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Abstract. Equiangularity (also called max-min angle criterion) is a well-known property
of some planar triangulations that refine the Delaunay diagram. In this paper we generalize
the notion of equiangularity to decompositions in inscribable polygons and we show that
it characterizes the planar Delaunay diagram, even if more than three sites are cocircular.
This result does not extend to higher dimensions. However, we characterize the Delaunay
diagram in any dimension by a kind of dual property that we prove both with line angles
and with solid angles. We also establish a local equiangularity of Delaunay diagrams in
any dimension, and an angular characterization of self-centered diagrams. Finally, we show
that these angular properties can, when appropriately defined, be generalized to the farthest
point Delaunay diagram.

1. Introduction

Given a setS of points in the plane called sites, the problem of triangulatingS, that is,
decomposing the convex hull ofSin disjoint triangles whose vertices are the sites ofS, has
been studied extensively. Among these triangulations,Delaunay triangulations(whose
triangles circumcircles contain no site in their interior) seem to be the most regular [2], [5],
[9], [10]. Indeed, a Delaunay triangulation maximizes the minimum angle of its triangles,
and moreover maximizes lexicographically the increasing sequence of these angles [5].
Such a triangulation is said to beglobally equiangular. The Delaunay triangulation
definition extends easily to higher dimensions, but very few results are known so far.
Some metric properties of planar Delaunay triangulations have been generalized in any
dimension [11], [12]. If nod + 2 sites ofS are cospherical, the Delaunay triangulation
of S is dual to the Voronoi diagram ofS. Otherwise in degenerate cases, the dual of the
Voronoi diagram may not be a triangulation but a decomposition of the convex hull of
S in disjoint convex inscribable polytopes whose vertices are the sites ofS (see Fig. 1).
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Fig. 1. A “degenerate” Delaunay diagram.

Such a decomposition is called aninscribable diagramof S and the unique dual of the
Voronoi diagram is theDelaunay diagramdenoted by Del(S). The circumsphere of each
Delaunay region contains no site in its interior and passes only through the sites that are
vertices of this region. Thus, Delaunay triangulations are refinements of the Delaunay
diagram.

In Section 2 we characterize the Delaunay diagram in any dimension through a prop-
erty of its facets. All other results will be consequences of this one.

In Section 3 we introduce another definition of angles which generalize those used to
establish equiangularity of planar Delaunay triangulations, and we extend this property
to planar Delaunay diagrams.

Although these angles can be generalized in different ways in higher dimensions,
we show in Section 4 that none extend equiangularity to higher-dimensional Delaunay
diagrams. However, by adding up these angles facet per facet, we define in Section 5
a property which is—in a certain way—dual to equiangularity. We also prove that this
property characterizes Delaunay diagrams in any dimension.

These new angles also allow us to characterize self-centered inscribable diagrams
(for which every region contains its circumcenter), and to establish a kind of local
equiangularity of Delaunay diagrams in any dimension.

In Section 8 we show that Delaunay diagrams can also be characterized in dimension
greater than two with solid angles.

The order-k Delaunay diagram of ad-dimensional setS of n sites is the orthogonal
dual of the order-k Voronoi diagram ofSsuch that every order-k Delaunay vertex is the
center of gravity of thek sites defining its dual order-k Voronoi region [1], [3], [14], [13].
By using a homothety centered at the center of gravity ofSand with factor−1/(n− 1),
the order-(n − 1) Delaunay diagram ofS can be mapped into an inscribable diagram
whose vertices are those of the convex hull ofS. This inscribable diagram is called the
farthest point Delaunay diagram of S, and is denoted by FDD(S). The interior of the
circumsphere of every regionp of FDD(S) contains all the sites ofS\δ(p) (δ(p) denotes
the boundary ofp).

Eppstein [7] has proved that the triangulation of the vertices of a convex hull of
a planar point set that minimizes the increasing angles sequence, is a farthest point
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Delaunay triangulation. In Section 9 we show that angular properties of the farthest
point Delaunay diagram are opposite to properties of Del(S).

2. Illegal Facets in Inscribable Diagrams

Given a setSof sites in ad-dimensional space, Delaunay [4] has shown that Delaunay
triangulations ofSare the only triangulations ofSwhose every facetf common to two
tetrahedronsp andq is such that the interior of the circumsphere ofp contains no vertex
of q. Such a facetf is said to belocally optimal[8] or not illegal [5].

However, these facets do not characterize Delaunay diagrams if more thand+1 sites
are cospherical. Indeed, the diagonal of a square for example is locally optimal, but is not
a Delaunay edge: the circumsphere of a Delaunay regionp passes only through the sites
that are vertices ofp. Therefore we modify the previous definitions to take degeneracies
into account.

