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Abstract. A polytopeis the bounded intersection of a finite set of half-spaceR%f
Every polytope can also be represented as the convex hullZohits vertices (or extreme
points)V. Theconvex hulproblem is to convert from the vertex representation to the half-
space representation or (equivalently by geometric duality) vice versa. Given an ordering
v - - - vy Of the input vertices, after some initialization an incremental convex hull algorithm
constructs half-space descriptiohs_x - - - Hn Where; is the half-space description of
conv{v; - - - vj}. Let m; denote|; |, and letm denotem,. Let ¢(d) denoted/[ v/d ] — 1;

in this paper we give families of polytopes for whiah,_, € Q(m*@) for any ordering

of the input. We also give a family of/@-polytopes with a similar blowup in intermediate
size. Sincem,_; is not bounded by any polynomial im, n, andd, incremental convex

hull algorithms cannot in any reasonable sense be considered output sensitive. It turns out
that the same families of polytopes are also hard for the other main types of convex hull
algorithms known.

1. Introduction

A polytopeis the bounded intersection of a finite set of half-spac@ofA fundamental
theorem of convexity is that every polytope can be represented as the convex hull of its
extreme points or vertices. Converting from the vertex representation to the half-space
representation is callefdcet enumerationConverting from the half-space representa-
tion to the vertex representation is calleeitex enumeratiarSince these problems are
equivalent under point-hyperplane duality, where the distinction is unimportant we use
the termconvex hull problento refer to either or both problems.

The termoutput sensitivés used to describe algorithms with performance guarantees
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in terms of the output size as well as the input size. For problems such as the convex
hull problem, where the output size can range from exponential to logarithmic in the
input size, such a bound is highly desirable. Implicit in describing an algorithm as output
sensitive is that the dependence on the output size is “reasonable,” usually bounded by a
small polynomial. Here we accept any polynomial bound. Faidémensional polytope

(or d-polytop@ P with n vertices andn facets we define the summed input and output
size as siz® = (m+n)d. Itis an open problem whether there is a convex hull algorithm
polynomial in sizeP. In the rest of this paper we call such an algorithm polynomial,
where the dependence on sRés implicit.

The only known class of algorithms not previously known to be superpolynomial
[12], [3], or to have an NP-complete subproblem [15] are incremental algorithms based
on thedouble description methoof Motzkin et al. [22]. In this paper we show that any
incremental algorithm is superpolynomial in the worst case.

Geometric algorithms in high dimensions are sometimes analyzed under the assump-
tion that the number of input objects grows much faster than the dimedsiothis con-
text,d is considered a constant for the purposes of analysis. The algorithm of Chazelle [9]
has an upper bound @ (n'?%/2)) in each fixed dimensiod > 3 and is thus worst-case
optimal, up to factors that depend only @nWith d fixed, a satisfactory output-sensitive
time bound may b&((m + n)¢) for somec independent of the dimension (i.e., fac-
tors superpolynomial in the dimension may be acceptable). We show here that even this
weaker condition cannot be met by incremental algorithms.

Convex hull computations are one area where assumptions of general position or
nondegeneracy seem to make a great deal of difference to the tractability of the problem.
While vertex enumeration algorithms based on pivoting that are polynomial on simple
input have been known for over forty years (see [8], and refinements in, for example, [25],
[24], [4], and [7]), finding an algorithm polynomial for nonsimple (so-called degenerate)
input has proved a much more difficult undertaking. The (unmodified) pivoting method
searches all feasible bases (setd balf-spaces that define a vertex) of the polytope. In
general the number of feasible bases can be superpolynomial iR siteither of the
two well-known modifications—perturbation and recursion on the dimension—yields a
polynomial algorithm (see [3]).

