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Abstract. We show thatfor any two-coloring oftf@) segments determined hyointsin

the plane, one of the color classes contains noncrossing cycles of lendths.3 | /n/2].

This result is tight up to a multiplicative constant. Under the same assumptions, we also
prove that there is a noncrossing path of lengtin®?), all of whose edges are of the
same color. In the special case when thpgoints are in convex position, we find longer
monochromatic noncrossing paths, of lengthh+ 1)/2]. This bound cannot be improved.

We also discuss some related problems and generalizations. In particular, we give sharp
estimates for the largest number of disjoint monochromatic triangles that can always be

selected from our segments.
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1. Introduction

A geometric graphs a graph drawn in the plane so that every vertex corresponds to a
point, and every edge is a closed straight-line segment connecting two vertices but not
passing through a third. Tr@) segments determined loypoints in the plane, no three
of which are collinear, form aompletegeometric graph witm vertices (see [PA]). In
classical Ramsey theory, we want to find large monochromatic subgraphs in a complete
graphwhose edges are colored with several colors [B], [GRS]. Most questions of this type
can be formulated for complete geometric graphs, where the monochromatic subgraphs
are required to satisfy certain geometric conditions. The investigation of these problems
was initiated in [KPT].

A subgraph of a geometric graph is said torfmncrossingif no two of its edges
have an interior point in common. In this paper we show how to find large noncrossing
monochromatic paths and cycles in a geometric graph whose edges are colored with two
colors.

Theorem 1.1. For any two-coloring of the edges of a complete geometric graph with
n vertices there exist monochromatic noncrossing cycles of ledgth ..., |/n/2],
having the same colorhe order of magnitude of this bound cannot be improved

Theorem 1.2. For any two-coloring of the edges of a complete geometric graph with
n vertices there exists a noncrossing path of lengiin%?), all of whose edges are of
the same color

The last result improves the boutddn/?) established in [KPT]. Itis very likely that
the Q(n%?) bound in Theorem 1.2 can be further improved to (nearly) linear. We can
verify this conjecture foconvex geometric graphse., for geometric graphs whose
points form the vertex set of a convex polygon.

Theorem 1.3. For any two-coloring of the edges of a complete convex geometric
graph with n > 3 vertices there exists a noncrossing monochromatic path of length
L(n+ 1)/2]. This bound cannot be improved

The proof of Theorem 1.3 uses the following unpublished result of Micha Perles,
whose proof is included.

Theorem 1.4(Perles). If a convex geometric graph of » k + 1 vertices has more
than | (k — 1)n/2] edgesthen it contains a noncrossing path of lengthTkis bound
cannot be improved

A graph is called aaterpillar if it is a tree containing no three edge disjoint paths
of length 2 starting at the same vertex. In other words, a caterpillar is a path with some
edges attached to it. In fact, Perles proved that under the conditions of Theorem 1.4, a
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noncrossing subgraph isomorphic to any given caterpilld-6fl vertices can always
be found.

The proofs of Theorems 1.1-1.4 can be turned @im?)-time algorithms to find
monochromatic cycles (resp. paths) with the required properties.

The above results can be rephrased using the following notatio; beta class of
(so-calledforbidder) geometric subgraphs. We want to determine the smallest number
R = R (G) with the property that every complete geometric graph WRitrertices, whose
edges are colored with two colors, contains a monochromatic subgraph belonging to
If we restrict our attention toonvexgeometric graphs, then the corresponding function
is denoted byR:(G). Clearly, R.(G) < R(G).

For any positive integdk, letkG denote the class of all geometric graphs that can be
obtained by taking the union &fpairwise disjoint members @f.

Theorem 1.5. LetG be any class of geometric graptesach of which has at least two
vertices

(i) If k is a power o2, then
RkkG) < (R(G) + Dk — 1.
(i) Forany k> 0,

RKG) < [ww k— [ww .

2 2
(i) Forany k> 0,
R:(kG) < (Re(9) + Dk — 1.

In particular, ifG = 7 is the class of triangles, we haw(7) = 6. Thus, by
Theorem 1.5(i), we obtain

R(KkT) <7k — 1,

provided thak is a power of 2. The following theorem shows that this result cannot be
improved.

