

A Helly Type Conjecture*

M. Katchalski and D. Nashtir

Mathematics, Technion, Haifa 32000, Israel meirk@techunix.technion.ac.il

Abstract. A family of sets is Π^n , or *n*-pierceable, if there exists a set of *n* points such that each member of the family contains at least one of them. It is Π^n_k if every subfamily of size *k* or less is Π^n . Helly's theorem is one of the fundamental results in Combinatorial Geometry. It asserts, in the special case of finite families of convex sets in the plane, that Π^1_3 implies Π^1 . However, there is no *k* such that Π^2_k implies 2-pierceability for all finite families of convex sets in the plane. It is therefore natural to propose the following:

Conjecture. There exists a k_0 such that, for all planar finite families of convex sets, $\Pi_{k_0}^2$ implies Π^3 .

Proofs of this conjecture for restricted families of convex sets are discussed.

1. Introduction

A family of sets is Π^n , or *n*-pierceable if there exists a set of *n* points such that each member of the family contains at least one of them. It is Π^n_k if every subfamily of size *k* or less is Π^n .

Helly's theorem is one of the fundamental results in Combinatorial Geometry. It asserts that for finite families of convex sets in the plane Π_3^1 implies Π^1 . Consult the excellent surveys [3] and [4] for references to Helly's theorem and its many relatives and applications.

Does Π_k^2 imply Π^2 for finite planar families of convex sets? For rectangles, with sides parallel to the axis, Π_5^2 implies Π^2 , see [2], and for homothetic triangles Π_9^2 implies Π^2 , see [8] and [9]. However, even for translates of a symmetric convex hexagon there is no k_0 such that $\Pi_{k_0}^2$ implies Π^2 , see [8] and [9]. It seems natural to propose the following:

^{*} The research by the first author was supported by Technion VPR Fund, E. and J. Bishop Research Fund, and by the Fund for Promotion of Research at the Technion.

Fig. 1. Π_5^2 does not imply Π^3 .

Conjecture 1. There exists a k_0 such that, for all finite planar families of convex sets, $\Pi_{k_0}^2$ implies Π^3 .

Figure 1 shows that Π_5^2 does not imply Π^3 even for planar families of ten convex sets. This counterexample consists of a hexagon *h*, three segments s_1 , s_2 , s_3 , three strips b_1 , b_2 , b_3 , and three lines l_1 , l_2 , l_3 .

The existence of an integer m_0 such that Π_5^2 implies Π^{m_0} follows from a recent result of Alon and Kleitman [1]. They settled a conjecture of Debrunner and Hadwiger and proved, among other things, the existence of an integer m_0 such that every finite planar family of convex sets is Π^{m_0} provided it has the property that every five membered subfamily contains three members with nonempty intersection. (However, m_0 is of the order 10³.) Note that Π_4^2 does not imply Π^s for every finite planar family of convex sets, no matter how large *s* is: consider families of 2s + 1 segments such that any two intersect but no three intersect.

Here we prove Conjecture 1 for certain planar families of convex sets. First, some terminology:

Let x^- and x^+ denote half-planes bounded by the line x with $x^+ \cap x^- = x$.

Two half-planes are *related* if one of them is a translate of the other. Related halfplanes are ordered by inclusion so that $x^+ < y^+$ implies that x^+ is contained in y^+ and $x^+ \neq y^+$.

A half-plane x^+ (x^-) supports a set *C* if it contains it and $x \cap C \neq \emptyset$.

Let $x^+(C)$ denote the half-plane related to x^+ that supports C.

The convex polygon A is *related* to the convex *m*-gon $K = \bigcap_{i=1}^{m} k_i^+$, where k_1^+, \ldots, k_m^+ are the *m* half-planes whose intersection is equal to K, if A is the intersection of half-planes a_1^+, \ldots, a_l , each of which is a translate of one of the k_i^+ 's. The family A is *related* to K if each $A \in A$ is related to K. See Fig. 2 for seven convex polygons related to a quadrilateral satisfying Π_4^2 but not Π^3 . Note that the concept "related" was introduced and used by Grünbaum.

For a family of sets \mathcal{F} and a set s let $\overline{\mathcal{F}}(s) = \{F \in \mathcal{F} : F \cap s = \emptyset\}$ and for a point x let $\overline{\mathcal{F}}(x) = \overline{\mathcal{F}}(\{x\})$.

Fig. 2. $\Pi_4^2 \not\Rightarrow \Pi^3$ for a family related to a quadrilateral.

