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Abstract. We prove that if some balls in the Euclidean space move continuously in such

a way that the distances between their centers decrease, then the volume of their union
cannot increase. The proof is based on a formula expressing the derivative of the volume
of the union as a linear combination of the derivatives of the distances between the centers
with nonnegative coefficients.

1. Introduction

We denote byR" the n-dimensional Euclidean space with the standard scalar product,
norm, and distanc&, y) = > Xiyi, [X] = V/{X, X), andd(x, y) = [x —y|.

Forx e R"andr € R, , whereR, denotes the set of positive real numbersBet, r)
denote the closed ball of radiusentered at, and letS(x, r ) denote its boundary sphere.

A system ofN balls inR" can be given by the system of centirs= (x1, ..., Xxy) € R™N

and that of radir = (r1,...,rn) € RJ'E. GivenX andr, we denote byB(X, r) the union
of the ballsB(x;, rj) for 1 < i < N, by S(X, r) the boundary of the domaiB(X, r),

and byV (X, r) then-dimensional volume oB(X, r).

In 1954-56 Poulsen [9], Kneser [8], and Hadwiger [7] formulated the conjecture that
if X,Y e R?N are such thatl(x;, Xj) < d(yi,y;) for each choice of and j, then we
haveV (X,r) < V(Y,r).

Though the conjecture was formulated originally for congruent disks in the plane, it
seems to be true also for higher-dimensional balls having different radii.

The conjecture is still open even far= 2. Partial results have been obtained by
Bollobas [3], Alexander [1], Sudakov [11], Capoyleas and Pach [5], Bern and Sahai [2],
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and Csilos [6]. The present work is a continuation of the investigation started in [3], [2],
and [6].

Bollobas [3] proved that the planar Kneser conjecture for congruent disks is true if
we can continuously move the centgr$o the centery; in such a way that the distances
between the centers do not increase during the motion. In [2] and [6] Bern, Sahai, and
the author generalized Bollab” theorem for disks with different radii. The approaches
of [2] and [6] are completely different. Reference [6] gives a suitable modification of
the ideas of BollobS, while [2] introduces the Dirichlet—Voronoi decomposition into the
study of the question. Though the proof in [6] seems to be simpler, methods of [2] turn
out to be more powerful. For example, Bern and Sahai could prove that the area of holes
enclosed by the moving disks does not increase during the motion.

Our goal is to generalize these resulteitdimensional balls (Theorems 4.2 and 5.4).
First we consider the volume of the union of some balls moving smoothR/ifThe
main result of the paper is formula (3) expressing the derivative of this volume (with
respect to time) as a linear combination of the derivatives of the distances between the
centers. This formula is an effective generalization of Lemma 3 of [2], easily implying
Theorem 4.2. In Section 5 we drop the differentiability assumption on the motion of the
centers and generalize Theorem 4.2 for continuous motions.

We note that some special cases of Theorem 5.4 have also been obtained in [5] and [2].

2. A Formula for the Derivative of V (X, r)

Suppose thatwe are givere RY and asmooth (i.e., infinitely many times differentiable)
curveX: (a, b) — R"™N. X(t) describes the motion of the centershdballs inR". Our
aim now is to prove a formula for the derivative of the functé(t) = V (X(t), r). We
start with some technical lemmas.

Lemma 2.1. We define oR"N the norm||X|| = max |x;|. Then for any fixed € RY,
we have

VX, 1) = VY, Dl = O(IX = Y]]

as||X — Y|| tends to zero

Proof. Denoting bye the distance|X — Y||, we have the following simple estimation:

VX, 1) = V(Y. 1)

N N
< max{v (U B(Xi, i -|-s)\B(xi,ri)> Y (U B(yi,ri + s)\B(yi,ri)>}

i=1 i=1

N
<V(BO,1) Y ((ri +&)"—r{) = O(e). O
i=1

Corollary 2.2. Let X: (a,b) — R"N be a smooth curvdet t; € (a, b), and let
Y () = X(tg) + (t — to)X'(tg) be the linear part of the Taylor expansion Xfat to.
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Then for any fixedr € R[‘r‘, the function \(t) = V(X(t), r) is differentiable at{ if and
only if the function t— V(Y (t), r) is differentiable at$ and if the two functions are
differentiable at §, then their derivatives aptare equal

