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Abstract. Equiangularity (also called max-min angle criterion) is a well-known property

of some planar triangulations that refine the Delaunay diagram. In this paper we generalize
the notion of equiangularity to decompositions in inscribable polygons and we show that

it characterizes the planar Delaunay diagram, even if more than three sites are cocircular.
This result does not extend to higher dimensions. However, we characterize the Delaunay
diagram in any dimension by a kind of dual property that we prove both with line angles
and with solid angles. We also establish a local equiangularity of Delaunay diagrams in
any dimension, and an angular characterization of self-centered diagrams. Finally, we show
that these angular properties can, when appropriately defined, be generalized to the farthest
point Delaunay diagram.

1. Introduction

Given a setS of points in the plane called sites, the problem of triangulaBnthat is,
decomposing the convex hull 8in disjoint triangles whose vertices are the siteS,dfas

been studied extensively. Among these triangulatiB@daunay triangulationgwhose
triangles circumcircles contain no site in theirinterior) seemto be the mostregular[2], [5],
[9], [10]. Indeed, a Delaunay triangulation maximizes the minimum angle of its triangles,
and moreover maximizes lexicographically the increasing sequence of these angles [5].
Such a triangulation is said to ligobally equiangular The Delaunay triangulation
definition extends easily to higher dimensions, but very few results are known so far.
Some metric properties of planar Delaunay triangulations have been generalized in any
dimension [11], [12]. If nad + 2 sites ofS are cospherical, the Delaunay triangulation

of Sis dual to the Voronoi diagram @&. Otherwise in degenerate cases, the dual of the
Voronoi diagram may not be a triangulation but a decomposition of the convex hull of
Sin disjoint convex inscribable polytopes whose vertices are the sitB¢s#e Fig. 1).
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Fig. 1. A‘“degenerate” Delaunay diagram.

Such a decomposition is called arscribable diagranof S and the unique dual of the
Voronoi diagram is th®elaunay diagrandenoted by Delf). The circumsphere of each
Delaunay region contains no site in its interior and passes only through the sites that are
vertices of this region. Thus, Delaunay triangulations are refinements of the Delaunay
diagram.

In Section 2 we characterize the Delaunay diagram in any dimension through a prop-
erty of its facets. All other results will be consequences of this one.

In Section 3 we introduce another definition of angles which generalize those used to
establish equiangularity of planar Delaunay triangulations, and we extend this property
to planar Delaunay diagrams.

Although these angles can be generalized in different ways in higher dimensions,
we show in Section 4 that none extend equiangularity to higher-dimensional Delaunay
diagrams. However, by adding up these angles facet per facet, we define in Section 5
a property which is—in a certain way—dual to equiangularity. We also prove that this
property characterizes Delaunay diagrams in any dimension.

These new angles also allow us to characterize self-centered inscribable diagrams
(for which every region contains its circumcenter), and to establish a kind of local
equiangularity of Delaunay diagrams in any dimension.

In Section 8 we show that Delaunay diagrams can also be characterized in dimension
greater than two with solid angles.

The orderk Delaunay diagram of d-dimensional se§ of n sites is the orthogonal
dual of the ordek Voronoi diagram ofS such that every orddc-Delaunay vertex is the
center of gravity of thé& sites defining its dual ordde\Moronoi region [1], [3], [14], [13].

By using a homothety centered at the center of gravitg afid with factor—1/(n — 1),

the order¢n — 1) Delaunay diagram o can be mapped into an inscribable diagram
whose vertices are those of the convex hulBof his inscribable diagram is called the
farthest point Delaunay diagram of, &nd is denoted by FD{®). The interior of the
circumsphere of every regignof FDD(S) contains all the sites &\5(p) (§(p) denotes
the boundary op).

Eppstein [7] has proved that the triangulation of the vertices of a convex hull of
a planar point set that minimizes the increasing angles sequence, is a farthest point
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Delaunay triangulation. In Section 9 we show that angular properties of the farthest
point Delaunay diagram are opposite to properties of el(

2. lllegal Facets in Inscribable Diagrams

Given a sefS of sites in ad-dimensional space, Delaunay [4] has shown that Delaunay
triangulations ofS are the only triangulations @ whose every facet common to two
tetrahedrong andq is such that the interior of the circumsphereuafontains no vertex
of g. Such a facef is said to bdocally optimal[8] or not illegal [5].

