introduces a new paradigm for the design of smooth surfaces. The method
works in all fixed dimensions,d, and generates closed(d − 1)-manifolds inRd. For
pragmatic reasons the paradigm is described ind = 3 dimensions and most figures
illustrate the cased = 2.

Ideas and Concepts. The paradigm constructs surfaces as zero-sets of differentiable
maps. This is an old idea expressed in the preimage theorem of differential topology,
see, e.g., p. 21 of [11]. The crucial questions are computational: How do we specify
such a map compactly and how do we construct the zero-set efficiently? We describe
a mechanism that derives a differential mapf : R3 → R from a finite set of weighted
points inR3.

First we discuss how the zero-set,f −1(0), can be constructed directly from the finite
specification, without computingf . An algebra is described that generates an infinite
family of spheres from a finite set of weighted points with the property that the envelope
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Fig. 1. The skin surface defined by nine weighted points inR3, eight at the corners and one at the center of
a cube.

of the spheres is the zero-set. We call this envelope theskinand the subset ofR3 bounded
by the envelope thebodyof the set of weighted points, see Fig. 1. Second we consider
the construction off and the deformation of the skin by taking a continuous sequence of
preimagesf −1(τ ). The flexibility in choosing different mapsf with the same zero-set
translates into the freedom of deforming the skin in different ways. The topology of the
skin changes whenτ passes a critical value.

Summary of Results. Whether or not skin and body are indeed useful concepts in
geometric modeling depends on the existence of efficient algorithms. We describe a
discrete framework and combinatorial algorithms constructing the skin as a collection of
quadratic patches. The framework is based on Voronoi, Delaunay, and Alpha complexes
of a finite set of points with weights [7]. The geometric and computational properties of
skin and body are summarized in the following nonexhaustive list of informal claims:

S1. decomposability: skin consists of a finite number of degree-2 patches (Theo-
rem 13, Section 6),

S2. constructibility: there are fast combinatorial algorithms constructing skin (Sec-
tion 6),

S3. symmetry: skin can be defined from the inside as well as the outside (Theorem 14,
Section 6),

S4. smoothness: in the nondegenerate case skin is everywhere tangent continuous
(Theorem 16, Section 7),

S5. economy: even a small number of weighted points can generate fairly compli-
cated skin,

S6. universality: every orientable closed surface has a skin representation,
S7. deformability: topology changes of skin can be efficiently computed (Theo-

rem 18, Section 7),
S8. continuity: skin varies continuously with points and weights (Section 8).



Deformable Smooth Surface Design 89

An important project for the future is the comparison of the skin paradigm with other
surface design methods described in the literature, see [10].

Applications. Surface design is a large part of computer-aided design and modeling,
CAD/CAM, which is an industry that reaches into many aspects of modern life. Think
of the design of automobile, aircraft, or ship parts or of geometric models for computer-
animated movies, etc. This paper describes a new paradigm for surface design and
is therefore relevant to all these activities. The question is whether the paradigm can
compete with the currently prevalent spline methods, see [10] for a comprehensive in-
troduction and [18] for one of the more recent extensions. The difference between the
skin paradigm and conventional spline methods relates to the global versus local di-
chotomy. The skin paradigm defines a surface globally as the zero-set of a differential
map; splines are implicit and derived automatically from the global definition. Conven-
tional spline methods form a surface by gluing together locally parametrized patches.
An important task now is to identify specific applications for which the skin paradigm
offers sufficiently many advantages to warrant a large-scale departure from traditional
methods.

An application where the superior properties of skin outweigh our hesitation to venture
a premature prediction is the study of small and large molecules. We argue that skin
should be substituted for the similar but geometrically ambiguous molecular surface
model [4], [19]. In this context we mention the symmetry of skin with respect to inside
and outside. This property begs to be exploited in problems on shape complementarity,
such as molecular docking which is important in drug design, see, e.g., [12]. Finally, the
continuous deformation of skin can be used to connect snapshots of molecular dynamics
simulations and to support rational arguments about change and correspondence over
time.

Outline. Section 2 introduces the algebra of spheres. Section 3 applies the algebra
to create and study infinite sphere families generated from just two or three weighted
points. Section 4 defines skin and body for arbitrary finite sets of weighted points.
Section 5 introduces Voronoi and Delaunay complexes. Section 6 shows how skin can
be decomposed into finitely many patches of degree 2. Section 7 proves topological
properties of skin and body. Section 8 addresses the question of deformation and the
equivalent problem of map design. Section 9 discusses applications of skin and body to
molecular modeling. Section 10 mentions directions for further research.

2. Algebra of Spheres

Skin and body have been defined in an earlier publication by the author [8]. The algebraic
structures that we are about to introduce greatly simplify the description and warrant
a complete revision of [8], which is this paper. The origins of the algebraic structures
can be traced back to independent work by Clifford, Darboux, and Frobenius after the
middle of the last century, see the survey article [17]. The recent text by Pedoe [16] offers
a detailed treatment of the algebra of circles and many applications.
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Spheres Lifted to Points. Thenormof a pointx = (ξ1, ξ2, ξ3) in R3 is

‖x‖ =
(

3∑
i=1

ξ2
i

)1/2

.

We describe aweighted point p∈ R3×R by its location zp ∈ R3 and itsweightwp ∈ R.
The (weighted) distancefrom p is a mapπp: R3→ R defined by

πp(x) = ‖x − zp‖2− wp.

For zero weight this is the square of the Euclidean distance betweenx andzp. The zero-
set ofπp is the sphere with centerzp and radius

√
wp, and it is convenient to make no

distinction between the weighted point and this sphere. For negative weight we get an
imaginary sphere with imaginary radius. Imaginary spheres are of paramount importance
in our theory of shape and surface. They form the key to mastering nonconvexity by filling
and lending structure to the complement space. This becomes clear and rather concrete
in later sections of this paper.

We base our algebraic structures on a bijection5: R3 × R → R4 that maps each
sphere inR3 to a point inR4. Forzp = (ζ1, ζ2, ζ3) we have

5(p) = (ζ1, ζ2, ζ3, ‖zp‖2− wp).

For example, ifp has radiusr p = w1/2
p = 0, then5(p) lies on the paraboloid$ : R3→

R defined by

$(x) = ‖x‖2.
If p has positive real radius, then5(p) lies below$ and if it has imaginary radius, then
5(p) lies above$ .

Vector Space. R4 together with the usual componentwise addition and scalar multipli-
cation forms a vector space. We use the bijection5 to pull this vector space down to the
space of spheres.

Let p andq be spheres inR3 and letγ ∈ R be a scalar. We define spheresp+ q and
γ · p so that

5(p+ q) = 5(p)+5(q),
5(γ · p) = γ ·5(p),

where the operations on the right are the usual vector space operations for points inR4.
The projection of the operations toR3, the space of centers, is the usual vector space of
R3 with zp+q = zp + zq andzγ ·p = γ · zp. The projection toR, the space of weights, is
more complicated. Let〈, 〉: R3× R3→ R be the usual scalar product.

Fact 1. The weights of p+ q andγ · p are

wp+q = wp + wq + 2〈zp, zq〉,
wγ ·p = γwp + (γ 2− γ )‖zp‖2.
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The two formulas can be verified by straightforward algebraic manipulations. We call
the set of spheres together with addition and scalar multiplication as defined thevector
space of spheres.