Proof.  Since||X(t) — Y(1)|] = O((t — tp)?), we have
IV(X(1), 1) — V(Y (1), 1| = Ot — to)?),

and this implies the statement. O

Theorem 2.3. Suppose r= 2 and letX: (a,b) — R"™ be a smooth curye € RY.
Assume thapte (a, b) is such that the balls &; (tp), ri) are distinct Denote by Fthe
intersection %X (to), ri) N S(X(ty), r), by n; the outer unit normal vector field on the
sphere %X; (tp), ri) and byu; the (n — 1)-dimensional volume measure otXSty), i)
induced by the Riemannian metrithen the function %) = V (X(t), r) is differentiable
at ty and

N
Vit = [ o) d @
i=1 i

Proof. By Corollary 2.2, we may replack¥ with its linear approximatior¥ (t) =

X(tg) + (t — tg)X'(to). Think of R"* as the produdR” x R and write a typical element

of it in the form (x, t), wherex € R", t € R. We fixt € (a, b) and apply the Gauss—
Ostrogradskii formula (also known as “the divergence theorem”) for the union of the
solid cylinders

Bi(t) ={(x,7) e R |a<t <t,xeBy),r))

and the constant vector field

E=(0,1).

Recall that, according to the Gauss—Ostrogradskii formufa,if a compact domain in
R™ with piecewise smooth bounda#dy?, & is a smooth vector field on a neighborhood

of 2, then
/divsdxm=f (n.£) du.
Q a2

where divé denotes the divergence §fA™ is them-dimensional Lebesgue measune,
is the outer unit normal vector field dif2 (defined almost everywhere, on all smooth
components 08€2), andu is the(m — 1)-dimensional volume measure 6.

The boundary of2(t) = UiN=1 B; (t) is piecewise smooth. (We replaced the motion
X(t) with the linear motiorY (t) for the sake of this statement. In general, the “life-tubes”
of two smoothly moving spheres can intersect one another in a way difficult to handle.)

9Q2(t) has two flat components: a bottom one and a top one. The outer unit normal
vector field onthe toB(Y (t), r) x {t} coincides with, while on the bottonB(Y (a), r) x
{a}itis —&.
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The lateral part of the boundary ©f(t) is the closure of
St ={x.1) eR"™ |a<t <t,xe SY(r).1)}

and is covered by the boundaries of the tuBg$). LetFj (t) be the intersection @&(t)
with the tube

Sith) ={(x,7) e R"™ |a< 7t <t xeSyi(r)r)),

and, fora < t < t, setF(t) = F;(t) N (R" x {r}). The outer unit normal vector field
of the hypersurfac®; at(x, r) € F; is

(i (X, ), —(nj (X, 1), X{ (to)))
VI+(nix, 1), X (to))?

wheren; (X, 7) is the outer unit normal of the sphe®gy; (t), ri) atx.
The tubeS(x; (to), i) x [a, b] is diffeomorphic taS; (t). If we identify the two spaces
by the diffeomorphism

(X, 7) < X+ (r — )X (to), T) € Si (1),

for all x € S(x;(tp), ri), T € [a, b], then then-dimensional volume measure can be
expressed witlu; and the one-dimensional Lebesgue measwe [a, b] as follows:

VI (i o). X (1) 20 x .

Since the vector field = (0, 1) is divergence free, the Gauss—Ostrogradskii formula
gives that

o
Il

divsdA”+1=/ (n, &) du
Q) 9Q2(t)
(ni, X{ (tp))

1+ (ni, X (t))?

N
V.0 - Ve -y |
i=1 YFi(®)

N t
V(Y(t),r)—V(Y(to),r)—Z/ </F( )(ni,x{(to))dui>dt. (2)
i=1va i(t

Whenn > 2, the integrals
/ (ni, X{ (to)) dpui
Fi(7)

depend continuously on in the neighborhood of anyg where the ballB(x; (to), i)
are different, in particular, the dependence is continuous in a neighborhtpddfer-
entiating (2) with respect tbatty, we obtain(1). |
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3. The Dirichlet—-Voronoi Decomposition

The integrals in formula (1) can be computed with the help of the Gauss—Ostrogradskii
formula applied to the cells of the Dirichlet—=Voronoi decompositionBgX, r). We
recall how this decomposition is defined.