However, these facets do not characterize Delaunay diagrams if more thasites
are cospherical. Indeed, the diagonal of a square for example is locally optimal, but is not
a Delaunay edge: the circumsphere of a Delaunay regjmesses only through the sites
that are vertices of. Therefore we modify the previous definitions to take degeneracies
into account.

Recall that adiagramin a d-dimensional euclidean spaéeis a partition ofE in a
finite number of O-faces (called vertices), of 1-faces (called edges), of 2-facesf
(d — 1)-faces (called facets), and dffaces (called regions). For a sebf sites inE, let
Dins(S) be the set of inscribable diagrams whose set of vertic8skaces (other than
0-faces) of these diagrams are open convex inscribable polytopes, and the complement
of the convex hull ofSis the only unbounded face. Dir(contains, for instance, the
Delaunay diagram and all triangulations®f

A facet f of an inscribable diagram is said to bBegal if the two regionsp andq
having f as a common facet are bounded, ang i included in the open balb(q)
circumscribed tay, that is, every vertex o belongs to the closed badl(q) (in an early
version [15], such a facet has been callecessive Moreover,p C w(q) is equivalent
toq C w(p).

Theorem 1. The Delaunay diagranbel(S) of a set S of sites in a d-dimensional
euclidean spages the only diagram obins(S) without illegal facets

Proof. The proof given by Delaunay [4] can be easily generalized to deal with inscrib-
able diagrams. The proof of Theorem 7 in Section 9 gives another way to establish this
result. O

3. Equiangularity of Planar Delaunay Diagrams

In order to establish global equiangularity in planar triangulations, Edelsbrunner [5] has
shown that a triangulation which maximizes lexicographically the increasing sequence
of angles of its triangles is a Delaunay triangulation. However, if there are more than
three cocircular sites, some Delaunay triangulations may not be globally equiangular,
and there may be more than one globally equiangular triangulation. Moreover, if we
consider the increasing sequence of interior angles at the vertices of the regions of an
inscribable diagram, global equiangularity does not characterize Delaunay diagrams.
For example, in Fig. 2 the diagrabh whose regions are 1234 and 145 is an inscribable
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Fig. 2. A nonglobally equiangular Delaunay diagram.

diagram of the se® = {1, 2, 3, 4, 5} but is not Delaunay. The regions of Dg)(are 125,
235, and 345. When site 3 tends toward site 2, anglat vertex 5 of the region 235
tends toward zero whereas the angles of the region 1234 tend toward nonzero values.
Thus,w; may be smaller than every angleBfand DelfS) is not globally equiangular.

Recall that the interior angke at vertexr of a trianglerst is equal to the half-angle
under which edgst is seen from the centé& of the circumcircleC of rst (see Fig. 3).
Thus equiangularity of Delaunay triangulations can be established by using these latter
angles.

Moreover, ifr’ is a point in the half-space limited It and containing , the nonori-
ented anglér’s, r't) between the half-lines's andr’t is greater (resp. smaller) than
if r’ is inside (resp. outside) the ciralz

The angles above can also be used to characterize inscribable diagrams as follows.
Let D be a diagram of Ding) in the plane, lefp be a bounded region d, and letst
be an edge op. Let O be the center ab (p) and letOu be the half-line radiating from
0, orthogonal test and directed to the half-plane delimited &tthat does not contain
p (see Fig. 4).

Ou is calledthe external normal to the edge st with respect to the regioihe

Fig. 3. For any sites, r, andr/, that are respectively outside, on, anddnand on the same side of st,
(ris,rit) <o = (0s, Ou) = (rs, rt) < (15, rt).
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Fig. 4. Definition of the associated anglést, p).

angle(Os, Ou) is said to beassociated to the edge st with respect to the regi@ng
is denoted by (st, p). In the particular case where the regipis unbounded (i.ep is
the complement of the convex hull co®){, we posex(st, p) = 0. Indeed, the straight
line stis the limit of a circle passing througtandt, and whose interior contains no site,
that is, a circle whose center tends towafsb on the bisector ofs, t} in the half-plane
limited by st and that does not contai

Unlike planar triangulations, where the number of triangles, and thus of angles, is
fixed onceSis given, in a diagram of Din§) the length of the angles sequence depends
on the diagram. So we modify the definition of equiangularity to take this fact into
account. LetD be a diagram of Din&g) and letA(D) = («¢1(D), a2(D), ..., am(D))
be the increasing sequence of the nonzero angles associated to all the edgesof
letm = | A(D)| be the length of the sequengkD).