Theorem 1.6. Let7 denote the class of triangles and let k be a positive intagen

Ra(k) := R(KT) > (R(T) + Dk — 1 =7k — 1.

Using the approach of [KPTT], a@(n'°9'°9"+2)_time algorithm can be designed to
find k pairwisenoncrossingriangles of the same color in any complete geometric graph
of n = 7k — 1 vertices, whose edges are colored with two colors, providedtisaa
power of 2. (Note that in an abstract graph,/5| pairwisevertex-disjointtriangles of
the same color can always be found [BES].)

The paper is organized as follows. Sections 2 and 3 contain the proofs of Theorems 1.1
and 1.2, respectively. Theorems 1.3 and 1.4 are proved in Section 4, while Sections 5
and 6 contain the proofs of Theorems 1.5 and 1.6, respectively.
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2. Cycles—Proof of Theorem 1.1
Theorem 1.1 is an immediate consequence of the following result.

Theorem 2.1. LetCy be the class of all noncrossing cycles of lengtlatkd letDy be
the class of all noncrossing cycles of lengthiriangulated from a vertexrhen

Q(k? = R:(Co) < R(Ck) < R(Dy) = O(KY).

Proof. First we prove thaR.(Cx) > (k — 1)2.

Take(k — 1)? points on a circle and partition them irie- 1 groups, each containing
k — 1 consecutive points. Color with red all edges between points in different groups,
and color with blue all edges between points belonging to the same group.

Any red noncrossing cycle contains at most one point from each group, hence it
cannot have more thdn— 1 points. On the other hand, all vertices of a blue cycle are
from the same group, so there is no blue cycle with more kharl points.

Next we show thaR(Dy) < 2(k — 1)(k — 2) + 2.

Let P denote the vertex set of a complete geometric g 2(k — 1)(k — 2) 4+ 2
vertices, whose edges are colored with red and blueplbeta vertex of the convex hull
of P. Since there are® — 1)(k — 2) + 1 edges incident tp, at leastk — 1)(k—2) + 1
of them are of the same color, say, red. Ipgf py, ..., Pk-1K-2+1 be vertices ofG,
listed in clockwise order of visibility fromp, such that each edgep is red. A path
Pi, Pi, - - - Py is said to bemonotonef iy < iz < --- <ij.

Define a partial ordering of the verticgs, po, ..., Pk-1k-2+1, as follows. Let
pi < pj if i < ] and there is a monotone red path connectmgo p;. By Dil-
worth’s theorem [D], there are eithkr— 1 elements that form a totally ordered subset,
or k elements that are pairwise incomparable. In the first case, there is a monotone red
pathgiqe - - - gk—1 and we can complete it to a noncrossing red cymtgds - - - k1
of sizek, together with the corresponding diagonals frpmn the second case, there
is a complete blue subgraph kfverticesqs, gy, . . ., g« because any two incompara-
ble elements are connected by a blue edge. By a result of Gritzmann et al. [GMPP],
[PA, Lemma 14.7], this contains a noncrossing cycle of lerigttiangulated from a
vertex. O

3. Paths—Proof of Theorem 1.2

Let G be a complete geometric graph whose edges are colored red and blue. Suppose that
G contains no monochromatic noncrossing path of lengtfio establish Theorem 1.2,
it is enough to prove thab has at mosD(m*?) vertices.

Suppose without loss of generality that no two vertices lie on a vertical line. For each
vertexv of G, let b(v) (resp.r (v)) denote the length of the longestmonotone blue
(resp. red) path s whose rightmost vertex is.

Since every monotone path is noncrossing,) andr (v) are integers between 0 and
m — 1. Observe thatb(v), r (v)) # (b(v'), r (v")) for v # v'. Indeed, ifv # v" are two
vertices ofG such that’ lies to the right ofv, thenb(v’) > b(v) (if vv’ is colored blue)
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orr (v') > r(v) (if vv’ is colored red). As a consequenGhas at mosin? vertices. The
following more careful analysis gives a better bound.

Definel/ as the set of pairéh, r) with (b, r) = (b(u), r (u)) for some vertexi of G.
ForO<b; <b, <mand0<r; <r, < m, define a subset Rett, by, ry, o) of U by

Rectby, by, r1,12) = {(b,r) e | by <b <bp,r; <1 <r3}.

