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Abstract. We show that for any two-coloring of the
(

n
2

)
segments determined bynpoints in

the plane, one of the color classes contains noncrossing cycles of lengths 3,4, . . . , b√n/2c.
This result is tight up to a multiplicative constant. Under the same assumptions, we also
prove that there is a noncrossing path of lengthÄ(n2/3), all of whose edges are of the
same color. In the special case when then points are in convex position, we find longer
monochromatic noncrossing paths, of lengthb(n+ 1)/2c. This bound cannot be improved.
We also discuss some related problems and generalizations. In particular, we give sharp
estimates for the largest number of disjoint monochromatic triangles that can always be
selected from our segments.
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1. Introduction

A geometric graphis a graph drawn in the plane so that every vertex corresponds to a
point, and every edge is a closed straight-line segment connecting two vertices but not
passing through a third. The

(n
2

)
segments determined byn points in the plane, no three

of which are collinear, form acompletegeometric graph withn vertices (see [PA]). In
classical Ramsey theory, we want to find large monochromatic subgraphs in a complete
graph whose edges are colored with several colors [B], [GRS]. Most questions of this type
can be formulated for complete geometric graphs, where the monochromatic subgraphs
are required to satisfy certain geometric conditions. The investigation of these problems
was initiated in [KPT].

A subgraph of a geometric graph is said to benoncrossing, if no two of its edges
have an interior point in common. In this paper we show how to find large noncrossing
monochromatic paths and cycles in a geometric graph whose edges are colored with two
colors.

Theorem 1.1. For any two-coloring of the edges of a complete geometric graph with
n vertices, there exist monochromatic noncrossing cycles of length3,4, . . . , b√n/2c,
having the same color. The order of magnitude of this bound cannot be improved.

Theorem 1.2. For any two-coloring of the edges of a complete geometric graph with
n vertices, there exists a noncrossing path of lengthÄ(n2/3), all of whose edges are of
the same color.

The last result improves the boundÄ(n1/2) established in [KPT]. It is very likely that
theÄ(n2/3) bound in Theorem 1.2 can be further improved to (nearly) linear. We can
verify this conjecture forconvex geometric graphs, i.e., for geometric graphs whosen
points form the vertex set of a convex polygon.

Theorem 1.3. For any two-coloring of the edges of a complete convex geometric
graph with n≥ 3 vertices, there exists a noncrossing monochromatic path of length
b(n+ 1)/2c. This bound cannot be improved.

The proof of Theorem 1.3 uses the following unpublished result of Micha Perles,
whose proof is included.

Theorem 1.4(Perles). If a convex geometric graph of n≥ k + 1 vertices has more
than b(k − 1)n/2c edges, then it contains a noncrossing path of length k. This bound
cannot be improved.

A graph is called acaterpillar if it is a tree containing no three edge disjoint paths
of length 2 starting at the same vertex. In other words, a caterpillar is a path with some
edges attached to it. In fact, Perles proved that under the conditions of Theorem 1.4, a
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noncrossing subgraph isomorphic to any given caterpillar ofk + 1 vertices can always
be found.

The proofs of Theorems 1.1–1.4 can be turned intoO(n2)-time algorithms to find
monochromatic cycles (resp. paths) with the required properties.

The above results can be rephrased using the following notation. LetG be a class of
(so-calledforbidden) geometric subgraphs. We want to determine the smallest number
R= R(G)with the property that every complete geometric graph withRvertices, whose
edges are colored with two colors, contains a monochromatic subgraph belonging toG.
If we restrict our attention toconvexgeometric graphs, then the corresponding function
is denoted byRc(G). Clearly,Rc(G) ≤ R(G).

For any positive integerk, let kG denote the class of all geometric graphs that can be
obtained by taking the union ofk pairwise disjoint members ofG.

Theorem 1.5. LetG be any class of geometric graphs, each of which has at least two
vertices.

(i) If k is a power of2, then

R(kG) ≤ (R(G)+ 1)k− 1.

(ii) For any k> 0,

R(kG) ≤
⌈

3(R(G)+ 1)

2

⌉
k−

⌈
R(G)+ 1

2

⌉
.

