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Abstract. A family of sets isIT", or n-pierceable, if there exists a setmfpoints such

that each member of the family contains at least one of themIIf i every subfamily

of sizek or less isI1". Helly’s theorem is one of the fundamental results in Combinatorial
Geometry. It asserts, in the special case of finite families of convex sets in the plane, that
I3 implies IT*. However, there is n& such thatl2 implies 2-pierceability for all finite
families of convex sets in the plane. It is therefore natural to propose the following:

Conjecture. There exists agksuch thatfor all planar finite families of convex se;tﬁﬁ0
impliesTI®.

Proofs of this conjecture for restricted families of convex sets are discussed.

1. Introduction

A family of sets isI1", or n-pierceable if there exists a set wfpoints such that each
member of the family contains at least one of them. Tijsif every subfamily of sizé
or less isIT".

Helly’s theorem is one of the fundamental results in Combinatorial Geometry. It
asserts that for finite families of convex sets in the plaeimplies 1. Consult the
excellent surveys [3] and [4] for references to Helly’s theorem and its many relatives and
applications.

DoesI12 imply I12 for finite planar families of convex sets? For rectangles, with sides
parallel to the axis[12 impliesI1?, see [2], and for homothetic trianglEE impliesT1?,
see [8] and [9]. However, even for translates of a symmetric convex hexagon there is no
ko such thatl‘[,%O impliesI12, see [8] and [9]. It seems natural to propose the following:

* The research by the first author was supported by Technion VPR Fund, E. and J. Bishop Research Fund,
and by the Fund for Promotion of Research at the Technion.
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Fig. 1. T12 does notimplyT3.

Conjecture 1. There exists agksuch thatfor all finite planar families of convex sets
M impliesIT®.

Figure 1 shows thaﬂ§ does not implyIT® even for planar families of ten convex
sets. This counterexample consists of a hexdgdhree segments, s,, Sz, three strips
by, by, bs, and three lineg, |5, |3.

The existence of an integem, such thaf12 impliesIT™ follows from a recent result
of Alon and Kleitman [1]. They settled a conjecture of Debrunner and Hadwiger and
proved, among other things, the existence of an integesuch that every finite planar
family of convex sets id1™ provided it has the property that every five membered
subfamily contains three members with nonempty intersection. (Howeyges, of the
order 16.) Note thatl1Z does not imply[1® for every finite planar family of convex sets,
no matter how largeis: consider families of 2+ 1 segments such that any two intersect
but no three intersect.

Here we prove Conjecture 1 for certain planar families of convex sets.

First, some terminology:

Let x~ andx™ denote half-planes bounded by the liaith x* N x~ = x.

Two half-planes areelatedif one of them is a translate of the other. Related half-
planes are ordered by inclusion so tidt < y* implies thatx™ is contained in
y*t andx® # y*.

A half-planex™ (x™) supports a set if it contains it andx N C # .

Letx™(C) denote the half-plane relatedxd that support<.

The convex polygonA is related to the convexm-gon K = ﬂimzl k" , where
ki, ...,k are them half-planes whose intersection is equalko if A is the
intersection of half-planea;’, ..., a, each of which is a translate of one of the
ki’s. The family A is relatedto K if each A € A is related toK . See Fig. 2 for
seven convex polygons related to a quadrilateral satisfyifdput notI13. Note
that the concept “related” was introduced and used hynGaum.

For a family of sets* and a ses let F(s) = {F € F: Fns=¢}and for a poink
let F(X) = F({x}).
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Fig. 2. 12 % I1° for a family related to a quadrilateral.
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Finally, a family of triangles isspecialif there is a fixed angle: such that every
triangle of the family contains an angle which is a translate.of
The next three theorems from [10] support Conjecture 1:

Theorem 1. Hfan impliesIT® for every finite planar family related to a convex n-gon
The proof is very technical and appears in [10], here we prove two related results.

Theorem 2. Hg impliesI1* for planar special families of triangles

Theorem 3. T3, impliesIT? for planar families related to a convex quadrilateral

2. Proofs

Proof of Theoren2. The proof relies on a theorem of Tardos on 2-intervals, see [11].
A 2-interval is a set which is the union of an interval®and an interval orf wheree
and f are two fixed nonintersecting straight lines.

Tardos's Theorem. If F is a family of2-intervals andF does not contain k- 1
pairwise disjoint membeyshen.F is I%.

Tardos’s theorem improves earlier results ofa@&s and Lehel [6], and has been
generalized tan-intervals,m > 3, by Kaiser [7]. (However, Kaiser’s result is not best
posible whereas Tardos'’s result is.) Our theorem uses Tardos’s theorem only for the case
k=2.

Assume without loss of generality thdts finite, since all members of are compact.
LetA={A =h"nytnd" i e[n] ={1 2 ..., n}} with hj" Ny atranslate of the
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Fig. 3. The minimal half-planeb™ andv* support triangles\; and A, respectively.

fixed anglex, fori e [n], with H = {hi" : i € [n]} andV = {v;" : i € [n]} being two
families of related half-planes witfit = minH andv*™ = minV.

Assume without loss of generality that = h] andv* = vJ and letp = h N v,
see Fig. 3.

It is easy to see that, fok € A:

1. If x e ht N A(x € vt N A) and if X' is the projection ok on h (onv) along a
translate ofv (of h), thenx’ piercesA.

2. f AnhTNnov* #£ @, thenp € A
Note that 2 follows from 1.

