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Abstract. A polytopeis the bounded intersection of a finite set of half-spaces ofRd.
Every polytope can also be represented as the convex hull convV of its vertices (or extreme
points)V. Theconvex hullproblem is to convert from the vertex representation to the half-
space representation or (equivalently by geometric duality) vice versa. Given an ordering
v1 · · · vn of the input vertices, after some initialization an incremental convex hull algorithm
constructs half-space descriptionsHn−k · · ·Hn whereHi is the half-space description of
conv{v1 · · · vi }. Let mi denote|Hi |, and letm denotemn. Let ϕ(d) denoted/d√d e − 1;
in this paper we give families of polytopes for whichmn−1 ∈ Ä(mϕ(d)) for any ordering
of the input. We also give a family of 0/1-polytopes with a similar blowup in intermediate
size. Sincemn−1 is not bounded by any polynomial inm, n, andd, incremental convex
hull algorithms cannot in any reasonable sense be considered output sensitive. It turns out
that the same families of polytopes are also hard for the other main types of convex hull
algorithms known.

1. Introduction

A polytopeis the bounded intersection of a finite set of half-spaces ofRd. A fundamental
theorem of convexity is that every polytope can be represented as the convex hull of its
extreme points or vertices. Converting from the vertex representation to the half-space
representation is calledfacet enumeration. Converting from the half-space representa-
tion to the vertex representation is calledvertex enumeration. Since these problems are
equivalent under point-hyperplane duality, where the distinction is unimportant we use
the termconvex hull problemto refer to either or both problems.

The termoutput sensitiveis used to describe algorithms with performance guarantees
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in terms of the output size as well as the input size. For problems such as the convex
hull problem, where the output size can range from exponential to logarithmic in the
input size, such a bound is highly desirable. Implicit in describing an algorithm as output
sensitive is that the dependence on the output size is “reasonable,” usually bounded by a
small polynomial. Here we accept any polynomial bound. For ad-dimensional polytope
(or d-polytope) P with n vertices andm facets we define the summed input and output
size as sizeP = (m+n)d. It is an open problem whether there is a convex hull algorithm
polynomial in sizeP. In the rest of this paper we call such an algorithm polynomial,
where the dependence on sizeP is implicit.

The only known class of algorithms not previously known to be superpolynomial
[12], [3], or to have an NP-complete subproblem [15] are incremental algorithms based
on thedouble description methodof Motzkin et al. [22]. In this paper we show that any
incremental algorithm is superpolynomial in the worst case.

Geometric algorithms in high dimensions are sometimes analyzed under the assump-
tion that the number of input objects grows much faster than the dimensiond. In this con-
text,d is considered a constant for the purposes of analysis. The algorithm of Chazelle [9]
has an upper bound ofO(nbd/2c) in each fixed dimensiond > 3 and is thus worst-case
optimal, up to factors that depend only ond. With d fixed, a satisfactory output-sensitive
time bound may beO((m+ n)c) for somec independent of the dimension (i.e., fac-
tors superpolynomial in the dimension may be acceptable). We show here that even this
weaker condition cannot be met by incremental algorithms.

Convex hull computations are one area where assumptions of general position or
nondegeneracy seem to make a great deal of difference to the tractability of the problem.
While vertex enumeration algorithms based on pivoting that are polynomial on simple
input have been known for over forty years (see [8], and refinements in, for example, [25],
[24], [4], and [7]), finding an algorithm polynomial for nonsimple (so-called degenerate)
input has proved a much more difficult undertaking. The (unmodified) pivoting method
searches all feasible bases (sets ofd half-spaces that define a vertex) of the polytope. In
general the number of feasible bases can be superpolynomial in sizeP. Neither of the
two well-known modifications—perturbation and recursion on the dimension—yields a
polynomial algorithm (see [3]).