Changing Size. Addition and scalar multiplication can be used to shrink or grow a
sphere without changing its center. Letp be a sphere and letp′ be the sphere with the
same center,zp′ = zp, and with zero weight. For a parameters ∈ R, define

ps = (1− s) · p′ + s · p.

Use Fact 1 to determine the centers and weights ofp1 = (1− s) · p′ and p2 = s · p:

zp1 = (1− s) · zp,

zp2 = s · zp,

wp1 = (s2− s)‖zp‖2,
wp2 = swp + (s2− s)‖zp‖2.

Again use Fact 1 to addp1 and p2:

Fact 2. The center and weight of ps are zps = zp andwps = s · wp.

The radius ofps is
√

s times the radiusr p of p. If r p is a positive real, then 1< s means
growth, 0≤ s < 1 means shrinking, ands < 0 makes the radius imaginary. Ifr p is
imaginary the effect of the operation is symmetric.

Distance and Orthogonality. We extend the notion of weighted distance to pairs of
weighted points or spheres:

πp,q = ‖zp − zq‖2− wp − wq.

Spheresp andq areorthogonal, denotedp ⊥ q, if πp,q = 0. Indeed, for spheres with
positive radius this is the condition that the two spheres meet in a circle and the two
tangent planes passing through a common pointx on this circle form a right angle.p
andq arefurther than orthogonalif πp,q > 0. For each spherep let ηp: R3 → R be
defined by

ηp(x) = ‖x‖2− πp(x)

= 2〈x, zp〉 − ‖zp‖2+ wp,

whose graph is a hyperplane inR4. If wp = 0, thenηp is tangent to the paraboloid
$ . More generally, the spherep in R3 is the projection of the intersection between the
paraboloid$ and the hyperplaneηp, see Fig. 2. The points of$ below and aboveηp

project inside and outside the spherep. The algebraic expression of this observation is
a trivial rearrangement of terms in the definition ofηp.

Fact 3. Let p be a sphere and let x be a point inR3. Thenπp(x) = $(x)− ηp(x).
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Fig. 2. A circle p in R2 corresponds to a planeηp in R3 so p is the projection of$ ∩ ηp. The plane is not
explicitly shown. Furthermore,$ ∩ ηp bounds the patch on$ visible from5(p) below$ , and the patch
projects to the disk bounded byp.

Orthogonality between spheres translates to incidence between points and hyperplanes:

Fact 4. p ⊥ q iff 5(p) ∈ ηq iff 5(q) ∈ ηp.

Consider, for example, the case wherewp > 0 andwq = 0. Thenp ⊥ q iff zq lies on the
spherep. The hyperplaneηq is tangent to$ and touches the paraboloid in point5(q).
By Fact 4,ηq passes through point5(p). In geometrical terms this implies that$ ∩ ηp

is the silhouette of the patch on$ visible from5(p) below$ , see Fig. 2.

Shrinking Orthogonal Spheres. Consider shrinking two spheres using scalarss, t ≥ 0
with s+t = 1. Orthogonality is the limiting case in which the shrinking pulls intersecting
spheres apart, no matter what their initial radii are, see Fig. 3.

Lemma 5. Let p⊥ q with real radii rp and rq and let s, t ≥ 0 with s+ t = 1. Then

ps ∩ qt =
{

x if sr2
q = tr 2

p,

∅ otherwise,

where x= (r 2
q · zp + r 2

p · zq)/(r 2
p + r 2

q).

Fig. 3. Orthogonal circlesp andq with equal radiir p = rq. Circles p1/2 andq1/2 touch at the midpoint
betweenzp andzq. The dashed circles,p1/4 andq3/4, are disjoint.
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Proof. Sincep ⊥ q ands+ t = 1 we have

‖zp − zq‖2 = r 2
p + r 2

q

≥ (s+ t)(r 2
p + r 2

q)− (
√

srq −
√

tr p)
2

= (
√

srp +
√

trq)
2.

Taking roots left and right implies that the radii ofps andqt add up to at most the Eu-
clidean distance between the centers. We have equality iff

√
srq =

√
tr p or equivalently

sr2
q = tr 2

p, as claimed. In this case

s= r 2
p

r 2
p + r 2

q

and t = r 2
q

r 2
p + r 2

q

,

and the two shrunken spheres meet at the pointx = t · zp + s · zq specified in the
claim.

3. Flats of Spheres

The flat defined by a set of points inR4 is the lowest-dimensional affine subspace that
contains the set. This section extends this concept to spheres inR3.

Affine Combination. Theaffine hullof a set of spheresP = {p0, p1, . . . , pn} is

aff P =
{

p =
n∑

i=0

γi · pi

∣∣∣∣∣ n∑
i=0

γi = 1

}
,

see Fig. 4. Each spherep ∈ aff P is an affine combinationof the pi . P is affinely
independentif pi 6∈ aff (P − {pi }) for everyi . The maximum cardinality of any affinely
independent set of spheres inR3 is 5. Ak-flat is the affine hull of an affinely independent
setP of cardinalityk+1. Itsdimensionis dim aff P = k. Flats of dimension 1 or higher
are simple examples of infinite sphere families.

For a set of spheresF and a parameters ∈ R define

Fs = {ps | p ∈ F}.

If F = aff P and cardP ≥ 2, thenFs is an infinite family of spheres. Observe that
shrinking and taking the affine hull does not commute. We are interested in the envelope
of an infinite family of shrunken spheres. To convert spheres into balls let

ucl p = {q | zq = zp, r
2
q ≤ r 2

p}

and define theupward closureof a set of spheresF :

ucl F =
⋃
p∈F

ucl p.
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Fig. 4. Two orthogonal 1-flats of circles inR2. Every circle in the first flat is orthogonal to every circle in
the second flat.

Keep in mind that uclF is a setof spheres; theunion of these spheres is the same as
the union of balls bounded by spheres inF . Theenvelopeof Fs is the boundary of the
union of balls:

envFs = bd
⋃

ucl Fs,

see Fig. 1.

Orthogonal Flats. The set of spheres orthogonal to a single spherep is p⊥ = 5−1(ηp),
see Fact 4.ηp is a three-dimensional affine subspace ofR4, and accordinglyp⊥ is a 3-flat
of spheres inR3. Indeed, for every pointzq ∈ R3 there is a unique radiusrq so thatp
andq are orthogonal. More generally, theorthogonal flatof a set of spheresP is

P⊥ = {q | q ⊥ p for all p ∈ P}
=
⋂
p∈P

p⊥.

If q is orthogonal to allp ∈ P, then it is orthogonal to allp ∈ aff P and therefore
P⊥ = (aff P)⊥. By the symmetry of Fact 4, a pointp is orthogonal to everyq ∈ P⊥ iff
p ∈ aff P. In short, affP = (P⊥)⊥. The dimension ofP⊥ is dim P⊥ = 3− dim aff P.
In R2, the dimensions of orthogonal flats add up to 2, see Fig. 4.
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Let F = aff P andG = P⊥ be two orthogonal flats and consider the sets of sphere
centers:

F ′ = {zp | p ∈ F},
G′ = {zq | q ∈ G}.

In the assumed case thatP′ = {zp | p ∈ P} is affinely independent,F ′ andG′ are
orthogonal affine subspaces ofR3. The dimensions add to

dim F ′ + dimG′ = dim F + dimG

= 3.