Given two diagram® andD’ of Dins(S), we define the lexicographical order relation
< such thatd(D’) < A(D) if one of these two conditions applies:

— there existg such thatyi < j, o (D) = «; (D) ande;j(D’) < «j (D).
— A(D) is an initial subsequence oA(D’) (i.e., |[A(D)| < |A(D")| and,Vi €
{1,.... [A(D)]}, o (D) = i (D")).

A diagram Dof Dins(S) is said to beequiangularif, VD’ € Dins(S), A(D’) < A(D).

It results from the previous definition that£(D) is a subsequence of(D’) that
is, A(D) is obtained by removing some elements frotaD’), then A(D") < A(D).
Indeed, either4(D) is an initial subsequence gf(D’), or there exisf andk > j such
that,Vi < j, @i (D) = & (D’) anda; (D) = ax(D’) > o (D’).

Theorem 2. The Delaunay diagranDel(S) of a set S of coplanar sites is the only
equiangular diagram obins(S).

Proof. Let D be a diagram of Ding) that admits at least one illegal edgelLet p
andq be the two regions ob sharingc. LetL = 8(ppNS R=48(Q) NS, {s,t} =
5(c)NS=L NR,andletH be the restrictionob to L U R.

If the sites ofL U R are cocircular, the edges of DI R) are the edges of the
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Fig. 5. lllustration for the proof of Theorem 2: the verticespfndq are not cocircular.

convex polygon whose vertices are the sitek bfR, andc is not an edge of Del(U R).
Therefore,A(Del(L U R)) is a subsequence of(H), andA(H) < A(Del(L U R)).

If the sites ofL U R are not cocircular, the sites &f\{s, t} and R\{s, t} belong
respectively tav () and tow (p) (see Fig. 5). Let andaa be respectively a region and
an edge of Del( U R) such thatx(ad,r) = ai(Del(L U R)) is the smallest angle of
A(Del(L U R)).

Let O, andO; be the respective centerswtp) andw (r) and letO, u be the external
normal toaa with respect ta.

(1) If {a, &} C L, thenad is an edge ofp and the half-lineOpu is the external
normal toaa with respect tp (see Fig. 6). Since every other vertex dielongs
to R\{s, t}, the circular arc 08 (w (r)) limited byaa’ and containing is included
in w(p). Moreover, the cente®; of w(r) belongs to the open half-lin@,u. It

Fig. 6. lllustration for the proof of Theorem 2: part (1).
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(a) (b)

Fig. 7. lllustration for the proof of Theorem 2: part (2).

follows thatx (aa’, p) = (Opa, Opu) < (Ora, Oru) = a(ad, r) = ay(Del(LU
R)), and sincep is a region ofH, a1 (H) < a(ad, p) < ay(Del(L U R)). Hence
A(H) < A(Del(L U R)).

(2) Ifae L\{s,t}anda’ € R\{s, t}, then we can suppose (within a permutatios of
andt) thatt andr are onthe same side of the straight lx@(see Fig. 7(a)). Sinae
is aregion of Del( UR), t does notbelong te (r) and thusta, ta’) < «(ad, r).
If b is the neighbor of on §(p) distinct fromt (b may be equal t@), then
(th,ts) < (ta,ta’) (see Fig. 7(b)). Sincé belongs tod(w(p)), a(sh p) =
(th,ts) < (ta,ta’) < «a(ad,r). Hencea;(H) < a(sh, p) < a(ad,r) =
a1(Del(L U R)) and A(H) < A(Del(L U R)).

(3) The casda, @'} C R, and the casa’ € L\{s,t} anda € R\{s, t} are dealt with
in the same way.