We define the power of a poiptwith respect to a balB(x, r) to be the real number
Ix — p|2 — r2. Now considemN spheres given by the centetsand radiir as above and
denote byK;(p) = |x; — p|? — r? the power ofp with respect to théth ball. For any
pair1<i < j < N, if x; # x;, then the inequalit; (p) < K;(p) defines a half-space
bounded by the hyperplane

2((6i — X)), Py =XF =X 12 —rf.

If two spheres have the same centee x;, thenK; (p) —K;(p) = rjz—ri2 is constant,
consequently, its sign does not depencpon

If the balls are distinct, then the balls determine a decomposition of the spade into
possibly unbounded or empty polyhedral domains. itheell of the decomposition is
given as the closure of the open domain

Ci={peR"|Ki(p) <Kjpforalll<j<N,j#i}.

This decomposition is generally called the Dirichlet—Voronoi decomposition. The Dir-
ichlet—Voronoi decomposition induces a decompositioBOf, r). Theith cell of this
induced decomposition is

éi = Ci NnBX,r) = Ci N B, ri),

whereC denotes the closure of the <&t

We define thevall Wi; between the cell§; andC; as the intersectiow; = C; NC;.
WhenWj; is notempty itis the intersection of a polyhedral domain lying in the hyperplane
Ki(p) = Kj(p) with the ballB(x;, r;).

When we want to express dependencéiaﬁndvvij on(X, r), we writeC; (X, r) and
Wij (X, 1).

4. Main Formula for the Derivative of V (X, r)

Theorem 4.1. Letn > 2 and letX: (a,b) — R"™ be a smooth curye € RY.
Suppose thapte (a, b) is such that the centers (tp) are different Then the function
V() = V(X(t), r) is differentiable atg and its derivative is equal to

Vit = Y d(to)Va1(Wij (X(to). 1)), )

1<i<j<N
where @ (t) = d(x; (1), X;(t)), and V,_; denotes th¢n — 1)-dimensional volume

Proof. By Theorem 2.3V is differentiable aty andV’(ty) can be given by formula
(1). We compute the integral

/_ (N, X{ (to)) d i

Fi



454 B. Csikds

applying the Gauss—Ostrogradskii formula to the don@aiand the constant vector field
& = X (to).

The cellG; is bounded by the spherical domdtnand the walls\;;. The outer unit
normal of a nonempty wall\i; is

Xj (to) — Xi (to)
dj (to)
Since the constant vector fiefdis divergence free, we get

0= [dvedn=[ n.&)de
Gl

Ci ci

wheren andu here mean the outer unit normal field and the- 1)-dimensional volume
measure oi;. Furthermore, we have

: N\ /% (to) — Xi (to) _,
/ac: (n, &)du = /Fi<ni,xi (to)) dpi + ;<W,xi (to)>vn_1(vvij),

J#
therefore
, N, Ixi(to) — Xj(to)
/F i (ni, X (to)) dpsi = Z<W X, (to>>vn_1(vvij ). 4

A

Summing (4) for ali, we obtain

N
Vit =y f (i, X (to)) dpi
i=1 i
<Xi (to) — Xx; (to)
1<i<j=<N dij (to)
= Y d(to)Va1(Wy),

1<i<j<N

X (o) — X (t0)> Vin-1(Wij)

as was to be proved. O

Theorem 4.2. If X: [a,b] — R"N is a piecewise smooth continuous curve such that
the distance functions;dt) = [|xi(t) — X;(t)| are decreasing offia, b], then for any
r € RY, we have

V(B(X(@),1) = V(B(X(b), ). ®)

Proof Itis enough to deal with the smooth case. If two of the centgty are equal,
sayx; (b) = xj(b) whiler; < r;, then, omitting theth ball from the consideration, an

obvious induction on the number of spheres gives (5).
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Suppose that the centexga) are different, them; (t) # x;(t) for anyt < [a, b],
i # |, therefore, by Theorem 4.1, the functiviit) = V (X(t), r) is differentiable and
sinced; <0, Va_1(W;j) > Ofor alli, j, we have

ij =
V' = Z di/j Vnfl(Vvij) = 07

1<i<j<N

thusV (a) > V(b). O

Remark. Itis easy to modify Theorem 4.1 and its proof to get a similar formula for
the derivative of the volume of holes enclosed by the balls. This modified formula shows
that if some balls move smoothly in such a way that the distances between the centers
decrease, then the volume of any hole enclosed by the balls (weakly) decreases.