It follows that the two subspaces meet at a pointx(F) = F ′ ∩ G′ called thefocusof F .
Because orthogonality is symmetric, the focus ofF is also the focus ofG: x(F) = x(G).
For example, in Fig. 4 the focus is the intersection point of the two orthogonal lines that
carry the centers of the circles. Letpx ∈ F andqx ∈ G be the two spheres with center
x = x(F). We havepx ⊥ qx and therefore

r 2
px
+ r 2

qx
= 0.

So px is a real sphere iffqx is imaginary. Similarly,px is a degenerate sphere or point iff
qx is a point. The orthogonal flatsF andG are completely determined byF ′, G′, and the
radius ofpx. Note thatzpx = x is closest tozqx = x among all points inF ′ and recall that
all spheres inF are orthogonal toqx. It follows that px has the smallest square radius of
any sphere inF . Symmetrically,qx has the smallest square radius of any sphere inG.

Complementarity. We consider shrunken versions of the orthogonal flatsF andG:

Fs = {ps | p ∈ F},
Gt = {qt | q ∈ G}.

If s andt satisfy the requirements of Lemma 5, thenFs andGt share the same envelope
and together they cover the entire space:

Lemma 6. Let s, t > 0 with s+ t = 1. Then⋃
ucl Fs ∪

⋃
uclGt = R3,⋃

ucl Fs ∩
⋃

uclGt = envFs

= envGt .

Proof. Let F ′ andG′ be the affine subspaces of centers, letx = F ′ ∩G′, and consider
px ∈ F andqx ∈ G. Recall thatr 2

px
+ r 2

qx
= 0 and assumer 2

px
≥ 0. Sincepx has

minimum square radius inF , everyp ∈ F has nonnegative square radius. The spheres
q ∈ G for whichqt touchesps satisfy

r 2
q =

t

s
· r 2

p,
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Fig. 5. The circles in Figure 4 after shrinking withs = t = 1
2 . The envelope is a hyperbola that separates

the two families of circles.

which is again nonnegative, see Lemma 5. These spheres form a subset of the(3− k)-
flat G, and the geometry of this subset is a(2− k)-dimensional sphere aroundx. The
shrunken versions of these spheres touchps along a(2− k)-sphere inR3. The union
of the(2− k)-spheres, over allps ∈ Fs, is a manifold of dimension(2− k) + k = 2.
This manifold or surface is the common envelope ofFs andGt . The spheres ofFs and
Gt touch the surface from opposite sides, and each family covers the entire space on its
side of the surface.

A side benefit of the above argument is the observation that a sphereqt can touch the
envelope only if its radius is sufficiently large. In particular, the smallest sphereq with
qt touching a sphereps ∈ Fs has square radius

r 2
q =

t

s
· r 2

px
,

which is positive ift andr 2
px

are positive.

Envelopes. We show that envelopes of flats are zero-sets of quadratic polynomials.
First consider a 1-flat,F , and its orthogonal 2-flat,G. SupposeF ′ is thex1-axis andG′

is thex2x3-plane. Letr0 be the radius ofp0 ∈ F whose center is the focus of the two
flats: z0 = 0 = F ′ ∩ G′. Let s, t > 0 with s+ t = 1. We parametrize the family of
spheres inFs with τ and define

f (τ, x1, x2, x3) = (x1− τ)2+ x2
2 + x2

3 − s(τ 2+ r 2
0).
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The envelope consists of the pointsx = (x1, x2, x3) that satisfy f = ∂ f/∂τ = 0.
Observe that

∂ f

∂τ
(τ, x1, x2, x3) = τ(2− 2s)− 2x1.

From∂ f/∂τ = 0 we getτ = x1/(1− s), and the envelope is the zero-set of

1

s
f

(
x1

1− s
, x1, x2, x3

)
= −1

t
x2

1 +
1

s
(x2

2 + x2
3)− r 2

0 .

Lemma 6 implies that this is also the envelope ofGt . Alternatively, we can parametrize
the spheres inGt and compute the envelope as before.

There are four types of envelopes inR3 distinguished by the dimension ofF . Suppose
F is a k-flat of spheres andF ′ is spanned by the firstk coordinate axes. ThenG is a
(3− k)-flat and we can assumeG′ is spanned by the last 3− k coordinate axes. Letr0

be the radius ofp0 ∈ F .

Fact 7. Let s, t > 0 with s+ t = 1. The common envelope of Fs and Gt is the zero-
set of

f (x1, x2, x3) = −1

t

k∑
i=1

x2
i +

1

s

3∑
j=k+1

x2
j − r 2

0 .

Indeed, fork = 0 the envelope isps
0 itself, which is the zero-set off (x) = ‖x‖2− sr2

0.
For k = 1 the result agrees with the preceding calculation. The cases fork = 2 and
k = 3 are symmetric tok = 1 andk = 0. The polynomial in Fact 7 implies a total
of eight nondegenerate cases. They come in four pairs, each separated by a degenerate
case, see Table 1.

Table 1. The different types of envelopes com-
mon to a shrunkenk-flat and the shrunken orthog-

onal(3− k)-flat.∗

k r2
0 < 0 r 2

0 = 0 r 2
0 > 0

0 Empty Point Sphere
1 2 sheets Double-cone 1 sheet
2 1 sheet Double-cone 2 sheets
3 Sphere Point Empty

∗For k = 1,2 we have hyperboloids of one and
two sheets and a double-cone in the degenerate
case. Each of the six different envelope types oc-
curs twice with the spheres of the shrunkenk-flat
on opposite sides. In the case of the empty en-
velope this means that fork = 0 all spheres of
the shrunken 0-flat are imaginary and fork = 3
the spheres of the shrunken 3-flat cover the entire
space.
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4. Skin and Body

This section extends the ideas explained for affine hulls in Section 3 to convex hulls.
As it turns out the envelope of a shrunken convex hull of spheres consists of patches of
envelopes of shrunken affine hulls. We begin with the necessary definitions.

ConvexCombination. Recall thateachspherep in theaffinehull ofP = {p0, p1, . . . , pn}
can be written as a sum ofγi · pi , where theγi add up to 1. Theconvex hullof P is

convP = {p ∈ aff P | γi ≥ 0 for all i }.
Figure 4 illustrates the convex hulls of two pairs of circles, one containing the leftmost
and the rightmost circles, the other containing the topmost and the bottommost circles.
Eachp ∈ convP is aconvex combinationof the pi . Clearly, convP ⊆ aff P. Although
the convex hull ofP contains many more spheres thanP, they are all contained in the
union of balls defined byP:

Fact 8.
⋃

ucl convP =⋃ucl P.

Let p be a convex combination of two spheres,p0 and p1. To prove the claim it is
sufficient to show thatp is contained in the union of the two balls bounded byp0 andp1.
To see this is indeed the case observe that the spherep passes through the circlep0∩ p1

and that its center lies between the centers ofp0 and p1. If p0 and p1 are disjoint, then
their common circle is imaginary andp is either imaginary or it is contained in one of
the two balls.

The two most important new concepts in this paper are obtained from convex hulls
by shrinking and taking the union and the envelope. For 0≤ s ≤ 1 we define thes-body
and thes-skinof P as

bdys P =
⋃

ucl(convP)s,

sknsP = bd bdys P.

See Fig. 1 for an example inR3 and Fig. 10 for an example inR2.

Orthogonality and Complementarity. Recall that two spheresp andq are further than
orthogonal from each other ifπp,q > 0. A sphereq that is orthogonal to or further than
orthogonal from all spheresp ∈ P has the same property with respect to all spheresp
in the upward closure of the convex hull ofP. The following definitions are therefore
meaningful.

