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Abstract. Consider the question: Given integerssOk < d < n, does there exist a
simpled-polytope withn faces of dimensiok? We show that there exist numb&sd, k)
and N (d, k) such that fom > N(d, k) the answer is yes if and only &(d, k) divides
n. Furthermore, a formula fo&(d, k) is given, showing that, e.gG(d, k) = 1 if k >
L(d +1)/2] or if bothd andk are even, and also in some other cases (meaning that all
numbers beyond (d, k) occur as the number &ffaces of some simple-polytope).

This question has previously been studied only for the case of verkiced)), where
Lee [Le] proved the existence &f(d, 0) (with G(d, 0) = 1 or 2 depending on whether
d is even or odd), and Prabhu [P1] showed that, 0) < cdv/d. We show here that
asymptotically the true value of Prabhu’s constamtis +/2 if d is even, and = 1 if d is
odd.

1. Introduction

An integern is called(d, k)-realizableif there is a simplad-polytope withn faces of
dimensiork. For terminology and basic properties of polytopes we refer to the literature,
see, e.g., [Z].

We show, see Theorem 7, that there exist numigs k) andN (d, k) such that

e if nis (d, k)-realizable, therz(d, k) dividesn;
e if G(d, k) dividesn andn > N(d, k), thenn is (d, k)-realizable.

* This research was supported by EC Grant CHRX-CT93-0400 and by the Mathematical Sciences Research
Institute (Berkeley, CA).
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TheG(d, k)-divisible numbers that are n@d, k)-realizable are calle@, k)-gaps Thus
there are only finitely many gaps for al> k > 0. In this paper we study the numbers
G(d, k) andN(d, k). Our proofs rely on thg-theorem.

To give some feeling for the results, we discuss a few special cases. The parity
restrictions that exist for each dimensi&rare easiest to understand for the case of
vertices k = 0). Namely, the graph of a simplépolytope isd-regular, so if the
polytope has vertices, then it hadn/2 edges. Hence, & is oddn must be even. This
is in fact the only constraint, and we have

1, d even,
6@.0 = {2, d odd.
This result is due to Lee [Le], who initiated the study of properties of vertex-count
numbers of simple polytopes. Via the regular graph property this also implies the result
for edge-count numbers:

9 d even
Gd, 1) =42 '
d, d odd.

For 1 < k < |(d +1)/2] the situation gets more complicated and the answer is
different fork even and odd. For instance,

]2 d=1 (mod %,
Gd.2) = {1, otherwise.

The modulusG(d, k) can get arbitrarily large in this range; for instan&(d, k) =

d — k+ 1 whenevek is odd andd — k + 1 is a prime. Then, fok > [(d + 1)/2],
the situation simplifies again 16(d, k) = 1. Theorem 2 gives the general formula for
G(d, k).

It is also of interest to study the magnitude of the numbié(d, k) (defined as the
smallest possible ones for which the above statementis true). Again, this has been studied
for the case of vertices by Prabhu [P1], who showed Méat, 0) < cd+/d. We prove
that asymptotically the true value of Prabhu’s constaatis+/2 if d is even, and = 1
if d is odd, see Section 5. We also give an upper boundNf@, k) in the general case,
Theorems 10 and 11, but leave open the determination of its true asymptotic growth.

2. Preliminaries
Given ad-dimensional polytopé, we callf := (fq, f1, ..., fg_1) the f-vectorof P,

where f; is the number of faces of dimension
For any integers, s > 1, there is a unique way of writing

=) )
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sothatas > as_1 > --- > g >i > 1. Then define

as—1 as_1—1 g —1
N = . ] .
) (S_l)+( - )+ +(| _1)
Also let3%(0) := 0.
A nonnegative integer sequen@®, ny, Ny, ...) is called anM-sequencé

n=1 and 9°nNs) <ns_y forall s> 1.

Two simple facts we need abolMt-sequences is that if there is a zero in the sequence,
then all the following entries are also zeros, and that any sequence satigfying and
Ny > ny > ng > ---isanM-sequence.