Incremental algorithms are not necessarily affected by degeneracy, but have a fun-
damental weakness of their own. In an incremental facet enumeration algorithm, after
some initialization, we insert points one by one, maintaining the convex hull of the points
inserted so far at every step. A necessary condition for such algorithms to be polynomial
is that the size of each intermediate polytope be polynomial in sizeP. It turns out the
order the points are inserted can make a huge difference in the size of the intermedi-
ate polytopes. This is analogous to the simplex method of linear programming where a
family such as the Klee–Minty [19] cubes can be superpolynomial for one pivoting rule
but easily solvable using a different pivoting rule. Dyer [12] gave a family of polytopes
for which inserting the points in the order given yields superpolynomial intermediate
polytopes. Aviset al. [3] showed that several more sophisticated insertion orders used in
practice also produce superpolynomial intermediate polytopes in the worst case. In this
paper, we show that there are families for which there is no polynomial insertion order.
This may be contrasted with the situation of the simplex method, where the existence of
a polynomial pivoting rule remains an open problem.
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2. Preliminaries

In this section we introduce some notation and fundamental results from the theory of
convex polytopes that will be useful in the sequel. We also make precise our measures
of complexity.

Given a set of pointsX = {x1 · · · xn}, a combination
∑n

i=1 λi xi is calledaffine if∑
λi = 1. An affine combination is calledconvexif everyλi is nonnegative. Theaffine

hull aff X is the set of all affine combinations ofX, or equivalently the smallest affine
subspace containingX. Thedimensiondim X is the dimension of affX. Theconvex hull
convX is the set of all convex combinations ofX. Point p is extremefor X if p is not a
convex combination ofX\{p}.

Where convenient, we treat sets of points and matrices interchangeably, where the
points correspond to rows of the matrix. We use1 (1k) for a vector of all ones (of length
k) andO (Ok) for a vector of all zeros (i.e., the origin).

A hyperplaneh supportsa polytopeP if h ∩ P 6= ∅ and P is contained in one of
the closed half-spaces (thesupporting half-space) induced byh. The facesof P are
∅, P, and the intersection ofP and a supporting hyperplane ofP. Faces of dimension
k are calledk-faces; fk(P) denotes the number ofk-faces ofP. The namesvertices,
edges, and facetsrefer to 0, 1, and(d − 1)-faces, respectively. For a facetF with
supporting hyperplaneh, we writeF+ for the corresponding supporting half-space and
F− for the other (open) half-space induced byh. The face latticeof a polytope is the
poset of its faces partially ordered by inclusion. PolytopesP andQ arecombinatorially
equivalent(resp.,dual) if their face lattices are isomorphic (resp.,anti-isomorphic, i.e.,
isomorphic with the direction of inclusion reversed). For any point setX, thepolar X∗

of X is defined as{y | Xy ≤ 1}. It is known (see, e.g., [5]) that ifP is a polytope
containing the origin in its interior,P∗ is a polytope dual toP, containing the origin in
its interior.

A family of polytopes is used here to mean an infinite set of polytopes. Usually, but
not necessarily, families arise in some natural way from a problem such as the Traveling
Salesman Problem [13], or a construction such as those described below. Given a family
of polytopesF , a functiong: F → R is calledpolynomialfor F if there exists some
univariate polynomialp(x) such that for everyP ∈ F , g(P) ≤ p(sizeP). A function
g: F → R is calledweakly polynomialfor F if there exists positive functionf (x) and
polynomial p(x) such that∀P ∈ F , g(P) ≤ f (dim P) · p(sizeP); this corresponds to
the notion of consideringd to be a constant. Ifg is not (weakly) polynomial forF we
say thatg is (strongly) superpolynomialfor F .

The convex hull ofn points on the moment curvec(t) = (t, t2, . . . , td) is called the
cyclic polytopeonn vertices, written here asCd(n). Here we assume that then vertices
are {c(0), c(1), . . . , c(n − 1)}. Let γ (n,d) denote the number of facets ofCd(n). It
follows from “Gale’s evenness condition” [17], [18], [27] that:

γ (n,d) =


n

n− d/2

(
n− d/2

n− d

)
, d even;

2

(
n− (d + 1)/2

n− d

)
, d odd.

(1)
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The famous Upper Bound Theorem of McMullen [21] says that nod-polytope withn
vertices has more thanγ (n,d) facets.

A very useful construction for building new “more complicated” families of polytopes
from known families is theCartesian product of polytopesconstruction. LetP be a
subset ofRk and letQ be a subset ofRl . Let P × Q, called theproductof P and Q,
denote{(p,q) | p ∈ P, q ∈ Q}. We regardRl × Rk as naturally embedded inRk+l .
The following lemma (whose proof we omit) summarizes the basic properties of the
construction:

Lemma 1. Let P be a k-polytope and Q an l-polytope.

