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Abstract. A sphericalr-design orS" 1 is a finite set such that, for all polynomiafsof

degree at most, the average of over the set is equal to the averagefobver the sphere

S™1, In this paper we obtain some necessary conditions for the existence of designs of odd
strengths and cardinalities. This gives nonexistence results in many cases. Asymptotically,
we derive abound which is better than the corresponding estimation ensured by the Delsarte—
Goethals—Seidel bound. We consider in detail the strengtks3 andt = 5 and obtain

further nonexistence results in these cases. When the nonexistence argument does not work,
we obtain bounds on the minimum distance of such designs.

1. Introduction

Spherical designs were introduced in 1977 by Delsarte et al. [9]. A nhonempty finite
subsetC of the Euclidean spher® 1 is called a sphericat-design if and only if the
equality

1
/SH F(x) dp(x) = ﬁx; f(x)

holds for any polynomiaf (x) = f(xg, X2, ..., X,) of total degree at most Herep(-)
is the normalized Lebesgue measure, ugS"%) = 1.
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danyo@isy.lin.se.



144 P. Boyvalenkov, D. Danev, and S. Nikova
The Gegenbauer (ultraspherical) polynomials [1, Chapter 22] can be defined by
PV (1) =1, PO (t) =t,

(i +n—-2pP"

M =@ +n-2tPV®) —iPM®)  for i>1

If f(t) = Zikzoa;ti is a real polynomial, theri (t) can be uniquely expanded in terms
of these polynomials aé(t) = Zik:o fi Pi(”) (t). It is known that

1 -1 .1
fo = (/ 1- t2)<“—3>/2dt) / f(t)(1—tH32dt (1)
-1 -1
/2l ay (21 — D!
:ao+;n(n+2)m(n+2i—2)' (2)

A second characterization of spheriaatlesigns (see, for example, Equation 1.10 of
[10]) is that for anyr-designC ¢ S"~ and for any pointy € C the equality

> f(xy)) =IClfo— () ©)

xeC\{y}

holds for every real polynomid (t) of degree at most, where(x, y) is the usual inner
product inR".

Denote byB(n, 1) (resp. byBogq(n, 7)) the minimum possible cardinality (resp. odd
cardinality) of ar-design onS"~*. The following Fisher-type lower bound d&(n, 7)
was obtained by Delsarte et al. [9, Theorems 5.11 and 5.12]:

B(n, ) > R(n, 1)

n+e—1 n+e—2 .
("reit)(miei?) ez
= (4)
n+e—1 . _
2( N1 ) if =241

A spherical design is called tight if it attains the bound (4). Bannai and Damerell [3],
[4] proved that fom > 3 tight sphericak-designs or8"* do not exist ifr = 2e and
e> 3ort = 2e+ 1 ande > 4 except forr = 11,n = 24. There exist tight-designs
for r = 1, 2, 3 in all dimensions. Exactly eight tightdesigns withr > 4 are known.
The bound (4) is therefore improved by one in the cases where the nonexistence of tight
designs is proved (see [3]-[5]). Further improvements (by more than one) of the bound
(4) for somer > 6 were obtained in some dimensions in [6] and [7] by using linear
programming. Fazekas and Levenshtein [10, p. 287] write that the problem of asymptotic
improvements of (4) is one of the most important problems in the theory of polynomial
metric spaces (one of which is the Euclidean sphere).

We first obtain restrictions on the distributions of the inner products-désigns
with odd strengthr. To do this we use suitable polynomials in (3). This gives necessary
conditions for the existence of designs of odd strength in terms of the strentite
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dimensionn, and the cardinalityR(n, r) + k. These conditions imply nonexistence
results for designs with odd cardinalities (i.e., for dddn many cases.

Fort = 3, we prove the nonexistence of spherical 3-desigr8’ohwith R(n, 3) +
k = 2n+k points for allodk < (23 —1)n+ p, wherep = 2(14—5.2Y/3 - 4.22/3) /9 ~
0.30018. Therefore, we have

Boad(N, 3) > (1 + 23)n + p ~ (1 + 2+°)n + 0.30018

while (4) givesBggg(n, 3) > 2n + 1. On the other hand, Bajnok [2] has constructed 3-
designs or8"~* with all odd cardinalities greater than or equaR(, 3) +n/2 = 5n/2
forn > 6, to 11 forn = 3, 4, and to 15 fon = 5.