An alternative definition of at-sequence, due to Macaulay and Stanley [S1], says
that a sequence is ai-sequence if and only if it is thd -vector of a multicomplex.
See [Li] and [Z] for examples of other interpretations\dfsequences. Letx] and[x]
denote the largest integer less than or equal amd the smallest integer larger than or

equal tox, respectively.
Leté := [d/2] and letMyq = (mix) be the (§ + 1) x d)-matrix with entries

d+1—i i
mik:( + ')—( I > for 0<i<$, O<k<d-1

k+1 k+1
For example,
11 55 165 330 462 462 330 165 55 \l1
9 45 120 210 252 210 120 45 10 |1
M1 — 7 35 84 126 126 84 36 9 1
=15 25 55 70 56 28 8 1 0
3 15 31 34 21 7 1 0 0
1 5 10 10 5 1 0 0 O

Our proofs rely on thg-theorem, conjectured by McMullen. Sufficiency was proved
by Billera and Lee [BL], and necessity by Stanley [S2] and later by McMullen [M], see
[Z]. We use the following matrix reformulation of tlgetheorem, given by Rjiner [B1],

[B2], see also [Z]. We have here reformulated the statement from simplicial polytopes
to simple polytopes, which just corresponds to readingfthector backward.
Theorem 1(Theg-Theorem). The matrix equation

f= g- Md

gives a one-to-one correspondence between f-vetwirsimple d-polytopes and M-
sequenceg = (do, 91, - - - » Us)-

3. The Modulus G(d, k)

The modulus mentioned in the Introduction is defined as follows:

G(d, k) :=gcdmy k, Mo, ..., Msk), @
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the greatest common divisor for the elements inktrecolumn and below the top row
of the matrixMy. In this section we give simple and explicit formulas &¢d, k). The
role of G(d, k) as the period for the possible number&daces ofd-polytopes is shown
in the next section.

Theorem 2.

(i) fk > [(d+1)/2],then Gd, k) = 1.
(i) Ifk < [(d+ 1)/2] is evenlet e be the integer such that < k + 1 < 28+,
Then
2 if d—k+1=0 (modZ2*?),
G k) = {1 otherwise
(i) Ifk < [(d+1)/2]isodd let py, ..., p; be the primes smaller than or equal to
k +1,and let ¢ > 1 be the integers such thaf'p< k + 1 < p***. Then

d-k+1

G, k) = .
@K'= gcdd —k+ L pope -

For the proof we need some facts about binomial coefficients modulo powers of
a prime, that are developed in a sequence of lemmas. Binomial coefficients modulo
prime powers have been much studied, see, e.g., [G] and the references therein, and the
following lemma (which summarizes the properties that we need) might be known. We
have however not been able to find it in the literature, so we include a proof.

Lemma3. Letk e> Oand let p be a prime such thap< k + 1 < p®*. Then for
allr > 1we have

() d=d’'(modp®™) implies

d\_(d .
(50) = () mose

etr —|—k— .

foralli =0,1,..., p* +k;
(i) the unique longest run of zeros in the perioc(ljgzl) =y Oforall p*" <d <
P + k.

(ii)

Part (ii) shows that ik is odd, then the period extended kjs symmetricicmodp"),
and ifk is even, then it is antisymmetric. The lemma is illustrated by the modular Pascal
triangle shown in Fig. 1.

For each primep define the valuatiom,: Z\{0} — N by vp(n) = s, wherep® is the
highest power op that is a divisor oh. We frequently use that

vp(N 4+ m) = vp(n) it vp(n) < vp(m); 2

in particular,vp(n + p*) = vp(n) if In| < p*.
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1
11
121
1331
10201
112211
1230321
13133131
100020001
1100220011
12102020121
133122221331
1020300030201
11223300332211
123012303210321
1313131331313131
10000000200000001
110000002200000011
1210000020200000121
13310000222200001331
102010002000200010201
1122110022002200112211
12303210202020201230321
131331312222222213133131
1000200030000000300020001
11002200330000003300220011
121020203230000032302020121
1331222231130000311322221331
10203000102030003020100030201

Fig. 1. Pascal’s triangle (mod 4).

Lemma4. Letk e and p be asinLemma Then
k .
vp | (kK+1) j <e forall 0<j <k

Proof. The proof hinges on the following fachkmong all products of x p®(p — 1)
consecutive integersinthe intenval2, . . ., p®! — 1the maximum valuation is attained
by the string that starts with $ To show this, assume thatr +1,...,r + x — 1is
such a string of integers. tf > p®, sayap® <r < (a+ 1) p®, then the string beginning
with r — ap® has the same valuation. Thus we may assume tkap®.