Every pair(b,r), 0 < b <m, 0 <r < m, defines a partition aff into the following
four subsets:

Q™ (b,r) = Rectb, m,r, m), Q" (b,r) = Rectb,m,0,r),
Q *(b,r) = Rect0, b, r, m), Q(b,r) = Rec(0,b,0,r).

The key observation is the following.

Lemma3.l. Foranyt e {1,2,...,2m — 1}, there are two integers (b),r(t) €
{0, 1, ..., m}suchthatlgt) +r(t) =t and

Q" (b(®), r (1) U Q™ (b(t), r ()] < 3m.

Before giving the proof of Lemma 3.1, we finish the proof of Theorem 1.2. Obviously,
it suffices to show that/| = O(m®/3).

Suppose for simplicity that= +/2mis an integer. Somewhat inaccurately, we shorten
the notatioQ** (b(t), r (t)) to Q**(t). We also shorte® ™~ (b(t), r (1)), Q= (b(t), r (1)),
andQ~~(b(t), r (t)) analogously. We have

u= |J (@ ouetm)u | @FonQTa+s),

t=s,2s,...,52—s t=0,s,2s,...,52—S

because each pdi, r) € U withks < b+r < (k+ 1)sliesin the first union (in a term
with t = ksor witht = (k + 1)s) or in the termQ™*(ks) N Q= (ks+ s) of the second
union. Consequently,

U< D IRTOUQTTMI+ > 1QTTHNQ T (t+9).

t=s,2s,...,82—s t=0,s,2s,...,52—s

By Lemma 3.1, each term in the first sum is at mast and it is easy to check that
each term in the second sum is at m@s®)? = m/2. It follows that

m
Ul < (s—1)- 3m+55 = o(m¥?). 5

It remains to prove Lemma 3.1.

Proof of Lemm&.1. Suppose, e.g., that< m (the casd > m can be treated simi-
larly). Foreacth =0, 1, ..., t, denote

A(b) =1Q " (b, t —b)| - Q" (b, t — b)|.
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It follows from
A0 <0< A(m)
and from
|A(b+1)—A(b)| = |Rectb, b+1, 0, m)|+|Rect{O,m,t—b—1,t—b)| < m+m = 2m
that there is dg € {0, ..., m} with

|A(bg)| < m.

We now show that the lemma holds witkt) = by andr (t) = t — by. Suppose this
is not true, i.e.,

QT MI+1Q7" (M = 3m+ 1.
Then|A(b(t))| = mgives

QT (1) > m+1, QT (M) >m+1

Consequently, there is a vertical lihsuch that a se¥; of at leastm+ 1) /2 vertices to
the left of¢ corresponds to a subset@f— (t) or Q" (t), and a seV, of at leas{m+1) /2
vertices to the right of corresponds to a subset@f *(t) or QT (1), respectively. All
edges of the complete bipartite geometric gr@ghu V,, V1 x V) are colored by the
same color: red, i¥/; corresponds to elements @ft~(t), and blue, otherwise. It is well
known (e.g., see [AGH]) that if V, |V1| > (m+ 1)/2, is separated by a line froly,
V2| > (m+ 1)/2, then the grapliVy U Vs, V; x V,) contains a noncrossing path of
lengthm—a contradiction. O

In Theorem 1.2 the edges of a complete geometric g&ple colored by two colors.
If they are colored by > 2 colors, we obtain the following.

Theorem 3.2. Every complete geometric graph of n vertices whose edges are colored
by r > 2 colors contains a noncrossing path of length(n? —1), all of whose edges
are of the same color

