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Abstract. We study the problem of approximating a rotation of the plane,α: R2→ R2,
α(x, y) = (x cosθ + y sinθ, y cosθ − x sinθ), by a bijectionβ: Z2 → Z2. We
show by an explicit construction thatβ may be chosen so that supz∈Z2|α(z) − β(z)| ≤
(1/
√

2)((1+ r )/
√

1+ r 2), wherer = tan(θ/2). The scheme is based on those invented
and patented by the second author in 1994.

1. Introduction

We study the problem of approximating planar rotations (about the origin)

α: R2→ R2, α(0,0) = (0,0),
by 1–1,ontomappings

β: Z2→ Z2,

of the integer latticeZ2 = {(x, y) ∈ R2|x, y ∈ Z}. β is said to approximateα with error

e(β, α) = sup
z∈Z2

{|β(z)− α(z)|}.

A scheme Sassociates aβ to everyα. That is, if K is the space of rotations andL is
the space of 1–1, onto lattice maps, then

S: K → L .

The error of a schemeS is

ES = sup
α∈K
{e(S(α), α)}.

We seek schemesSwhose errorES is as low as possible.
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In Section 4 we define a schemeT and prove

ET ≤
√

2+√2

2
≈ 0.924. (1)

Numerical investigations (see Section 5) indicate that this is actually an equality

ET =
√

2+√2

2
.

The estimate in (1) is a special case of our main theorem (Section 4). Our main theorem
gives the error bound for rotation by an angleθ (0≤ θ ≤ π/4) for the T-Scheme to be

1√
2

1+ r√
1+ r 2

,

wherer = tan(θ/2). For some angles our T-Scheme is not optimal—this is also discussed
in Section 5.

In Section 5 we prove that, for every schemeS,

ES ≥ 2+√2

4
≈ 0.853.

The authors are grateful to R. Stong for the idea behind Theorem 5.5. We also study the
lower bound as a function of the rotation angle.

We would also like to thank the referee for noting that the “irrational case” could be
incorporated into the “rational case” at the theory level. Numerically the cases differ.

All the schemes in this paper are modifications of the schemes invented and patented
by the second author in 1994 [T]. We refer the reader to [T] for an extensive discussion
of the importance of rotation schemes in image processing.

2. Notation

Let JR = [0, π/4] andI R = [0,
√

2−1]. The schemes defined in this paper are defined
for anglesθ ∈ JR. Such angles enjoy many nice properties. In particular, if tan(θ/2) = r ,
then we have sinθ = 2r /(1+ r 2) and cosθ = (1− r 2)/(1+ r 2). Note that tan(θ/2)
mapsJR 1–1, ontoI R and that, without loss of generality, it suffices to consider angles
in JR. Forr ∈ I R,

αr := rotation by the angle 2 tan−1 r .

Remark 2.1. We work in pixel coordinates (in particular,y increases as it goes down).

Remark 2.2. The blocks defined belowdo contain their left and upper edges, butnot
their right or lower edges (except in degenerate cases).

Remark 2.3. [x] := Floor(x) := x − x mod 1 (i.e., the greatest integer less than or
equal tox). Note thatx − 1< [x] ≤ x < [x] + 1.
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Fig. 1. P andP′ arrays form/n = 1/7.

3. TheP Array

A block is a rectangleB(x, y, w, h) in the plane with the upper left corner at(x, y),
with width w and heighth. We tile the plane into an arrayP of blocks B(x, y, w, h)
described below. The arrayP is transformed, block by block, to a new arrayP′ of blocks
B′(x′, y′, w′, h′).

Assume that tan(θ/2) = r ∈ I R. Let R = 1/r . The idea is thatP will give a tiling
which is tilted by about an angle−θ/2 andP′ will tilt by roughly θ/2 (see Figs. 1 and 2).
The blocks in the arrays are labeled by integersa andb. The location of any block in the
arrayP can be determined as follows: the upper left corner of any blockB(a,b) (where
a+ b is even) has anx-coordinatex`(a,b) and ay-coordinateyu(a,b) given by

x`(a,b) =
[

aR− b+ ζ
2

]
,

yu(a,b) =
[

a+ bR+ η
2

]
.

Fig. 2. P andP′ arrays form/n = 2/5.
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The choice ofζ andη is central to optimizing the scheme (see Section 5). In [T] the
choice wasζ = 0 andη = 1/m (wheneverr = m/n). For our T-Scheme we choose

ζ = 3− R

2
, η = 3− R

2
.