Incremental algorithms are not necessarily affected by degeneracy, but have a fun-
damental weakness of their own. In an incremental facet enumeration algorithm, after
some initialization, we insert points one by one, maintaining the convex hull of the points
inserted so far at every step. A necessary condition for such algorithms to be polynomial
is that the size of each intermediate polytope be polynomial inRiZeturns out the
order the points are inserted can make a huge difference in the size of the intermedi-
ate polytopes. This is analogous to the simplex method of linear programming where a
family such as the Klee—Minty [19] cubes can be superpolynomial for one pivoting rule
but easily solvable using a different pivoting rule. Dyer [12] gave a family of polytopes
for which inserting the points in the order given yields superpolynomial intermediate
polytopes. Aviset al. [3] showed that several more sophisticated insertion orders used in
practice also produce superpolynomial intermediate polytopes in the worst case. In this
paper, we show that there are families for which there is no polynomial insertion order.
This may be contrasted with the situation of the simplex method, where the existence of
a polynomial pivoting rule remains an open problem.
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2. Preliminaries

In this section we introduce some notation and fundamental results from the theory of
convex polytopes that will be useful in the sequel. We also make precise our measures
of complexity.

Given a set of pointX = {X;---Xp}, a Combinationzi”:1 i X is calledaffineif
> Ai = 1. An affine combination is callecbnvexf every 4; is nonnegative. Theffine
hull aff X is the set of all affine combinations of, or equivalently the smallest affine
subspace containing. Thedimensiordim X is the dimension of afK. Theconvex hull
convX is the set of all convex combinations ¥f Point p is extremeor X if pis nota
convex combination oK\{ p}.

Where convenient, we treat sets of points and matrices interchangeably, where the
points correspond to rows of the matrix. We us@*) for a vector of all ones (of length
k) and O (OX) for a vector of all zeros (i.e., the origin).

A hyperplaneh supportsa polytopeP if hn P # @ and P is contained in one of
the closed half-spaces (tlsipporting half-spadeinduced byh. The facesof P are
@, P, and the intersection d? and a supporting hyperplane Bf Faces of dimension
k are calledk-faces; fx(P) denotes the number &ffaces of P. The namewertices
edges and facetsrefer to 0, 1, andd — 1)-faces, respectively. For a fac€t with
supporting hyperplanke, we write F* for the corresponding supporting half-space and
F~ for the other (open) half-space induced tnyThe face latticeof a polytope is the
poset of its faces partially ordered by inclusion. Polytopeend Q arecombinatorially
equivalent(resp.,dual) if their face lattices are isomorphic (respnti-isomorphici.e.,
isomorphic with the direction of inclusion reversed). For any poinb&ehepolar X*
of X is defined ady | Xy < 1}. It is known (see, e.g., [5]) that iP is a polytope
containing the origin in its interiol?* is a polytope dual td”, containing the origin in
its interior.

A family of polytopes is used here to mean an infinite set of polytopes. Usually, but
not necessarily, families arise in some natural way from a problem such as the Traveling
Salesman Problem [13], or a construction such as those described below. Given a family
of polytopesF, a functiong: 7 — R is calledpolynomialfor F if there exists some
univariate polynomialp(x) such that for every? € F, g(P) < p(sizeP). A function
g: F — Ris calledweakly polynomiafor F if there exists positive functiorf (x) and
polynomial p(x) such thavP e F, g(P) < f(dim P) - p(sizeP); this corresponds to
the notion of considering to be a constant. I§ is not (weakly) polynomial fotF we
say thatg is (strongly) superpolynomiafor F.

The convex hull of points on the moment cunat) = (t,t2, ..., t%) is called the
cyclic polytopeonn vertices, written here &34(n). Here we assume that thevertices
are {c(0), c(1),...,c(n — 1)}. Let y(n,d) denote the number of facets 6 (n). It
follows from “Gale’s evenness condition” [17], [18], [27] that:

n n—d/2 )
m<n—d)’ d even;
y(n,d) = D

2(” —@d+ 1)/2), d odd.
n—d
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The famous Upper Bound Theorem of McMullen [21] says thadfmlytope withn
vertices has more than(n, d) facets.