Fort = 5, we prove the nonexistence of spherical 5-desigr8"ohiwith R(n, 5) +
k = n? + n + k points for all oddk < n?(2Y% — 1)/2 + pin + po, Wherep; =
(=54 7.2Y/5 — 2.2%/5) /10 ~ 0.00095 andp, ~ 0.0428. Thus

1+ 21/5 1+ 21/5

Boda(n, 5) = N+ 1+ pon+ p~ n? + 1.00095 + 0.0428

instead 0fBogg(n, 5) > n? 4+ n + 1 from (4). Then we describe a method for proving
further nonexistence results and give some examples. For constructions of spherical
5-designs we refer to [11] and [13].

In general, Theorem 2.8 shows that for= 2e + 1 and for every positivep <
(2% — 1) /el there exists a constang = Nng(p) such that fon > ng there do not exist
r-designs or8"~! with cardinality R(n, 7) + k for all odd positivek < pn®. Therefore,

142V
el

Bodga(n, 2 + 1) > n® as n— oo,
whereas (4) give8yqq(n, 26 + 1) > 2n®/el asn — oo.

In three dimensions we rule out the first open cases by showing the nonexistence of 3-
designs with seven points and 5-designs with thirteen points. Bajnok [2] has constructed
3-designs ors? with m points form = 8 and allm > 10. Hardin and Sloane [11] and
Reznick [13] have constructed 5-designsS$rwith m points form = 12, 16, 18, 20,
and allm > 22 and conjectured that the remaining cardinalities are impossible.

When our nonexistence argument does not work, we obtain bounds on the maximal
inner producs(C) = max{(x, y) : X, y € C, x # y} of (2e+ 1)-designs or8"~* of odd
sizes in terms o0&, n, and|C|. These bounds are equivalent to bounds on the minimum
distanced(C) = min{d(x, y) : X,y € C, X # y}.

Fazekas and Levenshtein [10, Theorem 4] note that a combination of Levenshtein’s
bound for spherical codes and (4) implies a lower bound on the maximal possible inner
product of sphericat-designs. For = 2e + 1, the asymptotic form of this bound is

2
s(C) > \/;he + 0O(n~%?) as n— oo,

wherehe is the greatest zero of the Hermite polynontialt). For oddr = 2e + 1 and
k = yn®, we show that
1—2yel — y2(el)?

SOz —1ap

as N — oo,
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which is positive for2¥* — 1)/el < y < (+/2 — 1)/e!, and therefore is better for
large enougm than the bounds which can be obtained by the Fazekas—Levenshtein
observation.

2. General Necessary Conditions and Nonexistence Results

For ar-designC ¢ S"'andy € C we denotd (y) = {(X, y) : X € C, X # y} counting
with the multiplicities. Thus we may assume tha&y) = {t1, to, .. ., tc|—1} where

“l<ti<tp<---<tcg-1<1l

Then (3) becomes

ICl-1
ft) =IClfo— f(D)

i=1

and we use it in this form.
Delsarte et al. [9] obtain bound (4) by using suitable polynomials in the following
so-called linear programming bound (see also Chapter 9 of [8]) for spherical designs.

Theorem 2.1[9]. Letn> 2,lett > 1,and let f(t) be a real polynomial such that

(A1) f(t)>0for—1<t<1l,and
(A2) the coefficientsinthe Gegenbauer expansi@h £ Zik=o fi Pi(") (t)satisfy £,1 <
0,..., fx<O.

Then Bn, ) > f(1)/fo.

Lett = 2e+ 1 be odd, leC c S be ar-design of cardinalityC| = R(n, 7) + Kk,
and lety € C. We first derive an upper bound on the least inner protuet! (y). We
set

g(t) = [P (1))

and
R(n, 1) 0
= < 0.
R(n, ) + 2k

Theorem 2.2. We havet < §.

