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Abstract. We relate the sequence of minimum bases of a matroid with linearly varying
weights to three problems from combinatorial geomekrgets, lower envelopes of line
segments, and convex polygons in line arrangements. Using these relations we show new
lower bounds on the number of base changes in such sequénges?®) for a general
n-element matroid with rank, and Q2 (ma(n)) for the special case of parametric graph
minimum spanning trees. The only previous lower bound @&slogr) for uniform ma-

troids; upper bounds dd(mnt/?) for arbitrary matroids an®(mn%?/log* n) for uniform
matroids were also known.

1. Introduction

In this paper we study connections between combinatorial geometry and matroid opti-
mization theory, as represented by the following problem.

Parametric Matroid Optimization.  Given a matroid for which the elements have
weights that vary as a linear function of a parameterhat is the sequence of minimum
weight bases over the range of value$dHow many different bases can occur in such
a sequence?

For example, an important special case of this problem would ask for the sequence of
minimum spanning trees in a graph with linearly varying edge weights. This parametric
spanning tree problem has applications including the stochastic spanning tree problem
studied by Ishiiet al. [25]; other applications are discussed by Hassin and Tamir [23].

* This work was supported in part by NSF Grant CCR-9258355 and by matching funds from Xerox Corp.
A preliminary version of this paper appeared at the 27th ACM Symposium on Theory of Computing, 1995.
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Although related parametric spanning tree problems have also been studied for geo-
metric point set inputs [28], we are interested here in the general graph problem. Nev-
ertheless as we shall see, computational geometry has an interesting role to play in this
problem.

It has been known for some time that, in a matroid witelements and rank, the
number of different bases occurring as the solutions to a parametric matroid optimiza-
tion problem isO(n min(k, n — k)*/2) [18], [27]. Various authors have studied related
guestions of computing an optimal value for the time parameter in this sequence of bases
[3], [5], [12], [15], [16], [31], [33], [35]. Katoh (personal communication) already no-
ticed one connection between parametric matroid optimization and a classical problem
of computational geometry:

k-Sets. Given a set of points in the plane, in how many combinatorially distinct ways
can subsets of exactk/points be covered by half-spaces?

Thek-set problem has been studied since 1971, wheasn{29] proved a® (nk/?)
bound. As Katoh noted (and as we describe below)kiset problem is equivalent
to the special case of parametric matroid optimizationuoiform matroids so this
result follows from the more general matroid bound. Sincedsaviesult, computational
geometers have struggled with little success to improve this bound. The best result to
date isO(nk¥?log* k) [32].

Even less is known about lower bounds for these problems than is known about upper
bounds, and it is this question we study here. The best lower bound floisstgoroblem
is 2 (nlogk) [13], quite far from the upper bound. No other lower bound was known for
any other version of the parametric matroid problem. For graphic matroids (the minimum
spanning tree problem discussed above) no nontrivial bound was known. In this paper
we prove new lower bounds on the general parametric matroid optimization problem
and on its special case of parametric minimum spanning trees by showing connections
between these problems and two more seemingly unrelated problems from computational
geometry: envelopes of segments and polygons in arrangements.

1.1. New Results

We prove the following bounds:

e There can b& (ma(n)) different minimum spanning trees in a graph witledges,
n vertices, and edge weights linearly varying with time, whe¢e) denotes the
inverse Ackermann function.

e There can b (nr/3) different minimum weight bases in a matroid witrele-
ments, rank, and element weights linearly varying with time.

The first bound comes from a reduction from the problerowaer envelopes of line
segmentsfor which a® (nae(n)) bound is known. We use lower envelopes to construct
a graph withO(n) edges and the sanfe(na(n)) bound on the number of minimum
spanning trees; the overall bound is found by forming the unidd@fi/n) such graphs
on the same vertex set.
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We prove the second bound by proving that the problem is equivalent up to constant
factors (forr < n/2) to the following new geometric problem:

Polygons in Arrangements. Givenr convex polygons with sides formed Iyines,
no two polygons overlapping in a set of nonzero length, what is the maximum total
number of polygon vertices?