Proof. Let the edges of5 be colored by 12,...,r. Suppose thaG contains no
noncrossing path of lengtm. For each coloii, define a functionf; on the vertex

set of G such thatf; (v) is the length of the longest-monotone monochromatic path
of color i, whose rightmost point i». Thus, for any vertex, we have arr-tuple

f(v) = (f1(v), ..., fr(v)) of integers between 0 amd — 1. Of course,f (v) # f (V')

for v #£ v/, sincef (v) and f (v') differ in theith coordinate, whereis the color of the
edgevv’. We now show by induction on that the number of vertices @& is at most
Oo(m' ~¥2). Forr = 2, this was shown in the proof of Theorem 1.2. Suppose now that
r > 2andthatthe statement holdsfer 1. Define/ as the set of ali-tuplesf (v), where

v is a vertex ofG. The sel/ is a disjoint union omsetds;, j = 0,1,..., m—1, where
U; consists of the-tuples ofl/ whose last coordinate is For eachj, all edges between
the vertices corresponding to elementsffare colored by colors,2, ..., r — 1. By

the inductive assumption, the sizelgfis at mostO(m"~*/2). Consequently, the size of
U is at mostO(m'~%/2), and the result follows. O
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4. Paths in Convex Geometric Graphs—Proof of Theorems 1.3 and 1.4

The proof of Theorem 1.3 is based on an unpublished result of Perles (Theorem 1.4),
whose proof is as follows.

Proof of Theoreni.4. LetG be a convex geometric graph with vertiegsuy, ..., U
in clockwise order and withE(G)| = m > [(k— 1)n/2]. For convenience, lefy = u,
andun+i = Uj.

Fix Eqg = ¥, and defineEy, Ey, ..., Ey, inductively, as follows. Pick an edgg €
Ei_1 = E(G)\E;_1 such that one of the closed half-planes determinegd lpes not
fully contain any element oE(G)\(E;_1 U {&}). (Such an edge is called axtreme
edge with respect t&;_;.) LetE; = E;_; U {g}.

We also define some nonnegative integefs; ) andd, (u;). For any vertexi;, letl =
I (u;) be the smallest integer such tiiatcontains all edges @ incident tou;. Suppose
firstthati < |. Then, starting atj and visiting the vertices @ in clockwise order, leti,
andugq be the first and the last vertex such that,,, ujuq € E;. Letg (uj) (resp.d; (uj))
denote the length of the longest noncrossing pat starting au;, all of whose vertices
are in{uj, Uj41, ..., Up—1} (resp.{Uqg+1, Ug+2, . .., Uj}). Next, ifi = 1, theng = ujup
for some vertexip. Sinceg is an extremal edge with respectip 1, we may suppose, by
symmetry, tha€; has no element on the vertex $et, Uj 1, .. ., Up_1, Up}. If this is the
case, then leg; (u;) (resp.d; (u;)) denote the length of the longest noncrossing path in
starting au;, all of whose vertices lie ifu;, Uj11, . .., Up} (resp{Upy1, Upso2, - . ., Uj}).
(Otherwise we change the orientation.) Finally, i I, then putc; (uj) = ¢, (u;) and
di (uj) = d; (uj).

Claim4.1. Forevery0<i <m,
n n
docu)+ Yy diu) = 2/E]
j=1 j=1

The claim is clearly true for = 0. Let 0 < i < m, and assume that the assertion
has already been proved for- 1. Suppose that the endpointsepfareu; andu;. Since
G (U) > ¢ _1(u) andd; (u) > di_1(u) for every fixed vertex, it is enough to prove that

G (Uj) 4+ di (Uj) 4+ G (u) 4+ di (u) > G_1(Uj) + di—1(U)) + G (u) + di_g(u) + 2.

However, we either hav@(u;) > dj_1(u) andd; (u;) > ¢i_1(u;), orwe have; (u;) >
di—1(uj) andd; (uj) > ¢_1(u;), depending on which side ef = u;u; contains no edge
of E;, and the statement follows.

Now it is easy to complete the proof of the first part of Theorem 1.4. SiBg¢ >
L(k — Dn/2], there is 1< j < nfor which cn(uj) + dn(uj) > k. By the definition of
Cm anddy, this means that there is a noncrossing path of lekgpiassing through;.

The following construction shows that the bound in Theorem 1.4 is tight.
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Fig. 1
Construction. Let0,1,...,n— 1 (modn) denote the vertices of a regulaigon.

(i) If n=k (mod 2, then connect each vertex to the- 1 vertices furthest from it.
(ii) If n £k (mod 2, then connect each vertexo thek — 2 vertices furthest from,
and, forO<i < |n/2] —1,alsoto + (n—k+1)/2.