Finally, a family of triangles is *special* if there is a fixed angle α such that every triangle of the family contains an angle which is a translate of α .

The next three theorems from [10] support Conjecture 1:

Theorem 1. Π^2_{13n} implies Π^3 for every finite planar family related to a convex n-gon.

The proof is very technical and appears in [10], here we prove two related results.

Theorem 2. Π_8^2 implies Π^4 for planar special families of triangles.

Theorem 3. Π_{10}^2 implies Π^3 for planar families related to a convex quadrilateral.

2. Proofs

Proof of Theorem 2. The proof relies on a theorem of Tardos on 2-intervals, see [11]. A 2-interval is a set which is the union of an interval on e and an interval on f where e and f are two fixed nonintersecting straight lines.

Tardos's Theorem. If \mathcal{F} is a family of 2-intervals and \mathcal{F} does not contain k + 1 pairwise disjoint members, then \mathcal{F} is Π^{2k} .

Tardos's theorem improves earlier results of Gyárfás and Lehel [6], and has been generalized to *m*-intervals, $m \ge 3$, by Kaiser [7]. (However, Kaiser's result is not best posible whereas Tardos's result is.) Our theorem uses Tardos's theorem only for the case k = 2.

Assume without loss of generality that \mathcal{A} is finite, since all members of \mathcal{A} are compact. Let $\mathcal{A} = \{A_i = h_i^+ \cap v_i^+ \cap d_i^+ : i \in [n] = \{1, 2, ..., n\}\}$ with $h_i^+ \cap v_i^+$ a translate of the

Fig. 3. The minimal half-planes h^+ and v^+ support triangles A_1 and A_2 , respectively.

fixed angle α , for $i \in [n]$, with $H = \{h_i^+ : i \in [n]\}$ and $V = \{v_i^+ : i \in [n]\}$ being two families of related half-planes with $h^+ = \min H$ and $v^+ = \min V$.

Assume without loss of generality that $h^+ = h_1^+$ and $v^+ = v_2^+$ and let $p = h \cap v$, see Fig. 3.

It is easy to see that, for $A \in \mathcal{A}$:

- 1. If $x \in h^+ \cap A(x \in v^+ \cap A)$ and if x' is the projection of x on h (on v) along a translate of v (of h), then x' pierces A.
- 2. If $A \cap h^+ \cap v^+ \neq \emptyset$, then $p \in A$. Note that 2 follows from 1.

If $\overline{\mathcal{A}}(p) = \{A \in \mathcal{A} : p \notin A\}$ is Π^1 , then \mathcal{A} is Π^2 , so assume that $\overline{\mathcal{A}}(p)$ is not Π^1 and apply Helly's theorem to obtain a subfamily $\mathcal{C} \subset \overline{\mathcal{A}}(p)$ with $|\mathcal{C}| \leq 3$ and $\cap \mathcal{C} = \emptyset$. Let $R_h = h \setminus v^+$ and $R_v = v \setminus h^+$ and let $\mathcal{A}' = \{A \cap (R_v \cup R_h) : A \in \mathcal{A}\}$. See Fig. 4.

 \mathcal{A}' is a family of 2-intervals since R_h and R_v are disjoint. By the Tardos theorem it suffices to prove that \mathcal{A}' does not contain three pairwise disjoint 2-intervals.

Assume otherwise that $\mathcal{D}' \subset \mathcal{A}'$ is a subfamily of three pairwise disjoint 2-intervals and let $\mathcal{D} = \{A \in \mathcal{A} : A' \in \mathcal{D}'\}$. The subfamily $\mathcal{T} = \mathcal{D} \cup \mathcal{C} \cup \{A_1, A_2\}$ is Π^2 since $|\mathcal{T}| \leq 3 + 3 + 2 = 8$.

Let {*X*, *Y*} pierce \mathcal{T} . If one of the two points pierces {*A*₁, *A*₂}, then it is in $h^+ \cap v^+$. So assume without loss of generality that by condition 2 above it is *p*. Then the other point pierces $\mathcal{C} \subset \overline{\mathcal{A}}(p)$ —a contradiction since $\bigcap \mathcal{C} = \emptyset$.

Assume therefore without loss of generality that $\{X, Y\} \cap h^+ \cap v^+ = \emptyset$ and that

Fig. 4. The 2-interval $A' = A \cap (R_h \cup R_v)$ that corresponds to $A \in \mathcal{A}$.

Fig. 5. A quadrilateral Q.