(a) P × Q is a(k+ l )-polytope.
(b) For i ≥ j ≥ 0, the i-faces of P× Q are precisely Fp × Fq where Fp is a j-face

of P and Fq is an(i − j ) face of Q.
(c) P × Q has f0(P) · f0(Q) vertices and fk−1(P)+ fl−1(Q) facets.

For polytopesP ⊂ Rk andQ ⊂ Rl , we define theorthogonal sum P⊕ Q as

P ⊕ Q ≡ conv({(p,Ol ) | p ∈ P} ∪ {(Ok,q) | q ∈ Q}).

SupposeP andQ arek andl polytopes, respectively, that contain the origin as an interior
point. By Lemma 1 and polarity, we know the defining half-spaces forP∗ × Q∗ can be
written as [

V(P) O

O V(Q)

]
x ≤ 1 .

It follows that

P ⊕ Q = (P∗ × Q∗)∗ . (2)

In particular, this means thatP⊕ Q has f0(P)+ f0(Q) vertices andfk−1(P) · fl−1(Q)
facets.

3. Polytopes Without Good Insertion Orders

In the most general sense, insertion orders are procedures to determine at each step of
an incremental algorithm, what input element should be processed next. In some cases,
such as lexicographic or random ordering, all of the choices can be made before the
input is processed. In other cases, such as the maxcutoff rule (where we choose the
next element which causes the largest drop in intermediate size), the insertion order is
inherently dynamic. In either case, for every input and for every insertion order there are
one or more possible permutations of the input generated. We will say thatπ is agood
insertion order forF if the size of intermediate polytopes created byπ is polynomial for
F (obviously a much stronger bound is necessary for an insertion order to be “good” in
practice). A good insertion order does not by itself guarantee a polynomial algorithm:
in particular, the use of triangulation can still cause an incremental algorithm to be
superpolynomial (see [3]). On the other hand, a naive implementation of the double
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description method will be polynomial given a good insertion order. We show that there
are polytopes for which every permutation is bad; in fact we show the slightly stronger
result that every permutation is bad at the last step.

3.1. The Main Result

At each step of an incremental facet enumeration algorithm, we maintain (at minimum)
the vertex descriptionVi and the half-space descriptionHi of the current intermediate
polytope (the “double description” of Motzkinet al. [22]). We are interested here in the
drop in the size of the half-space description caused by inserting the last vertex. This
is the same as the increase in the number of facets caused by removing one vertex of
a polytope and recomputing the convex hull of the remaining vertices. In the following
definitions, letP be ad-polytope and letv be a vertex ofP. LetV(P) denote the vertices
of P. Let P ª v denote conv(V(P)\{v}). LetF(P) denote the facets ofP, Fv(P) the

facets ofP containingv, and letF̃v(P) be defined as follows:

F̃v(P) ≡
{{F ∈ F(P ª v) | v ∈ F−} if dim(P ª v) = d,
{P ª v} otherwise.

We define loss(v, P) ≡ |F̃v(P)| as the number of half-spaces deleted by insertingv last
(we make the notation simplifying assumption that in the case where dim(P ª v) =
dim(P)− 1, the affine hull ofP ª v is stored as two half-spaces). Similarly, we define
gain(v, P) ≡ |Fv(P)| as the number of half-spaces created by insertingv last. The
net drop in intermediate size is then drop(v, P) = loss(v, P) − gain(v, P). Finally
we define gain(P) ≡ maxv gain(v, P), loss(P) ≡ minv loss(v, P), and drop(P) ≡
minv drop(v, P). drop(P) could be negative if there is a vertex whose removal decreases
the number of facets (as in, for example, a stacked polytope).

The lower bounds in this paper follow from using the product and sum of polytopes
constructions defined above. The central geometric observation is that while the number
of facets of the final polytope sums under the product of polytopes operation, the number
of intermediate facets multiplies. We call a polytopeP robustif dim(P ª v) = dim P
for every vertexv of P.

Theorem 1. Let P and Q be polytopes with dimension at least2. P× Q is robust and

drop(P × Q) = loss(P) · loss(Q).

We prove Theorem 1 via several lemmas. Since gain(v, P) is nonnegative, the fol-
lowing holds:

loss(P)− gain(P) ≤ drop(P) ≤ loss(P). (3)

Let P and Q be polytopes with dimension at least 2. Theorem 1 follows from the
following two facts:

gain(P × Q) = 0, (4)

loss(P × Q) = loss(P) · loss(Q). (5)
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We start with (4), which is equivalent to saying that every facet of(P× Q) is robust.
Since each facet ofP× Q is the product of a facet ofP (resp.,P) andQ (resp., a facet
of Q), this follows from the next lemma:

Lemma 2. Let P and Q be polytopes withdim P ≥ 1 and dim Q ≥ 1. P × Q is
robust.