The set of spheres orthogonal to or further than orthogonal from a single spherep is
thehalf-spaceof spheres uclp⊥. We are interested in the intersection of all half-spaces
defined by spheresp ∈ P. For finite P this is a convex polyhedron of spheres. The
orthogonal complementof P is the smallest set of spheresQ, denoted as orthP, with

ucl convQ =
⋂
p∈P

ucl p⊥.

It contains points inR4 that correspond to spheres with arbitrarily large radii. To accom-
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Fig. 6. P contains the four solid circles andQ = orth P contains the two dashed circles and four dashed
lines (infinitely large degenerate circles). The circles inQ have their centers at the Voronoi vertices ofP.

modate these spheres,Q contains among others some infinitely large spheres or planes
in R3. In the nondegenerate case, each such plane is orthogonal to three spheres inP
and further than orthogonal from all others. Similarly, each sphere with finite radius in
Q is orthogonal to four spheres inP and further than orthogonal from all others, see
Fig. 6. Observe that the construction of the orthogonal complement is symmetric. In
other words,P = orthQ = orth orthP. Furthermore, the balls bounded by spheres in
P and inQ cover the entire space:

Fact 9.
⋃

ucl P ∪⋃ucl Q = R3.

To see this suppose there is a pointx ∈ R3 not covered by any of the balls. Then(x,0)
is a sphere further than orthogonal to allp ∈ P and not contained in the upward closure
of convQ, a contradiction to the definition ofQ.

5. Proximity Complexes

The Delaunay complex [5] is the projection to the space of centers of the boundary
complex of convP. Similarly, the Voronoi complex [20] is the projection of the boundary
complex of convQ. This section introduces both complexes along with subcomplexes
representing the shape bounded by the envelope of the spheres inP and inQ.

Voronoi Complex. Let P be a finite set of spheres inR3 and recall thatπp(x) =
‖x − zp‖2−r 2

p is the weighted distance of a pointx from a spherep. TheVoronoi region
of p ∈ P is

Vp = {x ∈ R3 | πp(x) ≤ πq(x) for all q ∈ P}.
In the assumed nondegenerate caseVp is either empty or a three-dimensional convex
polyhedron. For a subsetX ⊆ P define

νX =
⋂
p∈X

Vp.

By assumption of nondegeneracy,νX is either empty or a convex polyhedron of dimension
` = dimνX = 4− cardX. If νX is nonempty we call it aVoronoi`-cell. TheVoronoi
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Fig. 7. The Delaunay and Voronoi complexes of the four solid circles in Fig. 6. The Delaunay edges are solid
and the Voronoi edges are dashed. Symmetrically, the dashed edges show the Delaunay complex and the solid
edges show the Voronoi complex of the orthogonal complement.

complexis the collection of Voronoi cells:

Vor P = {νX 6= ∅ | X ⊆ P}.
The Voronoi complex decomposes the union of balls,

⋃
ucl P, into convex pieces.

Indeed, if x ∈ ⋃
ucl P belongs toVp and is enclosed by a sphereq ∈ P, then

πp(x) ≤ πq(x) ≤ 0 andx is also enclosed byp. This implies

Vp ∩
⋃

ucl P = Vp ∩
⋃

ucl p,

which is convex becauseVp is convex and
⋃

ucl p is the ball bounded byp and thus
also convex, see Fig. 7.

Each Voronoi vertex or 0-cellν = νX has the same weighted distancer 2 = πp(ν) from
all four spheresp ∈ X. The sphere with centerν and radiusr is orthogonal to thep ∈ X,
further than orthogonal from all other spheres inP, and it belongs toQ = orth P. In
fact,Q contains a sphere for each Voronoi vertex and a plane (infinitely large degenerate
sphere) for each unbounded Voronoi edge. The “center” of the plane lies at infinity in
the direction of the corresponding Voronoi edge, see Fig. 7.

Delaunay Complex. For each Voronoi cellνX ∈ Vor P we have aDelaunay cell

δX = convX′,

where X′ = {zp | p ∈ X}. The assumption of nondegeneracy implies thatδX is a
simplex inR3. More precisely,δX is a Delaunayk-simplex iff νX is a Voronoi`-cell,
wherek = 3− ` = cardX − 1. TheDelaunay complexis the collection of Delaunay
simplices:

Del P = {δX | νX ∈ Vor P}.
How does the Delaunay complex relate toP and toQ = orth P? Each Delaunay vertex
or 0-simplex is the center of a sphere inP. The relation toQ is more intricate. Recall
that each sphereq ∈ Q with finite radius has its center at a Voronoi vertexνX. X ⊆ P
contains four spheres and defines a Delaunay tetrahedronδX spanned by the centers of
the spheres. The same Delaunay tetrahedron can be specified through inequalities:

δX = {y ∈ R3 | πq(y) ≤ πp(y) for all p ∈ Q}.
In words,δX is the Voronoi region ofq ∈ Q. This implies a fundamental symmetry
between Voronoi and Delaunay complexes.
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Fig. 8. The Delaunay subcomplex of the four solid circles in Fig. 6 consists of four vertices and two (solid)
edges. The Voronoi subcomplex consists of two vertices and three (dashed) edges.

Fact 10. Del P = Vor Q andVor P = Del Q.

The statement is not entirely correct but we can make it correct by slightly altering the
definition of the Delaunay complex. Specifically, we add the Voronoi cells defined by
infinitely large spheres inQ to Del P. The resulting set of Delaunay cells decomposes
the union of balls bounded by spheres inQ into convex pieces, see Fig. 7.

Subcomplexes. Recall that Voronoi regions decompose a union of balls into convex
pieces. It follows that each Voronoi cell,νX, forms a convex intersection with the union:

%X = νX ∩
⋃

ucl P

=
⋂
p∈X

(Vp ∩
⋃

ucl p).

Clearly%X ⊆ νX, and by collecting all simplices that correspond to nonempty intersec-
tions we get a subcomplex of the Delaunay complex:

Dsx P = {δX ∈ Del P | %X 6= ∅},

see Fig. 8. In the terminology of [7] and [9] DsxP is one of the alpha complexes ofP,
namely, the one defined forα = 0.

Symmetrically, the simplices in DelP decompose the union of balls bounded by
spheres in the orthogonal complement. We define

Vsx P =
{
νX ∈ Vor P | δX ∩

⋃
ucl Q 6= ∅

}
,

which is a subcomplex of VorP, see Fig. 8.
It can be shown that the union of balls bounded by spheres inP covers all simplices

in Dsx P, see also Section 6. Symmetrically, the union of balls bounded by spheres in
Q covers all cells in VsxP. The two containment relations can be connected using Fact
9. To state the resulting chain of relations we denote the complement of a setA ⊆ R3

by A = R3− A.

Fact 11. Assume P is in nondegenerate position. Then⋃
Dsx P ⊆

⋃
ucl Q ⊆

⋃
ucl P ⊆

⋃
Vsx P.
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6. Decomposing Space and Skin

This section returns to the body and skin of a finite set of spheres inR3. The main
result is a decomposition ofR3 into convex cells that decompose the skin into patches
of algebraic degree 2.