5. Continuous Motions of Balls

The aim of this section is to show that the differentiability conditiorxan Theorem 4.2

can be replaced by continuity. The sketch of the proof is the following. First we show
that for short periods of time the increase in volume can be bounded from above by an
expression quadratic in the change in center positions (Lemma 5.2). An application of
this estimation to subintervals of fine subdivisions of the time interval implies inequality
(5) if we assume that the curvg is rectifiable (the reader is recommended to check
this). However, rectifiability ofX does not follow from our assumptions. Indeed, one
can “shake” the centers without changing the distances between them in such a way that
the centers move along nonrectifiable curves. Thus, change in center positions can be
large even if the distances between the centers change little or not at all. We overcome
this difficulty with the help of Lemma 5.3. which claims roughly that if for two systems

of N points the distances between the corresponding points are close to one another,
then a congruent copy of the first system will be sufficiently close to the second system.
This lemma allows us to calm down a nonrectifiable “shivering” motion of the centers
by replacingX (t) with ¢(t)X(t), wherep(t) is a suitable isometry of the space.

Lemmab5.1. Letp, g € R" be two vectorssuch thatp| > |q|. Choose the points O

P, Q in such a way thap = Sﬁ q= @ and let T be the orthogonal projection of
O on PQ Setw = 0if T is not on the segmeliP, Q) andw = (1/0T?)(q — p, q) if
T € (P, Q). Then the function

dr)=Ip+t(q—p)le

is decreasing in the intervd0, 1]. If P Q is the smallest side of the triangle O RtRat
is PQ < OQ, then

W< ==, (6)

Proof. Denoting byv the vectorg — p, we can write

ed' (1) d(t) = (v, p+ V) — w|p + tV|.
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The maximum of(v, p + tv) on [0, 1] is always attained at = 1. The minimum of
Ip + 7v|? on the interval [01] is O Q? if T is not in the interval P, Q) and it isOT?
otherwise. Therefore, if is not in the interval P, Q), we have

d'(r)d(r) = (v,p+ V) < (v,q) < 0.
WhenT e (P, Q), we have
e'd'(r)d(r) < (v,p+V) —wOT? = 0.

Inequality (6) is obviously true whes# = 0. AssumingPQ < OQandT € (P, Q),
we have fromOP > OQthatTQ < TP, in particular, TQ < PQ/2 < OQ/2.
Furthermore,

_ PQ.0Q _ PQ.TQ PQ? 2P
©="o71z ©PRO=G5 T <200_0/a ~ 300

Lemmab5.2. LetP = (py,..., pn) andQ = (qy, .. ., gn) € R™ be two systems of
N points inR", such that

A >d(pi, pj) = d(@,q) >8>0
and
[IP—QJ| < min 1§
= ' 2

for all i, j, whereA and$ are given constantsThen for any system of radii e RY
there exists a constant ¢ depending onlyrpn, and$ such that

V(Q.r) —V(P,r) <c|lP-QJJ?

Proof. We connecP andQ with the linear constant speed motit) = tQ+(1—t)P,
t € [0, 1]. By Lemma 5.1, if we set

L _2P-Qp
352 ’

then the scaled distance functions
IXi (t) — xj (1) |e™
will be decreasing on [aL]. Applying Theorem 4.2 to the curvé(t)e=“t, we obtain
V(e ?Q,r) <V(P,r). @)

Let Q be the translate a with the vector—qy, that is, sefjj = g — . Clearly, we
haveV(Q,r) = V(Q,r), V(e7“Q,r) = V(e"“Q,r), and

IQ — e Qll = (1 — ™) maxg; — 1| < wA.
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Combining this inequality with the estimation obtained in the proof of Lemma 2.1
and usingw < 2/382, we get

N
V@) = V(e Qn| < V(BO 1)) (i +wA)" —r)
i=1

N n N\ i 2 -1
< wV(B(O, 1))Zz<j>ri' <§> Al

i=1j=1
Setting
N n ) j
c=VEOGD i=1j=1 <?)ri“1 <%) ®
we get
V@Q.n)—V(EP,n<|V@Q,n—-VE“Q,n| <cllP-Ql?
and this proves the lemma. O