In case (i), every edge has at least- k) /2 vertices on both sides. In particular, this
holds for the first and last edges of any noncrossing path. This implies that any such path
misses at least — k vertices, so it is of length at mokt— 1.

In case (ii), suppose th&t+ 3 < n. Consider any noncrossing path Call an edge
of P extremal if the whole path lies in one of the closed half-spaces determined by
P. If P has at least three extremal edges, then it has atmesB(n — k — 1)/2 < k
vertices, showing that its length is at mést 1. However, ifP has only two extremal
edges, therP is a “zigzag,” in particular, for eacy, [n/2] > j > (n—k+ 1)/2, it
has at most two edges of the forini + j). If at most one edge of is of the form
(i,i +(n—k+1)/2), thenP contains at most — 1 edges. Otherwise, the first and the
last edges oP are of the form(i,i + (n —k 4+ 1)/2) and(j, j + (n — k + 1)/2) with
O<i<i+(n—k+1)/2<j<|n/2] —1.Inthis case, the length &f is at most

(152 ) (3] e

as required.
The casen = k + 1 can be treated similarly. O

We prove the following equivalent form of Theorem 1.3.

Theorem 4.2. LetPy be the class of all noncrossing paths of lengtfiken R(Px) =
2k — 1 unless k= 1.

Proof. First, we show thaR.(Px) > 2k — 2. Let G be a convex geometric graph on

2k — 2 vertices, and lep, vy, v, ..., vk_2,d, U1, Uy, ..., Ux_» be its vertices listed in
clockwise order. For all, j, color all edgesui, vj), (p, vi), and(q, v;) blue; (u;, u;),

(p, uj),and(q, uj) red;(v;, uj) redifi 4 j is odd and blue if + j is even. The edg@p, q)

can have any color. It is not difficult to check that this graph contains no noncrossing
monochromatic path of length
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For the upper bound, first lktbe even and take a convex complete geometric graph on
2k — 1 vertices, all of whose edges are colored red or blue. This grapi2kasl) (k — 1)
edges, so one of the color classes (say, red) contains at[l@st 1)(k — 1)/2] >
L2k — 1)(k — 1)/2| edges. Therefore, by Theorem 1.4, there is a noncrossing red path
of lengthk.

If k is odd, then we have to be more careful. Suppose there is a two-coloring of the
edges of a complete geometric grapton X — 1 vertices without a noncrossing path
of lengthk. It follows from Theorem 1.4 tha@2k — 1)(k — 1)/2 edges are red and the
same number of edges are blue. Ggtdenote the subgraph & obtained fromG by
removing all red edges. Analyzing the proof of Theorem 1.43grwe obtain that (in
the notation of the proof of Theorem 1.4)

n n
oG+ du)=2EL i=L2...m
j=1 j=1

Consequently,
Gi (Uj) + di (Uj) + G (up) +di (u) = G_1(Uj) +di—1(Uj) + G_1(uy) + di_1 () + 2.

(Otherwise, we would haven(u;j) + dn(u;) > k for somej, and we could find a
noncrossing path of length) This means, for example, thatef = u;u; and Ei has no
element on the vertex s@l;, Uj41, ..., U—1, U}, thenc (u;) = di—1(u) +1,di (u) =
Ci-1(uj) + 1.

Looking at all possible ways of how we may arrange the edg€&k,af the sequence
€1, &, ..., én, We obtain the following proposition.

Proposition 4.3. Letv,w € {1,2,...,2k —1}.

(a) Ifu,u, is blue then at least one of the longest blue noncrossing paths starting at

u,, all of whose vertices lie ifu,, u,,1, ..., Uy}, contains the edge,u,,.

(b) If u,u, is blue then at least one of the longest blue noncrossing paths starting at
u,, all of whose vertices lie ifu,, U,1, ..., U,}, contains the edge,u,,.

(c) Ifu,u, is red then at least one of the longest blue noncrossing paths starting at
u,, all of whose vertices lie ifu,, U, 1, ..., Uy}, does not contain .

(d) If u,u, is red then at least one of the longest blue noncrossing paths starting at
u,, all of whose vertices lie ifu,, u,,1, ..., u,}, does not contain y

Exchanging the roles of the colors, a similar statement can be formulated about red
paths in the grapfs, obtained fromG by deleting all blue edges.