If r < p® lets be the least number such thiak s < p® andvp(r) < vp(s). Then it
is easy to see that,(r(r +1)---(r +x —1)) < vp(s(s+ 1) ---(s+ x — 1)), and the
claim follows.

We may assume thgt < k/2. Thenj + 1 < p®(p — 1), and what was just shown
implies thatvp(K— j + D(k— j +2)---(K+ 1)) < vp(p*(p*+ 1) ---(p*+ j)) =
e+ vp(j!), which is equivalent to the stated formula. O

Proof of Lemma&. We know from Pascal’s triangle th@til)(mod p") is completely
determined by the values ¢f) = 1, j > 0, and(*"') (modp") for anyd’ > 0 and all
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i =1,...,k+ 1. Therefore it suffices to show that

<|0 i > =y 0, ©)
foralli = 1,..., p¢! — 1, to establish the first part of the lemma. We have that
vp(PETT 4+ 8) = vp(s) foralls = 1,..., p*" — 1. So the expansion of the binomial
coefficient
P — 140\ (P AT = D(p* 41 —2)- - pt
[ - ii—Di-2)---2-1
gives

etr ;
vp((p i 1+|>>=e+r—vp(i)zr,

if i < p®+, which proves (3).

The second part of the lemma is obvious whes 0 < k, since both sides are zero
(for the left-hand side this follows from (i)). Therefore, assume khati < p®". For
eachj # 0 write j = pMni»()-elg;. Then, for 0< j < p®*,

Qper—j =p' O-j = —0j- (4)
We have the equality

< [ )(k+1)! ii—21---(—k)

k1) pre®Dh — pup(kFDD)

pzjio min{vp(i — J).e}—vp((k+ 1))

K
. Gi—j

j=0

K
Danqu,
j=0

and similarly

<pe+f +k—i> (k+ 1! (P — )P —i+ 1) (p* —i +Kk)

K+ 1 pup(kFDD = pUp((k+DD

k
K min{up (P — (i — ), 8} —vp (k+ D))
= pXi—oMnie(P e [Taw—ii
j=0

k
= p ]_[qu,(i,,-).
j=0

We claim that
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The equality follows from (2), and the inequality will soon be proved. The two identities
therefore give, using (4),

i k+D! 1)k P +k—i\ (k+ 1!
k+ 1) pre(®+Dh —F ) k+1 pre((+DD *

Since(k + 1)!/pk+DY js invertible inZy this implies (ii).
It remains to show that > 0. If vp(i — j) <eforall j =0,..., k, then

e=u((1)) 20

If not, then sincek + 1 < p®+! there is exactly ons, withi —k < s < i, such that
vp(s) > e. In that case we have

@+ vp((K+D) = vp(i —K)---S---i) —vp(s) + e
vp((i —K) -+ (= 1) +vp((s+ 1)) +e

vp((s— (1 — kDD +vp((i —9)!) + e,

where the last equality uses (2) twice. Thus, using Lemma 4,

a = —vp((k=( =9 +Dk—=(>1(-95+2)---(k+1)+vp((i —5)!) +e

(v, k) rezo

To prove (iii) assume that

forsomed > k+4+1andalli =0,...,k. Then

)
N =, o
(J P

forj =1,...,k+ 1. Especially,

for 0 < s < e, which gives that

o((2)

In particular,(d) > r. We now show that,(d) > r +sforall 0 < s < e, by induction
ons. Assume thab,(d) >r +s— 1. Then

d
r< Up<<p3>> = vp(d(d—1)---(d— (p*— 1)) —vp(1-2---(p° = 1)p°)
= vp(d) + vp((P* — D) — vp((p* — D) — vp(p®) = vp(d) —s.
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Hence, a run ok + 1 consecutive zeros must begin W(tkrﬂl) for somed divisible

by p¢*". On the other hand, the ones along the left boundary of Pascal’s triangle show
that there cannot be a run of more tHan- 1 zeros of the forn{,;,). This proves the
lemma. O

We can now proceed toward the proof of Theorem 2.

Lemma5. Foreachk< [(d+ 1)/2], G(d, k) is a divisor of

d—k+1
gedd —k+1, pips--- p)’

where p, ..., p; are the primes< k + 1and g <k +1 < p°*™.