If A(p) ={Ae A: p¢ A}isTI! thenA is I12, so assume thad(p) is notTT* and
apply Helly’s theorem to obtain a subfamifyc A(p) with |C| < 3 andNC = @. Let
Ry, = h\vt andR, = v\h* and let4d’ = {AN (R, URy) : A € A}. See Fig. 4.

A’ is a family of 2-intervals sinc&®;, and R, are disjoint. By the Tardos theorem it
suffices to prove thatl’ does not contain three pairwise disjoint 2-intervals.

Assume otherwise thg?’" c A’ is a subfamily of three pairwise disjoint 2-intervals
and letD = {A € A: A e D'}. The subfamily7 = D U C U {A;, Ay} is T1? since
7] <3+3+2=8.

Let {X, Y} pierceT . If one of the two points piercgd;, Ay}, theniitis inh™ Novt.
So assume without loss of generality that by condition 2 abovept iBhen the other
point pierce€ c .A(p)—a contradiction sincg) C = .

Assume therefore without loss of generality that, Y} N h™ N v™ = ¢ and that

vt
Ry Th*
%l P
AN Ry
ANR,
A
Rl!

Fig. 4. The 2-intervalA’ = AN (R, U R,) that corresponds té € A.
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Fig. 5. A quadrilateralQ.

X e A, Y € Ax. If X' (resp.Y’) is the projection ofX (resp. ofY) on h (resp. on
v) along a translate of (resp. ofh) then by condition 1 abovéX’, Y’} pierce7 and
thereforeD. Together with{ X', Y’} ¢ R, U R, this implies thatD’ is I12, soD’ cannot
consist of three pairwise disjoint intervals, a contradiction. O

Proof of Theoren8. Assume that the familyF is 112, and is related to the convex
quadrilateralQ = ﬂle g, that no two sides o are parallel (make small changes in
Q and members af if necessary), and that bothh andg, intersect the two open rays
0:\0, andgp\g; asin Fig. 5.

Note thatF = (", " (F) for F € F whereq(F) is the minimal translate of
g" containingF, for 1 < i < 4. Assume without loss of generality thagt (A) is the
minimum of {g"(F) : F € F} fori = 1,2, 3,4 (recall that related half-planes are
ordered by inclusion). Letl = {Aq, Az, Az, As} € F andl;" = g (A). Note that if
Ny x" = @with x* related tag*, then eithex;” Nx; Nxg = Gorxy Nxf Nx; = 0.

It follows that if (B = @ for B € F, then(\ C = ¢ for a subfamilyC of B of size
at most 3, by Helly’s theorem. Also #; € Bfori = 1 or 2 it can be assumed without
loss of generality that\, € C and if {Az, A4} C B it can be assumed without loss of
generality that eitheA; or A4 belongs tcC.

Letaj =linljforl<i < j <4 1flf ni3nIJ #@andl NIJ NI # @ then
a;p € (FandFis It and thereford12. Assume therefore without loss of generality
thatl N13 N1 =@ . See Fig. 6.

There are three cases to consider:

Case 1.I; contains{ass, a3}
Case 2.5 contains{ay4, a4}
Case 3.I§r containsa; 4 but notay, (I; containsay, but notay 4 is equivalent).

Fig.6. 1y NIy niJ =0
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Fig. 7. 13 containsais but notags.

We deal only with Case 3 as the other cases are even simpler. Let
ss=13nlnl; and =13 nIfnlg,
rij:Ii*ijJr for i<i<j<4

See Fig. 7.

Note that if F € F meets botls; ands,, then it is pierced bys,. It follows that if
F(s1) and F(sp) are bothll!, thenF is IT3. So assume without loss of generality that
F(s1) is notIT* and thatCs, € F(s;) with |Cs | < 3 andA; € Cs, (sinceA; € F(sp)).

If F(azs) or F(agp) arell?, thenF is 2. So assume that both(ays) and F(ay2)
are notl1!. We show this to be impossible:

Otherwise leCo3, C12 be subfamilies ofF (ay3) and F(ays) respectively, of size at
most 3, which are both ndi! and with A; € C»3 andCy, containing one of the set;
or Ag. LetWW = AUCs UC12U Cos. Then| W |< 4+ 2+ 2+ 2 =10, so thatV is
17 and let the 2-seB pierceW. If a point of B piercesA; N A, or Ay N Ag, then that
point can be assumed to bBg, or ay; and then one of the familig®, or Cosis T, a
contradiction.

So a point ofB piercesA; N A4 or A; N Az and is therefore i, U ri4. However,
such a point, ifitis irr14, can be replaced b4 which is ins;. So assume without loss
of generality that a point oB is in s, implying Cs, is TT%, a contradiction. O

3. Additional Results and Conjectures

The following results and conjectures are taken from [10].
Theorem 4. For homothetic triangles in the plariéZ impliesIT® and 13, impliesIT?.

(In [9] it is shown that for n&k doesIT{ imply I1° for all planar families of homothetic
triangles.)

Conjecture 2. For any integer m> 2 there exists an integer(kn) such thatl'[rk*}m)
impliesIT™+! for every finite planar family of convex sets
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Fork = 2 this is Conjecture 1. We could not resolve the conjecture even for homothetic
triangles andan > 4.

Theorem 5. For families of homothetic simplices R?, 155 impliesI13, and there is
no s such thafl2 impliesT1? for all families of simplices ifR>.

We conclude with a conjecture of @Grbhaum mentioned also in [4].

Conjecture 3. A planar family of translates of a convex compact sdifsprovided
that any two of its members intersect

See [5] where the conjecture is proved for translates of a compact symmetric convex set.
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