Proof. The bound (4) for = 2e + 1 was obtained [9, Theorem 5.12] by using the
polynomial(t + 1)g(t) in Theorem 2.1. Sincg(t) is an even function, (1) shows that
the first coefficients in the Gegenbauer expansiond af 1)g(t) and g(t) coincide.
We denote this common coefficient loy (in fact, 23(1)/g0 = 2/9go = R(n, 7) by
Theorem 5.12 of [9]).
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We setf (t) = (t —ty)g) = (t + 1g(t) — (t2 + D g(t) in (3). Then the left-hand
side is nonnegative, and the right-hand side is

folC| — f(1) = —t100(R(N, 7) + K) — 141y,

which impliest; < —R(n, t)/(R(n, 7) 4+ 2k) = 3. O

We denote byb; the first coefficient in the Gegenbauer expansiort' ofsee (1)
and (2)).

Lemma2.3. Wehaveb=( —D!'/n(n+2)---(n+i —2)fori evenandp=20
fori odd.

Fors € [—1, 0), we say that the point is s-near antipodal of, if (x,y) < . For
¢ = —1, this is the usual antipodality.

Theorem 2.4. Letn> 3,lett =2e+ 1> 3,and let k> 1 be such that
bae[R(N, 7) + k] — 1 < 252, (5)

Then each point of C has a unigéimear antipode from Cin particular, k must be even

Proof. If t, < § for somey € C, then byf (t) = t% in (3) we obtain

|ICl-1
belCl —1 = )t
i=1
> 2t
> 25%,
which contradicts (5). Therefore
th <4 <ty

for all y € C. Then for any pointy € C there exists a uniqu&near antipodex € C
(in our notationsx = x;). Therefore the points & must be divided into disjoint pairs,
i.e.,|C| is even. SinceR(n, 1) is even forr odd, the numbek must be even. O

Corollary 2.5. If n > 3and the odd numbers= 2e+ 1 > 3and k> 1 are such that
(5) is satisfiedthen there exist no sphericatdesigns or8"~* with R(n, t) + k points

Setting different polynomials in (3) and using the estimation from Theorem 2.2 one
can obtain better nonexistence results(B#+ 1)-designs with odd cardinalities. In the
next two sections the cases= 1 ande = 2 are considered in detail. Before that we give
another universal nonexistence rule.
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Theorem 2.6. Let« be the least zero of the polynomialty If n > 3 and the odd
numberst = 2e+ 1 > 3and k> 1 satisfy the conditions

<« (6)

and
—259(8) > 1, @)

then there do not exist-designs or8"* with R(n, t) + k points

Proof. We suppose that < § for somey € C. The even functiorg(t) decreases in
the interval -1, @], g(1) = 1, andgo = 2/R(n, 7). Thus

1 R, 7) + 2k

§ R,

0olC| —g(1)
ICl-1

Y9
i=1

> 29(t2)
> 29(9).

which contradicts (7). Thety > § for all y € C and the nonexistence argument from
Theorem 2.4 can be applied. O

Conditions (5) and (7) coincide when= 1 aswe seein Theorem 3.1 and Example 3.2.
Fore > 2, (7) gives stronger results, but we have to check if (6) holds. In fact, we
conjecture that (7) implies (6). This is suggested by the cases3 (see Theorem 3.1
and Example 3.2) and = 5 (see Theorem 4.3).

Lemma2.7. Ifk andt are fixed and n— oo, thena tends to zero

Proof. By the recurrence relation for the Gegenbauer polynomials, one has

n—o0

P (1) > tR (D),
whenceP{"™ (t) 17 te and we are done. Another proof follows by the explicit formula
[1, p. 775] for the Gegenbauer polynomials (all but the leading coefficients tend to zero
whenn tends to infinity). O

We now discuss the nonexistence results ensured by Theorem Z6if@d and
n— oo.

Theorem 2.8. For fixedr = 2e + 1 > 3 and every positive p< pp = 27 — 1)/€!
there exists a constangr= ng(p) such that for n> ng there do not exist-designs on
S-1 with cardinality Rn, 7) + k for all odd positive k< pne.
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Proof. SinceR(n,7) =2(n+e—1)---(n+1)n/e! =~ 2n¢/el asn — oo, we have
R(n, 1)
R(n, t) + 2pn®
n— oo 1
— 0
1+ pe
Thus (6) is satisfied for large enoughFor (7) we have
- 2R(n, 1) R(n, 1)
— R, 1)+ 2pne R(n, t) + 2pne
n— oo 2
(1+ peh)”
2

(1+ po€))*
= 1

8

—259(3)

n—o0

(use, as in the proof of Lemma 2.7, tHR{" (t) —— t®). This completes the proof

Corollary 2.9. For fixedt = 2e+ 1 > 3and n— oo, we have

1 + 21/‘[

ne
el ’

Bogd(n, 7) >

The above approach can be further refined and improved. We show this in the next
two sections (see the discussions after Example 3.2 and Corollary 4.5).