Voronoi Regions in the Limit. We begin by revisitingk-flats of spheres. LetP =
{p0, p1, . . . , pk} be an affinely independent set of spheres and assume that the set of
centers,P′ = {zp0, zp1, . . . , zpk} is also affinely independent. ThenF = aff P is ak-flat
of spheres and

F ′ = aff P′

= {zp | p ∈ F}
is ak-dimensional affine subspace ofR3. Lets, t > 0 be real parameters withs+ t = 1,
as usual. LetVs

p be the Voronoi region ofps among the infinitely many spheres inFs.
We constructVs

p using a mapϕs: F → F ′. This map associates each spherep ∈ F with
the pointy = ϕs(p) ∈ F ′ that satisfies

πps(y) ≤ πqs(y)

for all q ∈ F . Vs
p is the (3 − k)-dimensional affine subspace orthogonal toF ′ with

F ′ ∩ Vs
p = y, see Fig. 9. The pointy = ϕs(p) lies betweenzp and the focusx = x(F)

of F :

Fact 12. ϕs(p) = s · x + t · zp.

In the limit whens = 0 we haveϕs(p) = zp for every p ∈ P. This corresponds to the
case where all spheres inFs are points and clearly every point is closest to itself. When
s grows the pointsϕs(p) move closer tox and meet atx in the limit whens = 1. Fact
12 can be proved with analytical calculations similar to the ones preceding Fact 7 in
Section 3.

Fig. 9. Skin construction for two circles in the plane. The vertical lines are Voronoi regions of circles in
the convex hull reduced withs = 1

2 . The two extreme lines separate the circle pieces of the1
2-skin from the

connecting hyperbola piece.
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Shrinking and Mixing. Fact 12 is significant because it can be used to decompose the
skin defined byP. Before taking on the general case consider the two circlesp0 and
p1 in Fig. 9. The1

2-skin has the shape of a dumbbell and consists of two circular arcs

connected by a hyperbola piece between the linesV1/2
p0 andV1/2

p1 .
We generalize the construction of the strip between the two lines. LetP be a finite set

of spheres inR3. For eachX ⊆ P with nonempty Voronoi cellνX and corresponding
Delaunay simplexδX define thes-mixed cell

µs
X = s · νX + t · δX,

compare with Fact 12. For 0< s < 1 the dimension ofµs
X is independent of the

cardinality ofX: dimµs
X = dimνX + dimδX = 3. There are four types of mixed cells:

for cardX = 1,2,3,4 the mixed cellµs
X is a Voronoi 3-cell, a prism over a Voronoi 2-cell,

a prism over a Delaunay triangle, and a Delaunay tetrahedron. Consider the collection
of s-mixed cells:

Mix s P = {µs
X | νX ∈ Vor P},

see Fig. 10. Observe that Mix0 P = Del P, Mix1 P = Vor P, and generally Mixs P =
Mix t Q, whereQ = orth P.

Here is an intuitive picture of the construction. Take the interval of three-dimensional
affine subspaces ofR4 defined byx4 = s, for s ∈ [0,1]. Draw DelP in x4 = 0 and
Vor P in x4 = 1. For each Delaunay simplex and corresponding Voronoi cell construct

µX = conv(δX ∪ νX),

see Fig. 11. AllµX are convex polyhedra of dimension 4, their interiors are mutually
disjoint, and they decompose the strip betweenx4 = 0 andx4 = 1. The subspacex4 = s
intersectsµX in thes-mixed cell,µs

X.

Decomposition into Patches. Mixed cells are significant because they decompose the
skin into patches of degree 2. These patches are pieces of envelopes of shrunken affine
hulls. Recall that each envelope is the zero-set of a degree-2 polynomial, see Fact 7.

Fig. 10. The mixed cells fors = 1
2 defined by the four circles in Fig. 6. There are three types: Voronoi

regions, rectangles, and Delaunay triangles. The cells decompose thes-skin into circle and hyperbola pieces.
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Fig. 11. The construction of mixed cells from the Delaunay complex in the bottom plane and the Voronoi
complex in the top plane.

Theorem 13. For each X⊆ P and each s∈ [0,1] we have

µs
X ∩ sknsP = µs

X ∩ env(aff X)s.

Proof. For each spherep ∈ convP let Vs
p be the Voronoi region ofps in the Voronoi

complex of(convP)s. Vs
p is nonempty only if no other sphere with the same center has

larger square radius thanp. Assumep satisfies this maximum square radius criterion and
let δX be the Delaunay simplex of lowest dimension that contains its center,zp. Define
F = aff X, which is a flat of spheres with dimensionk = dim F and focusx = x(F).
Let G = F⊥ be the orthogonal flat and letG′ be the set of centers of spheres inG.
G′ is a (3− k)-dimensional affine subspace ofR3 passing through the focusx of F .
By Fact 12,

Vs
p ⊆ s · G′ + t · zp.

If k = 3, thenG′ consists of a single point, namely the focusx of F , andVs
p = s·x+t ·zp

is the single point Voronoi region ofps. The union of these points over all spheresp
with zp ∈ δX is exactly thes-mixed cellµs

X. In the other case, whenk < 3, there are
Delaunay simplicesδY that properly containδX. TheseδY constrain the relevant part
of G′ to within νX, and we getVs

p = s · νX + t · zp. To see this apply Fact 12 to the
orthogonal complement and take the union over all spheresq with zq ∈ νX. Finally take
the union of the reduced copies ofνX over all spheresp with zp ∈ δX. The result is again
thes-mixed cellµs

X.
To summarize we showed that for every pointy ∈ µs

X the spheres in(convP)s that
minimize the weighted distance fromy belong to(convX)s. Similarly, the spheres in
(aff X)s that minimize the weighted distance fromy belong to(convX)s. In formulas:

µs
X ∩ sknsP = µs

X ∩ env(convP)s

= µs
X ∩ env(convX)s

= µs
X ∩ env(aff X)s.

Theorem 13 is a technical statement of claimS1 that skin is decomposable: the mixed
cells decompose the skin into finitely many degree-2 patches. It also supports claimS2
that skin is constructible: the mixed cells and patches are readily computed from the
Voronoi complex and the Delaunay complex.
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Complementarity. Thes-mixed cells decompose thes-skin into finitely many patches.
Within a cellµs

X only spheres defined by the Delaunay simplexδX and the Voronoi cell
νX are relevant. In other words, withinµs

X thes-skin of P looks the same as the envelope
of (aff X)s, and symmetrically, thet-skin of Q looks the same as the envelope of(X⊥)t .
This is true for every mixed cell and together they cover the entireR3. We conclude that
the complementarity result stated in Lemma 6 for flats generalizes to convex hulls:

Theorem 14. Let s, t ≥ 0 with s+ t = 1. Then

bdys P ∪ bdyt Q = R3,

bdys P ∩ bdyt Q = sknsP

= sknt Q.

Theorem 14 is a technical statement of claimS3 that skin is symmetric: sknsP is defined
from inside by the spheres inP and from outside by the spheres inQ = orth P.

Mixed Cell Classification. Some of the mixed cells are contained in the body ofP,
some intersect the skin, and the others lie outside the body. We derive information on
this classification from the subcomplexes DsxP ⊆ Del P and VsxP ⊆ Vor P defined
in Section 5.

Theboundaryof Dsx P consists of all simplices contained in at least one Delaunay
simplex not in DsxP, and theinterior consists of all other simplices:

Bd DsxP = {δX ∈ Dsx P | δX ⊆ δY 6∈ Dsx P},
Int Dsx P = Dsx P − Bd DsxP.