Avery useful construction for building new “more complicated” families of polytopes
from known families is theCartesian product of polytopesonstruction. LetP be a
subset ofR¥ and letQ be a subset oR'. Let P x Q, called theproductof P and Q,
denote{(p,q) | p € P, g € Q}. We regardR' x R as naturally embedded R,

The following lemma (whose proof we omit) summarizes the basic properties of the
construction:

Lemma l. Let P be ak-polytope and Q an |-polytope

(@) P x Qisa(k+I)-polytope

(b) Fori > j > 0,the i-faces of Px Q are precisely f x Fq where K is a j-face
of Pand Risan(i — j) face of Q

(c) P x Q has §(P) - fo(Q) vertices and f 1(P) + fi_1(Q) facets

For polytopesP ¢ R* andQ c R, we define therthogonal sum Rp Q as

P® Q= conv{(p,O") | pe P}U{(O )| qe Q.

Suppose® andQ arek andl polytopes, respectively, that contain the origin as an interior
point. By Lemma 1 and polarity, we know the defining half-space$fox Q* can be

written as
V(P) O
[ o V(Q)] x<1.

It follows that
P®Q=(P"x QM. 2

In particular, this means th& @ Q has fo(P) + fo(Q) vertices andfy_1(P) - fi_1(Q)
facets.

3. Polytopes Without Good Insertion Orders

In the most general sense, insertion orders are procedures to determine at each step of
an incremental algorithm, what input element should be processed next. In some cases,
such as lexicographic or random ordering, all of the choices can be made before the
input is processed. In other cases, such as the maxcutoff rule (where we choose the
next element which causes the largest drop in intermediate size), the insertion order is
inherently dynamic. In either case, for every input and for every insertion order there are
one or more possible permutations of the input generated. We will say tissagood
insertion order forF if the size of intermediate polytopes createdris polynomial for

F (obviously a much stronger bound is necessary for an insertion order to be “good” in
practice). A good insertion order does not by itself guarantee a polynomial algorithm:
in particular, the use of triangulation can still cause an incremental algorithm to be
superpolynomial (see [3]). On the other hand, a naive implementation of the double
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description method will be polynomial given a good insertion order. We show that there
are polytopes for which every permutation is bad; in fact we show the slightly stronger
result that every permutation is bad at the last step.

3.1. The Main Result

At each step of an incremental facet enumeration algorithm, we maintain (at minimum)
the vertex descriptio; and the half-space descripti@ty of the current intermediate
polytope (the “double description” of Motzkiet al. [22]). We are interested here in the

drop in the size of the half-space description caused by inserting the last vertex. This
is the same as the increase in the number of facets caused by removing one vertex of
a polytope and recomputing the convex hull of the remaining vertices. In the following
definitions, letP be ad-polytope and let be a vertex of. LetV(P) denote the vertices

of P. Let P © v denote con@(P)\{v}). Let 7(P) denote the facets d®, F,(P) the

facets ofP containingv, and Ietfv(P) be defined as follows:

F(P) = {{F eF(Pev)|lve F7} ifdm(Pov) =d,

v ~ |[{Pov)} otherwise.
We define los&, P) = |]7‘U(P)| as the number of half-spaces deleted by insertitast
(we make the notation simplifying assumption that in the case wheréeRlinv) =
dim(P) — 1, the affine hull of® © v is stored as two half-spaces). Similarly, we define
gain(v, P) = |F,(P)| as the number of half-spaces created by insertirigst. The
net drop in intermediate size is then d¢opP) = losgv, P) — gain(v, P). Finally
we define gaiGP) = max, gain(v, P), losgP) = min, losqv, P), and drogP) =
min, drop(v, P). drop(P) could be negative if there is a vertex whose removal decreases
the number of facets (as in, for example, a stacked polytope).

The lower bounds in this paper follow from using the product and sum of polytopes
constructions defined above. The central geometric observation is that while the number
of facets of the final polytope sums under the product of polytopes operation, the number
of intermediate facets multiplies. We call a polytopeaobustif dim(P & v) = dimP
for every vertexv of P.