Thus, in all cases, if we replade by Del(L U R) in D, we obtain a diagrand’ such
that A(D) < A(D").
This shows that the equiangular diagram (i.e., which maximizes the seqd¢hes
no illegal edge, and Theorem 1 shows that the Delaunay diagram is the only inscribable
diagram with this property. O

This result holds even if we add in the sequenté¢he zero angles associated to

the edges of the unbounded region: the number of these angles is the same for every
inscribable diagram of a given planar point set.

4. Equiangularity in Higher Dimensions

In order to study angular properties in higher dimensions, we first have to define the
angles we need to use.
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u u

Fig. 8. In both examples, the grey facétis adjacent to a tetrahedrgm In the left figure,p and O are on
the same side of facdt and O< «(f, p) < 7/2, whereas in the right figurgg and O are on both sides of
andr/2 < a(f, p) < 7.

Let p be a bounded region of a diagrdinof Dins(S) in thed-dimensional space and
let f be a facet ofp. Let O be the center ab(p), lets be a vertex off , and letOu be
the half-line radiating fronO, orthogonal tof and directed to the half-space delimited
by the hyperplane of that does not contaip (see Fig. 8 ford = 3). Note that the
straight line containing u intersectsf in its circumcenter.

Ou is called theexternal normal to f with respect to, pnd the angléOs, Ou) is
said to beassociated to the facet f with respect to the regiang is denoted by( f, p).

As in the planeg(f, p) = 0 if p is unbounded.

The notion of equiangularity extends easily in any dimension with these angles but,
unfortunately, it does not characterize Delaunay diagrams in dimensions greater than
two, as is shown in the following example (see Fig. 9).

Let S= {1, 2, 3,4,5} be a three-dimensional point set in which the plane of the

01245

0(245,1245)
—— /

Fig. 9. The Delaunay diagram of this three-dimensional point set is not equiangular.
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equiangular triangle 123 is the bisector{df 5} and the straight line segment 45 cuts
this plane at point 7 of the segment 36 (6 is the middle of the segment 12).

When sites 4 and 5 are near enough to the plane 123, the circumsphere of 1234 contains
site 5inits interior, and the diagrabywhose regions are the tetrahedrons 1234 and 1235
is the only non-Delaunay diagram of Dil8( The regions of Del) are the tetrahedrons
1345, 2345, and 1245. When point 7 tends toward point 6, the circumo®pigy of
1245 tends toward infinity whereas the circumcenters of the regiobstefid toward
positions at finite distances, and thus the angles associated to the facets 145 and 245 with
respect to the region 1245 of D&)(tend toward zero whereas the angles associated to
the facets oD tend toward nonzero values. Therefore, there exists a position of point 7
on the segment 36 for which the sharpest angles associated to the facetsS)fabe!(
smaller than the angles associated to the facel®, @ind Del) is not equiangular.

Angles used in the plane can be generalized to dimemiyrconsidering other kinds
ofangles, such as angles associated thifazes of the diagrams (fore {1, ..., d—2}).
However, it is straightforward to show that none characterize Delaunay diagrams.

5. Coassociated Angles in Any Dimension

In the previous section we have associated two anglésp) anda( f, ) to each facet
f of an inscribable diagram with respect to the two regipasidq sharingf. Theangle
B(f) =a(f, p)+ «(f, q) is said to becoassociated to the facet($ee Fig. 10).

This angle is a function of the oriented ang&0,, sQ,) whereO, andQq are the
respective centers of the badlg p) andw(q). B(f) measures the way in which the two
balls interpenetrate.

Theorem 3. For every finite set S of sites in a d-dimensional spdice Delaunay
diagramDel(S) is the only diagram obins(S) whose angles coassociated to the facets
are all strictly smaller thant.

Fig. 10. Definition of coassociated angles in three dimensions.
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w(q)

(b)

Fig. 11. The three cases for the proof of Theorem 3.

Proof. (i) If f is a facet of Delf) shared by two bounded regiomsand g, then
from Theorem 1f is not illegal. LetO, and Q4 be the respective centers®fp) and
w(q), and letOpup and Oquq be the external normals td with respect top andq,
respectively.