Recall that adiagramin a d-dimensional euclidean spaceE is a partition ofE in a
finite number of 0-faces (called vertices), of 1-faces (called edges), of 2-faces,. . . , of
(d−1)-faces (called facets), and ofd-faces (called regions). For a setSof sites inE, let
Dins(S) be the set of inscribable diagrams whose set of vertices isS. Faces (other than
0-faces) of these diagrams are open convex inscribable polytopes, and the complement
of the convex hull ofS is the only unbounded face. Dins(S) contains, for instance, the
Delaunay diagram and all triangulations ofS.

A facet f of an inscribable diagram is said to beillegal if the two regionsp andq
having f as a common facet are bounded, and ifp is included in the open ballω(q)
circumscribed toq, that is, every vertex ofp belongs to the closed ballω(q) (in an early
version [15], such a facet has been calledrecessive). Moreover,p ⊂ ω(q) is equivalent
to q ⊂ ω(p).

Theorem 1. The Delaunay diagramDel(S) of a set S of sites in a d-dimensional
euclidean space, is the only diagram ofDins(S) without illegal facets.

Proof. The proof given by Delaunay [4] can be easily generalized to deal with inscrib-
able diagrams. The proof of Theorem 7 in Section 9 gives another way to establish this
result.

3. Equiangularity of Planar Delaunay Diagrams

In order to establish global equiangularity in planar triangulations, Edelsbrunner [5] has
shown that a triangulation which maximizes lexicographically the increasing sequence
of angles of its triangles is a Delaunay triangulation. However, if there are more than
three cocircular sites, some Delaunay triangulations may not be globally equiangular,
and there may be more than one globally equiangular triangulation. Moreover, if we
consider the increasing sequence of interior angles at the vertices of the regions of an
inscribable diagram, global equiangularity does not characterize Delaunay diagrams.
For example, in Fig. 2 the diagramD whose regions are 1234 and 145 is an inscribable
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Fig. 2. A nonglobally equiangular Delaunay diagram.

diagram of the setS= {1,2,3,4,5} but is not Delaunay. The regions of Del(S) are 125,
235, and 345. When site 3 tends toward site 2, angleα1 at vertex 5 of the region 235
tends toward zero whereas the angles of the region 1234 tend toward nonzero values.
Thus,α1 may be smaller than every angle ofD and Del(S) is not globally equiangular.

Recall that the interior angleα at vertexr of a trianglerst is equal to the half-angle
under which edgest is seen from the centerO of the circumcircleC of rst (see Fig. 3).
Thus equiangularity of Delaunay triangulations can be established by using these latter
angles.

Moreover, ifr ′ is a point in the half-space limited byst and containingr , the nonori-
ented angle(r ′s, r ′t) between the half-linesr ′s andr ′t is greater (resp. smaller) thanα
if r ′ is inside (resp. outside) the circleC.

The angles above can also be used to characterize inscribable diagrams as follows.
Let D be a diagram of Dins(S) in the plane, letp be a bounded region ofD, and letst
be an edge ofp. Let O be the center ofω(p) and letOu be the half-line radiating from
O, orthogonal tost and directed to the half-plane delimited byst that does not contain
p (see Fig. 4).

Ou is calledthe external normal to the edge st with respect to the region p. The
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Fig. 3. For any sitesr ′1, r , andr ′2 that are respectively outside, on, and inC, and on the same side of st,
(r ′1s, r ′1t) < α = (Os,Ou) = (rs, r t ) < (r ′2s, r ′2t).
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Fig. 4. Definition of the associated angleα(st, p).

angle(Os,Ou) is said to beassociated to the edge st with respect to the region pand
is denoted byα(st, p). In the particular case where the regionp is unbounded (i.e.,p is
the complement of the convex hull conv(S)), we poseα(st, p) = 0. Indeed, the straight
line st is the limit of a circle passing throughs andt , and whose interior contains no site,
that is, a circle whose center tends toward−∞ on the bisector of{s, t} in the half-plane
limited byst and that does not containS.

Unlike planar triangulations, where the number of triangles, and thus of angles, is
fixed onceS is given, in a diagram of Dins(S) the length of the angles sequence depends
on the diagram. So we modify the definition of equiangularity to take this fact into
account. LetD be a diagram of Dins(S) and letA(D) = (α1(D), α2(D), . . . , αm(D))
be the increasing sequence of the nonzero angles associated to all the edges ofD, and
let m= |A(D)| be the length of the sequenceA(D).

Given two diagramsD andD′ of Dins(S), we define the lexicographical order relation
< such thatA(D′) < A(D) if one of these two conditions applies:

— there existsj such that,∀i < j, αi (D′) = αi (D) andαj (D′) < αj (D).
— A(D) is an initial subsequence ofA(D′) (i.e., |A(D)| < |A(D′)| and,∀i ∈
{1, . . . , |A(D)|}, αi (D) = αi (D′)).