Proof. Take a primep dividing G(d, k) and letx := vp(G(d, k)) > 1. Writek 4+ 1 in
basep,k +1=ko+ kip+ - - - + kep€, where 0< ki < p andke # 0. Notice that

d—k+1 _ fvp(d—k+1D)—e if  vp(d—k+1) > e,
vp gedd—k+1, p?pgz...pte‘) 10 otherwise,

so it will suffice to show thav,(d — k 4+ 1) — e > x in the first case and obtain a
contradiction in the second.
Sincep*|G(d, k) we get that

d+1-i\ [ i
k+1 ) P \k+1)

foralli =1, ..., 6. Especially we must have

d+1—i . d—k
< K1 )szo, for i=1,...,k and (k—i-l)Ele'

From
d+1-Kk d—Kk
w_zm( k+1 )‘(k+iyd_k+b’

we get

vp(d —Kk+1) —vp(d — 2k) = vp<<d :_']:I k)) >x>1

Hence by (2)pp(k+1) = vp(d —k+1—(d — 2k)) = vp(d — 2K) < vp(d —k + 1).

There are now two cases: First assume thatl —k + 1) > e. If K+ 1 = kep®
we are done, since we have shown thgtd — k + 1) — vp(k + 1) > x. Assume that
k+1 > kep®. Fromd—k+1 > k+1 > k.p®we conclude that,(d —k+1—kep®) > e,
which impliesvp(d —K+1—kep® —i) = vp(i), foralli =1, ..., k+1—kep® < p©.
This in turn implies that

<(d —K—kep®!
o — e

d 1_ e!
d - 20! )Zl’p“k—"epe>!>=vp(w>.

(d+1-k)!
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Using the equality

(d—k—&ﬁm(d+1—&ﬁ>_(d+1—ﬁyd+l—&fﬂ
(d — 2k)! k+1 -\ k+1 d+1-k! "’

we get that

d+1-kep®) _ d+1-k
P k+1 = k+1 '
This together with the identity

d+2—&w>=<d+1—@w

_ _ e
d-k+1 kep)< K+1 K+1

)w+z—nw>

gives

d+2—kep®
X < vp(Mipe—1k) = Up << +k+ :ep ))
d+1—kep®
(L) v

d—k+1 .
= vp<< k—|—l ))—e+vp(k+l—kep)

Here the last equality comes framg(k + 1 — kep®) = vp(k+ 1) = vp(d — 2k) and

d-—k+1

established above.

The second case is# := vy(d — k+ 1) < e. The same argument can be applied
again; however, now replacirg p® everywhere bk, p? + - - - + ke p® and replacing
by a. We then gek < vy(d — k4 1) —a = 0, a contradiction. O

Lemma6. G(d, k) is a divisor of my = (5171).

Proof. If for a prime p we have thap' dividesG(d, k) and p® < k + 1 < p®+?, then
Lemma 5 implies thap"*© dividesd — k + 1. Hence

d+1 d+1
1@«;+J>=v4< k))*Wm—k+D—%«+bzn O

Proof of Theoren2. The first statement follows from the fact that_xx = 1 for
k> [d+1)/2].
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Letk < [(d 4+ 1)/2]. We have from the definition af; « that, for every primep and
everyr > 1,

d+1-—i i . d+1
r = = A |-

Actually, the definition supports this only for=1,...,8 = |d/2] on the right-hand
side, bui = 0 can be added because of Lemma 6iaad| (d + 1)/2] (for d odd) gives
a trivially true identity.

Casel: k evenAssume thaG(d, k) # 1, and thatp' |G(d, k). Since by Lemma 3 there
is a unique longest run &+ 1 zeros in the period df | ,) (modp®*") we get from (5)
thatd — k + 1 =4 0. Therefore, Lemma 3 and (5) give

K1\ A=K\ _ (P -1\ (k+1
k+1) " \k+1) "\ k+1 )" \k+1/)

which impliesp = 2 andr = 1. HenceG(d, k) = 2, and this happens onlydf — k +
1 =51 0. Onthe other hand,  —k + 1 =21 0, then 2G(d, k) can be concluded from
Lemma 3 and (5).