Theorem 1. Let P and Q be polytopes with dimension at léa$® x Q is robust and
drop(P x Q) = losgP) - losq Q).
We prove Theorem 1 via several lemmas. Since @aiR) is honnegative, the fol-
lowing holds:
losgP) — gain(P) < drop(P) < losqP). 3)

Let P and Q be polytopes with dimension at least 2. Theorem 1 follows from the
following two facts:

gainP x Q) = 0, (4)
losgP x Q) = losgP) - losgQ). (5)
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We start with (4), which is equivalent to saying that every facgfok Q) is robust.
Since each facet @ x Q is the product of a facet d? (resp.,P) andQ (resp., a facet
of Q), this follows from the next lemma:

Lemma2. Let P and Q be polytopes wittimP > 1 anddimQ > 1. P x Q is
robust

Proof. Letv = (p, q) be avertex o x Q. Let P’ denote(P x Q) & v:

P’ =conv{(P & p) x QAU {P x (Qe q)}).

Ifdim(Qeq) = dim Q, thenthe lemma follows by Lemma 1. Otherwigez aff(Qoq).
Let p’ be some vertex oP other thanp. If (x,y) € aff(X x Y), by manipulation of
sums we see that € aff X andy € affY. It follows that(p’, q) ¢ aff(P x (Q © q)).
But (p’,q) € P/, so

dimP’ > dim[P x (Qoe q)] >dimP +dmQ — 1. O
We now turn our attention to (5).

Lemma 3. Let P and Q be polytopes containing the origin as a vertex

Fo(Px Q) ={Fp®Fy | Fp € Fo(P), Fy € Fo(Q)}.

Proof. LetP’denotg P x Q) © 0. Suppose we have facdts € ]7'(>(P), Fq € ]7"(>(Q).
We can write linear constrainsx > 1 andby > 1 that supportP’ in F, and Fy,
respectively. The constraiatx + by > 1 supportsP’. The vertices ofP x Q that lie
onax+ by = 1 are precisely the vertices &, @ Fy. It is known (see, e.g., [23]) that
if aff P, N aff P, = ¥ and P, is not a translate oP,, then dim(P, @ P,) = dimP; +
dim P, + 1. N

Now suppose we have sonkee F(P x Q). Let h denote aff~. Every vertex of
P x Q in h must have at least one adjacent eégatersectingF—, since otherwise
P x Q C F*. The other vertex oé must beO, since otherwisé is not a supporting
hyperplane fo(P x Q) & O. By Lemma 1 the vertices definirgmust be of the form
(p, O) or (O, q) for p € V(P), q € V(Q). It follows that any basis (set af affinely
independent verticed) definingh must have the form

_|B O
o= [7 =)
whereBy, (resp.,By) is a basis of som&, J?O(P) (resp.,Fq € ﬁ)(Q)). O

Since by change of coordinates we can assume without loss of generality that an
arbitrary vertex ofP x Q lies on the origin, (5) and hence Theorem 1 follows. From
Lemma 3 we also get a complete characterization of the facé® af Q) © v since

F(PxQov={FeFPxQ) |veF' UZ(P xQ).
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3.2. Consequences

We now present some consequences of Theorem 1 for particular families of polytopes.
To construct families of polytopes hard for incremental convex hull algorithms, it suffices
to take products of families with large loss functions. In this subsection we present three
such families. Recall thaZy(n) denotes the cyclid-polytope withn vertices.

Lemma4. Forevendn > d + 2,for any vertexv of Cy(n),

—d/2-2 din—d
losg(v, Cq(n)) = (nn_é_l > = [M

e 0¥z, d fixed

}y(n, d)

Proof. Let the dimensiord = 2k for some positive integek. Let v be a vertex of

P = Cq(n). Itis known (see, e.g., [2, p- 102]) that each vertex of an even-dimensional
cyclic polytope is contained ip(n—1, d — 1) facets. Sincé is simplicial, gairfv, P) =
y(n—1,d—1). SinceP o v is full dimensional,fy_1(P©v) — f4_1(P) = losqv, P) —
gain(v, P). It follows that

losqv, P) = fq_1(P ©v) — f4_1(P) + gain(v, P)
=ymn-1,d) —-yn,d)+yn-1d-1).
Substituting in the appropriate valuesyofn, d) from (1) for odd and eved
n-1 (n—k—l)n+2n—2k—2 (n—k—2)!
k (n—2k)k n—2k n—-2k—-1! (k- 1!
(n—k—-2)!