Considerthe R—1 edges; Ui ;1. Atleastk of them are colored by the same color (blue,
say). Letupupy1 - - - Ug be the longest noncrossing blue path using some of the edges
UjU; 41 (certainly, its length is at least 2). First, observe that Proposition 4.3(c) yields that
all edges within{up, Up11, ..., Ug} are blue. Indeed, disu;, p <s <t < g, was ared
edge such that all other edgesu;, s < s’ < t’ <t, were blue, then Proposition 4.3(c)
would be false withu = s andw = t. This implies that the blue patii,up;1 - - - Ug
cannot visit all or all but one of the vertices &f By the maximality of this path, the
edgeaup_1Up andugUg4 are red. It follows from the the dual of Proposition 4.3(a) and
(c)withv = p—1andw = q+ 1 thatupug.1 is blue. Analogouslyp—1Uq is also blue.
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Suppose now that some of the edggsiu,,r = p+1, p+2,...,9—1, arered.
Take one of them for which is maximum. Then Proposition 4.3(b) would be violated
forv = p—1andw =r + 1. Thus, all edges,_iu,,r = p+1,p+2,...,q, are
blue. Analogously, all edgasg,;1u,,r = p, p+1,...,q— 1, are also blue.

The edgeu,_»up_1 cannot be red. Otherwise, starting with the longest noncrossing
red pathupup_1 - - - and using a similar argument as above, we would conclude that
Up—1Up4+1 Must be red, but we already know that it is blue. Thys,,up_1 is blue, and
we get a contradiction with Proposition 4.3(a) or (C)foe= p—2andw = p+ 1. O

5. General Estimates—Proof of Theorem 1.5

For any set oh points P in the plane, am-element subset d? is called an -setif it
can be obtained by intersectifigwith an open half-plane. It is easy to see that alets
can be generated by the following procedure [ELSS]: Take an oriented [xassing
through precisely one poimg € P and having elements ofP on its left side. Rotaté
aroundp in the clockwise direction until it hits another poigte P, and then continue
the rotation around, etc. Whenevet passes through only one elemen®afthe points
lying on its left side form am-set.

Any geometric subgrapK g, induced by arR(G)-element subset d? contains a
subgraph of the clasg, all of whose edges are of the same color. If these edges are red
(blue), we say that thigpeof the corresponding subsetred (blue). Note that a set may
have both types.

Lemma5.1. LetG be any class of geometric grapfihen R2G) < 2R(G) + 1.

Proof. LetN = 2R(G) + 1 and letP be the vertex set of a complete geometric graph
Kn whose edges are colored by red and blue.

Ifall R(G)-sets ofP have the same type, then take two disjéi§)-sets. Both contain
a monochromatic geometric subgraph belonging,tso their union is a monochromatic
member of .

On the other hand, if there are tWR(G)-sets of different types, then we can also
find two R(G)-sets,A and B, of different types such thaA U B| = R(G) + 1 and that
P\(AU B) is also anR(G)-set. The type oP\ (A U B) will coincide with the type of
Aor B. |

Proof of Theorenl.5. Part (i) is an immediate corollary of Lemma 5.1.

Let G be a (fixed) class of geometric graphs. Let r (k, ) be the smallest number
with the property that every complete geometric graph witlertices, whose edges are
colored by red and blue, contains either a subgraph belongkdtj &l of whose edges are
red, or a subgraph belongingl®, all of whose edges are blue. = R(G) =r (1, 1),
R(KkG) = r(k, k).
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Lemmab5.2. Fork>1> 1,

rkk,HD=rd,k) < (R+Dk+ {R%l—‘l _ "%"

Proof. By symmetry, clearly (k, ) = r(l, k). We proceed by induction ok andl.
First we show that(k, 1) < kR. Let G be a complete geometric graph wiktR vertices,
whose edges are colored by red and blue. Suppose that no two vertices determine a
vertical line. Then we can chooke- 1 vertical lines that divide the vertex set@finto
k equal parts. Since each part contdief the vertices, the subgraph spanned by every
part contains a monochromatic copy of a geometric graph from the glasgher all
of them are red or one of them is blue. Therefore, the lemma holds for anykpbir
where eithek = 1 orl = 1.