Since the regiom is not included in the batb (q), the segment of the sphetév (q))
that is not on the same side of the hyperplane contaitfirgg p, is included inw(p)
(see Fig. 11(a)). Thus, the cent@y of (q) belongs to the half-lin®©,u,, andOyu, N
Oquq # @. Sincex (f, p) anda( f, q) are interior angles of the triang@,s Q,, () =
alf,p+a(f,q) =7 —(s0,,sQy) < 7.

If fisafaceton the boundary of corf®y( one of the angles associatedftas zero,
and since all associated angles are smaller thaf(f) < 7.

(ii) Now let D be a diagram of Din&g) which is not Delaunay. From Theorem[2,
admits at least one illegal facétand, with the notations from (ip C w(q).

If vertices of p andq are cosphericalD, = Oq andg(f) = a(f, p)+a(f,q) ==
(see Fig. 11(b)).
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If the vertices ofp and q are not cospherical, thes(f, p) and«(f, q) are the
complements of two interior angles of the trian@lgs Q, (see Fig. 11(c)). Thus(f) =

a(f,p)+a(f,q) =7+ (50, sQy) > 7. O

This property of the Delaunay diagram is in a certain way dual to equiangularity since
the Delaunay diagram minimizes the maximum angle coassociated to its facets.

The lifting transformation introduced by Edelsbrunner and Seidel [6], which trans-
forms thed-dimensional Delaunay diagram in@-¢ 1)-dimensional convex hull, gives
another interpretation of the ang f) = «(f, p) + «(f, ). The regionsp andq
are lifted to polytopes lying on two half-hyperplanes which define an ahgié such
thato(f) = = (resp.0(f) < =) if and only if B(f) = = (resp.8(f) < =) (private
communication from J.-D. Boissonnat).

6. Optimality for Self-Centered Diagrams

A boundedregionof a diagramD of Dins(S) is said to beself-centeredf it contains its
circumcenter, and thdiagram Dis said to beself-centeredf all its bounded regions are
self-centered.

Rajan [11], [12] has proved that every triangulation of a point set in any dimension
having each of its triangles self-centered is a Delaunay triangulation. We generalize this
result to inscribable diagrams by using coassociated angles.

Theorem 4. Every self-centered diagram is a Delaunay diagramd is the only one
whose angles associated to the facets are all strictly smaller &h@n

Proof. Let S be ad-dimensional point set such that Dig(contains a self-centered
diagramD. Since angles associated to the facets of a self-centered region are all strictly
smaller thanz /2, angles coassociated to the facetdofre strictly smaller thaer,

and from Theorem P is the Delaunay diagram @&. Thus there exists at most one
self-centered diagram in DinS), and every non-Delaunay diagram admits at least one
non-self-centered regiop. Therefore, at least one of the angles associated to the facets
of p is greater than or equal to/2. O

This property of self-centered diagrams is also dual to equiangularity: it minimizes
the maximum angle associated to the facets of a diagram. This duality is stronger than
the one defined in Section 5 since it is relative to the same angles.

7. Local Equiangularity in Any Dimension

Even if equiangularity holds only for planar Delaunay diagrams, there is a property of
local equiangularity that characterizes the refinements of the Delaunay diagram in any
dimension. We call every inscribable diagrdmof Dins(S) obtained by decomposing
some regions and faces of the Delaunay diagrar® afrefinement of the Delaunay
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u

Fig. 12. The grey facetf belongs to both tetrahedropsandp’.

diagram of STherefore every regiop of D is such thato(p) N S= @. In particular,
the Delaunay diagram & and its triangulations are refinements of CB}(

Lemmal. Let f be afacet of a refinementBel(S) that belongs to two diagrams D
and D of Dins(S), and let p and pbe two bounded regions of D and Espectively
that are adjacent to f and on the same side oflffp is a region of a refinement of
Del(S) and if p is not a region of a refinement Bfel(S), thena (f, p') < a(f, p).

Proof. Let O and O’ be the respective centers @i p) andw(p’), and letOu and
O'u be the external normals tb with respect top and p’ respectively (see Fig. 12).
Since p is a region of a refinement of D&, w(p) N S = @, and sincep’ is not a
region of a refinement of Def), the vertices ofp that are not vertices of belong to
the open ballo (p’). Thus, the cente® of w(p) belongs to the open half-lin®’u and
a(f, p) < a(f, p). O

Let A(f, D) be the increasing sequence of the two angles associated to & fatet
a diagramD of Dins(S). The diagranD is said to bedocally equiangular in fif, for
every diagranD’ of Dins(S) that admitsf as a facetA(f, D’) < A(f, D). Moreover,
D is said to bdocally equiangulawith respect to its face}sf it is locally equiangular
in all its facets.