A diagram Dof Dins(S) is said to beequiangularif, ∀D′ ∈Dins(S),A(D′) ≤ A(D).
It results from the previous definition that ifA(D) is a subsequence ofA(D′) that

is,A(D) is obtained by removing some elements fromA(D′), thenA(D′) < A(D).
Indeed, eitherA(D) is an initial subsequence ofA(D′), or there existj andk > j such
that,∀i < j, αi (D) = αi (D′) andαj (D) = αk(D′) > αj (D′).

Theorem 2. The Delaunay diagramDel(S) of a set S of coplanar sites is the only
equiangular diagram ofDins(S).

Proof. Let D be a diagram of Dins(S) that admits at least one illegal edgec. Let p
andq be the two regions ofD sharingc. Let L = δ(p) ∩ S, R = δ(q) ∩ S, {s, t} =
δ(c) ∩ S= L ∩ R, and letH be the restriction ofD to L ∪ R.

If the sites ofL ∪ R are cocircular, the edges of Del(L ∪ R) are the edges of the
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Fig. 5. Illustration for the proof of Theorem 2: the vertices ofp andq are not cocircular.

convex polygon whose vertices are the sites ofL∪R, andc is not an edge of Del(L∪R).
Therefore,A(Del(L ∪ R)) is a subsequence ofA(H), andA(H) < A(Del(L ∪ R)).

If the sites ofL ∪ R are not cocircular, the sites ofL\{s, t} and R\{s, t} belong
respectively toω(q) and toω(p) (see Fig. 5). Letr andaa′ be respectively a region and
an edge of Del(L ∪ R) such thatα(aa′, r ) = α1(Del(L ∪ R)) is the smallest angle of
A(Del(L ∪ R)).

Let Op andOr be the respective centers ofω(p) andω(r ) and letOr u be the external
normal toaa′ with respect tor .

(1) If {a,a′} ⊂ L, thenaa′ is an edge ofp and the half-lineOpu is the external
normal toaa′ with respect top (see Fig. 6). Since every other vertex ofr belongs
to R\{s, t}, the circular arc ofδ(ω(r )) limited byaa′ and containingr is included
in ω(p). Moreover, the centerOr of ω(r ) belongs to the open half-lineOpu. It
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Fig. 6. Illustration for the proof of Theorem 2: part (1).
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Fig. 7. Illustration for the proof of Theorem 2: part (2).

follows thatα(aa′, p) = (Opa,Opu) < (Or a,Or u) = α(aa′, r ) = α1(Del(L ∪
R)), and sincep is a region ofH , α1(H) ≤ α(aa′, p) < α1(Del(L ∪ R)). Hence
A(H) < A(Del(L ∪ R)).

(2) If a ∈ L\{s, t} anda′ ∈ R\{s, t}, then we can suppose (within a permutation ofs
andt) thatt andr are on the same side of the straight lineaa′ (see Fig. 7(a)). Sincer
is a region of Del(L∪R), t does not belong toω(r ) and thus(ta, ta′) < α(aa′, r ).
If b is the neighbor ofs on δ(p) distinct from t (b may be equal toa), then
(tb, ts) < (ta, ta′) (see Fig. 7(b)). Sincet belongs toδ(ω(p)), α(sb, p) =
(tb, ts) < (ta, ta′) < α(aa′, r ). Henceα1(H) ≤ α(sb, p) < α(aa′, r ) =
α1(Del(L ∪ R)) andA(H) < A(Del(L ∪ R)).

(3) The case{a,a′} ⊂ R, and the casea′ ∈ L\{s, t} anda ∈ R\{s, t} are dealt with
in the same way.

Thus, in all cases, if we replaceH by Del(L ∪ R) in D, we obtain a diagramD′ such
thatA(D) < A(D′).

This shows that the equiangular diagram (i.e., which maximizes the sequenceA) has
no illegal edge, and Theorem 1 shows that the Delaunay diagram is the only inscribable
diagram with this property.

This result holds even if we add in the sequenceA the zero angles associated to
the edges of the unbounded region: the number of these angles is the same for every
inscribable diagram of a given planar point set.

4. Equiangularity in Higher Dimensions

In order to study angular properties in higher dimensions, we first have to define the
angles we need to use.
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Fig. 8. In both examples, the grey facetf is adjacent to a tetrahedronp. In the left figure,p andO are on
the same side of facetf and 0< α( f, p) < π/2, whereas in the right figure,p andO are on both sides off
andπ/2< α( f, p) < π .