The size of the blockB(a,b) is defined by determining the location of the lower and
right sides. The lower and right sides have the samex- andy-coordinates as the adjoining
sides of the contiguous blocks. Thex-coordinate of the right sidexr (a,b) is

xr (a,b) = x`(a+ 1,b− 1) =
[

aR− b+ R+ 1+ ζ
2

]
and they-coordinate of the lower sidey`(a,b) is

y`(a,b) = yu(a+ 1,b+ 1) =
[

a+ bR+ 1+ R+ η
2

]
.

The bounds of the blocks havinga + b odd are determined from the four blocks that
surround it according to the following:

x`(a,b) = xr (a− 1,b) =
[

aR− b+ 1+ ζ
2

]
,

yu(a,b) = y`(a,b− 1) =
[

a+ bR+ 1+ η
2

]
,

xr (a,b) = x`(a+ 1,b) =
[

aR− b+ R+ ζ
2

]
,

y`(a,b) = yu(a,b+ 1) =
[

a+ bR+ R+ η
2

]
.

Finally we have

w = xr − x`,

h = y` − yu.

Lemma 3.1. Every point in R2 is in at most one block.

Proof. This is a result of the following implications.

A ≥ a+ 1, B ≤ b ⇒ xr (a,b) ≤ x`(A, B),

A ≥ a, B ≥ b+ 1 ⇒ y`(a,b) ≤ yu(A, B),

A ≤ a− 1, B ≥ b ⇒ xr (A, B) ≤ x`(a,b),

A ≤ a, B ≤ b− 1 ⇒ y`(A, B) ≤ yu(a,b).

Lemma 3.2. Every point in R2 is in some block.
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Proof. Let

Row(b̄) :=
⋃

−∞<a<∞
B(a, b̄).

xr (a, b̄) = x`(a+ 1, b̄) implies that, for allx ∈ R,

x`(a, b̄) ≤ x < xr (a, b̄) (2)

for some uniquea ∈ Z.
Define (x, y) to be “below” (resp. “above”)Row(b̄) if y ≥ y`(a, b̄) (resp. y <

yu(a, b̄)), wherea satisfies 2. Note that every point inRow(b̄) is “above” every point
in Row(b̄+ 1). Thus, if(x, y) is in no block, there must exist āb with (x, y) “below”
Row(b̄) and “above”Row(b̄+ 1). This means that for somea anda′ we have

x`(a, b̄) ≤ x < xr (a, b̄), y ≥ y`(a, b̄),

and

x`(a
′, b̄+ 1) ≤ x < xr (a

′, b̄+ 1), y < y`(a
′, b̄+ 1).

Now assumea + b is even. SinceA ≤ a − 1 implies xr (A, b̄ + 1) ≤ x`(a, b̄) and
A ≥ a + 2 impliesx`(A, b̄+ 1) ≥ xr (a, b̄) we see that eithera′ = a or a′ = a + 1.
However,yu(a, b̄+ 1) = y`(a, b̄) andyu(a+ 1, b̄+ 1) = y`(a, b̄). In both cases this is
a contradiction. The casea+ b odd is similar.

4. The T-Scheme

Having calculated the position and size of the blocksB(x, y, w, h), the next step is to
calculate the position to which the blocks are to be moved. The blocks in the new array
are specified byB′(x′, y′, w′, h′).

x′ =
{

[(aR+ b+ ζ ′)/2] if a+ b is even,
[(aR+ b+ 1+ ζ ′)/2] if a+ b is odd,

y′ =
{

[(−a+ bR+ η′)/2] if a+ b is even,
[(−a+ bR+ 1+ η′)/2] if a+ b is odd,

w′ = w, h′ = h.

For our T-Scheme we chooseζ ′ = ζ andη′ = η.
Given r ∈ I R the transformation ofP into P′ defines a mapT(αr ) as follows: by

Lemmas 3.1 and 3.2 we have that every pointz= (x, y) ∈ Z2 is (uniquely) of the form

x = x`(a,b)+ u,

y = yu(a,b)+ v,
with 0≤ u < w(a,b) and 0≤ v < h(a,b).

T(αr )(x, y) := (x′, y′),
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where

x′ = x′`(a,b)+ u,

y′ = y′u(a,b)+ v.

Lemma 4.1. For all r ∈ I R, T(αr ) is 1–1.