3. Nonexistence of Certain 3-Designs

Forn = 3, we haveR(n,3) = 2n, gt) = t2,§ = —n/(n + k), anda = 0. Let
C c S"! be a 3-design withC| = R(n, 3) + k = 2n + k points andy € C. We
setC = {y, X1, X2, ..., Xonyk_1} @and(Xj, y) =t fori =1,2,...,2n+ k — 1, where
—1<t;<ty<-..- <ty ByCorollary 2.5 we obtain the following:

Theorem 3.1. For odd k< (2%2 — 1)n & 0.26n there exist no spheric&-designs on
S"-1 with 2n + k points

Proof. Fort =2e+ 1= 3, (5)is equivalent t& < (22 — 1)n. O

Example 3.2. There exist no 3-designs witln2-1 points K = 1) in dimensions > 4,
3-designs with 8+ 3 points kK = 3) in dimensions > 12, etc. Notice that Theorem 2.6
gives the same result becaBf ' (t) = t (anda = 0 > § = —n/(n + k).

To obtain further nonexistence results for spherical 3-designs we need better estima-
tions. As a simple consequence, we prove the nonexistence of spherical 3-des&ns on
with seven points which resolves the first open case.
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Lemma 3.3. For every real a we have

h@ na’?+2(n+kja+n
ho@  n@n+k—D1a2+2na+n+k

tt<F@ = < tonyk-1.

Proof. Setf(t) = (t — a)?(t — t;), wherei = 1 or n + k — 1, in (3). The left-hand
side is nonnegative for= 1 and nonpositive for = 2n + k — 1. By (2), we compute

1
fozza%i—-ﬁ(2a4—n)

Resolving the inequalitiedo|C| — f(1) > Ofori = 1 and fy|C| — f(1) < O for
i =2n+ k — 1, we obtain the desired estimations. O
The argument in Section 2 correspondate: 0 in Lemma 3.3. Now we investigate
the functionF (a). The equatiorF’'(a) = 0 is equivalent to the quadratic equation
nn+k—1a?+nn—-1a—k=0. (8)

Leta; anda, be the negative and positive root of (8) respectively, i.e.,

_ —n(n—DF/n’(n— D2+ 4nk(n+ k — 1)
12— 2n(in+ k — 1) '

Lemma3.4. Wehavet=< F(ay) =a; <O0and b1 > F(a1) =a, > 0.

Proof. The functionF (a) has maximum foa = a; and minimum fora = a,. Since
F’(a1) = 0, we haveF (a;) = h’(a1)/ h,(ay). To check the identity (a;) = ap, apply
the Viéte formulas and a little algebra. Analogoud$fyfa,) = a;. O

We now obtain a necessary condition for the existence of 3-designs which in fact
refines (5).

Theorem 3.5. If k is odd then

_2n® 4 (5k — 7)n? + (4k? — 15k + 5)n + k(k — D) (k — 5)

2n[2n2 + (k — 5n + 3(1 — k)] ©

a =

Proof. If t; > & for all y € C we can apply the nonexistence argument from Corol-
lary 2.5. Thereforé, < a; for somey € C.
We setf (t) = (t — a)?in (3) assumin@ > a;. We have (computdy by (2))

k
Qn+k—D¥+2a+E%—

folCl — £(D)

2n+k—1

> i -a)?

i=1
2(t, — a)?
2(a; — a)>.

v 1V
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This gives

n+k
(2n+k —3)a’+2(1+ 2a))a + % —2a? > 0.
The last quadratic function has its minimum at the paint —(1+2a;)/(2n+k—3) >
a;. This minimum equals

S 2n+k-3 <(2”+k—1)af+2al+%_ (”+k)(22r;]+k_3))’
whence
(@n+k—DaZ+2a + 3 < (n+k)(22r:]+k—3).
Sinceay is a root of (8), we expresg from (8) to obtain a linear inequality with respect
to a; which is equivalent to (9). s

Corollary 3.6. There exist no spheric&designs with seven points &A.