 $X \in A_1, Y \in A_2$. If X' (resp. Y') is the projection of X (resp. of Y) on h (resp. on v) along a translate of v (resp. of h) then by condition 1 above $\{X', Y'\}$ pierce \mathcal{T} and therefore \mathcal{D} . Together with $\{X', Y'\} \subset R_h \cup R_v$ this implies that \mathcal{D}' is Π^2 , so \mathcal{D}' cannot consist of three pairwise disjoint intervals, a contradiction.

Proof of Theorem 3. Assume that the family \mathcal{F} is Π_{10}^2 and is related to the convex quadrilateral $Q = \bigcap_{i=1}^4 q_i^+$, that no two sides of Q are parallel (make small changes in Q and members of \mathcal{F} if necessary), and that both q_3 and q_4 intersect the two open rays $q_1 \backslash q_2^-$ and $q_2 \backslash q_1^-$ as in Fig. 5.

Note that $F = \bigcap_{i=1}^{4} q_i^+(F)$ for $F \in \mathcal{F}$ where $q_i^+(F)$ is the minimal translate of q_i^+ containing F, for $1 \le i \le 4$. Assume without loss of generality that $q_i^+(A_i)$ is the minimum of $\{q_i^+(F): F \in \mathcal{F}\}$ for i = 1, 2, 3, 4 (recall that related half-planes are ordered by inclusion). Let $\mathcal{A} = \{A_1, A_2, A_3, A_4\} \subseteq \mathcal{F}$ and $l_i^+ = q_i^+(A_i)$. Note that if $\bigcap_{i=1}^{4} x_i^+ = \emptyset \text{ with } x_i^+ \text{ related to } q_i^+, \text{ then either } x_1^+ \cap x_2^+ \cap x_3^+ = \emptyset \text{ or } x_1^+ \cap x_2^+ \cap x_4^+ = \emptyset.$ It follows that if $\bigcap \mathcal{B} = \emptyset$ for $\mathcal{B} \subseteq \mathcal{F}$, then $\bigcap \mathcal{C} = \emptyset$ for a subfamily \mathcal{C} of \mathcal{B} of size

at most 3, by Helly's theorem. Also if $A_i \in \mathcal{B}$ for i = 1 or 2 it can be assumed without loss of generality that $A_i \in C$ and if $\{A_3, A_4\} \subset B$ it can be assumed without loss of generality that either A_3 or A_4 belongs to C.

Let $a_{ij} = l_i \cap l_j$ for $1 \le i < j \le 4$. If $l_1^+ \cap l_2^+ \cap l_3^+ \ne \emptyset$ and $l_1^+ \cap l_2^+ \cap l_4^+ \ne \emptyset$ then $a_{12} \in \bigcap \mathcal{F}$ and \mathcal{F} is Π^1 and therefore Π^2 . Assume therefore without loss of generality that $l_1^+ \cap l_2^+ \cap l_3^+ = \emptyset$. See Fig. 6.

There are three cases to consider:

Case 1. l_4^+ contains $\{a_{13}, a_{23}\}$. Case 2. l_3^+ contains $\{a_{14}, a_{24}\}$. Case 3. l_3^+ contains a_{14} but not a_{24} (l_3^+ contains a_{24} but not a_{14} is equivalent).

Fig. 6. $l_1^+ \cap l_2^+ \cap l_2^+ = \emptyset$.

Fig. 7. l_3^+ contains a_{14} but not a_{24} .

We deal only with Case 3 as the other cases are even simpler. Let

$$s_1 = l_3^+ \cap l_1^+ \cap l_4^-$$
 and $s_2 = l_2^+ \cap l_4^+ \cap l_3^-$,
 $r_{ij} = l_i^+ \cap l_j^+$ for $i \le i < j \le 4$.

See Fig. 7.

Note that if $F \in \mathcal{F}$ meets both s_1 and s_2 , then it is pierced by a_{34} . It follows that if $\overline{\mathcal{F}}(s_1)$ and $\overline{\mathcal{F}}(s_2)$ are both Π^1 , then F is Π^3 . So assume without loss of generality that $\overline{\mathcal{F}}(s_1)$ is not Π^1 and that $\mathcal{C}_{s_1} \subseteq \overline{\mathcal{F}}(s_1)$ with $|\mathcal{C}_{s_1}| \leq 3$ and $A_2 \in \mathcal{C}_{s_1}$ (since $A_2 \in \overline{\mathcal{F}}(s_1)$).