Letk > | be fixed, and suppose that we already know that the lemma is true for every
pair (K, 1) # (k, ), wherek’ <k, I’ <1.

Consider a complete geometric gra@hwith vertex setv, whose edges are colored
red and blue, and

V= (Rt Dk + [EW | - {Riﬂ .
2 2
By Theorem 1.5(i), foranp > 1,if f (n) = 2"(R+1) —1 < |V|, then any geometric
subgraph induced by afn(n)-set contains a monochromatic subgraph from the clggs 2
Its color will be thetypeof the corresponding (n)-set.
If there are twof (n)-sets of different types, we can cut off @h(n) + 1)-set which
contains anf (n)-set of both types. Since

(R+ Dk + [%1 | —2"(R+1) > (R+1)(k—2" + [%1 1 —2m,

we can apply the induction hypothesis for the subgraph induced by the rest of the vertices,
withk' =k —-2"1"=1-2".

So we can assume that, for gllall f (n)-sets are of the same type, provideth) =
2"(R+1) — 1 < |V|. Suppose that, fon; < n,, the f(n;)- and f (ny)-sets are of
different types. Then there exists an< n < n, such that thef (n)- and f (n + 1)-sets
are also of different types. Cut off ah(n + 1)-set. Since it contains ah(n)-set, the
subgraph induced by thie(n + 1)-set contains a blue (resp. red) subgraph from the class
2"+1G and a red (resp. blue) subgraph from the clds 2

If the f(n + 1)-sets are of type blue, then eitHex 2"*! and we are done, or we
can apply the induction hypothesis for the graph induced by the remaining vertices with
K'=k—2"andl’ =| — 2" since it is easy to check that

R+1
2

R+1

(R+ Dk + [TW | —2"YR+1) > (R+1Dk-2"+ [ W (I — 2™,

On the other hand, if thd (n + 1)-sets are of type red, then we can assume that
k > 21 andl > 2" and we can apply the induction hypothesis wkth= k — 2"+1 and
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I”=1—2"since

(R+ Dk + {R%ﬂ | —2"" R+ 1) > (R+1(k—2"h + [%W (-2

and

(R+ Dk + {%WI — 2" R+1) > (R+D(1—-2"+ [%W (k — 2",

Therefore, in what follows we assume that, &kn, all f(n)-sets are of the same
type. For simplicity we assume that they are of typa The case where these sets are of
typebluecan be settled very similarly. Writein base 2, thatik = 2" 42" 4. .. 420,
Ny <Ny <--- < Ny LetVy = V. By the assumption, everfy/(ny)- and f (n)-set of\
are of type red. Le§, be anf (ny)-setand le¥; = Vp\ S;. If every f (ny)- and f (n3)-set
of V; is of type red, then le§; be such anf (ny)-set and leV, = V;\S. In general, if
Vi has already been defined by this procedure and ef/gxy, ;)- and f (n;2)-set ofV;
is of type red, then le§ ,; be anyf (nj,1)-set and le¥;; = Vi\S.1. Otherwise, if not
all f(n;11)-sets or not allf (nj,,)-sets ofV; are of type red, or = a — 1, then stop and
letj =i.

If | =a—1,thenV,_; still has anf (ny)-set,S, oftypered, and5 U SSU---U S
contains a red subgraph from the cl&ssand we are done. Suppoge< a — 1. We
distinguish two cases.

Case aThere is an fn;;1)-set of \ of type blue Since allf (nj,1)-sets ofV;_; were

of type red, at least one of thie(n;1)-sets ofV; is of type red. Therefore, we can find
an(f(nj;1) + 1)-set,§1, which contains arf (n;;1)-set of both typed S US U - - - U

St = (@142 4. 42 (R+1DandSUSU- - - U §44 contains a red subgraph
from the clasg2™ + 2™ + ... 4 2"+)G and a blue subgraph from the clags-4j7.