Case2: k odd Let p" be a divisor of(d — k + 1)/gcdd — k + 1, py*p52 - - - pi). By
Lemma 5 it suffices to show thaf |G(d, k). The assumption implies thaf "¢ divides
d — k + 1, where as usuais defined byp® < k + 1 < p®*1. Hence by Lemma 3

d+1—i i :
=y forall i=0,... 1
< k+1 ) P <k+1>’ oral 1=0,...,d+1

which via (5) shows thap" |G(d, k).
This finishes the proof of the theorem. O

Example. We wantto calculat& (116, 9). Sincek = 9is odd we calculate the greatest
common divisor of 116-9+1 = 108 and 2- 32 5. 7 which is 36. We geG(116,9) =
108/36 = 3.

4. Periodicity of (d, k)-Realizable Numbers

We now show the general theorem about the ultimately stable periodic distribution of
the (d, k)-realizable numbers.

Theorem 7. Fix 0 < k < d, and let G(d, k) be the number defined {1). Then there
exists an integer N such thdor alln > N,

n is the number of k-faces of a simple d-polytope> n=0 (modG(d, k)).

Proof. We prove the theorem with the last statement replaced nby =
Mok (ModG(d, k)). Lemma 6 shows thang is divisible by G(d, k), so this refor-
mulation is equivalent.
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(=) This direction is clear from Theorem 1.
(<) Write

§
G, k) = Zki mi k, Ai € Z.
i=1

Supposan, x = C - G(d, k). Define

. (C — 1)|)\.3| if )\5 < O,
% =0, otherwise;

and recursively

g = Gi+1+ (C = DAl + [AisaD), 0<i<s.

Let N :=moy + Y°_, g, and letg”

i =0+ pA,forp=0,1,....
Theng®® = (1, ¢” +q,9y”, ..., g”) is nonnegative and decreasing after the
first entry for allg > 0 and all 0< p < C, and hence is aM-sequence. Thé values

corresponding to thegpvectors are
fPP = N 4+ qCG(d, k) + pG(d, k).

It is clear from the construction that all numbeMs+ j - G(d, k), j = 0,1, ..., are of
the form f»% for suitableq > 0 and 0< p < C. O

Corollary 8. If the m  are relatively primethen all numbers from some point on
are (d, k)-realizable Furthermore Theoren? shows that this happens precisely in the
following cases

(i) ifk = [(d+1)/2];

(ii) ifk < [(d +1)/2] is evenunless d— k + 1 = 0 (mod Z*+1);
(iiiy ifk < [(d+ 1)/2] is odd unless d— k + 1 fails to divide [§* p5 - - - p¢.

Now defineN (d, k) to be the least numbé for which Theorem 7 is true. Note that
N(d,d — 1) = d, so in what follows we may assume thak d — 1.

What can be said about the magnitudeNofd, k)? We here give a general upper
bound, and then we determine the exact asymptotic growth for the speciadll ¢s@)
in the following section.

Define

L(d, k) := min m5a1x|)q [,
iI=

with the minimum taken over all ways to repres@td, k) on the form
)
G, k) = Zki mi k, Ai € Z.
i=1

Lemma9. Forall0 <k <d-—2,we have l(d, k) < my.
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Proof. AssumeG(d, k) = Zle Aim; k., with |As| > my  andmgy # 0. By symmetry
we may assume that is positive, that is.s > my k. SinceG(d, k) < my xmsy, there
has to be & such that; < 0 andmy y # 0. Let

As — Mgk if i=s,
A= { At + Mgk if i=t,
A otherwise.

We getG(d, k) = Zle)ni’mi,k. Since|ry| < |Asl, [A{] < [A¢] or else|r| < msy, and
all other|A{| are unchanged, we can continue this process pntik my i, foralli. O

Theorem 10. N(d, k) < %dz(kil)s'

Proof. Referring to the proof of Theorem 7, with an optimal choice ofitfi® we have
25: ma< (T 4L we 1)%(25+1 oy (@1
£ A=y g ’ T k+1

d+1 d o d \?
<k+1)+L(d,k)(C—1)8(28—1)<k+1) <2L(d, ks <k+1> . O

For example, lek = 0. The general bound specializeg\dd, 0) < %df’. This should
be compared with the true asymptotic valNéd, 0) ~ cd®2, which is proved in the
next section.

Fork > | (d 4+ 1)/2] we can improve on the general bound significantly.

N(d, k)

IA

Theorem 11. Suppose k= | (d+1)/2]. Then Nd, k) < (§")(d—k)(k+1)(d+1)/2.

SinceG(d, k) = 1 for suchk this implies that for evern > (gfﬁ) d =K (k+2Dd+
1)/2 there is a simpld-polytope withn faces of dimensiok.