ForX € R"N, we define theankrk X of X as the dimension of the affine subspace
spanned byg, ..., XN-

Lemma 5.3. ForanyX e R"N of rank k we can find two positive constants L arid
such away that i, Y’ € R"N are arbitrary systems of N points of rank k satisfying

[d(xi, xj) —d(yi, ¥l < e,

1d0G, X)) — Y.yl <& ®)

foralli, j, then we can find an isometgy< Iso(R") such that
diyi. @) <L Y (d(yi.yp) — doyi. y))l
1<i<j=<N
foralli.

Proof.  Asthe isometry group acts transitively kitlimensional affine subspaces$tt
and any isometry of k-dimensional subspace into itself can be extended to an isometry
of the whole space, it is enough to consider the éasen.

The isometry group of the Euclidean space is the semidirect product of the group of
translations and the orthogonal group

Iso(R™) = R" x O.

The isometry group and the orthogonal group acR3N, R"™N-D x {0} ¢ R"N is an
invariant subspace of the restricted action of the orthogonal group. Clearly, the intersec-
tion of an IsgR™-orbit in R"N with R"N~Y x {0} is an Oy-orbit, therefore we may
assume thaX, Y, andY’ come fromR"N-1 x {0} and with this assumption we will be

able to choose from O,,.
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We consider theD,-action onR"N-D = RMN-D » (0}, We apply some standard
facts on compact Lie group actions to this special action. For reference see [4].

The stabilizer of a system of poinks € R"N—Y is isomorphic toO,_y if rk X = k.

In particular, the stabilizer is minimal (and trivial) if and only if K = n. Orbits of
systems of maximal rank are the principal orbits of the action. The union of principal
orbits is an open dense subseR¥N~V. Principal orbits are diffeomorphic 0.

By the equivariant tubular neighborhood theorem (see Theorem 5.4. in Chapter I
of [4]), every principal orbit2 has anO,-invariant open neighborhood, equivariantly
diffeomorphic to2 x v, wherev is a linear space on whioB, acts trivially.

Since we have assumedXxk= k = n, we can apply this theorem to ti@-orbit 2x
of X and get arD,-equivariant diffeomorphism

i: Qx xv—U,

whereU is an open neighborhood 6.
Consider the polynomial mapping

o = (0% d, ..., d3_y\): RN - REG),

whose coordinate functions are the squares of the distance fundfjors |x; — X;],
1<i<j=<N.The polynomialsolizj, 1 <i < ] =< N, generate the ring of invariant
polynomials of theD,-action, thereforer induces a homeomorphism

o.: RMN"D/0, — o (R"ND),

In particular, we can find asy > 0 such thato (X) — o (Y)| < 4gg impliesY € U.
SetV = o 1(B(c(X), 250)) andW = o ~(B(o(X), 3g0)). V andW are compact

tubular neighborhoods ay lying in U. Choose a smooth functigmn R"N—Y — R

such thag|y = 1, andg is constant zero outsid®'. Take the averaged function

f(2) = /O (e (2)) do,

where the integral is taken with respect to the Haar meadureormalized by the
condition [, dg = 1. Define the may: RMN-D

f(Z)praoi~t(2) if ZeU,
0

F(2)= { otherwise.

F is a smooth function, invariant under the action of the orthogonal group, thus, by a
theorem of Schwarz [10], there is a smooth ndapR(:) — v such thatF = ® o 0.

Since® is smooth, it has the Lipschitz property on any compact subset. In particular,
we can findLy > 0 such that, for anyg,, oo € B(o (X), gg), we have

[[®(01) — P(02)[| < Lollor — 021,

where|| - ||; denotes thé;-norm inR().
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Now suppose that, Y’ € R"N-D satisfy(9) with ¢ = e9/N. Theno (Y) ando (Y')
are inB(o (X), g9) and therefore

19 (V) =@ (YD < LolloM) —o(Y)lli=Lo Y Idyi.y)—d?p.y))l.