Let p be a bounded region of a diagramD of Dins(S) in thed-dimensional space and
let f be a facet ofp. Let O be the center ofω(p), let s be a vertex off , and letOu be
the half-line radiating fromO, orthogonal tof and directed to the half-space delimited
by the hyperplane off that does not containp (see Fig. 8 ford = 3). Note that the
straight line containingOu intersectsf in its circumcenter.

Ou is called theexternal normal to f with respect to p, and the angle(Os,Ou) is
said to beassociated to the facet f with respect to the region pand is denoted byα( f, p).
As in the plane,α( f, p) = 0 if p is unbounded.

The notion of equiangularity extends easily in any dimension with these angles but,
unfortunately, it does not characterize Delaunay diagrams in dimensions greater than
two, as is shown in the following example (see Fig. 9).

Let S = {1,2,3,4,5} be a three-dimensional point set in which the plane of the
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Fig. 9. The Delaunay diagram of this three-dimensional point set is not equiangular.
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equiangular triangle 123 is the bisector of{4,5} and the straight line segment 45 cuts
this plane at point 7 of the segment 36 (6 is the middle of the segment 12).

When sites 4 and 5 are near enough to the plane 123, the circumsphere of 1234 contains
site 5 in its interior, and the diagramD whose regions are the tetrahedrons 1234 and 1235
is the only non-Delaunay diagram of Dins(S). The regions of Del(S) are the tetrahedrons
1345, 2345, and 1245. When point 7 tends toward point 6, the circumcenterO1245 of
1245 tends toward infinity whereas the circumcenters of the regions ofD tend toward
positions at finite distances, and thus the angles associated to the facets 145 and 245 with
respect to the region 1245 of Del(S) tend toward zero whereas the angles associated to
the facets ofD tend toward nonzero values. Therefore, there exists a position of point 7
on the segment 36 for which the sharpest angles associated to the facets of Del(S) are
smaller than the angles associated to the facets ofD, and Del(S) is not equiangular.

Angles used in the plane can be generalized to dimensiond by considering other kinds
of angles, such as angles associated to theh-faces of the diagrams (forh ∈ {1, . . . ,d−2}).
However, it is straightforward to show that none characterize Delaunay diagrams.

5. Coassociated Angles in Any Dimension

In the previous section we have associated two anglesα( f, p) andα( f,q) to each facet
f of an inscribable diagram with respect to the two regionsp andq sharingf . Theangle
β( f ) = α( f, p)+ α( f,q) is said to becoassociated to the facet f(see Fig. 10).

This angle is a function of the oriented angle(sOp, sOq) whereOp andOq are the
respective centers of the ballsω(p) andω(q). β( f )measures the way in which the two
balls interpenetrate.

Theorem 3. For every finite set S of sites in a d-dimensional space, the Delaunay
diagramDel(S) is the only diagram ofDins(S) whose angles coassociated to the facets
are all strictly smaller thanπ .

α(f,p)

ω(p) ω(q)

α(f,q)
Op

Oq

s

Fig. 10. Definition of coassociated angles in three dimensions.
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Fig. 11. The three cases for the proof of Theorem 3.

Proof. (i) If f is a facet of Del(S) shared by two bounded regionsp and q, then
from Theorem 1,f is not illegal. LetOp andOq be the respective centers ofω(p) and
ω(q), and letOpup and Oquq be the external normals tof with respect top andq,
respectively.

Since the regionp is not included in the ballω(q), the segment of the sphereδ(ω(q))
that is not on the same side of the hyperplane containingf as p, is included inω(p)
(see Fig. 11(a)). Thus, the centerOq of ω(q) belongs to the half-lineOpup, andOpup∩
Oquq 6= ∅. Sinceα( f, p) andα( f,q) are interior angles of the triangleOpsOq, β( f ) =
α( f, p)+ α( f,q) = π − (sOp, sOq) < π .

If f is a facet on the boundary of conv(S), one of the angles associated tof is zero,
and since all associated angles are smaller thanπ , β( f ) < π .

(ii) Now let D be a diagram of Dins(S) which is not Delaunay. From Theorem 1,D
admits at least one illegal facetf and, with the notations from (i),p ⊂ ω(q).

If vertices ofp andq are cospherical,Op = Oq andβ( f ) = α( f, p)+ α( f,q) = π
(see Fig. 11(b)).
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If the vertices ofp and q are not cospherical, thenα( f, p) and α( f,q) are the
complements of two interior angles of the triangleOpsOq (see Fig. 11(c)). Thusβ( f ) =
α( f, p)+ α( f,q) = π + (sOp, sOq) > π .

This property of the Delaunay diagram is in a certain way dual to equiangularity since
the Delaunay diagram minimizes the maximum angle coassociated to its facets.