Although this problem has not been studied before, various special cases have. If the
polygons form faces of the arrangement, have disjoint interiors, or do not cross each
other, tight bounds o8 (n + n%3r%3) vertices are known [6], [9], [21], [24]; these
are sufficient to prove a bound 6f(n?%3r%3) on the matroid problem. Our new lower
bound is somewhat stronger than thisifee o(n), and shows that the general problem
of polygons in arrangements has somewhat different behavior than these special cases.
However our bounds and the lower bounds above are the samerwhen and it may
perhaps be possible for sucho extend the upper bounds for the special cases above to
similar bounds for the general problem of polygons in arrangements. This could possibly
lead to arO (nr'/3) bound on the parametric matroid optimization problem and its special
case thek-set problem.

1.2. Notation and Definitions

A matroid [36] consists of a set @lementsand a family of finite sets of elements (the
independent setsf the matroid) satisfying the following two axioms:

1. Any subset of an independent set is independent.
2. If I andJ are independent, witH | < |J|, then, for somg € J, the setl U {j}
is independent.

Therank of a set in a matroid is the cardinality of its largest independent subset. We
usually letn denote the number of elements in a matroid,iaddnote its rank. Adaseof
a matroid is a maximal independent set, or equivalently an independent set of cardinality
equal to the matroid’s rank. If the matroid elements have real-valued weights, we are
particularly interested in theainimum weight basehat is, the base minimizing the sum
of the element weights.

Standard examples of matroids include the following.

e Theuniform matroid |J'. The set of elements is taken to be any set of cardinajity
its independent subsets are those of cardinality at moahd its bases are the
subsets of cardinality exactty Finding a minimum weight base in such a matroid
is equivalent to selecting tHeh smallest element weight, so uniform matroids are
related to median selection algorithms.

e Thegraphic matroids MG) for some grapl@. M (G) is defined to have the edges
of G as elements, the forests @f as independent sets, and the spanning forests
of G as bases. I6 hasm edgesn vertices, ana connected componentls] (G)
hasm elements and rank — c. The minimum weight base iM(G) is just the
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minimum spanning tree @, so graphic matroids are related to minimum spanning
tree computation as well as to testing the connectivity of graphs.

e Thetransversal matroids TF) for some finite family of set§& = {S}. The set of
elements ofl (F) is the union of the setS. A set in a transversal matroid is inde-
pendent if its members can be matched one-for-one withSetsntaining them.
Another way of viewing this is to consider a bipartite graph with edges connecting
each set to its members; a collection of vertices on one side of the bipartition is
independentifthere is a matching in the graph connecting the collection to the same
number of vertices on the other side. Therefore transversal matroids are related to
bipartite graph matching.

In any matroid, a minimimum weight base can be found lgyeedy algorithmThe
elements are sorted by weight and then considered one at a time in sorted order. We
maintain an independent s8tand at each step add the elemeninhder consideration
to Sif S+ e remains independent. For instance, this algorithm restricted to graphic
matroids is just Kruskal’s algorithm for minimum spanning trees.

2. Uniform Matroids and k-Sets

In this section we outline the connection betweenkkset problem and the problem
of parametric optimization for uniform matroids, as pointed out by Katoh. Some of the
tools described here (in particular the correspondence between sets of element weights
and line arrangements) are reused later.

A k-set of a set oh points is a subset of exactly points such that some half-
space covers exactly those points. K&(n, k) denote the maximum number kfsets
among sets afi points, and leUM(n, r) denote the maximum length of the sequence of
minimum weight bases for a uniform matrditf' with linearly varying edge weights.

Theorem 1. Let UM(n, r) and KSn, r) measure the complexities of parametric uni-
form matroid optimization and k-setss defined abovd&hen UMN, r) < 14+ KS(n, r).

Proof. Let M be a linearly weighted uniform matroid achieving the maximum value
UM(n, r). For some sufficiently large value feplace each weight function = at+b
byw = (a+x)t+b; this affine transformation does not change the sequence of minimum
weight bases, but causes all weight functions to have positive slope.

Plotthe edge weight functions of the element®odis an arrangemetof nonvertical
lines in the(w, t) plane. We can perform a small perturbation of the weight functions of
M, so that no three lines in the arrangement meet in a single point, without decreasing
the number of base changes in the sequence of minimum weight bases. The minimum
weight base at any timig can be found by selecting the elements corresponding to the
r lowest intersections of the lines lwith the vertical ling = tq, as depicted in Fig. 1.
As we sweep this vertical line from left to right, a change in the base occurs when it
crosses a vertex of A that has exactly — 1 lines of A passing below it; in the figure,
such a base change will happen at the next vertex swept over by the line.