(iii) For any k> 0,

Rc(kG) ≤ (Rc(G)+ 1)k− 1.

In particular, if G = T is the class of triangles, we haveR(T ) = 6. Thus, by
Theorem 1.5(i), we obtain

R(kT ) ≤ 7k− 1,

provided thatk is a power of 2. The following theorem shows that this result cannot be
improved.

Theorem 1.6. LetT denote the class of triangles and let k be a positive integer. Then

R1(k) := R(kT ) ≥ (R(T )+ 1)k− 1= 7k− 1.

Using the approach of [KPTT], anO(nlog logn+2)-time algorithm can be designed to
find k pairwisenoncrossingtriangles of the same color in any complete geometric graph
of n = 7k − 1 vertices, whose edges are colored with two colors, provided thatk is a
power of 2. (Note that in an abstract graph,bn/5c pairwisevertex-disjointtriangles of
the same color can always be found [BES].)

The paper is organized as follows. Sections 2 and 3 contain the proofs of Theorems 1.1
and 1.2, respectively. Theorems 1.3 and 1.4 are proved in Section 4, while Sections 5
and 6 contain the proofs of Theorems 1.5 and 1.6, respectively.
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2. Cycles—Proof of Theorem 1.1

Theorem 1.1 is an immediate consequence of the following result.

Theorem 2.1. LetCk be the class of all noncrossing cycles of length k, and letDk be
the class of all noncrossing cycles of length k, triangulated from a vertex. Then

Ä(k2) = Rc(Ck) ≤ R(Ck) ≤ R(Dk) = O(k2).

Proof. First we prove thatRc(Ck) > (k− 1)2.
Take(k−1)2 points on a circle and partition them intok−1 groups, each containing

k − 1 consecutive points. Color with red all edges between points in different groups,
and color with blue all edges between points belonging to the same group.

Any red noncrossing cycle contains at most one point from each group, hence it
cannot have more thank − 1 points. On the other hand, all vertices of a blue cycle are
from the same group, so there is no blue cycle with more thank− 1 points.

Next we show thatR(Dk) ≤ 2(k− 1)(k− 2)+ 2.
Let P denote the vertex set of a complete geometric graphG of 2(k− 1)(k− 2)+ 2

vertices, whose edges are colored with red and blue. Letp be a vertex of the convex hull
of P. Since there are 2(k−1)(k−2)+1 edges incident top, at least(k−1)(k−2)+1
of them are of the same color, say, red. Letp1, p2, . . . , p(k−1)(k−2)+1 be vertices ofG,
listed in clockwise order of visibility fromp, such that each edgeppi is red. A path
pi1 pi2 · · · pi j is said to bemonotoneif i1 < i2 < · · · < i j .

Define a partial ordering of the verticesp1, p2, . . . , p(k−1)(k−2)+1, as follows. Let
pi < pj if i < j and there is a monotone red path connectingpi to pj . By Dil-
worth’s theorem [D], there are eitherk− 1 elements that form a totally ordered subset,
or k elements that are pairwise incomparable. In the first case, there is a monotone red
path q1q2 · · ·qk−1 and we can complete it to a noncrossing red cyclepq1q2 · · ·qk−1

of sizek, together with the corresponding diagonals fromp. In the second case, there
is a complete blue subgraph ofk verticesq1,q2, . . . ,qk because any two incompara-
ble elements are connected by a blue edge. By a result of Gritzmann et al. [GMPP],
[PA, Lemma 14.7], this contains a noncrossing cycle of lengthk, triangulated from a
vertex.

3. Paths—Proof of Theorem 1.2

Let G be a complete geometric graph whose edges are colored red and blue. Suppose that
G contains no monochromatic noncrossing path of lengthm. To establish Theorem 1.2,
it is enough to prove thatG has at mostO(m3/2) vertices.

Suppose without loss of generality that no two vertices lie on a vertical line. For each
vertexv of G, let b(v) (resp.r (v)) denote the length of the longestx-monotone blue
(resp. red) path inG whose rightmost vertex isv.