The lifting transformation introduced by Edelsbrunner and Seidel [6], which trans-
forms thed-dimensional Delaunay diagram in a (d+ 1)-dimensional convex hull, gives
another interpretation of the angleβ( f ) = α( f, p) + α( f,q). The regionsp andq
are lifted to polytopes lying on two half-hyperplanes which define an angleθ( f ) such
that θ( f ) = π (resp.θ( f ) < π) if and only if β( f ) = π (resp.β( f ) < π) (private
communication from J.-D. Boissonnat).

6. Optimality for Self-Centered Diagrams

A boundedregionof a diagramD of Dins(S) is said to beself-centeredif it contains its
circumcenter, and thediagram Dis said to beself-centeredif all its bounded regions are
self-centered.

Rajan [11], [12] has proved that every triangulation of a point set in any dimension
having each of its triangles self-centered is a Delaunay triangulation. We generalize this
result to inscribable diagrams by using coassociated angles.

Theorem 4. Every self-centered diagram is a Delaunay diagram, and is the only one
whose angles associated to the facets are all strictly smaller thanπ/2.

Proof. Let S be ad-dimensional point set such that Dins(S) contains a self-centered
diagramD. Since angles associated to the facets of a self-centered region are all strictly
smaller thanπ/2, angles coassociated to the facets ofD are strictly smaller thanπ ,
and from Theorem 3D is the Delaunay diagram ofS. Thus there exists at most one
self-centered diagram in Dins(S), and every non-Delaunay diagram admits at least one
non-self-centered regionp. Therefore, at least one of the angles associated to the facets
of p is greater than or equal toπ/2.

This property of self-centered diagrams is also dual to equiangularity: it minimizes
the maximum angle associated to the facets of a diagram. This duality is stronger than
the one defined in Section 5 since it is relative to the same angles.

7. Local Equiangularity in Any Dimension

Even if equiangularity holds only for planar Delaunay diagrams, there is a property of
local equiangularity that characterizes the refinements of the Delaunay diagram in any
dimension. We call every inscribable diagramD of Dins(S) obtained by decomposing
some regions and faces of the Delaunay diagram ofS a refinement of the Delaunay



28 D. Schmitt and J.-C. Spehner

α(f,p)

α(f,p’)

u

O’

O

ω(p’)

ω(p)

Fig. 12. The grey facetf belongs to both tetrahedronsp and p′.

diagram of S. Therefore every regionp of D is such thatω(p) ∩ S= ∅. In particular,
the Delaunay diagram ofSand its triangulations are refinements of Del(S).

Lemma 1. Let f be a facet of a refinement ofDel(S) that belongs to two diagrams D
and D′ of Dins(S), and let p and p′ be two bounded regions of D and D′ respectively
that are adjacent to f and on the same side of f. If p is a region of a refinement of
Del(S) and if p′ is not a region of a refinement ofDel(S), thenα( f, p′) < α( f, p).

Proof. Let O and O′ be the respective centers ofω(p) andω(p′), and letOu and
O′u be the external normals tof with respect top and p′ respectively (see Fig. 12).
Since p is a region of a refinement of Del(S), ω(p) ∩ S = ∅, and sincep′ is not a
region of a refinement of Del(S), the vertices ofp that are not vertices off belong to
the open ballω(p′). Thus, the centerO of ω(p) belongs to the open half-lineO′u and
α( f, p′) < α( f, p).

LetA( f, D) be the increasing sequence of the two angles associated to a facetf of
a diagramD of Dins(S). The diagramD is said to belocally equiangular in f if, for
every diagramD′ of Dins(S) that admitsf as a facet,A( f, D′) ≤ A( f, D). Moreover,
D is said to belocally equiangular(with respect to its facets) if it is locally equiangular
in all its facets.

Theorem 5. The refinements of the Delaunay diagram are locally equiangular.
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Proof. Let D be a refinement of Del(S), let f be a facet ofD, and letp andq be the
two regions ofD sharing f . Let D′ be a diagram of Dins(S) that admits f as a facet
and letp′ (resp.q′) be the region ofD′ adjacent tof and on the same side off as p
(resp.q).

If p′ is the unbounded region ofD′, p is also the unbounded region ofD andα( f, p′) =
α( f, p) = 0. If p′ is a bounded region of a refinement of Del(S), thenω(p′)∩S is empty
and, sinceω(p)∩ S is also empty, vertices ofp andp′ are cospherical. Thus the centers
O andO′ of ω(p) andω(p′) coincide andα( f, p′) = α( f, p). If p′ is not a region of a
refinement of Del(S), then from Lemma 1α( f, p′) < α( f, p).

It results in all cases thatα( f, p′) ≤ α( f, p). In the same way we show thatα( f,q′) ≤
α( f,q) and thusA( f, D′) ≤ A( f, D).