Proof. We compute that

x′r (a,b) =
{

x′`(a+ 1,b+ 1) = [(aR+ b+ R+ 1+ ζ )/2] if a+ b is even,
x′`(a+ 1,b) = [(aR+ b+ R+ ζ )/2] if a+ b is odd,

y′`(a,b) =
{

y′u(a− 1,b+ 1) = [(−a+ bR+ 1+ R+ η)/2] if a+ b is even,
y′u(a,b+ 1) = [(−a+ bR+ R+ η)/2] if a+ b is odd.

Note thatw′ = x′r − x′` andh′ = y′` − y′u. Every point inR2 is in at most one block of
the P′ array (the proof is similar to the proof of Lemma 3.1). It follows that no blocks
of P′ overlap. Within each block the map is 1–1 by definition.

Lemma 4.2. For all r ∈ I R, T(αr ) is onto.

Proof. Every point inR2 is in some block of theP′ array (the proof is similar to the
proof of Lemma 3.2). Clearly, every block ofP′ is in the image ofT(αr ).

Theorem 4.3. For all r ∈ I R, e(T(αr ), αr ) ≤ (1/
√

2)((1+ r )/
√

1+ r 2).

Proof. Let r ∈ I R andz= (x, y). First assume that for somea+ b even we have

x = x`(a,b)+ u,

y = yu(a,b)+ v,
i.e.,

x =
[

aR− b+ ζ
2

]
+ u,

y =
[

a+ bR+ η
2

]
+ v.

We want to estimate the distance between(x′, y′) and(x′′, y′′) := αr (x, y). Recall

x′ = x′`(a,b)+ u,

y′ = y′u(a,b)+ v,
i.e.,

x′ =
[

aR+ b+ ζ
2

]
+ u,

y′ =
[−a+ bR+ η

2

]
+ v.
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Also note thatαr is given by

x′′ = x cosθ + y sinθ,

y′′ = −x sinθ + y cosθ,

where cosθ = (1− r 2)/(1+ r 2) and sinθ = 2r /(1+ r 2). The component errors in the
rotation are1x = x′ − x′′ and1y = y′ − y′′. So

1x =
[

aR+ b+ ζ
2

]
+ u− cosθ

([
aR− b+ ζ

2

]
+ u

)
− sinθ

([
a+ bR+ η

2

]
+ v

)
,

1y =
[−a+ bR+ η

2

]
+ v + sinθ

([
aR− b+ ζ

2

]
+ u

)
− cosθ

([
a+ bR+ η

2

]
+ v

)
.

We defineδ andγ by [
aR− b+ ζ

2

]
= aR− b+ ζ

2
− δ,[

a+ bR+ η
2

]
= a+ bR+ η

2
− γ.

Note that [
aR+ b+ ζ

2

]
= aR+ b+ ζ

2
− δ,[−a+ bR+ η

2

]
= −a+ bR+ η

2
− γ.

Using this and the identities

aR+ b

2
= cosθ

(
aR− b

2

)
+ sinθ

(
a+ bR

2

)
,

−a+ bR

2
= − sinθ

(
aR− b

2

)
+ cosθ

(
a+ bR

2

)
,

we find

1x = ζ

2
− δ + u− cosθ

(
ζ

2
− δ + u

)
− sinθ

(
η

2
− γ + v

)
,

1y = η

2
− γ + v + sinθ

(
ζ

2
− δ + u

)
− cosθ

(
η

2
− γ + v

)
,

or

1x = (1− cosθ)

(
ζ

2
− δ + u

)
− sinθ

(
η

2
− γ + v

)
,

1y = sinθ

(
ζ

2
− δ + u

)
+ (1− cosθ)

(
η

2
− γ + v

)
.
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So

1x2+1y2 = ((1− cosθ)2+ sin2 θ)

((
ζ

2
− δ + u

)2

+
(
η

2
− γ + v

)2)
,

= 2(1− cosθ)

((
ζ

2
− δ + u

)2

+
(
η

2
− γ + v

)2)
,

= 4r 2

1+ r 2

((
ζ

2
− δ + u

)2

+
(
η

2
− γ + v

)2)
.

Now, ζ/2= (3− R)/4, 0≤ δ < 1 and 0≤ u ≤ w − 1= xr − x` − 1, so

3− R

4
− 1≤ ζ

2
+ u− δ ≤ 3− R

4
+ R+ 1

2
− 1,

or

−1+ R

4
≤ ζ

2
+ u− δ ≤ 1+ R

4
.