Proof. Let v = (p,q) be a vertex ofP × Q. Let P′ denote(P × Q)ª v:

P′ = conv({(P ª p)× Q} ∪ {P × (Qª q)}).
If dim(Qªq) = dim Q, then the lemma follows by Lemma 1. Otherwise,q /∈ aff(Qªq).
Let p′ be some vertex ofP other thanp. If (x, y) ∈ aff(X × Y), by manipulation of
sums we see thatx ∈ aff X andy ∈ aff Y. It follows that(p′,q) /∈ aff(P × (Q ª q)).
But (p′,q) ∈ P′, so

dim P′ > dim[ P × (Qª q)] ≥ dim P + dim Q− 1.

We now turn our attention to (5).

Lemma 3. Let P and Q be polytopes containing the origin as a vertex.

F̃O(P × Q) = {Fp ⊕ Fq | Fp ∈ F̃O(P), Fq ∈ F̃O(Q)}.

Proof. Let P′ denote(P×Q)ªO. Suppose we have facetsFp ∈ F̃O(P), Fq ∈ F̃O(Q).
We can write linear constraintsax ≥ 1 andby ≥ 1 that supportP′ in Fp and Fq,
respectively. The constraintax + by ≥ 1 supportsP′. The vertices ofP × Q that lie
on ax+ by = 1 are precisely the vertices ofFp ⊕ Fq. It is known (see, e.g., [23]) that
if aff P1 ∩ aff P2 = ∅ and P1 is not a translate ofP2, then dim(P1 ⊕ P2) = dim P1 +
dim P2+ 1.

Now suppose we have someF ∈ F̃O(P × Q). Let h denote affF . Every vertex of
P × Q in h must have at least one adjacent edgee intersectingF−, since otherwise
P × Q ⊂ F+. The other vertex ofe must beO, since otherwiseh is not a supporting
hyperplane for(P × Q)ªO. By Lemma 1 the vertices definingh must be of the form
(p,O) or (O,q) for p ∈ V(P), q ∈ V(Q). It follows that any basis (set ofd affinely
independent vertices)B definingh must have the form

B =
[

Bp O

O Bq

]
,

whereBp (resp.,Bq) is a basis of someFp ∈ F̃O(P) (resp.,Fq ∈ F̃O(Q)).

Since by change of coordinates we can assume without loss of generality that an
arbitrary vertex ofP × Q lies on the origin, (5) and hence Theorem 1 follows. From
Lemma 3 we also get a complete characterization of the facets of(P × Q)ª v since

F((P × Q)ª v) = {F ∈ F(P × Q) | v ∈ F+} ∪ F̃v(P × Q).
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3.2. Consequences

We now present some consequences of Theorem 1 for particular families of polytopes.
To construct families of polytopes hard for incremental convex hull algorithms, it suffices
to take products of families with large loss functions. In this subsection we present three
such families. Recall thatCd(n) denotes the cyclicd-polytope withn vertices.

Lemma 4. For even d, n ≥ d + 2, for any vertexv of Cd(n),

loss(v,Cd(n)) =
(

n− d/2− 2

n− d − 1

)
=
[

d(n− d)

(2n− d − 2)n

]
γ (n,d)

∈ 2(nd/2−1), d fixed.

Proof. Let the dimensiond = 2k for some positive integerk. Let v be a vertex of
P = Cd(n). It is known (see, e.g., [2, p. 102]) that each vertex of an even-dimensional
cyclic polytope is contained inγ (n−1,d−1) facets. SinceP is simplicial, gain(v, P) =
γ (n−1,d−1). SincePªv is full dimensional,fd−1(Pªv)− fd−1(P) = loss(v, P)−
gain(v, P). It follows that

loss(v, P) = fd−1(P ª v)− fd−1(P)+ gain(v, P)

= γ (n− 1,d)− γ (n,d)+ γ (n− 1,d − 1).

Substituting in the appropriate values ofγ (n,d) from (1) for odd and evend

loss(v, P) =
[

n− 1

k
− (n− k− 1)n

(n− 2k) k
+ 2n− 2k− 2

n− 2k

]
(n− k− 2)!