If $\overline{\mathcal{F}}(a_{23})$ or $\overline{\mathcal{F}}(a_{12})$ are Π^1 , then \mathcal{F} is Π^2 . So assume that both $\overline{\mathcal{F}}(a_{23})$ and $\overline{\mathcal{F}}(a_{12})$ are not Π^1 . We show this to be impossible:

Otherwise let C_{23} , C_{12} be subfamilies of $\overline{\mathcal{F}}(a_{23})$ and $\overline{\mathcal{F}}(a_{13})$ respectively, of size at most 3, which are both not Π^1 and with $A_1 \in C_{23}$ and C_{12} containing one of the sets A_3 or A_4 . Let $\mathcal{W} = \mathcal{A} \cup \mathcal{C}_{s_1} \cup \mathcal{C}_{12} \cup \mathcal{C}_{23}$. Then $|\mathcal{W}| \leq 4 + 2 + 2 + 2 = 10$, so that \mathcal{W} is Π^2 and let the 2-set *B* pierce \mathcal{W} . If a point of *B* pierces $A_1 \cap A_2$ or $A_2 \cap A_3$, then that point can be assumed to be a_{12} or a_{23} and then one of the families \mathcal{C}_{12} or \mathcal{C}_{23} is Π^1 , a contradiction.

So a point of *B* pierces $A_1 \cap A_4$ or $A_1 \cap A_3$ and is therefore in $s_1 \cup r_{14}$. However, such a point, if it is in r_{14} , can be replaced by a_{14} which is in s_1 . So assume without loss of generality that a point of *B* is in s_1 , implying C_{s_1} is Π^1 , a contradiction.

3. Additional Results and Conjectures

The following results and conjectures are taken from [10].

Theorem 4. For homothetic triangles in the plane Π_6^2 implies Π^3 and Π_{31}^3 implies Π^4 .

(In [9] it is shown that for no k does Π_k^3 imply Π^3 for all planar families of homothetic triangles.)

Conjecture 2. For any integer $m \ge 2$ there exists an integer k(m) such that $\prod_{k(m)}^{m}$ implies \prod^{m+1} for every finite planar family of convex sets.

For k = 2 this is Conjecture 1. We could not resolve the conjecture even for homothetic triangles and $m \ge 4$.

Theorem 5. For families of homothetic simplices in \mathbb{R}^3 , Π^2_{25} implies Π^3 , and there is no s such that Π^2_s implies Π^2 for all families of simplices in \mathbb{R}^3 .

We conclude with a conjecture of Grünbaum mentioned also in [4].

Conjecture 3. A planar family of translates of a convex compact set is Π^3 provided that any two of its members intersect.

See [5] where the conjecture is proved for translates of a compact symmetric convex set.

Acknowledgment

We thank the referees for their helpful suggestions.

References

- N. Alon and D. J. Kleitman, Piercing convex sets and the Hadwiger-Debrunner (p, q)-problem, Adv. in Math. 96, (1992) 103–112.
- 2. L. Danzer and B. Grünbaum, Intersection properties of boxes in \mathbf{R}^d , Combinatorica 2(3) (1982), 237–246.
- L. Danzer, B. Grünbaum, and V. Klee, Helly's Theorem and Its Relatives, pp. 101–180, Proc. Symposia in Pure Math., Vol. VII (Convexity), American Mathematical Society, Providence, Rhode Island (1963).
- J. Eckhoff, Helly, Radon and Carathéodory Type Theorems, *Handbook of Convex Geometry*, chapter 2.1, P.M. Gruber and J.M. Wills, eds., Elsevier, Amsterdam (1993).
- 5. B. Grünbaum, On intersections of similar sets, Portugal. Math. 18 (1959), 155-164.
- A. Gyárfás and L. Lehel, A Helly-type theorem in trees, *Combinatorial Theory and its Applications*, *Balatonfüred*, pp. 571–584, Colloquia Mathematica Societatis János Bolyai, Vol. 4, North-Holland, Amsterdam (1969).
- 7. T. Kaiser, Transversals of d-intervals, Discrete Comput. Geom. 18 (1997), 195-203.
- M. Katchalski and D. Nashtir, On a conjecture of Danzer and Grünbaum, Proc. Amer. Math. Soc. 124 (1996), 3213–3218.
- 9. D. Nashtir, On a conjecture of Danzer and Grünbaum, M.Sc. Thesis, Technion, Haifa, (1990) (in Hebrew).
- 10. D. Nashtir, Helly type problems, Doctoral Thesis, Technion, Haifa (1996).
- 11. G. Tardos, Transversals of 2-intervals, a topological approach, Combinatorica 15(1) (1995), 123–134.

Received October 8, 1996, and in revised form August 12, 1997.