Since every monotone path is noncrossing,b(v) andr (v) are integers between 0 and
m− 1. Observe that(b(v), r (v)) 6= (b(v′), r (v′)) for v 6= v′. Indeed, ifv 6= v′ are two
vertices ofG such thatv′ lies to the right ofv, thenb(v′) > b(v) (if vv′ is colored blue)
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or r (v′) > r (v) (if vv′ is colored red). As a consequence,G has at mostm2 vertices. The
following more careful analysis gives a better bound.

DefineU as the set of pairs(b, r ) with (b, r ) = (b(u), r (u)) for some vertexu of G.
For 0≤ b1 ≤ b2 ≤ m and 0≤ r1 ≤ r2 ≤ m, define a subset Rect(b1,b2, r1, r2) of U by

Rect(b1,b2, r1, r2) = {(b, r ) ∈ U | b1 ≤ b < b2, r1 ≤ r < r2}.

Every pair(b, r ), 0 ≤ b ≤ m, 0 ≤ r ≤ m, defines a partition ofU into the following
four subsets:

Q++(b, r ) = Rect(b,m, r,m), Q+−(b, r ) = Rect(b,m,0, r ),

Q−+(b, r ) = Rect(0,b, r,m), Q−−(b, r ) = Rect(0,b,0, r ).

The key observation is the following.

Lemma 3.1. For any t ∈ {1,2, . . . ,2m − 1}, there are two integers b(t), r (t) ∈
{0,1, . . . ,m} such that b(t)+ r (t) = t and

|Q+−(b(t), r (t)) ∪ Q−+(b(t), r (t))| ≤ 3m.

Before giving the proof of Lemma 3.1, we finish the proof of Theorem 1.2. Obviously,
it suffices to show that|U | = O(m3/2).

Suppose for simplicity thats= √2m is an integer. Somewhat inaccurately, we shorten
thenotationQ++(b(t), r (t)) to Q++(t).WealsoshortenQ+−(b(t), r (t)), Q−+(b(t), r (t)),
andQ−−(b(t), r (t)) analogously. We have

U =
⋃

t=s,2s,...,s2−s

(
Q+−(t) ∪ Q−+(t)

) ∪ ⋃
t=0,s,2s,...,s2−s

(Q++(t) ∩ Q−−(t + s)),

because each pair(b, r ) ∈ U with ks≤ b+ r < (k+1)s lies in the first union (in a term
with t = ksor with t = (k+ 1)s) or in the termQ++(ks)∩ Q−−(ks+ s) of the second
union. Consequently,

|U | ≤
∑

t=s,2s,...,s2−s

|Q+−(t) ∪ Q−+(t)| +
∑

t=0,s,2s,...,s2−s

|Q++(t) ∩ Q−−(t + s)|.

By Lemma 3.1, each term in the first sum is at most 3m, and it is easy to check that
each term in the second sum is at most(s/2)2 = m/2. It follows that

|U | ≤ (s− 1) · 3m+ s
m

2
= O(m3/2).

It remains to prove Lemma 3.1.

Proof of Lemma3.1. Suppose, e.g., thatt ≤ m (the caset > m can be treated simi-
larly). For eachb = 0,1, . . . , t , denote

1(b) = |Q−+(b, t − b)| − |Q+−(b, t − b)|.



380 Gy. Károlyi, J. Pach, G. T´oth, and P. Valtr

It follows from

1(0) ≤ 0≤ 1(m)
and from

|1(b+1)−1(b)| = |Rect(b,b+1,0,m)|+|Rect(0,m, t−b−1, t−b)| ≤ m+m= 2m

that there is ab0 ∈ {0, . . . ,m} with

|1(b0)| ≤ m.

We now show that the lemma holds withb(t) = b0 andr (t) = t − b0. Suppose this
is not true, i.e.,

|Q+−(t)| + |Q−+(t)| ≥ 3m+ 1.

Then|1(b(t))| ≤ m gives

|Q+−(t)| ≥ m+ 1, |Q−+(t)| ≥ m+ 1.