Proof. In this case (9) is violated sin@® = —(1 + +/2)/3 ~ —0.804 while the
right-hand side of (9) is equal te 3. O

Example 3.2 and Corollary 3.6 complete the ckse 1, i.e., we have shown the
nonexistence of spherical 3-designsIn* with 2n + 1 points (what is the first possible
cardinality of a nontight 3-design?) in all dimensians- 3. The precise investigation
of condition (9) implies the following result which slightly improves Theorem 2.8 for
T =3.

Corollary 3.7. There exist no spheric&-designs or8"* with R(n, 3) + k = 2n + k
points for n> 3 and all odd positive k< n(2/3 — 1) + p, where p= 2(14— 5.21/3 —
4.2°/3) /9 ~ 0.30018.In other words

Boad(N, 3) > (14 2Y3n + p~ (14 23)n + 0.30018

Proof. We are interested in the paits, k) for whichn > 3 andk > 1. In what follows
we take only such pairs under consideration. After a routine calculation (which we made
using Maple V), inequality (9) takes the form

0 < hz(n, k) = k®+4(2n — 3)k® 4+ 2(13n? — 39n + 23)k*
+2(21n® — 93n? 4+ 112n — 30)k°
+ (31In* — 186> + 34:M? — 21 + 25)k?
+ 2n(2n* — 250 + 77n? — 82n 4 28)k
— n?(4n* 4+ 20n® — 33n? + 22n — 5).

The constanp was “conjectured” by setting = (21/® — 1)n + p, forgetting the small
(with respect to the degreesmjfterms and resolving a linear (with respecpjeequation.
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In this case we get a polynomial of the variahlef degree five with leading coefficient
equal to 61 + 2%/3)2p + 4(4 — 5.21/3). Since this coefficient must be nonpositive, we
see that the largegt which can be used is exactly4 — 5.21/3 — 4.22/3) /9,

We have

ha(n,n(2Y3 — 1)+ p) < —15n* + 4% —32n? + 5n+ 1 < 0,

whenevem > 3. The standard investigation b§(n, k) shows that it is an increasing
function of the variablé in the interval [1 4+00). Thus, for every positive integér for
whichk < n(2¥3 — 1) + p, we havehs(n, k) < hz(n,n(2Y3 — 1) + p) < 0. In this
case, condition (9) is violated, that completes the proof. O

Example 3.8. As noted in the Introduction, Bajnok [2] has constructed 3-designs on
S-1 with all odd cardinalities greater than or equaRM, 3) +n/2 = 5n/2 forn > 6,

to 11 forn = 3,4, and to 15 fon = 5, and with all possible even cardinalities. Thus
Corollary 3.7 shows that all possible cardinalities of 3-designsSbrt are already
known forn = 4, 6 and only one unsettled case remains in dimensioas3, 5, and
7<n<14,

4. Nonexistence of Certain 5-Designs

LetC c S"1be a5-designwitlC| = R(n, 5)+k = n?4+-n+kpoints andy € C. We set
C ={Y, X1, X2, . .., Xnzqnsk1} @and(x;, y) =t fori = 1,2,...,n>+n+k — 1, where
—1<t; <ty <--- <tpink_1. Theorem2.2 giveg < § = —n(n+1)/(n?>+n+ 2Kk).

Inequality (5) is equivalent to

2 2k 2n2 3k
G(n,k):n +n+2k 2?4tk
nin+1) 2n(n + 2)

Theorem 4.1. If n > 3 and the odd integer k= 1 are such that @n, k) < 1, then
there exist no spheric&-designs or§"~1 with n? 4+ n + k points

Example 4.2. Fork = 1, the investigation of the functioB(n, 1) implies the nonex-
istence of spherical 5-designs with+ n + 1 points in all dimensions > 7. Similarly,
for k = 3, one obtains the nonexistence of spherical 5-designsnfithn + 3 points in
all dimensions1 > 20. In three dimensions, Theorem 4.1 provides no information.