(n− 2k− 1)! (k− 1)!

= (n− k− 2)!

(n− 2k− 1)! (k− 1)!

A polytopeP is calledcenteredif for everyv ∈ V(P), P ª v contains the origin as
an interior point. We describe here a family of centered convex polygonsPn with integer
coordinates bounded byO(n2). This will allow us to construct a family of polytopes
with an asymptotic loss function similar to that of cyclic polytopes, but much better
numerical behavior. For oddn, choose points as follows:

xi = (n− 1)/2− i,
yi = 2x2

i − 3, i = 0, . . . ,n− 1.

If n is even, constructPn−1 and then add a vertex with coordinates(0,n2/2 − 2n).
Figure 1 illustratesP6. The reader can verify thatP5 is centered. SinceV(P5) ⊂ V(Pn)

for n > 5, Pn is centered forn ≥ 5.
The following lemma gives a general method for constructing families of polytopes

with large loss functions:

Lemma 5. Let P be a centered polytope. Let Q be a polytope with m facets containing
the origin in its interior. Letv = (p,O) be a vertex of P⊕ Q,

loss(v, P ⊕ Q) = loss(p, P) ·m.
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Fig. 1. P6.

Proof. Note that(P⊕Q)ª (p,O) = (Pª p)⊕Q. SinceP is centered, by Lemma 1
and polarity,ax+ by ≤ 1 defines a facet of(P ª p)⊕ Q iff ax ≤ 1 defines a facet of
P ª p andby≤ 1 defines a facet ofQ. Vertex(p,O) is infeasible forax+ by≤ 1 iff
p is infeasible forax ≤ 1.

For a polytopeP, let
⊕

k P denote thek-fold sum ofP with itself, i.e.,
⊕

1 P ≡ P,⊕
k P ≡ P⊕⊕k−1 P. Let Pn be a centered convex polygon withn vertices. Let5d(n)

denote
⊕

d/2 Pn.

Corollary 1. For even d, n ≥ 5, loss5d(n) = nd/2−1.

From Lemma 4 and Corollary 1, we have two families of polytopes with large loss
functions. Intuitively, our construction takes the

√
d-fold product of

√
d-polytopes from

these families. In order to have example polytopes in each sufficiently large dimension, a
slightly more complex construction is necessary. Following [3], for any even dimension
2d ≥ 4 definea = d√d e, b = bd/a c, c = d moda, andK2d(n) = Qb

2a(n)× Q2c(n)
whereQk(n) is either a cyclic polytopeCk(n) or a sum of polygons5k(n).

Theorem 2. For d ≥ 2 held fixed:

(a) s≡ sizeK2d(n) ∈ O(nd
√

d e); and
(b) dropK2d(n) ∈ Ä(sd/d√d e−1).

Proof. Letβ = dd/a e. We will make use of the fact thatβ ≤ a. By Lemma 1,K2d(n)
has2(nβ) vertices and2(na) facets. It follows that sizeK2d(n) ∈ 2(na). By Theorem 1,
dropK2d(n) ∈ Ä(nϕ(d)) where

ϕ(d) =
{
(a− 1)b if d moda = 0,
(a− 1)b+ (c− 1) otherwise,

= d − β
= a(d/a− β/a)
≥ a(d/a− 1).
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From this theorem we can see that incremental convex hull algorithms are strongly
superpolynomial in the worst case, irrespective of the insertion order used. Since these
same families have previously been shown to be hard for perturbation/triangulation and
for face lattice producing algorithms, it follows that no method consisting of running
several of the well-known methods in parallel will be output sensitive either.

An important class of polytopes for facet enumeration is the 0/1-polytopes, whose
vertices are a subset of{0,1}d. Because of their importance in combinatorial optimiza-
tion, a facet enumeration algorithm polynomial for 0/1-polytopes would be significant
result; unfortunately, incremental algorithms fail here also, at least from a theoreti-
cal point of view. We consider the equivalent case of polytopes whose vertices are a
subset of{+1,−1}d. Givenk-polytopeP and anl -polytopeQ, define thediagonal sum
P ¯ Q as

P ¯ Q ≡ conv({(x,−xk1
l ) | x ∈ P} ∪ {(y11

k, y) | y ∈ Q}).
The idea behind the diagonal sum (a construction due to Kortenkampet al. [20]) is that
P andQ are embedded in the two subspaces

− xk = xk+1 = · · · xk+l , (6a)

x1 = x2 = · · · = xk = xk+1, (6b)

where the subspace defined by (6a) intersects the subspace defined by (6b) exactly in the
point O. It turns out that this is equivalent in a very strong sense to the orthogonal sum
construction. Call two polytopeslinearly equivalentif there is a linear transformation
from one to the other.