Similarly, the boundary and the interior of VsxP are Bd VsxP = Bd DsxQ and
Int Vsx P = Int DsxQ. Note thatδX belongs to the interior of DsxP iff νX is contained
in
⋃

ucl P, andδX belongs to the boundary of DsxP iff νX has nonempty intersection
with

⋃
ucl P but is not contained in it.

Lemma 15. Let P be a finite set of spheres in nondegenerate position inR3.

(i) If δX ∈ Int Dsx P, thenµs
X ⊆ bdys P for every s∈ [0,1].

(ii) If νX ∈ Int Vsx P, thenµs
X ∩ bdys P = ∅ for every s∈ [0,1].

(iii) If neitherδX ∈ Int Dsx P norνX ∈ Int Vsx P, thenµs
X ∩ sknsP 6= ∅ for at least

one s∈ [0,1].

Proof. Claims (i) and (ii) are symmetric and we prove only (i). We modify the con-
struction of mixed cells illustrated in Fig. 11 so it handles intersections with spheres. We
draw DsxP in x4 = 0 and the convex cells%X = νX ∩

⋃
ucl P of Section 5 inx4 = 1.

By definition%X 6= ∅ iff δX ∈ Dsx P and we can take the convex hull:

λX = conv(δX ∪ %X).

Clearly,λX ⊆ µX. If δX ∈ Int Dsx P, then%X = νX andλX = µX. Consider the cross
section of the cellsλX ats ∈ [0,1]:

λs
X = s · %X + t · δX.
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The union of the cellsλs
X contains the mixed cellsµs

X that correspond to interior simplices
δX. To complete the proof of (i) we show that the union is contained in thes-body of P.
We rewrite the union of cellsλs

X as a union of balls. Recall the definition of the focus
x = x(F) of F = aff X: it is the center of the spherep ∈ F with minimum square
radius. Letr X be the radius ofp and observe thatr X ≥ 0 for elseδX would not be in
Dsx P. For each pointy in the interior ofδX let bs

y be the spherical ball with centery
and radiuss · r X. To simplify notation letK =⋃Dsx P. Then⋃

X⊆P

λ1
X =

⋃
ucl P

=
⋃
y∈K

b1
y.

The cross section ats ∈ [0,1] is ⋃
X⊆P

λs
X =

⋃
y∈K

bs
y

⊆
⋃
y∈K

b
√

s
y

⊆ bdys P,

and (i) follows.
To prove (iii) we reformulate the premise:δX 6∈ Int Dsx P andνX 6∈ Int Vsx P is

equivalent toνX 6⊆
⋃

ucl P andδX 6⊆
⋃

ucl Q. Take pointsy1 ∈ νX not in
⋃

ucl P and
y0 ∈ δX not in

⋃
ucl Q. The union of skins sknsP over alls ∈ [0,1] forms an orientable

3-manifold inR3×[0,1]. Pointsy1 andy0 lie on different sides of this manifold. Sincey1

andy0 both belong toµX = conv(δX ∪ νX) we conclude thatµX intersects the manifold
and there is ans ∈ [0,1] so thatµs

X has nonempty intersection with sknsP.

7. Topological Properties

The skin construction is unusual in the number and combination of mathematically
elegant and practically useful properties. In this section we show that skin is tangent
continuous, that different values ofsdefine isotopic skins, and that the body is homotopy
equivalent to the union of simplices in DsxP.

Tangent Continuity. Recall that the cells in Mixs P decompose thes-skin into patches
of the form

ϕs
X = µs

X ∩ env(aff X)s,

see Theorem 13. We assumes, t > 0 with s+ t = 1 as usual. The envelope that contains
ϕs

X is the zero-set of a degree-2 functionf s
X: R3 → R. After suitable rotation we can

write

f s
X(x1, x2, x3) = −1

t

k∑
i=1

x2
i +

1

s

3∑
j=k+1

x2
j − r 2

0,
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see Fact 7. Except ifr0 = 0, the zero-set is everywhere tangent continuous. By this
we mean that each pointx in the zero-set off s

X defines a unique plane of tangential
directions. This plane is normal to the gradient vector atx:

∇ f s
X(x) =

(
∂ f s

X

∂x1
(x),

∂ f s
X

∂x2
(x),

∂ f s
X

∂x3
(x)

)
.

The plane is well defined unless∇ f s
X(x) vanishes, which is the case only ifx is the origin

andr0 = 0. We considerr0 = 0 a degenerate case and for the time being assume it does
not occur. In Section 8 this case resurfaces and plays an important role in deforming
skin.

In the nondegenerate case each patchϕs
X of the s-skin is tangent continuous in the

interior. We give a geometric argument for this claim that also covers the boundary of
ϕs

X. Define f s: R3→ R with f s(x) = f s
X(x) for everyx ∈ µs

X and recall that sknsP is
the zero-set off s.

Theorem 16. Let 0< s< 1 and assume P is a finite set of spheres in nondegenerate
position inR3. ThensknsP is tangent continuous.

Proof. Consider a pointx in the zero-set off s. By Theorem 14 there are spheresp ∈ P
andq ∈ Q so ps andqt lie on opposite sides and touch the skin atx. By assumption
of nondegeneracy both spheres have positive radius. The unique plane that separatesps

andqt is the plane tangent to the zero-set at pointx.

Theorem 16 is a more precise statement of claimS4 that skin is smooth: in the
nondegenerate case skin is everywhere tangent continuous.

Skin Isotopy. Consider the interval of skins sknsP for 0 ≤ s ≤ 1. Assume nonde-
generacy so all skins except for skn0P = bd(

⋃
ucl Q) and skn1P = bd(

⋃
ucl P) are

everywhere tangent continuous, see Fig. 12. The union of all skins is a channel:

H =
⋃

0≤s≤1

sknsP

=
⋃

ucl P ∩
⋃

ucl Q.

Fig. 12. Six skins in the intervals ∈ [0,1] sweeping out the channel between the boundaries of the disk
unions defined byP andQ.
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We form a fibration ofH with fibers normal to the skins. Consider the middle skin,
sknP = skn1/2P, and for each pointx ∈ sknP define the fiber

gx: [0,1]→ H

with gx(
1
2) = x, gx(s) ∈ sknsP for all s ∈ [0,1], and gx normal to sknsP for all

s ∈ (0,1). The fibers are the solutions or flow curves of the differential equation defined
by a vector fieldV : int H → R3. We haveV(x) = ∇ f s(x) with s ∈ (0,1) chosen
so x belongs to the zero-set off s. The vector field is continuous and does not vanish
anywhere in the interior ofH . We have a diffeomorphism

ds: sknP→ sknsP

defined byds(x) = gx(s) for everys ∈ [0,1].
The diffeomorphisms can be combined to form an isotopy between different skins.

Assume without loss of generality that1
2 < s. The isotopy between sknP and sknsP

consists of all intermediate diffeomorphisms:

i s: sknP × [ 1
2, s] → R3,

with i s(x, r ) = dr (x). By transitivity we have an isotopy between every pair of skins.

Fact 17. In the nondegenerate case there is an isotopy betweensknr P andsknsP for
every pair of parameters0< r, s< 1.

A possible application of the isotopy is the diffeomorphic maintenance of a pattern or
drawing on the skin while the parameters is altered.

