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Abstract. A family of sets is5n, or n-pierceable, if there exists a set ofn points such
that each member of the family contains at least one of them. It is5n

k if every subfamily
of sizek or less is5n. Helly’s theorem is one of the fundamental results in Combinatorial
Geometry. It asserts, in the special case of finite families of convex sets in the plane, that
51

3 implies51. However, there is nok such that52
k implies 2-pierceability for all finite

families of convex sets in the plane. It is therefore natural to propose the following:

Conjecture. There exists a k0 such that, for all planar finite families of convex sets,52
k0

implies53.

Proofs of this conjecture for restricted families of convex sets are discussed.

1. Introduction

A family of sets is5n, or n-pierceable if there exists a set ofn points such that each
member of the family contains at least one of them. It is5n

k if every subfamily of sizek
or less is5n.

Helly’s theorem is one of the fundamental results in Combinatorial Geometry. It
asserts that for finite families of convex sets in the plane51

3 implies51. Consult the
excellent surveys [3] and [4] for references to Helly’s theorem and its many relatives and
applications.

Does52
k imply52 for finite planar families of convex sets? For rectangles, with sides

parallel to the axis,52
5 implies52, see [2], and for homothetic triangles52

9 implies52,
see [8] and [9]. However, even for translates of a symmetric convex hexagon there is no
k0 such that52

k0
implies52, see [8] and [9]. It seems natural to propose the following:
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Fig. 1. 52
5 does not imply53.

Conjecture 1. There exists a k0 such that, for all finite planar families of convex sets,
52

k0
implies53.

Figure 1 shows that52
5 does not imply53 even for planar families of ten convex

sets. This counterexample consists of a hexagonh, three segmentss1, s2, s3, three strips
b1,b2,b3, and three linesl1, l2, l3.

The existence of an integerm0 such that52
5 implies5m0 follows from a recent result

of Alon and Kleitman [1]. They settled a conjecture of Debrunner and Hadwiger and
proved, among other things, the existence of an integerm0 such that every finite planar
family of convex sets is5m0 provided it has the property that every five membered
subfamily contains three members with nonempty intersection. (However,m0 is of the
order 103.) Note that52

4 does not imply5s for every finite planar family of convex sets,
no matter how larges is: consider families of 2s+1 segments such that any two intersect
but no three intersect.

Here we prove Conjecture 1 for certain planar families of convex sets.
First, some terminology:

Let x− andx+ denote half-planes bounded by the linex with x+ ∩ x− = x.
Two half-planes arerelated if one of them is a translate of the other. Related half-

planes are ordered by inclusion so thatx+ < y+ implies thatx+ is contained in
y+ andx+ 6= y+.

A half-planex+ (x−) supports a setC if it contains it andx ∩ C 6= ∅.
Let x+(C) denote the half-plane related tox+ that supportsC.
The convex polygonA is related to the convexm-gon K = ⋂m

i=1 k+i , where
k+1 , . . . , k

+
m are them half-planes whose intersection is equal toK , if A is the

intersection of half-planesa+1 , . . . ,al , each of which is a translate of one of the
k+i ’s. The familyA is related to K if each A ∈ A is related toK . See Fig. 2 for
seven convex polygons related to a quadrilateral satisfying52

4 but not53. Note
that the concept “related” was introduced and used by Gr¨unbaum.

For a family of setsF and a sets let F̄(s) = {F ∈ F : F ∩ s= ∅} and for a pointx
let F̄(x) = F̄({x}).
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Fig. 2. 52
4 6⇒ 53 for a family related to a quadrilateral.

Finally, a family of triangles isspecial if there is a fixed angleα such that every
triangle of the family contains an angle which is a translate ofα.

The next three theorems from [10] support Conjecture 1:

Theorem 1. 52
13n implies53 for every finite planar family related to a convex n-gon.

The proof is very technical and appears in [10], here we prove two related results.

Theorem 2. 52
8 implies54 for planar special families of triangles.

Theorem 3. 52
10 implies53 for planar families related to a convex quadrilateral.