T n—2k—1! k-1 =

losqv, P)

A polytope P is calledcenteredf for everyv € V(P), P © v contains the origin as
an interior point. We describe here a family of centered convex polyBemsth integer
coordinates bounded b®(n?). This will allow us to construct a family of polytopes
with an asymptotic loss function similar to that of cyclic polytopes, but much better
numerical behavior. For odd, choose points as follows:

X =M-1/2-1,
yi = 2x? -3, i=0,...,n—1

If nis even, construcP,_; and then add a vertex with coordinatés n?/2 — 2n).
Figure 1 illustrated?s. The reader can verify th&; is centered. Sinc®(Ps) € V(Py)
forn > 5, P, is centered fon > 5.

The following lemma gives a general method for constructing families of polytopes
with large loss functions:

Lemmab5. Let P be acentered polytogest Q be a polytope with m facets containing
the origin in its interior Letv = (p, O) be a vertex of Rp Q,

losqv, P® Q) = losgp, P) - m.
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.

Fig. 1. Ps.

Proof. Note that(P® Q) o (p, O) = (P © p) ® Q. SinceP is centered, by Lemma 1
and polarityax + by < 1 defines a facet afP & p) & Q iff ax < 1 defines a facet of
P © p andby < 1 defines a facet o. Vertex(p, O) is infeasible forax + by < 1 iff
p is infeasible forax < 1. O

For a polytopeP, let @, P denote the&k-fold sum of P with itself, i.e.,p, P = P,
D P=Pah,_, P.LetP, be acentered convex polygon witlvertices. LefI4(n)
denoted, , Pn.

Corollary 1. Forevendn > 5, lossIlg(n) = n%2-1,

From Lemma 4 and Corollary 1, we have two families of polytopes with large loss
functions. Intuitively, our construction takes tk&-fold product of./d-polytopes from
these families. In order to have example polytopes in each sufficiently large dimension, a
slightly more complex construction is necessary. Following [3], for any even dimension
2d > 4 definea = [+/d1,b = [ d/a], c = d moda, andKz(n) = Q5,(N) x Qzc(N)
whereQ(n) is either a cyclic polytop€x(n) or a sum of polygon$li(n).

Theorem 2. Ford > 2 held fixed

(@) s = sizeK(n) € O(nv41); and
(b) dropKzg(n) € (s¥/1Vd1-1),

Proof. Letg = [d/a]. We will make use of the fact th@ < a. By Lemma 1 K4 (n)
has® (n®) vertices and (n?) facets. It follows that siz& 53 (n) € ®(n?). By Theorem 1,
dropKaog(n) € (n?@D) where

_ [@-1b if d moda =0,
p(d) = {(a—l)b—ir(C—l) otherwise,
=d-8
= a(d/a—ﬂ/a)

v

a(d/a—1). O
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From this theorem we can see that incremental convex hull algorithms are strongly
superpolynomial in the worst case, irrespective of the insertion order used. Since these
same families have previously been shown to be hard for perturbation/triangulation and
for face lattice producing algorithms, it follows that no method consisting of running
several of the well-known methods in parallel will be output sensitive either.

An important class of polytopes for facet enumeration is tfefiblytopes whose
vertices are a subset (0, 1}¢. Because of their importance in combinatorial optimiza-
tion, a facet enumeration algorithm polynomial forl@polytopes would be significant
result; unfortunately, incremental algorithms fail here also, at least from a theoreti-
cal point of view. We consider the equivalent case of polytopes whose vertices are a
subset of +1, —1}9. Givenk-polytopeP and an -polytopeQ, define thediagonal sum
PoQas

P Q=conv{(x, —x1") | x e PYU{(y11%,y) | y € Q).