Body Homotopy. The isotopy between skins can be used to construct isotopies between
bodies. We prove a weaker result establishing that all bodies ofP are homotopy equiv-
alent. Givens ∈ [0,1) we simplify notation by definingX = bdy0 P andY = bdys P.
Recall that the body grows with the exponent and thereforeX ⊆ Y. Let

D: Y× [0,1]→ Y

be defined so its restriction toX is the identity for allu ∈ [0,1]. For a pointy ∈ Y− X
chooser ∈ [0,1) andz ∈ sknP so thaty = gz(r ). Then

D(y,u) = gz((1− u)r ),

for all u ∈ [0,1]. D is a homotopy between the identity onY at u = 0 and a retraction
fromY toX atu = 1. In words,D is a deformation retraction andX andY are homotopy
equivalent.

The homotopy result can be extended to the union of balls,
⋃

ucl P, and to the union
of simplices in DsxP ⊆ Del P defined in Section 5. The homotopy equivalence between⋃

Dsx P and
⋃

ucl P has been established in [7].

Theorem 18. In the nondegenerate case all bodiesbdys P, for s ∈ [0,1],are homotopy
equivalent to

⋃
Dsx P.



Deformable Smooth Surface Design 109

The significance of this result is primarily computational. DsxP is a combinatorial object
amenable to fast algorithms. In particular, inR3 there is an algorithm that computes
the betti numbers of

⋃
Dsx P in time proportional to the cardinality of DsxP [6].

Theorem 18 implies that the betti numbers of
⋃

Dsx P and those of the bodies bdys P
are the same.

Theorem 18 covers part of claimS7 that skin is deformable: the time, place, and way
topology changes can be predicted by computing the change in the Delaunay subcomplex
Dsx P.

8. Growth and Change

This section returns to the initial idea of constructing a differential mapf : R3→ R and
using a continuous sequence of preimages to deform one shape into another. We begin
with a deformation induced by growth.

Growing Spheres. For each spherep ∈ P and each parameterα2 ∈ R define pα =
(zp, r 2

p+α2). We allowα2 to be negative in which casepα is smaller thanp and possibly
imaginary. DefinePα = {pα | p ∈ P}. Note that the weighted distance of a pointx ∈ R3

is πp(x)− α2. It follows that the Voronoi and Delaunay complexes do not vary withα:
Vor Pα = Vor P and DelPα = Del P for all α2 ∈ R.

We fixs ∈ (0,1) and construct a differential mapf = f s: R3→ Rwhose preimages
f −1(α2) are thes-skins of thePα. This is done by gluing patches of mapsfX = f s

X
clipped to within their mixed cellsµs

X. The result is the same mapf = f s as in Section 7.
By Fact 7, we can find a coordinate system so

f (x1, x2, x3) = −1

t

k∑
i=1

x2
i +

1

s

3∑
j=k+1

x2
j − r 2

0

withinµs
X. Since the growth model keeps the Voronoi and Delaunay complexes invariant,

the mapFα(x) = f (x) − α2 has zero-setF−1
α (0) = sknsP. We can recover thes-skin

of Pα from f directly by taking the preimage atα2:

Fact 19. Letα2 ∈ R and f: R3→ R as constructed. Then

sknsPα = f −1(α2),

bdys Pα = f −1(−∞, α2].

Changing Topology. To deform sknsP to sknsPβ , forβ2 > 0, we generate a continuous
interval of skins f −1(α2), for α2 ∈ [0, β2]. It is possible that skin and body change
topology as they go through the sequence. Specifically, this happens at critical points
y ∈ R3 with vanishing gradient∇ f (y). These are precisely the focus pointsx = x(aff X)
that belong to the corresponding Delaunay simplex and Voronoi cell:x = δX ∩ νX. In
the nondegenerate case the intersection betweenδX andνX is either empty or a point in
the interiors of both. In the latter casex is a critical point of f and it lies in the interior
of µs

X.
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Table 2. The topology of the body changes in
analogy to adding ak-simplex to the correspond-

ing Delaunay subcomplex, see Theorem 18.∗

k Body change Skin change

0 Component appears ∅ to sphere
1 Bridge appears 2 sheets to 1 sheet
2 Tunnel disappears 1 sheet to 2 sheets
3 Void disappears Sphere to∅
∗The change is described by switching from the first
to the third column in Table 1. The second column in
Table 1 describes the intermediate degenerate case.

The way the topology changes depends on the dimensionk = dimδX = 3− dimνX,
see Table 2. Note that casesk = 0 andk = 3 are symmetric in terms of taking com-
plements or switching from bdys P to bdyt Q. Similarly, casesk = 1 andk = 2 are
symmetric in the same sense. It follows that the topology of skin changes only in two
ways:

(i) A sphere appears or disappears.
(ii) A hyperboloid of one sheet flips over to one of two sheets or vice versa.

Each topology change requires a momentary degenerate configuration of spheres. The
change can be localized to a single point in time and space where the degeneracy leads
to a violation of tangent continuity.

The type of a topology change is completely characterized by the sign sequence of
the corresponding polynomial in Fact 7. Only the three signs of the quadratic terms are
considered, and there are four triplets that differ even after permutations:+ + +,− +
+,− − +,− − −. There are dimδX minus signs and dimνX plus signs. The topology
changes when the constant term of the polynomial,r 2

0, passes through zero. Under the
assumption of growthr 2

0 can only switch from negative to positive, not the other way
round.

General Deformation. The growth-induced deformation can be generalized by allow-
ing spheres to change size, move, and duplicate or merge all at the same time. A frame-
work for such deformations is described in [2], and sample results inR2 and inR3 can
be found in [3] and [2]. Rather than revisiting the details of this framework we briefly
discuss the general idea from a Morse theoretic angle [14].

Consider a time interval [0,1], and for each timeτ ∈ [0,1] let Pτ be a set of spheres
in R3. We expect thatPτ satisfies necessary continuity requirements. Letf : R3 → R
be defined so that

sknPτ = f −1(τ )

for all τ ∈ [0,1]. The shape at timeτ is the skin ofPτ , and it deforms asτ increases. The
deformation can be studied with a standard Morse theoretical approach that requiresf be
everywhere differentiable and twice differentiable at critical points. It is also convenient
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to assume all critical points are isolated, which is the nondegenerate case. Further details
justifying claimS8 about continuous skin deformation are omitted.

9. Molecular Biology

Skin surfaces bear an unmistaken resemblance to space filling models of molecules used
in computational biology literature. This section reviews these models and compares
them with the skin as defined in this paper. We argue that skin has distinct advantages
over the other models.

Space Filling Models. A popular idea in molecular biology is the geometric repre-
sentation of a molecule by filling the space around the atom centers. It is assumed that
the locations of the centers in space are known. There are three space filling models
introduced in seminal papers by Lee and Richards [13], [19]. Thevan der Waalsor
VW modelrepresents each atom,A, by a spherical ball of points at distance at most the
van der Waals radius,r A, from the center. Different types of atoms may have different
radii. Overlapping spheres are indicative of chemically binding. The interaction of the
VW model with a solvent sphere of radiusα > 0 is captured by thesolvent accessible
or SA model. It grows the sphere representingA to radiusr A + α. With this amount of
growth we have a solvent sphere overlapping theVW model iff its center belongs to the
SA model.