Theorem 5. The refinements of the Delaunay diagram are locally equiangular
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Proof. Let D be a refinement of Def), let f be a facet oD, and letp andq be the
two regions ofD sharingf. Let D’ be a diagram of Din&) that admitsf as a facet
and letp’ (resp.q’) be the region oD’ adjacent tof and on the same side dfasp
(resp.q).

If p’isthe unboundedregion &f, pisalsothe unbounded regionBfandu( f, p') =
a(f, p) = 0.If p’is a bounded region of a refinement of C&)l(thenw (p’) N Sis empty
and, sincev(p) N Sis also empty, vertices qf andp’ are cospherical. Thus the centers
O andO’ of w(p) andw (p’) coincide andx(f, p’) = «(f, p). If p’ is not a region of a
refinement of Del§), then from Lemma & (f, p') < «(f, p).

Itresultsinall casesthat( f, p’) < a(f, p). Inthe same way we showthatf, q') <
a(f,q) and thusA(f, D) < A(f, D). O

Conjecture 1. The refinements of the Delaunay diagram are the only inscribable dia-
grams that are locally equiangular

Proof for Some Particular Cases (i) A diagram of Dinsg) that is locally equiangular
and that admits at least one facet of a refinement of §)éf a refinement of De§).
Indeed, leD be a diagram of Din&) that is not a refinement of Dedf but that admits at
least one facet of a refinement of D8J(If the regions adjacent to this facet are regions
of a refinement of Del), all facets of these regions are also facets of a refinement
of Del(S). SinceD is not a refinement of DeB), D admits at least one facdt of a
refinement of Delf) adjacent to a region that is not a region of a refinement of $el(
from Lemma 1 such a diagram is not locally equiangulaf in

(i) A planar inscribable diagram that is locally equiangular is a refinement of Delau-
nay. Indeed, in whichever way you decompose the convex hull of a planar point set in
inscribable regions, edges adjacent to the unbounded region are the same and thus are
Delaunay edges.

(iii) More generally ind-dimensional space, 8{conv(S)) admits at least one simpli-
cial facet, then this facet belongs to every diagram of D8sénd the refinements of
Del(S) are the only locally equiangular diagrams of Diis(

(iv) However, there exist inscribable diagrams that admit no facets of a refinement
of Delaunay, as shown in the following example. IS3be a set of eight sites in three-
dimensional space that generate a convex polyhedron whose facets are quadrangles (see
Fig. 13). The facet 1234 is a diamond whose diagonal 13 is strictly greater than 24, and
edges 15, 26, 48, and 37 are orthogonal to 1234 and sucfi fhat |26| = |48 < |37].

Figure 13(b) shows the diagrahof Dins(S) that contains no Delaunay facet. How-
ever, in this example it is easy to show tliais not equiangular and that D&is the
only equiangular diagram of DinSJ. O

8. Coassociated Solid Angles in Dimensioth > 3

Inthe previous sections we have studied the properties of Delaunay diagrams by using line
angles. In order to establish the same properties with solid angles, we have to associate
a solid anglexs( f, p) to every facetf of an inscribable diagrarD with respect to each
region p adjacent tof . However, we cannot choose feg( f, p) the solid angle under
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(a) (b)

Fig. 13. The Delaunay diagram (a) and a diagram without any Delaunay facet (b) of a three-dimensional
point set.

which the faceff is seen from the circumcent€rof p. Indeed, iff is not self-centered,
this angle does not vary monotonously wi@passes through the hyperplane containing
f (see, for example, facets,s; in Fig. 15).

Letcy, Gy, . .., Cn bethe facets of , thatis, thed —2)-faces off ,andvi € {1, ..., m},
let s be the intersection of the external normaktowith respect tof with the sphere
S§(w(p)) (see Fig. 14).