2. Proofs

Proof of Theorem2. The proof relies on a theorem of Tardos on 2-intervals, see [11].
A 2-interval is a set which is the union of an interval one and an interval onf wheree
and f are two fixed nonintersecting straight lines.

Tardos’s Theorem. If F is a family of2-intervals andF does not contain k+ 1
pairwise disjoint members, thenF is52k.

Tardos’s theorem improves earlier results of Gy´arfás and Lehel [6], and has been
generalized tom-intervals,m ≥ 3, by Kaiser [7]. (However, Kaiser’s result is not best
posible whereas Tardos’s result is.) Our theorem uses Tardos’s theorem only for the case
k = 2.

Assume without loss of generality thatA is finite, since all members ofAare compact.
LetA = {Ai = h+i ∩ v+i ∩ d+i : i ∈ [n] = {1,2, . . . ,n}} with h+i ∩ v+i a translate of the
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Fig. 3. The minimal half-planesh+ andv+ support trianglesA1 andA2, respectively.

fixed angleα, for i ∈ [n], with H = {h+i : i ∈ [n]} andV = {v+i : i ∈ [n]} being two
families of related half-planes withh+ = min H andv+ = min V .

Assume without loss of generality thath+ = h+1 andv+ = v+2 and letp = h ∩ v,
see Fig. 3.

It is easy to see that, forA ∈ A:

1. If x ∈ h+ ∩ A(x ∈ v+ ∩ A) and if x′ is the projection ofx on h (on v) along a
translate ofv (of h), thenx′ piercesA.

2. If A∩ h+ ∩ v+ 6= ∅, thenp ∈ A.
Note that 2 follows from 1.

If Ā(p) = {A ∈ A : p 6∈ A} is51, thenA is52, so assume that̄A(p) is not51 and
apply Helly’s theorem to obtain a subfamilyC ⊂ Ā(p) with |C| ≤ 3 and∩C = ∅. Let
Rh = h\v+ andRv = v\h+ and letA′ = {A∩ (Rv ∪ Rh) : A ∈ A}. See Fig. 4.
A′ is a family of 2-intervals sinceRh and Rv are disjoint. By the Tardos theorem it

suffices to prove thatA′ does not contain three pairwise disjoint 2-intervals.
Assume otherwise thatD′ ⊂ A′ is a subfamily of three pairwise disjoint 2-intervals

and letD = {A ∈ A : A′ ∈ D′}. The subfamilyT = D ∪ C ∪ {A1, A2} is 52 since
|T | ≤ 3+ 3+ 2= 8.

Let {X,Y} pierceT . If one of the two points pierces{A1, A2}, then it is inh+ ∩ v+.
So assume without loss of generality that by condition 2 above it isp. Then the other
point piercesC ⊂ Ā(p)—a contradiction since

⋂
C = ∅.

Assume therefore without loss of generality that{X,Y} ∩ h+ ∩ v+ = ∅ and that
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Fig. 4. The 2-intervalA′ = A∩ (Rh ∪ Rv) that corresponds toA ∈ A.
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Fig. 5. A quadrilateralQ.

X ∈ A1, Y ∈ A2. If X′ (resp.Y′) is the projection ofX (resp. ofY) on h (resp. on
v) along a translate ofv (resp. ofh) then by condition 1 above{X′,Y′} pierceT and
thereforeD. Together with{X′,Y′} ⊂ Rh ∪ Rv this implies thatD′ is52, soD′ cannot
consist of three pairwise disjoint intervals, a contradiction.

Proof of Theorem3. Assume that the familyF is 52
10 and is related to the convex

quadrilateralQ =⋂4
i=1 q+i , that no two sides ofQ are parallel (make small changes in

Q and members ofF if necessary), and that bothq3 andq4 intersect the two open rays
q1\q−2 andq2\q−1 as in Fig. 5.