The idea behind the diagonal sum (a construction due to Kortenkaadp[20]) is that
P andQ are embedded in the two subspaces

— Xk = Xkl = - - Xkl » (6a)

X1 =X =+ = X = X1, (6b)
where the subspace defined by (6a) intersects the subspace defined by (6b) exactly in the
point O. It turns out that this is equivalent in a very strong sense to the orthogonal sum
construction. Call two polytopdiearly equivalentf there is a linear transformation
from one to the other.

Lemma 6. LetP and Q be polytopes containing the originintheirinterR= PO Q
is linearly equivalentto R= P’ @ Q’, where P (resp, Q') is linearly equivalent to P

(resp, Q).

Proof. Letk =dimP,| =dimQandd = k+1. LetL; (Lo, respectively) be the linear
subspace defined by (6a), ((6b), respectively).Retienote a basis fdr; (i.e., a set of
k linearly independent vectors lny). Let B, be a basis fok,. Since dinfL; U L) =d,

B = B; U B, forms a basis foR9. The linear transformatioB~* transformsB to the
identity matrix1. Let R = RB™! (i.e., the transformatio8—! applied toR). Since
LiNLy, = O, B; andB; are transformed to disjoint subsets (of rows) pfienceR’ has
the desired fornP’ & Q' (possibly after reordering coordinates). By construction,

V(Py O 1[B
0 V@B
X =Xkl _ V(P)B;
yii Y | [V(Q)Bz)
whereX = V(P) andY = V(Q). It follows that, e.g.P = P’B;, whereB; denotes the
first k columns ofB;. O

V(R) = V(R)B

In particular, it follows that Lemma 5 also holds with tBeoperation replaced by
©. Let Hy denote the hypercube with vertices1, —1}9. The reader can verify thady
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is centered fod > 3. Define(®, P analogously tap, P. Ford = k?, defineUzq as
(O Hs)K. Since loséHy) = 1, by Theorem 1 and Lemma 5 we have the following:

Theorem 3. Let d = k? for some integer k

(@) s = sizeUy) € O(dV9) = O(2Ydlogdy: and
(b) dropUsg € 2(29) = Q(sVd/109d),

Since duality preserves the size of the face lattitg, has face lattice size’3, hence

is also difficult for face lattice generating convex hull algorithms. In [3], the authors
observe that ifP has f nonempty faces, then any triangulation of the boundarf of
contains at leagtf — 1)/2%™P maximal simplices. It follows that the familys is also
difficult for algorithms based on triangulation and perturbation. By a construction similar
to the one in Theorem 2 we can obtain families with members in every sufficiently large
dimension with about the same behavior.

4. Conclusions

In a previous paper Aviet al. [3] showed that products of cyclic polytopes (and products
of sums of polygons) form a family hard for algorithms based on triangulation, perturba-
tion, and on computing the face lattice. Here we have extended their results to show they
are also hard for incremental algorithms, regardless of insertion order. We mention, in
closing, a minor extension of [3] with regard to algorithms that compute the face lattice.
Swart [25] suggested computing the “abbreviated face lattice” as follows. Rather than
recursively computing the entire face lattice, stop the recursion at the first simplicial
face (i.e., &-face withk + 1 vertices) encountered. While this avoids counterexamples
based on “large-dimensional” simplicial faces, any produd-pblytopes will have no
simplicial faces of dimension larger than Thus the families given here are also hard
for convex hull algorithms that compute the abbreviated face lattice.

The question of the practical usefulness of the double description method is hardly
settled by the existence of families without good insertion orders. There have been many
practical success stories using this technique (see, e.g., [6] and [16]) and its simplicity
and “immunity” to degeneracy make it the method of choice for mostimplementors (see,
e.g., [1], [10], [14], and [26]). Nonetheless, the results of this paper show that rather than
searching for a universally good insertion order, a more fruitful approach for families
that defeat the usual heuristics (and pivoting) is to try and use knowledge about the
combinatorial structure of the family to compute a good insertion order. Remarkable
success in this vein has recently been reported by Beah[11].
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