If Oisthe center ob (p) andOuis the external normal td with respect tg, thenthe
solid angleus( f, p) at vertexO of the polytopeOs;s; - - - §/, that cuts the half-lin€®u
is said to beassociated to the facet f with respect to the regiokVp posexs(f, p) =0
if pis unbounded.

Lemma 2. If his the circumcenter of ,fthen_the solid angleg( f, p) is a continuous
increasing function of the algebraic meastwr® on the oriented straight line hu

u u

Fig. 14. In both figures the facet is in grey and the regiop is “above” this facetp is only represented by
its vertices and its circumball (p).
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w(p)

Y u Yu

Fig. 15. The facets,s;s; is self-centered, whereags,s; is not self-centered.

Proof. It is straightforward to show that the facét with verticess,, .. ., s, is self-
centred, that is, the centbrof w(f’) = w(f) belongs tof’ (see Fig. 15). It follows
that the solid angles( f, p) is equal toy /2 whenhO is equal to zero (wherg is the
solid angle that sees the whaladimensional space). Moreoves( f, p) decreases and
tends toward zero whemO tend toward—oo, andas( f, p) increases and tends toward
y whenhO tends toward+oo. Henceas(f, p) is a continuous increasing function
of hO. O

The example of Section 4 shows again that equiangularity of Delaunay diagrams in
higher dimensions cannot be established with these angles. The property of coassociated
angles can however be generalized as followp.dhdq are the two regions sharing the
facetf, let Bs(f) = as(f, p) + as(f, q) be thesolid angle coassociated to. f

Theorem 6. In any dimension dDel(S) is the only diagram oDins(S) whose solid
angles coassociated to the facets are all strictly smaller than the solid anjlat sees
the whole d-dimensional space

Proof. (i) If f is afacetadjacent to two bounded regignandq in Del(S), then from
Theorem 1f is not illegal. LetO, and Oy be the respective centers®fp) andw (),
and letOpup, andOquy be the external normals towith respect tgp andq respectively.
Since the regiorp is not included inw(q), Oy belongs to the half-straight lin@pu,
(see Fig. 16(a)). From Lemma 2, the anglg¢f, p) is smaller than the supplement of
as(f, q) andBs(f) = as(f, p) +as(f, q) < y.
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(b) (c)

Fig. 16. The regionp is “above” the facetf with verticess;, s, s3 andq is “below” this facet.

If f is on the boundary of the convex hull & one of the angles associated fto
is zero, and since the solid angles associated to the facets are all smallgr gaéh)
< y.

(ii) Now let D be a non-Delaunay diagram. From Theorem hdmits at least one
illegal facet f and, with the notations of (i)p C w(q). If the vertices ofp andq are
cospherical, the®, = Oy, as(f, p) is the supplement ais(f, ), andps(f) = y (see
Fig. 16(b)). If the vertices op andq are not cospherical, then the anglg f, p) is
greater than the supplementw{ f, q) andgs(f) > y (see Fig. 16(c)). |
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Itis straightforward to show that results given in Sections 6 and 7 also hold with these
solid angles.

9. Angular Properties of Farthest Point Delaunay Diagrams

We now define the set of diagrams that enables us to characterize the farthest point
Delaunay diagram FDLCH) of ad-dimensional point seb.

Let CH_Dins(S) be the set of inscribable diagrams whose vertices are the vertices of
the convex hull ofS. A facet fof such a diagram is said to begal if the two regionsp
andq having f as a common facet are bounded and if verticeg\of do not belong to
the open ballv (q). If no more thard + 1 sites are cospherical, legality is equivalent to
nonillegality.

Theorem 7. In a d-dimensional euclidean space EDD(S) is the only diagram of
CH_Dins(S) without legal facets

Proof. (i) FDD(S) is a partition ofE whose every bounded regignis inscribable,
convex, and such th&nN w(p) = S\8(p). Thus, FDDE) has no legal facet.

(i) If D is a diagram of CHDins(S) distinct from FDDE), there exist a regiop of
D and a sites of S\§(p) such thats ¢ w(p). Let z be a point ofp such that the open
straight-line segmergzdoes not cut anf-face of D with dimension lower thad — 1
(see Fig. 17 fod = 2). Such a point always exists since the numbensfaces is finite.
We now show thab admits at least one legal facet, by induction on the number of facets
that are cut byz

Sinces ¢ p andz € p, there exists at least one facktof p cut bysz If szcuts
exactly one facef of D, thenf is a facet ofp, sis a vertex of the regioq sharing facet
f with p, andf is legal.