Now if v is formed by two lined; andl,, let C be the cell between them on the left
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Fig. 1. Minimum weight base in a uniform matroid with positive-slope weight functions.

side ofv Since both lines have positive slopeis the topmost vertex o andC has
exactlyr lines below it.

Thus the number of base changes is at most the number of cells Virits below
them. We now show that this quantity is bounded<n, r). We use projective duality
to transform the lines oA into points, and vice versa: for each lime= at + b we place
a point(b, a), and for each pointw, t) we draw a linédb = —ta+ w. This transformation
has the property that if a point is above a line in ¢het) plane, the corresponding line
is above the corresponding point in ttie a) plane. Therefore the celt corresponds
to a set of lines, all above the same set gints in the(b, a) plane; this is exactly an
r-set and therefore the number of cells is bounded by the number of such setsd

Theorem 2. Let UM(n, r) and KSn, r) measure the complexities of parametric uni-
form matroid optimization and k-setsas defined aboveThen K$n, k) <
2(UM(n, k) — D).

Proof. LetSbe a configuration of points realizit{S(n, k); without loss of generalit$

is placed above the horizontal axis. We can assume by symmetry that dt$east) /2

of the k-sets are covered by the half-space below some line, rather than above a line.
(Somek-sets may be covered by half-spaces of both types, but this only works to our
advantage.) By applying the reverse of the duality transformation used above, we can
form an arrangement of positive-slope lines such that at K86t k) /2 cells have
exactlyk lines passing below them. Let these lines be formed as above from the weight
functions of a uniform matroit);. Then the top vertices of each cell correspond to base
changes of this matroid. O

As aconsequence, any bound of the fankP) for k-sets can be transformed into a
similar bound for parametric uniform matroid optimization, and vice versa. In particular
the known2 (nlogk) bounds fork-sets lead to a bound of the same form for uniform
matroid optimization, and hence for parametric matroid optimization in general.
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Fig. 2. The lower envelope of line segments.

3. Graphic Matroids and Lower Envelopes

We next consider the parametric graph minimum spanning tree problem, which is the
restriction of parametric matroid optimization to graphic matroids. No lower bound was
known for this case; not even tl§&(n logk) bound above can be made to work here, as
graphic matroids do not have nontrivial uniform submatroids.

We relate this problem to the following seemingly unrelated problem from computa-
tional geometry. Givem line segments in the (X, y) plane, all above th& axis, the
lower envelopeof the segments is the functioh(x) giving the minimum value ofy
such thatx, y) is on some segment. (If no sugtexists, letf (x) = +o00.) Then f (x)
is a piecewise linear function of. Thecomplexityof f (x) is the minimum number of
intervals we need to partition the real line into, so thé&k) is linear in each interval. In
other words, it is the number of contiguous pieces of line segments that can be connected
by vertical lines to thex axis (Fig. 2).

Lemma 1[22], [37]. The maximum complexity of a lower envelope of line segments
is ®(na(n)), wherex is the inverse Ackermann function

We now give the basic construction connecting this geometric concept with parametric
minimum spanning trees. The construction produces a sparse graph from a line segment
arrangement; we later show that a graph with any desired density can be formed by
combining several copies of these sparse graphs.

Lemma 2. Let S be a collection of n line segments in the plawiéh lower envelope
complexity c Then there is a graph G witBn edges an@n + 2 vertices and a set of
linearly varying edge weights on,Guch that G has at least€ n different trees in its
sequence of minimum spanning trees

Proof. Let G be formed by taking two vertices andt, and connecting them by
three-edge paths (Fig. 3(a)). Each path will correspond to a single segner; if

a path has three edgesg e, ande; we lete; have an edge weight function plotted by
the line throughs, we lete; have an edge weight function of very large negative slope,
such that the weights @& ande, are equal at the left endpoint g§f and we let; have

a weight function of large positive slope crossing the weighe;adt the right endpoint
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G

(@) (b)

Fig. 3. Lower bound construction for graphic matroids: (a) the gréptib) weight functions for the three
edges corresponding to a line segment.

of 5. These three weight functions and the segnsgtttey correspond to are depicted
in Fig. 3(b).

Any spanning tree o& is formed by choosing all three edges from one ofitipaths,
and any two edges from each of the remaining 1 paths. In the minimum spanning
tree, these pairs of edges are always the minimum two edges in each path. The path with
three edges is therefore chosen to minimize the weight of the maximum weight edge in
the path.