Similarly, ∣∣∣∣η2 − γ + v
∣∣∣∣ ≤ 1+ R

4
.

Thus we have

1x2+1y2 = 4r 2

1+ r 2

(
2

(
R+ 1

4

)2)
,

= 1

2

(1+ r )2

1+ r 2
.

So √
1x2+1y2 ≤ 1√

2

1+ r√
1+ r 2

.

The (easier) case wherea+ b is odd is similar.

5. Numerical Investigations

5.1. Periodicity

Note that ifr is rational withr = m/n, thenP is periodic in the following sense:

x`(a+ 2m,b) = x`(a,b)+ n,

yu(a+ 2m,b) = yu(a,b)+m,

x`(a,b+ 2m) = x`(a,b)−m,

yu(a,b+ 2m) = yu(a,b)+ n.

The 4m2 blocks given, as we vary froma to a + 2m and fromb to b + 2m, form
a fundamental domainF . There arem2 + n2 “pixels” in each fundamental domain.
When computationally studying the rational case, it suffices to restrict consideration to
a fundamental domain.
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Fig. 3. Modified T-Scheme.

5.2. Improvements

The T-Scheme described in this paper was chosen for ease of exposition and is not
optimal. It can happen that the choice

ζ = ζ ′ = η = η′ = 3− R

2

is not the best one. In particular, sometimes the choice

ζ = 5− R

2
, ζ ′ = 1− R

2
, η = 3− 3R

2
, η′ = 3− 3R

2

is better (and sometimes it is worse). We define the Modified T-Scheme by choosing the
better of these two choices (we suspect there is never a better choice). We do not make
any theoretical claims concerning this improvement. (Theorem 4.3 is unchanged.) In
Fig. 3 we show the error bound given by Theorem 4.3 and also the actual errors (using
the Modified T-Scheme) for a sample of angles.

5.3. Lower Bounds for “Rational” Angles

Proposition 5.1. For all S, ES > 0.787.In fact, for all β, e(β, α√2−1) > 0.787.

Proof. Assume not. Sayβ approximates rotation byπ/4 with error less than 0.787.β
must send the point(0,0) to (0,0). The point(1,0) gets sent into some square andβ
must send it to a corner of this square which (i) is not already in the image ofβ and (ii) is
within a distance 0.787 of the image point. Now the point(1,1) likewise, etc. This forms
a simple tree of possibilities which can be checked until a contradiction is obtained. We
did this for some selected angles (see Fig. 4). The maximum we found (via a deeper
search than shown in Fig. 4) was 0.787 at “π/4.”
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Fig. 4. Lower bounds for “rational” angles.

Remark 5.2. Note that the graphs indicate that the Modified T-Scheme is not optimal.
The program actually constructs candidates for betterβ ’s; we hope to investigate these
in the future. In the simplest case,2

7, we have found the computer’s candidate and have
checked that it is indeed better.

Remark 5.3. To emphasize the simplicity of the program, we give the code (without
declarations):

main(){t=M˙PI˙4; st=sin(t); ct=cos(t);s=0.787;s2=s*s;check(0,0);}

void check(int i,int j){if(i==0){in=j+1;jn=0;}

else{if(i<=j){in=i-1;jn=j;}else{in=i;jn=j+1;}}di=(double)i;dj=(double)j;

x=ct*di+st*dj;y=-st*di+ct*dj;fx=floor(x);fy=floor(y);

u0=x-fx;v0=y-fy;u1=1.-u0;v1=1.-v0;u02=u0*u0;v02=v0*v0;u12=u1*u1;v12=v1*v1;

m=(int)fx; n=(int)fy;m0=m+1000;m1=m0+1;n0=n+1000;n1=n0+1;

if(a[m0][n0]==0){if(u02+v02<s2){a[m0][n0]=1;check(in,jn);a[m0][n0]=0;}}

if(a[m1][n0]==0){if(u12+v02<s2){a[m1][n0]=1;check(in,jn);a[m1][n0]=0;}}

if(a[m0][n1]==0){if(u02+v12<s2){a[m0][n1]=1;check(in,jn);a[m0][n1]=0;}}

if(a[m1][n1]==0){if(u12+v12<s2){a[m1][n1]=1;check(in,jn);a[m1][n1]=0;}}}

5.4. Lower Bounds for “Irrational” Angles

As indicated by Fig. 4 and by experience, the “worst” case seems to occur atπ/4.