Note thatF = ⋂4
i=1 q+i (F) for F ∈ F whereq+i (F) is the minimal translate of

q+i containingF , for 1 ≤ i ≤ 4. Assume without loss of generality thatq+i (Ai ) is the
minimum of {q+i (F) : F ∈ F} for i = 1,2,3,4 (recall that related half-planes are
ordered by inclusion). LetA = {A1, A2, A3, A4} ⊆ F andl+i = q+i (Ai ). Note that if⋂4

i=1 x+i = ∅with x+i related toq+i , then eitherx+1 ∩ x+2 ∩ x+3 = ∅ or x+1 ∩ x+2 ∩ x+4 = ∅.
It follows that if

⋂
B = ∅ for B ⊆ F , then

⋂
C = ∅ for a subfamilyC of B of size

at most 3, by Helly’s theorem. Also ifAi ∈ B for i = 1 or 2 it can be assumed without
loss of generality thatAi ∈ C and if {A3, A4} ⊂ B it can be assumed without loss of
generality that eitherA3 or A4 belongs toC.

Let ai j = l i ∩ l j for 1 ≤ i < j ≤ 4. If l+1 ∩ l+2 ∩ l+3 6= ∅ andl+1 ∩ l+2 ∩ l+4 6= ∅ then
a12 ∈

⋂
F andF is51 and therefore52. Assume therefore without loss of generality

thatl+1 ∩ l+2 ∩ l+3 = ∅ . See Fig. 6.
There are three cases to consider:

Case 1.l+4 contains{a13,a23}.
Case 2.l+3 contains{a14,a24}.
Case 3.l+3 containsa14 but nota24 (l+3 containsa24 but nota14 is equivalent).
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Fig. 6. l+1 ∩ l+2 ∩ l+3 = ∅.
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Fig. 7. l+3 containsa14 but nota24.

We deal only with Case 3 as the other cases are even simpler. Let

s1 = l+3 ∩ l+1 ∩ l−4 and s2 = l+2 ∩ l+4 ∩ l−3 ,

ri j = l+i ∩ l+j for i ≤ i < j ≤ 4.

See Fig. 7.
Note that ifF ∈ F meets boths1 ands2, then it is pierced bya34. It follows that if

F̄(s1) andF̄(s2) are both51, thenF is53. So assume without loss of generality that
F̄(s1) is not51 and thatCs1 ⊆ F̄(s1) with |Cs1| ≤ 3 andA2 ∈ Cs1 (sinceA2 ∈ F̄(s1)).

If F̄(a23) or F̄(a12) are51, thenF is52. So assume that both̄F(a23) andF̄(a12)

are not51. We show this to be impossible:
Otherwise letC23, C12 be subfamilies ofF̄(a23) andF̄(a13) respectively, of size at

most 3, which are both not51 and withA1 ∈ C23 andC12 containing one of the setsA3

or A4. LetW = A ∪ Cs1 ∪ C12 ∪ C23. Then| W |≤ 4+ 2+ 2+ 2 = 10, so thatW is
52 and let the 2-setB pierceW. If a point of B piercesA1 ∩ A2 or A2 ∩ A3, then that
point can be assumed to bea12 or a23 and then one of the familiesC12 or C23 is51, a
contradiction.

So a point ofB piercesA1 ∩ A4 or A1 ∩ A3 and is therefore ins1 ∪ r14. However,
such a point, if it is inr14, can be replaced bya14 which is ins1. So assume without loss
of generality that a point ofB is in s1, implying Cs1 is51, a contradiction.

3. Additional Results and Conjectures

The following results and conjectures are taken from [10].

Theorem 4. For homothetic triangles in the plane52
6 implies53 and53

31 implies54.

(In [9] it is shown that for nok does53
k imply 53 for all planar families of homothetic

triangles.)

Conjecture 2. For any integer m≥ 2 there exists an integer k(m) such that5m
k(m)

implies5m+1 for every finite planar family of convex sets.
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Fork = 2 this is Conjecture 1. We could not resolve the conjecture even for homothetic
triangles andm≥ 4.

Theorem 5. For families of homothetic simplices inR3,52
25 implies53, and there is

no s such that52
s implies52 for all families of simplices inR3.

We conclude with a conjecture of Gr¨unbaum mentioned also in [4].

Conjecture 3. A planar family of translates of a convex compact set is53 provided
that any two of its members intersect.

See [5] where the conjecture is proved for translates of a compact symmetric convex set.
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