1<i<j<N

Using the estimation

d?(yi, y;) — A2y, I = 1d(yi, y) — dyl, vl - 1@y, yi) 4+ doy, y))
< 2(diamX + &)|d(yi. y}) — d(y[. ¥}l

we obtain
[P (Y) — DY) <L Z d(yi, yj) — d(y;, yjI

1<i<j<N

with L = 2(diamX + ¢)Lo. Now it remains to observe thatandL depends only on
X and thatY and® (o (Y)) as well asY’ and®(c(Y’)) belong to the sam®,-orbit.
Therefore, we can fing;, g, € O, such thatd (o (Y)) = ¢1Y and® (o (Y')) = @Y.
Settingy = ;' o ¢, we obtain

d(yi. e(y)) < 1IY = oY)l = [[@(o(Y)) — Do (Y)]]
<L Y ldoyp —doyi v,

1<i<j<N

and this proves the lemma. O

Theorem 5.4. If X: [a, b] — R"N is a continuous curve such that the distance func-
tions d; (t) = |x; (t) — x; (t)| are decreasing ofa, b], then for anyr € RY, we have

V(B(X(a),1) = V(B(X(b), ).

Proof. We defingk = min{rk X(t) | t € [a, b]} and use induction oh= n — k. Since
n — k > 0 automatically, the initial case= —1 is empty, hence trivial.
Suppose that the theorem is true for continuous motions of balls during which the rank
of the system of centers does not fall below 1 and consider a continuous contraction
X: [a, b] = R"N with k = min{rk X(t) | t € [a, b]}.
Just as in the smooth case, we may assumexiligtandx; (t) are different for any
i # j andt € [a, b]. Thus, we can find\ > 0 and$ > 0 such that

A>djt)=8§>0 forall te[a,b].
Fix a system of radif and definec by formula(8) of Lemma 5.2.
The set
K ={tel[ab]|rkX({t) =Kk}

is a compact subset o&[b]. Using standard compactness arguments and Lemma 5.3,
we can finds > 0 andL > 0 such that for any twaq, 7, € K satisfying|t1 — 12| < ¢
we can find an isometry such that

[IX(71) —o(X(w2))|| < L Z |dij (r1) — dij (T2)]. (10

1<i<j<N
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Now fix an arbitrary positive number. Choose a positive number > 0 with the
following properties:

(i) e >¢;
(iiy foranytworty, 12 € [, b] with |11 — 2| < ¢ we have

. 1)
|dij (1) — dij (T2)| < min {1, > 77} .

Leta=1t < t; < ... <ty = b be a subdivision of the intervak[b] such that
t —ti_1 < ¢,1<i < m,and estimate the differen&&(X(t;), r) — V(X(tj_1), r) from
above for each subinterval. If the interval ], t;] intersectsK, then set

7y =inf(K N[ti_1, ) and o =supK N[t_1,t]).

By the induction hypothesisy (X(t), r) is decreasing on the intervalg_[;, 1] and
[t2, %], thus

VX(t),r) — V(X(ti-1), 1) < V(X(t2), 1) — V(X(11), ).
Since|r; — 12| < ¢ we can find an isometry such that10) is fulfilled.
Applying the estimation of Lemma 5.2 ¥xt1) andg(X(12)) and the inequality (10),
we obtain
V(X(12), 1) = V(X(11), 1) = V(p(X(12)), 1) — V(X(12), 1)
cliX () — (X (22)?

2
CL2< Z Idij(fl)—dij(72)|>

1<i<j<N

N
< cL2<2)n > () — dij(r2)).

1<i<j<N

IA

A

We could drop the absolute values in the last inequality since the fundiioris<i <
j < N, are decreasing. Combining these inequalities we get

N
V<X(ti),r>—V<X(ti_1),r>scL2<2)n Yo @) —dit)). (1D
1<i<j<N

We proved11) withthe assumptionthat[ 1, t;]intersectK , however, itis obviously
true also for subintervals disjoint froi, since on such intervalé(X (t), r) is decreasing
by the induction hypothesis. Summing up inequality) fori = 1, ..., m, we conclude

N
V(X(b),r) —V(X(@),r) < CL2(2>77 Z (dij (@) — dij (b)). (12
1<i<j<N
Sincen can be arbitrarily small, inequalitfl2) provides the stronger inequality
V(X(b),r) —V(X(@),r) <0,

as we wanted to prove. |
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