Example 5.4. (Due to Richard Stong.) Suppose we are trying to approximate a rotation
x → a(x) by an angle ofπ/4 by a bijection. There will be some point x= (n,0) such
that a(x) = (n/√2,n/

√
2) is very close to(m+ 0.5,m+ 0.5). Therefore, the images

of the four points(n,−1), (n,1), (n − 1,0), and (n + 1,0) will be approximately at
(m+ 0.5+√2/2,m+ 0.5+√2/2), (m+ 0.5−√2/2,m+ 0.5+√2/2), (m+ 0.5−√

2/2,m+ 0.5−√2/2), and(m+ 0.5+√2/2,m+ 0.5−√2/2). The images of these
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five points will all be reasonably close to the four lattice points which are vertices of the
unit square containing(m+ 0.5,m+ 0.5). However, the approximating bijection must
pair one of these five points to a point not on that square. Up to symmetry it does not
matter which, and we see that one of the five images must be moved a distance D which
approximately satisfies

D2 = 7− 4
√

2

2
.

Hence D is about0.819.

By generalizing this example we have

Theorem 5.5. For all S, ES ≥ (2+
√

2)/4≈ 0.853.In fact, for all β, e(β, α√2−1) ≥
(2+√2)/4.

Proof. Continue using the previous example and consider all the image points which lie
within the square with corners given by the image points(m+0.5+e(

√
2/2),m+0.5+

e(
√

2/2)), (m+ 0.5− e(
√

2/2),m+ 0.5+ e(
√

2/2)), (m+ 0.5− e(
√

2/2),m+ 0.5−
e(
√

2/2)), and(m+0.5+e(
√

2/2),m+0.5−e(
√

2/2)). The example is the case where
e= 1. There arebe = 2e2+2e+1 such image points. Letεe = ((

√
2/2)+e) mod

√
2,

se =
√

2(e− εe), andre = 1− (√2/2)εe. Clearly thebe open balls of radiusre around
the image points cover at mostce = (se+ 1)2 pixels. We consider only the cases where
be− ce = 1. A simple calculation shows that this occurs if and only if(

√
2/2)+ e− εe

is an integer multiple of
√

2 andεe =
√

2/2+ e−√e2+ e.
To prove that infinitely manye’s exist withbe− ce = 1 we use Theon of Smyrna’s

(AD 130) sequence of ratios approximating
√

2, called “side-and-diagonal numbers”:

d1/s1 = 1/1,3/2,7/5,17/12, . . . ,dn/sn, . . .

with sn+1 = sn + dn and dn+1 = 2sn + dn. In particular for alln, s2n is even and
d2

2n = 1+ 2s2
2n. Now leten = (d2n − 1)/2 and letεn =

√
2/2+ en−

√
e2

n + en. A short
calculation shows that

√
2/2+ en − εn is an integer multiple of

√
2.

Note that limn→∞ rn = (2+
√

2)/4 as required.

For “irrational” angles some pixel is sent infinitesimally close to the center of a square.
Modifying the computer program of Section 5.3 accordingly, we obtain Fig. 5 which
shows lower bounds for irrationals infinitesimally close to the rationals calculated by the
computer.

6. Open Problems

• What isM := infS{ES} whereS ranges over all schemes? (We have proven that

0.853< (2+√2)/4≤ M ≤
√
(2+√2)/4< 0.924.)

• Does there exist a scheme (or set of schemes)S∗ with ES∗ = M? Can it (or they)
be described explicitly?
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Fig. 5. Lower bounds for “irrational” angles.

• More generally, what is the functionM(α) := infβ∈L{e(β, α)}? (We have proven
thatLower(αr) < M(αr) ≤ (1/

√
2)((1+ r)/

√
1+ r2), whereLower is the lower

graph in Fig. 4 (Fig. 5 for “irrationals”), which we have only checked for some
selected angles.)
• What happens if the approximations are not required to be 1–1? Onto? If approx-

imations are not required to be 1–1 nor onto, then clearly the “nearest neighbor”
scheme is theoretically optimal, although it may be cpu intensive.
• What happens if the goodness of a scheme is measured by how well it does “on

the average” as opposed to “in the worst case” as we have here?
• Richard Stong observed, using Hall’s Marriage Theorem, that a scheme that works

is obtained unless a configuration as above, where the rotates ofk points are within
r of only a total ofk−1 points, is found. This condition certainly seems to simplify
the problem, but we cannot yet prove which “clusters” are optimal nor which angles
are “worst.”
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