We now discuss the nonexistence results ensured by Theorem 2.6-fér.

Theorem 4.3. Forn > 3and all odd positive k< n(n+1)(+/n + 2—1)/2,there exist
no sphericab-designs or8"1 if

(N + (N + n+ 2k)° < 2n[n?(n + 1) — 4k(n? + n + k)] (10
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Proof.  SinceP{""?(t) = (n+ 2t2 — 1)/(n+ 1) (i.e.,a = —1/4/n+ 2), condition
(6) is equivalent tk < n(n + 1)(+/n+2 — 1)/2. A little algebra shows that (7) is
equivalent to (10). O

Example 4.4. Fork = 1, (10) implies the nonexistence of 5-designs with+- n + 1
points in all dimensions > 4 (in fact, after Example 4.2, we need to check (10) for
n = 4,5, and 6 only). Analogously, fdc = 3, one obtains the nonexistence of spherical
5-designs wit? 4+ n + 3 points in all dimensiona > 7.

Investigation of condition (10) gives the following result:

Corollary 4.5. For n > 3, there exist no spheric&-designs or8"* with n> + n + k
points for all odd positive k< pon? + pin, where p = (2%° — 1)/2 ~ 0.074349,
pr = (=5+ 7.2%5 — 2.2%/%) /10 ~ 0.00095.

Proof. Using Maple V again, we found that inequality (10) is equivalent to

0 < hs(n, k) = —32(n + 1)k® — 16(5n? + 10n + 3)nk*
— 16n%(n + 1)(5n% + 10n + 1)k — 8n®(n + 1)?(5n? + 12n + 3)k?
—2n*(n + D*(Bn + 13k + n°(n + 1)°.

It is immediate that, for every fixed positive numherthe functionhs(n, k) of the
variablek is decreasing 0, +00). The constanp; was found in the same way as in
the case = 3 (see Corollary 3.7). We now substitltvith pon® + p.nin hs(n, k) and
obtain

hs(n, k) > hs(n, pon® + pin)
>nP+4n®+6n"+3n°>0

fork e [1, pon®+ pin) and for every positive. Thus (10) is satisfied for every positive

k < pon® + pun.
To complete the proof we check the additional condition in Theorem 4.3 by seeing
that pon? + pin < n(n + 1)(v/n + 2 — 1)/2 holds for everyn > 3. O

We have to mention that neither of the constgmtsor p; can be made larger by our
method. Indeed, if we try to increase some of them, a negative coefficient will appear in
the front of the highest power ofin hs(n, pon? + p.n). In this casés(n, pon®+ pin)
will be negative for large enough

Using the last corollary, we get

14215 14 2L/5
Boda(n, 5) = +Tn2 + @+ pyn~ _i_Tn2 + 1.0009%

instead 0fBogqg(N, 5) > N? 4+ n + 1 by (4).
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The interested reader can further apply (preferable by using Maple or Mathematica)
the argument from the proof of Corollary 4.5. Indeed, one can prove that
1/5 14 2L/5

1
Boga(N, 5) > te ey 1+ pOn+ po & n? 4+ 1.00095 + 0.0428 (11)

In this case the functiohs(n, pon?+ pin+ py) is a polynomial which vanishes at= 3
and is positive for alh > 3.

We do not know the optimal polynomials for obtaining nonexistence results by our
method. In what follows in this section, we propose a way for improving (11).

To refine our approach, we have to consider in (3) (as in Section 3) the polynomials
fi(t) = (t2 + at 4+ b)%(t — ty) and fa(t) = (t% + at + b)?(t — t2,nk_1) for the best
choices of the parametessandb. The following lemma is an analog of Lemma 3.3 and
must be proved in the same way.

Lemma 4.6. For every real a and b we have

B n(l+a+b)?—2an?+n+k)b+3/(n+2)
(n2+n+ky@2+n2+2b+3/(n+2) —nd+a+b)?
tn2-~-n+k—l-

ty <F(ab) =

IA

We describe a simple algorithm for proving further nonexistence results for 5-designs.
Givenn > 3 and oddk > 1, we first obtain by Lemma 4.6 some boungds< b; and
treinsk_1 > by. Then we search for polynomials(t) = (t — ¢)?(t — d)?, where
b; < ¢ < d < h,. The nonexistence argument can be applied if

folCl — f(1) < 2f(c) + f(d).