To prove this we need a more technical construction than before. First we extend the
definition of 3s. Define, forp < s,

s . (38— P a-1—-Pp\, , (a-p
o= (22 0) (20 (500)

wheren is written in the unique expansion

(@) )

as in Section 2. Also Ie&;(O) := 0. We allow p to be negative, which corresponds to
the natural “inverse” o8 for positive p. Thus, forp > 0, 9% ,(n) is the greatest number
such thaﬂ;(aip(n)) = n. We continue to write jusi® for 3;.



The Number ok-Faces of a Simpld-Polytope 13

Now, fix d andk > | (d 4+ 1)/2]. Define a vectog := (do, 01, - - - » Gd—k) inductively
as follows:

e Letgy k:=0.
e Assume we have definegl_«, 9g—k-1,...,0 for some O< i < d — k. Let
gi_1:= 3'(X), wherex; is the smallest integer such that> g; and

d—k
D@0 6) = gMsk = Mgk — 1. (6)

s=l

This is anM-sequence by construction.

Lemma 12. Given the g-vector aboyéefine N:= f’:_('; gim; k. Then there are no
(d, k)-gaps larger than or equal to N

Proof. Adding any positive integer tg; in an M-sequence gives anothgr-sequence.
Thus we only have to prove that it is possible to form allting, — 1 integers following
N with legalg-vectors. This will imply the lemma.

We think of the elements in colurmnof My as weights which we combine to get the
correct total weight.

Consider firstthe choice of _x_1 := 39K (xq_x), wherexq_x = my_k_1x—1. Allthe
vectors(do, 01, - - - » Gd—k—1,1), i = 0, ..., Mg_k_1k — 1, areM-sequences, producing
N, N+1,..., N+my_x_1k—1k-faces, respectively. We here use the factthat, x =
1. Similarly (9o, 91, - - ., Qd—k-1 + j, 1), forfixed j andi =0, ..., mg_x_1x — 1, gives
N+ jMa—k—1k, N+ jMg_k—1k+1, ..., N+ (] +Dmy_k_1k — 1 k-faces. The definition
of gq_k_» allows us to havg sufficiently large to get all the numbers at least up to and
includingN + mg_x_»x — 1.

Assuming inductively that we can form the sequehceN +1,..., N +mjx — 1
by increasing only coordinateés+ 1, ..., d — k, the definition ofg gives that we can
form all the numberdN, N + 1,..., N + mi_1x — 1 by increasing only coordinates
i,...,d—kofg. This proves the lemma O

Example. Taked = 10 andk = 6. We see from the matrik,o, displayed in Section
2, that the weights are 33020, 36, 8, and 1. We gegy = (1, 4, 6, 6, 0) which gives
N (10, 6) < 1074, showing that eveny > 1074 is(10, 6)-realizable.

Proof of Theorenil. Firstwe showtha < (d —k—i)(k+ 1) by reverse induction.
It is trivially true for gq_x. Assume it is true fog;. Sinceg;_1 = d' (x;) < X;, it suffices

to boundyx; . Inequality (6) is true ifx; — gi)m; x > m;_1 x — 1. Sincex; is chosen to be
minimal we get that

M1k —1 (d-kffi) - l—‘
gi#‘[’g—‘ =gi+’77_i
Mi k (d;il )

d+2—i 1 _
gl+’7d+1—i—k_ (d:j?)—‘ <g+k+1l<k+DHd—-k—i+1.

Xi

IA
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Now,
N o< (91 +(k+1)d§(d K- D) d+1—i
~ \k+1 — k+1
d+1 d d—Kk
= (k+1>+(k+1)<k+l)( 2 )
d+1 1+(k+1)(d—k—1)(d+1)
— \k+1 2 ’
This proves the theorem. O

Note thatmpk + 1 = (gfi) + 1is never(d, k)-realizable folkk < d — 1. This gives a
trivial lower bound forN(d, k) to be compared with the upper bounds in Theorems 10
and 11.

5. The Case of Vertices

The only case ofd, k)-realizability that seems to have been previously studied is for
k = 0, i.e., the number of vertices. We will make a more exact analysis of that case.