The third is themolecular surfaceorMS model. In recognition of the first widely avail-
able computer program constructing it [4] the boundary of theMS model is sometimes
referred to as theConnolly surface. Intuitively, theMS model is obtained by rolling the
solvent sphere about theVW model and filling in the space inaccessible to that sphere.
During the rolling motion, the solvent sphere stays in contact with theVW surface and
its center sweeps out theSA surface. The molecular surface consists of patches that cor-
respond to faces of theSA model. We have sphere patches, torus patches, and inverse
sphere patches that correspond to sphere patches, circle arcs, and corner points of theSA

model.
The two major advantages of theMS over theSA model are apparent smoothness

and faithful size representation. Unfortunately, the molecular surface can have self-
intersections resulting in a variety of ambiguities. We can clip at places of self-intersection
and thus create a nonsmooth surface bounding an unambiguous subset of space. The
topology of this subset is usually not the same as that of theSA model. Furthermore, it is
difficult to construct the clipped surface automatically in a reliable manner and no robust
software exists today. Alternatively, we can leave the surface unclipped. This helps in
the robust construction from the face complex of theSA model [1]. Observe that the
unclipped surface is still not smooth: self-intersecting torus patches connect to inverse
sphere patches in sharp forward and backward folds.

Molecular Skin Surface. We advocate the body defined in Section 4 as a new space
filling model that is geometrically unambiguous and otherwise similar to theMS model:

1. The body expresses the interaction with a solvent sphere without inflating atoms.



112 H. Edelsbrunner

2. The skin or surface of the body does not intersect itself.
3. The skin is tangent continuous.

How exactly do we define and construct the body representing a molecule? First, we
settle on a shrinking factors = 1

2. This choice is suggested by considerations of com-
plementarity described below. An atomA with centerzA and van der Waals radiusr A is
represented by the spherepA = (zA,

√
2r A). Let P denote the resulting set of spheres.

Theskin modelof the molecule and its surface are

bdy P = bdy1/2 P,

sknP = bd bdyP.

Observe that the union of balls bounded by spheres inP is in general not the same as
theSA model. An extension of the skin concept where different spheres are reduced by
different amounts might be a worthwhile research project. The shrinking factor along
edges, triangles, and tetrahedra of spheres can be varied by linear interpolation.

Docking. The docking problem for molecules is a question of shape and energy comple-
mentarity. We only comment on shape complementarity. Most important in this context is
Theorem 14: for each moleculeM = bdy P there exists another skin modelL = bdy Q
complementary toM and with perfectly matching skin.L is unique and given by the
orthogonal complementQ of P.

There are several reasons whyL falls short of modeling an actual molecule. The first is
thatL is unbounded becauseL ∪M = R3 andM is bounded. The second is that spheres
in Q can have arbitrary size. Still, the existence and uniqueness of the set of spheres
Q = orth P with a complementary skin model is intriguing. It gives a mathematical
justification for the heuristic construction of roughly complementary sphere packings
in the approach to docking by Kuntz [12] and coworkers. More generally, it opens new
ways of thinking about molecular complementarity. For example, notions of partial and
of imperfect shape complementarity can be related to aspects of the difference between
L and the skin model of a ligand.

Motion and Continuity. An actual molecule is constantly in motion and the distances
and angles between its atoms vary with time. The study and simulation of this motion
is the subject of molecular dynamics, which is a subfield of molecular modeling. Large
numerical software packages exist that aim at the reliable simulation of one or several
molecules over time, see, e.g., [15]. These packages produce sequences of discrete
snapshots without continuous evolution between them. Depending on the amount and
size of the change the reconstruction of such an evolution ranges from seemingly obvious
to ambiguous and impossible.

A related example where motion and continuity comes up is the comparison of differ-
ent observations of the same molecule. LetM be a protein and letM ′ be the same protein,
maybe with a side chain removed. Models ofM and M ′ are typically developed from
independent crystalizations. The removal of the side chain triggers a rearrangement and
repacking of atoms in its neighborhood. Resulting differences betweenM and M ′ are
naturally described in causal or temporal terminology: “the side chain removal enlarges
one of the voids,” etc. This description presupposes a correspondence between the voids
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of M and M ′. To claim a void is enlarged we first need to establish the sameness of a
void in M and one inM ′. This can only be done with a framework that connectsM and
M ′ over time. Homotopies, isotopies, and the topology changing deformations of Morse
theory come to mind. If we use skin models we have access to deformation methods as
described in Section 8 and can create continuous connections necessary to argue about
motion and its effects.

10. Discussion

This paper presents a new paradigm for surface design. It has its foundations in the
combinatorial subdisciplines of geometry, topology, and algorithms. The theory is rea-
sonably complete and answers the basic questions. There are many problems that remain
and plenty of work that has to be done.

Generalizing Skin. The skin concept can be extended to allow different amounts of
shrinking for different spheres. Consider the following framework.P is a finite set of
spheres andS: convP → [0,1] assigns each spherep ∈ convP its own shrinking
factor,S(p). The body and skin defined byP andSare

bdyS P =
⋃

p∈convP

ucl pS(p),

sknSP = bd bdyS P.

Even in the most general case where the assignment is arbitrary and not even continuous,
S preserves the homotopy type of the body. What additional properties do we gain
if we require S to be continuous? CallS complementableif there is an assignment
T : convQ→ [0,1], Q = orth P, with sknSP = sknT Q. Is there a characterization of
complementable assignments in terms of local bounds on curvature?

Rendering and Triangulating Skin. This paper claims that skin has the potential to be
used in a wide range of modeling applications requiring surface design and deforma-
tion. To live up to that claim it is important that fast and robust software be produced.
What exactly this software constructs depends on the targeted application. Among the
candidates, we single out the direct representation of patches and approximation through
triangulations.

If the sole purpose of the construction is the graphical display of skin we can take
advantage of available hardware that renders surfaces directly. The hardware supports
low-degree algebraic surfaces, which includes degree-2 skin patches. There is a difficulty
caused by complicated patch boundaries, which needs to be handled by surface trimming.
Each patch is the intersection of a sphere or a hyperboloid with a convex polyhedron.
It is possible that the intersection consists of several components, and components may
have holes. Furthermore, there is no a priori upper bound on the number of boundary
edges of even a single patch component.

Scientific applications require a representation supporting numerical computations.
A typical such representation is a piecewise linear surface approximating the skin. We
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have atriangulationif all linear pieces are triangles and the surface is homeomorphic to
the skin. The construction of a triangulation is helped by the tangent continuity of skin.
We propose developing an algorithm that adjusts the vertex density to the local curvature.
Local point rearrangements can be used to get angles close to 60◦. Theorem 18 is used to
guarantee the approximating surface is homeomorphic to the skin by guiding decisions
about constructing and fitting triangles. Without combinatorial guidance these decisions
create robustness problems at or close to degenerate configurations.

Connecting Skin over Time. Fact 17 can be extended to more general pairs of skin.
SupposeP0 andP1 are finite sets of spheres and we construct a mapf : R3→ R with

skn1/2P0 = f −1(0),

skn1/2P1 = f −1(1),

see Section 8. The continuous sequence of preimagesf −1(τ ), τ ∈ [0,1], defines a
deformation from one skin to the other. To what extent is it possible to establish a
relationship between the points of thef −1(τ )?

Suppose first that the sequence of preimages avoids all critical points off . Then there
is a one-parameter family of diffeomorphisms between the preimages [14]. An interval of
such diffeomorphisms forms an isotopy. What assumptions on the mapf are necessary
to construct the isotopy algorithmically? If the interval of preimages contains critical
points of f , then there is no hope of constructing an isotopy because we get preimages
of different homotopy types. Is there a weaker notion of a map that is almost an isotopy
in the sense that it violates the conditions only locally around the critical points?
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