Of course, it is enough to find just one péir, d) for which the last inequality holds.
This can be checked by a computer for a few seconds. The algorithm works strongly
enough to rule out the first open case.

Theorem 4.7. There exist no spheric&designs withl.3 points onS?.

Proof. We obtain the boundg < —0.898 = b; andt;, > 0.489 = b, by using
the pairs(a,b) = (—0.148 —0.167) and (1.24, 0.307), respectively. Then the pair
(c,d) = (—0.341, by) works. O

The above technique works in other cases where (10) does not give nonexistence re-
sults. The interested reader can check the nonexistence of 5-designs witRé5 5)+3
points onS®.

5. Bounds on the Maximal Inner Products of Designs with Odd Strengths
and Cardinalities

When the nonexistence argument from Theorem 2.4 does not work, we can obtain a
lower bound on the maximal inner prodwtC) (equivalently, an upper bound on the
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minimum distancel(C) = /2(1 — s(C))) of all (2e 4+ 1)-designsC ¢ S~ with odd
cardinalityR(n, 2e + 1) + k.

Theorem 5.1. Letr =2e+ 1> 3,letk> 3beoddletn> 3,andletCc S"1bhea
7-design with Rn, t) + k points Then

S(C)>25°—1 and dC) <2y/1- 62

Proof. There exists a poing € C such that, < §. Let the acute angle be such that
cosp = —§. Then the angle between the vectgeysandx, does not exceed2 Thus we
have

S(C) > (X1, Xp) > C0sdp =20 — 1 =252 — 1.
The bound fod(C) is obtained byd(C) = +/2(1 — s(C)). O

Bounds on the maximal inner product can be obtained by a combination (see [10]) of
Levenshtein’s bounds on spherical codes [12] and the Delsarte—Goethals—Seidel bound
(4). For any sphericale + 1)-designC ¢ S"%, a reformulation of Theorem 1 of [10]

says that
sS(C) > t™? (resp.d(C) < /2(1 — t&""?)), (12)

wheret{"? is the greatest zero of the Gegenbauer polynoi@iét? (t).
The bound (12) has the following asymptotic form [10, Theorem 4]:

s(C) > \/ghe +0(n%? as n— oo, (13

wherehg is the greatest zero of the Hermite polynomil(t) [1, Chapter 22]. The
Hermite polynomials can be defined by

Ho(t) =1, Hi(t) = 2t, Hipai(t) = 2tHi(t) — 2iHi_¢(t), i>1,

and one hafi; = 0, h, = 1/4/2, hs = \/g he = V2e 4+ O(e V%) ase — oo. For
7 fixed, the right-hand side of (13) tends to zeranaends tooco. We obtain a positive
lower bound ors(C) that does not depend (explicitly) an

Theorem 5.2. Letr = 2e+1,letk = yn®be oddand let(2¥* —1)/el <y < (v/2—
1)/€l. Then for any spherical-design Cc S"~! with odd cardinality|C| = R(n, ) +k
and as n— oo, we have

— 2yel — y2(el)? . 2

1
s(C) = h(y) = L+yeh)2  — (1+yeh? -

Proof. For large enougim we haveR(n, t) ~ 2n¢/e! and Theorem 5.1 implies the
assertion. O



156 P. Boyvalenkov, D. Danev, and S. Nikova

The functionh(y) is strictly decreasing fop > 0. Sinceh((~/2 — 1)/el) = 0, we
haveh(y) > 0 for all (2¥7 — 1)/el < y < (v/2 — 1)/el. Therefore, Theorem 5.2 gives
better results than (12) for all large enough

Finally, we show some improvements of the bound (12) by Theorem 5.1.

Example 5.3. Fort = k=3 andn = 8,9, 10 the bound (12) gives(C) > 0, while

Theorem 5.1 implies(C) > %, 3. =&, respectively. For = 5,k = 3, andn = 7, 8,

(10) givess(C) > £, 1/+/10 while our Theorem 5.1 givestC) > 527, 113 respectively.
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