Within the values of covered by segmeast, the maximum edge in the corresponding
path ise;; outside this range it is, or e3. Therefore the function graphing the largest
weight in the path is closely approximated by the lower envelope of the single segment
s . The function graphing the minimum of these largest weights is closely approximated
by the lower envelope of all segments. Any breakpoint between finite-valued segments
of the lower envelope corresponds to a situatioGiwhere the path with three chosen
edges changes; each such situation involves a change to the minimum spanning tree of
G. The infinite-valued segments of the lower envelope contribute two breakpoints, but
perhaps only one change to the tree; however, there can only-esuch segmentgl

As a corollary, for any there is a graph with vertices anan = O(n) edges, having
Q(na(n)) trees in its sequence of minimum spanning trees. We now extend this result
to allow m andn to differ.

Theorem 3. For any m and n there is a graph with m edges and n vertibasing
Q(ma(n)) trees in its sequence of minimum spanning trees

Proof. We choose a suitable = O(n) andy = O(m/n), and form a graph with
2(x +y) vertices: ¥ verticesy; andb;, 0 < i < y, and X verticesc; andd;, 0 <i < x.
For anyi we can form a copy of the grap@ in the lemma above by connectirg
to eachc;, by to eachd;, and connecting eaat) to dj1i)moax. This gives a total ofy
edge-disjoint copies db.

By applying an affine transformation to the weight functions of the gi@gh the
lemma above, we can cause all of its edges to have slope within sofeach other
without changing the sequence of minimum spanning trees. In this way we “flatten”
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Fig. 4. Combining several flattened line arrangements into a single convex chain.

the weights in each of the copies Gfto different ranges of slopes. We then use linear
translations to arrange the flattened sets of weight functions to form a large convex chain
(Fig. 4). Within each segment of the chain the sequence of minimum spanning trees
undergoes2 (xa (X)) changes. Therefore overall there &éxyu(x)) = Q(ma(n))
changes. We then add additional edges or vertices to produce the desired total numbers
of edges and vertices, with sufficiently large edge weight functions so as not to change
the sequence of minimum spanning trees found above. O

4. General Matroids and Polygons in Line Arrangements

We next show a relation between the general parametric matroid optimization problem
and the problem of polygons in arrangements defined in the Introduction. We use this
relation to prove a2 (nr'/?) bound on the matroid optimization problem.

DefineMO(n, r) to be the maximum length of the sequence of minimum weight bases
among all matroids witm elements and rank. Define AP(n, m) to be the maximum
number of vertices in a collection ah convex polygons with edges drawn from a
collection of n lines, no two polygon edges overlapping in a set of nonzero length
(Fig. 5(a)). Our first result gives an upper boundM®(n, r) in terms of AP(n, m);

(a) (b)

Fig. 5. (a) Three nonoverlapping polygons in a line arrangement. (b) Adding steep tangents to left and right
sides of convex polygons.
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together with the lower bound that is our main result of this section, this shows the
equivalence for < n/2 of these two problems.

Theorem 4. Let MO(n, r) and ARN, r) measure the complexity of matroid optimiz-
ation and polygons in arrangements as defined abbkien MQn, r) < AP(n+r,r) —
2r+1.

Proof. Given a matroidV with linearly varying element weights, form an arrangement
A of the lines in thg(w, t) plane traced out by the element weights, as in the proof of
Theorem 1. As in that same proof, we assume that no three linksafet in a point, for
otherwise we could perturb the weight functions slightly to achieve this property while
not decreasing the number of base changéd.in

We now use a token-passing scheme to trace out polygons in this arrangement. Con-
sider sweeping thé parameter from-oo to +o0. At a value oft prior to any base
change, assign a token to each member of the minimum weight baseVititrenever
the sweep reaches a valuetadt which a base change occurs, reassign the token that
had been assigned to the changed member of the old base, so it becomes assigned to that
member’s replacement in the new base.