Lee showed [Le, Corollary 4.4.15] that for each dimendioall sufficiently large
numbers argd, 0)-realizable (with parity restrictions, see the Introduction). Prabhu
[P1], [P2] strengthened the result and proved that there exists a constanh that
everyn > cdv/d is (d, 0)-realizable (with parity restrictions). This gives an upper
bound on the siz8l (d, 0) of the largest gap in each dimension—we are not aware of any
published nontrivial lower bound. The exact result is previously known only for small
dimensions, see [Le] where Lee lists @ll 0)-gaps ford < 9.

We will sharpen Prabhu’s result in both directions and provedkaty/2 + ¢ can be
used as constant in his theorem for any 0 and sufficiently large eveth (depending
one). However, the statement is not true ok /2.

Theorem 13. If d > 4 is even then there does not exist a simple d-polytope with
n=(d-1(+2d —47 — 2) + 4 vertices

Theorem 14. For every even &> 2 and every n> (d — 1)(+~/2d + 2v2v/2d + 5),
there exists a simple d-polytope with n vertices

Similarly, if we restrict our attention td odd, the true value faris asymptotically equal
to 1.

Theorem 15. If d > 3 is odd then there does not exist a simple d-polytope with
n = (d—1)([+/d — 27— 2) + 4 vertices but, for every even integer & (d — 1)(v/d +
2v/2+/2d + 5), there exists a simple d-polytope with n vertices
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Proof of Theoremi3. Letd = 2§ > 6, so the first column oy will be 26 + 1, 26 —
1,...,3,1. Welook for the lowest possible value fég such thatfo = 4 (mod 2 — 1).

The entries of the first column will be the weights by which we seek to create the value
of fo. They are 20, -2, —4, ..., —(25 — 2) (mod 2 — 1). By the properties oM-
sequences we have to take at ldas? weights to obtairfo = 4 = —25+5(mod 2 —1),
where

2+

k
—2i < —(25 — 1) — (25 — 5),

i=0

corresponding to thiM-sequencg = (1, 1, ..., 1, 1) with k 4+ 2 ones. This is equiva-
lent to

k(k+1) > 45 — 4.
Now, choosek such thak < /45 — 4 < k + 1. We then get that

k
fo>204+14+) (26—1-21)=20+1+(25—k—1)(k+1)
i=0
> 284+ 14 (25 — 1)[V45 — 4] — (V45 — 4)2 + |45 — 4))
> (d—1)([v2d — 4] — 2) + 4.

Hence,d — 1)([+/2d — 47 — 2) + 4 is a gap.
The result is easily seen to be true alsodot 4. O

Proof of Theoreni4. Letd = 26 > 4 (the casal = 2 is easily checked). As above
the first column ofMgy willbe 25 + 1,26 — 1, ..., 3, 1. First we note that i + 1, n +
2,...,n+d —1 are all realizable, then every integer larger than realizable since
we can just add 1 tg; in the correspondinyl-sequences.

As in the previous proof we ld¢ be such thak; < +/45 — 4 < k; + 1. We consider
theM-sequencesE gp =01 =---=g and0=¢g 1 =g =---,for0O<i <
ki + 1. The corresponding values fég constitute one sequence of odd residues and one
sequence of even residues moddle 1, with no distance being larger thatk2 — 1).
Now we choosék, such that

ko
Z 2i<—(2k-1 & k+1> 2k —1).
i=0

ItisclearthattheVl-sequences® 9o, 2 =01 =--- =0, 1=0j+1 =Fjt2=--- =0
and 0= g1 = Giy2 = ---,for0 < j <i <kg+1andj < kp, give values for
fo (modd — 1) where no residue is more tharnkz — 1) away from another residue
of the same parity. Continuing this process, we choose intégeks, . . ., ks as small
as possible such that2(ki_; — 1) < k + 1, for 2 < i < s. We stop when we have
reachecks = 1. Hence, every possible value fég (modd — 1) can be obtained with
an M-sequence that has coordinates satisfging j, whenevekj1 + 1 <.
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Soif fyis a gap, then we must have

ky ko Ks
fo < 25+1+Z(25—1—2i)+Z(25—1—2i)+~--+Z(25—1—2i)
i=0 i=0 i=0
< 24+1+ K +1+ko+1+---+ks+1(25-1) (by induction)
< 254+ 1+ (ki +1+2kk+1)(25 -1

< d-DH(2d-4+2y2v2d —4—-2+5).

This estimate suffices to show the theorem. O

Proof of Theoreni5. The proof can be carried out in the same manner as the two
previous proofs. O
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