Conjecture 1. The refinements of the Delaunay diagram are the only inscribable dia-
grams that are locally equiangular.

Proof for Some Particular Cases. (i) A diagram of Dins(S) that is locally equiangular
and that admits at least one facet of a refinement of Del(S) is a refinement of Del(S).
Indeed, letD be a diagram of Dins(S) that is not a refinement of Del(S) but that admits at
least one facet of a refinement of Del(S). If the regions adjacent to this facet are regions
of a refinement of Del(S), all facets of these regions are also facets of a refinement
of Del(S). SinceD is not a refinement of Del(S), D admits at least one facetf of a
refinement of Del(S) adjacent to a region that is not a region of a refinement of Del(S);
from Lemma 1 such a diagram is not locally equiangular inf .

(ii) A planar inscribable diagram that is locally equiangular is a refinement of Delau-
nay. Indeed, in whichever way you decompose the convex hull of a planar point set in
inscribable regions, edges adjacent to the unbounded region are the same and thus are
Delaunay edges.

(iii) More generally ind-dimensional space, ifδ(conv(S)) admits at least one simpli-
cial facet, then this facet belongs to every diagram of Dins(S), and the refinements of
Del(S) are the only locally equiangular diagrams of Dins(S).

(iv) However, there exist inscribable diagrams that admit no facets of a refinement
of Delaunay, as shown in the following example. LetS be a set of eight sites in three-
dimensional space that generate a convex polyhedron whose facets are quadrangles (see
Fig. 13). The facet 1234 is a diamond whose diagonal 13 is strictly greater than 24, and
edges 15, 26, 48, and 37 are orthogonal to 1234 and such that|15| < |26| = |48| < |37|.

Figure 13(b) shows the diagramD of Dins(S) that contains no Delaunay facet. How-
ever, in this example it is easy to show thatD is not equiangular and that Del(S) is the
only equiangular diagram of Dins(S).

8. Coassociated Solid Angles in Dimensiond ≥ 3

In the previous sections we have studied the properties of Delaunay diagrams by using line
angles. In order to establish the same properties with solid angles, we have to associate
a solid angleαs( f, p) to every facetf of an inscribable diagramD with respect to each
region p adjacent tof . However, we cannot choose forαs( f, p) the solid angle under
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Fig. 13. The Delaunay diagram (a) and a diagram without any Delaunay facet (b) of a three-dimensional
point set.

which the facetf is seen from the circumcenterO of p. Indeed, if f is not self-centered,
this angle does not vary monotonously whenO passes through the hyperplane containing
f (see, for example, facets1s2s3 in Fig. 15).

Letc1,c2, . . . ,cm be the facets off , that is, the (d−2)-faces off , and∀i ∈ {1, . . . ,m},
let s′i be the intersection of the external normal toci with respect tof with the sphere
δ(ω(p)) (see Fig. 14).

If O is the center ofω(p)andOu is the external normal tof with respect top, then the
solid angleαs( f, p) at vertexO of the polytopeOs′1s′2 · · · s′m that cuts the half-lineOu
is said to beassociated to the facet f with respect to the region p. We poseαs( f, p) = 0
if p is unbounded.

Lemma 2. If h is the circumcenter of f, then the solid angleαs( f, p) is a continuous,
increasing function of the algebraic measurehO on the oriented straight line hu.

ω(p)

O

u

s’2

c2

c3

c1s’1

s’3

u

O

c1

c2

c3

s’2

s’1

s’3

ω(p)

Fig. 14. In both figures the facetf is in grey and the regionp is “above” this facet.p is only represented by
its vertices and its circumballω(p).
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u

h

O

s’1

s’2

s’3

ω(p)

u

h

O

s’1

s1

s’2

s2

s’3

s3

ω(p)

Fig. 15. The facets′1s′2s′3 is self-centered, whereass1s2s3 is not self-centered.

Proof. It is straightforward to show that the facetf ′ with verticess′1, . . . , s
′
m is self-

centred, that is, the centerh of ω( f ′) = ω( f ) belongs to f ′ (see Fig. 15). It follows
that the solid angleαs( f, p) is equal toγ /2 whenhO is equal to zero (whereγ is the
solid angle that sees the wholed-dimensional space). Moreover,αs( f, p) decreases and
tends toward zero whenhO tend toward−∞, andαs( f, p) increases and tends toward
γ when hO tends toward+∞. Henceαs( f, p) is a continuous increasing function
of hO.

The example of Section 4 shows again that equiangularity of Delaunay diagrams in
higher dimensions cannot be established with these angles. The property of coassociated
angles can however be generalized as follows. Ifp andq are the two regions sharing the
facet f , letβs( f ) = αs( f, p)+ αs( f,q) be thesolid angle coassociated to f.