This token-assignment process can also be interpreted geometrically. Consider sweep-
ing a vertical line left-to-right through the arrangement, with each placement of the line
corresponding to a different parameteas depicted in Fig. 1. As this sweep line pro-
gresses from left to right, we maintain the placement tdkens, on points where the
sweep line crosses arrangement lines representing the minimum weight bdskiof
that value oft. As the sweep line moves left to right, the tokens move with it along the
arrangement lines they are placed on. At points in the sweep corresponding to values of
t at which a base change occurs, a single element of the old base is removed and a new
element is added to replace it; in this case we move the token, from the arrangement
line corresponding to the old element, to the arrangement line corresponding to the new
element.

At the time of the base change, the old and new elements must have equal weights;
before the change the old element’s weight is smaller than the new element’s weight
and after the change the new element’s weight is smaller than the old element’s weight.
Therefore each base change corresponds to a convex vertex in the piecewise linear motion
of a single token, and each token traces out a convex chain in the arrang&nignt
addingr new lines toA, one per chain, we can complete these chains to convex polygons
of the same complexity. Each chain has one vertex per base change, plus two added when
we completed the chain to a polygon; therefore the total number of base changes is equal
to the number of vertices minus 2 O

We next show a bound in the other direction, a lower bount¥@nin terms ofAP.

Theorem 5. LetMO(n, r) and AR N, r) measure the complexity of matroid optimization
and polygons in arrangements as defined abdben ARn, m) < 2(MO(n+ 2m, m) —
m-—1).
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Proof. Let A be an arrangement of lines, with m nonoverlapping polygons i
having a total ofAP(n, m) vertices. By symmetry we can assume that the number of
vertices visible from above in each polygomist+ AP(n, m)/2.

We add toA a set of 2n more lines: one line of large positive slope tangent to each
polygon at its left extremum, and one line of large negative slope tangent to each polygon
atits right extremum (Fig. 5(b)). We use these lines to replace each polygon by a convex
chain similar to the chains in the theorem above, having the same vertices as the polygon.

Define a matroidvl having this set oh + 2m lines as elements, with the lines giving
the weight function of these elements. To defivigform a setS for each of the convex
chains formed above, consisting of those lines having a nonzero-length segment in the
chain. We then leM be the transversal matroid of these s®ts

We now show that the set of chains traced out by the token-passing procedure described
in the previous proof is exactly the set of chains constructed above. We show that any
timety such that no vertex of the arrangement tasordinate, the minimum weight
basis can be found by choosing the element in each convex chain crossed by the vertical
linet = to. This follows by induction from the greedy algorithm for minimum weight
bases, as follows.

Assume we have chosen so far a Xedf elements, with X| < m, that are the X|
least weight elements crossed by the line ty among the collection of chains. LEf
be a chain crossed lhy= ty above all members of; then no member oK can be ing,
and so any set+ X wheree € S is independent. Conversely suppose some geiX
is independent. Then this set can be matched againssdtéining matroidV. By the
pigeonhole principle, some match&dcorresponds to a cha® above all crossings in
X. No element oiX is in §, soemust be inS. Thus the independent extensias X
are exactly those for whiohis a member of som§ corresponding to a cha® crossed
aboveX. Since the extension chosen by the greedy algorithm is the one minimizing the
weight ofe, e must be the element corresponding to the next crossing of a chain with the
linet = to. This completes the induction and shows that except at arrangement vertices,
the minimum weight basis follows the chains. By continuity of the functions traced out
by the token-passing process, the same fact must be true at the vertideJ lnére-
fore all vertices of the set of chains correspond to basis changes in the transversal
matroidM. O

These two results combine to give the following consequence, which may be useful
in proving further bounds on parametric matroid optimization.

Corollary 1. The maximum complexity of parametric matroid optimization can be
realized to within constant factors by a transversal matroid

For completeness, we state an upper bound on polygons in arrangements. This is
similar to known bounds on parametric matroid optimization [18], [27] but holds also
forr > n.

Theorem 6. Let ARN, r) measure the complexity of polygons in arrangements as de-
fined aboveThen ARN, r) = O(nr¥/2).
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Proof. Given a collection of polygons in an arrangeméqntwe show that it has the

above complexity. PerturB if necessary so no three lines meet at a point. Sort the lines

of Aby slope. We say that a vertex Afis sharpif the lines forming the vertex have slopes
separated by more tha/? positions apart in the sorted sequence, dnilotherwise.