Lemma 6. Let P and Q be polytopes containing the origin in their interior. R= P¯Q
is linearly equivalent to R′ = P′ ⊕ Q′, where P′ (resp., Q′) is linearly equivalent to P
(resp., Q).

Proof. Letk = dim P, l = dim Q andd = k+ l . Let L1 (L2, respectively) be the linear
subspace defined by (6a), ((6b), respectively). LetB1 denote a basis forL1 (i.e., a set of
k linearly independent vectors inL1). Let B2 be a basis forL2. Since dim(L1∪ L2) = d,
B = B1 ∪ B2 forms a basis forRd. The linear transformationB−1 transformsB to the
identity matrix I . Let R′ = RB−1 (i.e., the transformationB−1 applied toR). Since
L1∩ L2 = O, B1 andB2 are transformed to disjoint subsets (of rows) ofI , henceR′ has
the desired formP′ ⊕ Q′ (possibly after reordering coordinates). By construction,

V(R) = V(R′)B =
[
V(P′) O

O V(Q′)

] [
B1

B2

]
,[

X −xi,k

yi,1 Y

]
=
[
V(P′)B1

V(Q′)B2

]
,

whereX = V(P) andY = V(Q). It follows that, e.g.,P = P′ B̂1, whereB̂1 denotes the
first k columns ofB1.

In particular, it follows that Lemma 5 also holds with the⊕ operation replaced by
¯. Let Hd denote the hypercube with vertices{+1,−1}d. The reader can verify thatHd
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is centered ford ≥ 3. Define
⊙

k P analogously to
⊕

k P. For d = k2, defineU3d as
(
⊙

k H3)
k. Since loss(Hd) = 1, by Theorem 1 and Lemma 5 we have the following:

Theorem 3. Let d= k2 for some integer k:

(a) s≡ size(U3d) ∈ O(d
√

d) = O(2
√

d logd); and
(b) dropU3d ∈ Ä(2d) = Ä(s

√
d/ logd).

Since duality preserves the size of the face lattice,U3d has face lattice size 33d, hence
is also difficult for face lattice generating convex hull algorithms. In [3], the authors
observe that ifP has f̄ nonempty faces, then any triangulation of the boundary ofP
contains at least( f̄ −1)/2dim P maximal simplices. It follows that the familyU3d is also
difficult for algorithms based on triangulation and perturbation. By a construction similar
to the one in Theorem 2 we can obtain families with members in every sufficiently large
dimension with about the same behavior.

4. Conclusions

In a previous paper Aviset al. [3] showed that products of cyclic polytopes (and products
of sums of polygons) form a family hard for algorithms based on triangulation, perturba-
tion, and on computing the face lattice. Here we have extended their results to show they
are also hard for incremental algorithms, regardless of insertion order. We mention, in
closing, a minor extension of [3] with regard to algorithms that compute the face lattice.
Swart [25] suggested computing the “abbreviated face lattice” as follows. Rather than
recursively computing the entire face lattice, stop the recursion at the first simplicial
face (i.e., ak-face withk+ 1 vertices) encountered. While this avoids counterexamples
based on “large-dimensional” simplicial faces, any product ofd-polytopes will have no
simplicial faces of dimension larger thand. Thus the families given here are also hard
for convex hull algorithms that compute the abbreviated face lattice.

The question of the practical usefulness of the double description method is hardly
settled by the existence of families without good insertion orders. There have been many
practical success stories using this technique (see, e.g., [6] and [16]) and its simplicity
and “immunity” to degeneracy make it the method of choice for most implementors (see,
e.g., [1], [10], [14], and [26]). Nonetheless, the results of this paper show that rather than
searching for a universally good insertion order, a more fruitful approach for families
that defeat the usual heuristics (and pivoting) is to try and use knowledge about the
combinatorial structure of the family to compute a good insertion order. Remarkable
success in this vein has recently been reported by Dezaet al. [11].
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