Theorem 6. In any dimension d, Del(S) is the only diagram ofDins(S) whose solid
angles coassociated to the facets are all strictly smaller than the solid angleγ that sees
the whole d-dimensional space.

Proof. (i) If f is a facet adjacent to two bounded regionsp andq in Del(S), then from
Theorem 1f is not illegal. LetOp andOq be the respective centers ofω(p) andω(q),
and letOpup andOquq be the external normals tof with respect top andq respectively.
Since the regionp is not included inω(q), Oq belongs to the half-straight lineOpup

(see Fig. 16(a)). From Lemma 2, the angleαs( f, p) is smaller than the supplement of
αs( f,q) andβs( f ) = αs( f, p)+ αs( f,q) < γ .
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Fig. 16. The regionp is “above” the facetf with verticess1, s2, s3 andq is “below” this facet.

If f is on the boundary of the convex hull ofS, one of the angles associated tof
is zero, and since the solid angles associated to the facets are all smaller thanγ , βs( f )
< γ .

(ii) Now let D be a non-Delaunay diagram. From Theorem 1D admits at least one
illegal facet f and, with the notations of (i),p ⊂ ω(q). If the vertices ofp andq are
cospherical, thenOp = Oq, αs( f, p) is the supplement ofαs( f,q), andβs( f ) = γ (see
Fig. 16(b)). If the vertices ofp andq are not cospherical, then the angleαs( f, p) is
greater than the supplement ofαs( f,q) andβs( f ) > γ (see Fig. 16(c)).
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It is straightforward to show that results given in Sections 6 and 7 also hold with these
solid angles.

9. Angular Properties of Farthest Point Delaunay Diagrams

We now define the set of diagrams that enables us to characterize the farthest point
Delaunay diagram FDD(S) of ad-dimensional point setS.

Let CH Dins(S) be the set of inscribable diagrams whose vertices are the vertices of
the convex hull ofS. A facet f of such a diagram is said to belegal if the two regionsp
andq having f as a common facet are bounded and if vertices ofp\ f do not belong to
the open ballω(q). If no more thand + 1 sites are cospherical, legality is equivalent to
nonillegality.

Theorem 7. In a d-dimensional euclidean space E, FDD(S) is the only diagram of
CH Dins(S) without legal facets.

Proof. (i) FDD(S) is a partition ofE whose every bounded regionp is inscribable,
convex, and such thatS∩ ω(p) = S\δ(p). Thus, FDD(S) has no legal facet.

(ii) If D is a diagram of CHDins(S) distinct from FDD(S), there exist a regionp of
D and a sites of S\δ(p) such thats /∈ ω(p). Let z be a point ofp such that the open
straight-line segmentszdoes not cut anyh-face ofD with dimension lower thand − 1
(see Fig. 17 ford = 2). Such a pointzalways exists since the number ofh-faces is finite.
We now show thatD admits at least one legal facet, by induction on the number of facets
that are cut bysz.

Sinces /∈ p andz ∈ p, there exists at least one facetf of p cut by sz. If sz cuts
exactly one facetf of D, then f is a facet ofp, s is a vertex of the regionq sharing facet
f with p, and f is legal.

We take the following induction hypothesis: ifszcutsk facets, thenszcuts at least
one legal facet. Suppose now thatszcutsk + 1 facets, and letf be the facet ofp cut

p q

f

r

z
z’

ω(q)

ω(p)

a

b

s

Fig. 17. Sinceω(q) does not contain any vertex ofr , the edgeab is legal.
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by szand letq be the region ofD sharing facetf with p. If the vertices ofq\ f do not
belong toω(p), then the facetf is legal and the result is directly proved. Otherwise,
sinces /∈ ω(p) and sinces andz are on both sides off , s /∈ ω(q). If z′ is a point of
q ∩ sz, sz′ cutsk facets ofD but does not cut anyh-face of D with dimension lower
thand − 1. From the induction hypothesis,sz′ cuts at least one legal facet andszalso
cuts this facet.

If D is a diagram of CHDins(S), p is a bounded region ofD, and f is a facet of
p, then we associate tof with respect top the same angleα′( f, p) = α( f, p) as in
Section 4. In the particular case where the regionp is unbounded, since the hyperplane
of f is the limit of a sphere that containsS, we poseα′( f, p) = π . LetA′(D) be the
increasing sequence of the angles smaller thanπ associated to the facets ofD.

In order to establish a property of anti-equiangularity of the farthest point Delaunay
diagram, we only consider the subset of diagrams of CHDins(S) such that the circum-
sphere of every region passes only through sites that are vertices of this region. Adiagram
D of this subset is said to beanti-equiangularif, for every diagramD′ of the subset,
A′(D) ≤ A′(D′).