Since the slopes of a polygon’s edges form a monotone sequence, each polygon can have
at mostn/r /2 sharp vertices, so the total number of such vertices in all the polygons

is O(nr'/2). The remaining vertices are dull, but there &er¥?) dull vertices in the

entire arrangement, and each one can only be part of at most two polygons. O

We now complete the lower bound for matroid optimization by constructing a col-
lection of nonoverlapping polygons with many vertices. Known results on faces in ar-
rangements give the bousZ(n?3r2/3) on AP(n, r), however, the bound in the theorem
below is stronger for the case of interest in whick n.

Theorem 7. For any n and r = O(n?) there is a collection of r nonoverlapping
polygons in an arrangement of n lingsaving2 (nr/3) vertices

Proof. We first form an arrangemem¥’ with O(r) lines, such that some faces of

the arrangement have total complexi®(r ) [6]. We then add steep left and right
tangents to these faces, as in the proof above, so that wedn@yeonvex chains with
the same asymptotic complexity. To complete the construction we flatteyan affine
transformation and conne@t(n/r) copies of the flattened arrangement in a large convex
chain shape, as in the proof of Theorem 3 and as depicted in Fig. 4. The se&tsaihs

in adjacent copies of can be connected where the copies cross, so we geins
overall and (nr'/3) total complexity. As in Theorem 4, we can add additional lines to
the base of each of these chains, to form them back into convex polygons. O

Corollary 2. There exist parametric matroid optimization problems with complexity
MO(n, r) = Q(nri/3),

5. Conclusions

We have described three different problems from combinatorial geometry and related
them all to a common nongeometric problem, of parametric matroid optimization. We
then used these relations to prove lower bounds on the matroid problem.

These results also give new hope for results on the geometric side of the problem,
on the longstanding open problem of boundskesets. The matroid upper and lower
bounds are both of the fornr ¢, giving rise to the possibility that a similar lower bound
could be proved fok-sets. The fact that our problem of polygons in arrangements is
very similar to other problems wit®(n*3) bounds gives reason to believe that similar
bounds might hold for matroid optimization, and its special casé&-tbet problem.

An interesting related problem concerns similar parametric optimization questions
for nonmatroidal problems. Feandez-Baca and Slutzki [14] show that many such prob-
lems, when restricted to certain classes of graphs, produce a sequence of solutions of
polynomial length. One such question of particular interest is thadEmetric shortest
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paths[26], [38]: in a graph with linearly varying edge weights, how many times can the
shortest path between two vertices change? Parametric shortest-path problems have been
extensively studied for their application to minimum cost flow [17], but a solution to

this question would also help clarify the processor bounds needed for fast parallel linear
programming with two variables per inequality [30]. An argument similar to the proof

of Savitch’s theorem can be used to shown&1°9™ bound on the number of shortest

paths (G. S. Lueker and N. Megiddo, personal communications; Carstensen attributes
this result to Gusfield [19]). Carstensen proved a matchit@9™ lower bound for

this problem [4]. Do other nonmatroidal parametric optimization problems give similar
guasi-polynomial bounds?

Another direction for generalization is in the functions defining the matroid element
weights as functions of the parametewWork of Gusfieldet al. on parametric sequence
alignment [20] can be interpreted as a shortest-path problem with weights depending
linearly on two parameters, and, similarly to the situation in two dimensions, multipa-
rameter uniform matroid optimization problems are essentially equivalent to levels in
higher-dimensional arrangements [1], [2], [8], [11]. Tamaki and Tokuyama [34] have
also investigated parametric matroid problems with quadratic element weight functions,
but much more work remains to be done in this direction.

A final open problem concerns algorithms for parametric matroid optimization. It is
knownthat &-levelinaline arrangement (essentially equivalentto the set of base changes
in a parametric uniform matroid) can be constructed in tia logn+x log? n), where
x denotes the output complexity [7], [10]. Recently, we used some of the ideas from this
paper (in particular the equivalence between matroid optimization and convex polygons
in an arrangement) as part of an algorithm for finding all minimum spanning trees in
a graph with linearly varying edge weights, in timl¥mnlogn) [16]. However, there
may still be room for improvement in this bound, and known results for nonuniform and
nongraphic matroids are even further from the output complexity bounds proven here.
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Note added in proof Very recently, Tamal Dey has proven @inr/3) upper bound

on the number of base changes in a parametric matroid optimization problem, matching
the Q(nr1/3) lower bound given here. The same upper bound also applikssats

and parametric minimum spanning trees. Dey’s results will appear at the 38th IEEE
Symposium on Foundations of Computer Science.