If eitherk < 2™ 4 2" 4 ... 4 2%+ or| < 2%+, then we are done. Otherwise, easy
calculation shows that we can apply the induction hypothesis for the graph induced by
the remaining vertices witkl = k — (2™ + 2" + ... 4+ 2%+1) gandl’ = | — 2"+,

Case b Every f(n;41)-set of Y is of type red but there is an {n;,,)-set of \ of
type blue In this case, there exists a,; < n < nj;, such that everyf (n)-set of

Vi is of type red, but there is ah(n + 1)-set ofV; of type blue. Then le§; be an

f (n+ 1)-set ofV; of type blue. Clearly, it contains ah(n)-set ofV;, which is of type
red.|SUSU- US4 < (@M 42%+...42% + 2" (R4+-1) andSUSU--- US4
contains a red subgraph from the clé®s + 2" + . . . + 2" 4+ 2")G and a blue subgraph
from the class 2"1G. Again, easy calculation shows that we can proceed as in case a.

Return to the proof of Theorem 1.5. Part (ii) is an immediate corollary of Lemma 5.2.
In part (iii), if all R.(G)-sets have the same type then, using the convexity of the geometric
graph, we can takk disjoint R.(G)-sets and we get a monochromatic geometric graph
fromkgG.

If there are twoR(G)-sets of different types, we can proceed by induction as in part
(ii). O
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6. Triangles—Proof of Theorem 1.6

The proof is quite technical, therefore we sketch here only the main ideas.

It is sufficient to show thaRx (k) > 7k — 7 for everyk. Indeed, assume that this is
true, butRA (ko) < 7ko — 2 for some integeky. Then, applying Theorem 1.5(i) with
G = ko7, we would obtain

Ra(8ko) = R(8koT) = (R(ko7) + 181
(Ra(ko) + D8 —1 = (7Tko — D8 — 1 =7(8ko) — 9,

a contradiction.

Construction. Letk be a positive integen =7k —7.LetQ 1, ..., 7k — 8 denote the
vertices of a regulan-gon, in clockwise order. If two vertices are separatedrby 1
others, then we say that thengthof the edge connecting themiis (m < |n/2]). A
vertex is colored red if = 0, 1, 3, or 5 (mod 7), and blue otherwise.

We color the edgeg (0 <i # j < n — 1) according to the following rules. Let
denote the length af .

(@ Ifa=1,4, or6(mod 7, letij be blue.

(b) If A =2o0r3(mod 7, letij be red.

(c) If » =5 (mod 7, letij be colored with the color of its starting point in the
clockwise direction.

(d) If A = 0 (mod 9, letij be colored with the color other than the coloriot
1 (mod 7.

The cas& = 3is depicted in Fig. 2. To see that this graph does not coktaairwise
noncrossing blue triangles, we need the following lemma that can be proved by induction.
By anarc we mean a set of consecutive vertices.

Red edges Blue edges

Fig. 2.
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Lemma 6.1. Suppose that an arc | of & n/2 vertices contains the vertices of h
pairwise noncrossing blue triangleShen m> 7h — 1. Moreoveyif m = 7h — 1, then
the starting point of | is blue

Consider a maximal set of pairwise noncrossing blue triangles. Suppose first that the
points can be partitioned into three arts, I, I3, with m; = |l;| < n/2 such that the
vertices of each of these triangles belong to the same ard; ldetnote the number of
triangles whose vertices belonglio By Lemma 6.1, we have

m—7=m+my+m3> (7kg — 1) + (7Tko — 1) + (Tks — 1) > 7(ky + ko +k3) — 7,

and we can conclude thit + k> + ks < n.

Otherwise, there is a blue triangle so that the convex hull of its vertex set contains
the center of our regular-gon. Its verticesp, q, r, partition the remaining set of points
into three arcs of length®;, m,, m3 containingky, ko, k3 triangles, respectively. From
Lemma 6.1 we obtain

mM—7=mp+my+mz+3> (7ky — 1)+ (7Tkp — 1) + (7Tks — 1) + 3 = 7(k; + ko + k3),

implyingn > k = k; + ky + ks + 1. Suppose that = k. Then we have equality in the
previous inequalities, therefore the length of each side of triapgleis divisible by 7.
On the other hand, by Lemma 6.1, all of the poipt$ 1, g+ 1,r + 1 are blue, s@qr
is a monochromatic red triangle, a contradiction.
The existence ofi noncrossing red triangles can be excluded by a similar argument.
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