Theorem 8. For a planar point set S, FDD(S) is the only anti-equiangular diagram of
the reducedCH Dins(S).

Proof. Using the same arguments as in the proof of Theorem 2, we show that every
diagram of the reduced CHDins(S) that admits at least one legal facet is not anti-
equiangular. From Theorem 7, it results that FDD(S) is the only anti-equiangular diagram
of the reduced CHDins(S).

The anti-equiangular diagrams of the whole CHDins(S) are farthest point Delaunay
triangulations. Indeed, angles associated to the facets of the farthest point Delaunay
diagram form a subset of those associated to the facets of a farthest point Delaunay
triangulation.

As in Section 5, letβ ′( f ) be the angle coassociated to a facetf of a diagram of
CH Dins(S).

Theorem 9. Forad-dimensionalpoint set S, FDD(S) is theonlydiagramofCH Dins(S)
whose coassociated angles are all strictly greater thanπ .

Proof. From the proof of Theorem 3, the angleβ ′( f ) coassociated to any facetf that
is not on the boundary of conv(S) is either smaller than or equal toπ if f is legal,
or strictly greater thanπ otherwise. Moreover, iff is on δ(conv(S)), then one of its
associated angles is equal toπ andβ ′( f ) > π .

From Theorem 7 it follows that all angles coassociated to facets of FDD(S) are
strictly greater thanπ , and that FDD(S) is the only diagram of CHDins(S) with this
property.

The interested reader can show that the notions of coassociated solid angles, of local
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equiangularity, and of self-centered diagrams can also be modified to characterize farthest
point Delaunay diagrams in any dimension.

10. Conclusion

In order to characterize the regularity of the Delaunay diagram in any dimension, we
have compared this diagram with all those whose regions are convex and inscribable
polytopes. By associating two angles to each edge of a planar inscribable diagram, we
have generalized the equiangularity property to the Delaunay diagram and have shown
that it is the only equiangular diagram.

However, natural generalizations of these angles do not allow us to establish equian-
gularity of the Delaunay diagram in dimension greater than two. Nevertheless, we have
presented other angular optimality results for the Delaunay diagram in any dimension,
both with line angles and with solid angles.

In the last section we have given angular properties of the farthest point Delaunay
diagram. The question that arises is to know if such properties can also be extended to any
order-k Delaunay diagram of a set ofnsites. In [13] we have shown that, for 2≤ k ≤ n−2,
these diagrams contain both Delaunay and farthest point Delaunay subdiagrams. Since
these two kinds of diagrams have opposite angular properties, generalization to any order
k is not possible.

We hope that our results will help to determine a Delaunay triangulation from any
triangulation by local flips, a problem which remains open in dimension greater than
two.
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4. B. Delaunay. Sur la sph`ere vide.à la mémoire de Georges Vorono¨ı. Bull. Acad. Sci. USSR: Cl. Sci. Math.
Natur., 7:793–800, 1934.

5. H. Edelsbrunner.Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Heidelberg, 1987.

6. H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements.Discrete Comput. Geom., 1:25–44,
1986.

7. D. Eppstein. The farthest point Delaunay triangulation minimizes angles.Comput. Geom. Theory Appl.,
1:143–148, 1992.



36 D. Schmitt and J.-C. Spehner

8. C. L. Lawson. Software forC1 surface interpolation. In J. R. Rice, editor,Mathematics Software III, pages
161–194. Academic Press, New York, 1977.

9. A. Okabe, B. Boots, and K. Sugihara.Spatial Tesselations: Concepts and Applications of Voronoi Diagrams.
Wiley, Chichester, 1992.

10. F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York,
1985.

11. V. T. Rajan. Optimality of the Delaunay triangulation inRd. In Proc. 7th Ann. ACM Symp. Comput. Geom.,
pages 357–363, 1991.

12. V. T. Rajan. Optimality of the Delaunay triangulation inRd. Discrete Comput. Geom., 12:189–202, 1994.
13. D. Schmitt. Sur les diagrammes de Delaunay et de Vorono¨ı d’ordrek dans le plan et dans l’espace. Ph.D.

thesis, Universit´e de Haute-Alsace, Mulhouse, 1995.
14. D. Schmitt and J.-C. Spehner. On Delaunay and Voronoi diagrams of orderk in the plane. InProc. 3rd

Canad. Conf. Comput. Geom., pages 29–32, 1991.
15. D. Schmitt and J.-C. Spehner. On equiangularity of Delaunary diagrams in every dimension. InProc. 5th

Canad. Conf. Comput. Geom., pages 346–351, 1993.

Received April25, 1996,and in revised form July31, 1997,and March18, 1998.