We take the following induction hypothesis:sf cutsk facets, therszcuts at least
one legal facet. Suppose now tlsatcutsk + 1 facets, and lef be the facet ofp cut

Fig. 17. Sincew(q) does not contain any vertex pfthe edgeb is legal.
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by szand letq be the region oD sharing facetf with p. If the vertices ofy\ f do not
belong tow (p), then the faceff is legal and the result is directly proved. Otherwise,
sinces ¢ w(p) and sinces andz are on both sides of,, s ¢ w(q). If Z is a point of

g N sz sZ cutsk facets ofD but does not cut anki-face of D with dimension lower
thand — 1. From the induction hypothesisZ cuts at least one legal facet asdalso
cuts this facet. O

If D is a diagram of CHDIns(S), p is a bounded region db, and f is a facet of
p, then we associate tb with respect top the same angle’(f, p) = «(f, p) asin
Section 4. In the particular case where the regids unbounded, since the hyperplane
of f is the limit of a sphere that contaii® we posex'(f, p) = . Let A’(D) be the
increasing sequence of the angles smaller thassociated to the facets Bf.

In order to establish a property of anti-equiangularity of the farthest point Delaunay
diagram, we only consider the subset of diagrams of[@hE(S) such that the circum-
sphere of every region passes only through sites that are vertices of this rediagr@m
D of this subset is said to benti-equiangularif, for every diagramD’ of the subset,
A(D) < A(D").

Theorem 8. For a planar point set SFDD(S) is the only anti-equiangular diagram of
the reducedCH_Dins(S).

Proof. Using the same arguments as in the proof of Theorem 2, we show that every
diagram of the reduced CBins(S) that admits at least one legal facet is not anti-
equiangular. From Theorem 7, itresults that FI3Pé the only anti-equiangular diagram

of the reduced CHDIns(S). O

The anti-equiangular diagrams of the whole ©lhs(S) are farthest point Delaunay
triangulations. Indeed, angles associated to the facets of the farthest point Delaunay
diagram form a subset of those associated to the facets of a farthest point Delaunay
triangulation.

As in Section 5, lefs’(f) be the angle coassociated to a faéedf a diagram of
CH_Dins(9).

Theorem 9. Forad-dimensional pointset 8DD(S) is the only diagram oEH_Dins(S)
whose coassociated angles are all strictly greater than

Proof. From the proof of Theorem 3, the angl& f) coassociated to any facétthat
is not on the boundary of conS) is either smaller than or equal to if f is legal,
or strictly greater thamr otherwise. Moreover, iff is on §(conv(S)), then one of its
associated angles is equabkt@ndp’(f) > .

From Theorem 7 it follows that all angles coassociated to facets of Epéxe
strictly greater thanr, and that FDDS) is the only diagram of CHDins(S) with this
property. O

The interested reader can show that the notions of coassociated solid angles, of local
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equiangularity, and of self-centered diagrams can also be modified to characterize farthest
point Delaunay diagrams in any dimension.

10. Conclusion

In order to characterize the regularity of the Delaunay diagram in any dimension, we
have compared this diagram with all those whose regions are convex and inscribable
polytopes. By associating two angles to each edge of a planar inscribable diagram, we
have generalized the equiangularity property to the Delaunay diagram and have shown
that it is the only equiangular diagram.

However, natural generalizations of these angles do not allow us to establish equian-
gularity of the Delaunay diagram in dimension greater than two. Nevertheless, we have
presented other angular optimality results for the Delaunay diagram in any dimension,
both with line angles and with solid angles.

In the last section we have given angular properties of the farthest point Delaunay
diagram. The question that arises is to know if such properties can also be extended to any
orderk Delaunay diagram of a setosites. In [13] we have shown that, for2k < n—2,
these diagrams contain both Delaunay and farthest point Delaunay subdiagrams. Since
these two kinds of diagrams have opposite angular properties, generalization to any order
Kk is not possible.

We hope that our results will help to determine a Delaunay triangulation from any
triangulation by local flips, a problem which remains open in dimension greater than
two.
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