Consequently, there is a vertical line` such that a setV1 of at least(m+ 1)/2 vertices to
the left of` corresponds to a subset ofQ+−(t)or Q−+(t), and a setV2 of at least(m+1)/2
vertices to the right of̀ corresponds to a subset ofQ−+(t) or Q+−(t), respectively. All
edges of the complete bipartite geometric graph(V1 ∪ V2,V1 × V2) are colored by the
same color: red, ifV1 corresponds to elements ofQ+−(t), and blue, otherwise. It is well
known (e.g., see [AGH+]) that if V1, |V1| ≥ (m+ 1)/2, is separated by a line fromV2,
|V2| ≥ (m+ 1)/2, then the graph(V1 ∪ V2,V1 × V2) contains a noncrossing path of
lengthm—a contradiction.

In Theorem 1.2 the edges of a complete geometric graphG are colored by two colors.
If they are colored byr ≥ 2 colors, we obtain the following.

Theorem 3.2. Every complete geometric graph of n vertices whose edges are colored
by r ≥ 2 colors, contains a noncrossing path of lengthÄ(n2/(2r−1)), all of whose edges
are of the same color.

Proof. Let the edges ofG be colored by 1,2, . . . , r . Suppose thatG contains no
noncrossing path of lengthm. For each colori , define a functionfi on the vertex
set ofG such that fi (v) is the length of the longestx-monotone monochromatic path
of color i , whose rightmost point isv. Thus, for any vertexv, we have anr -tuple
f (v) = ( f1(v), . . . , fr (v)) of integers between 0 andm− 1. Of course,f (v) 6= f (v′)
for v 6= v′, since f (v) and f (v′) differ in the i th coordinate, wherei is the color of the
edgevv′. We now show by induction onr that the number of vertices ofG is at most
O(mr−1/2). For r = 2, this was shown in the proof of Theorem 1.2. Suppose now that
r > 2 and that the statement holds forr−1. DefineU as the set of allr -tuples f (v), where
v is a vertex ofG. The setU is a disjoint union ofm setsUj , j = 0,1, . . . ,m−1, where
Uj consists of ther -tuples ofU whose last coordinate isj . For eachj , all edges between
the vertices corresponding to elements ofUj are colored by colors 1,2, . . . , r − 1. By
the inductive assumption, the size ofUj is at mostO(mr−3/2). Consequently, the size of
U is at mostO(mr−1/2), and the result follows.
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4. Paths in Convex Geometric Graphs—Proof of Theorems 1.3 and 1.4

The proof of Theorem 1.3 is based on an unpublished result of Perles (Theorem 1.4),
whose proof is as follows.

Proof of Theorem1.4. LetG be a convex geometric graph with verticesu1,u2, . . . ,un

in clockwise order and with|E(G)| = m> b(k−1)n/2c. For convenience, letu0 = un

andun+i = ui .
Fix E0 = ∅, and defineE1, E2, . . . , Em inductively, as follows. Pick an edgeei ∈

Ēi−1 = E(G)\Ei−1 such that one of the closed half-planes determined byei does not
fully contain any element ofE(G)\(Ei−1 ∪ {ei }). (Such an edge is called anextreme
edge with respect tōEi−1.) Let Ei = Ei−1 ∪ {ei }.

We also define some nonnegative integersci (uj ) anddi (uj ). For any vertexuj , let I =
I (uj ) be the smallest integer such thatEI contains all edges ofG incident touj . Suppose
first thati < I . Then, starting atuj and visiting the vertices ofG in clockwise order, letup

anduq be the first and the last vertex such thatuj up,uj uq ∈ Ēi . Letci (uj ) (resp.di (uj ))
denote the length of the longest noncrossing path inEi starting atuj , all of whose vertices
are in{uj ,uj+1, . . . ,up−1} (resp.{uq+1,uq+2, . . . ,uj }). Next, if i = I , thenei = uj up

for some vertexup. Sinceei is an extremal edge with respect toĒi−1, we may suppose, by
symmetry, thatĒi has no element on the vertex set{uj ,uj+1, . . . ,up−1,up}. If this is the
case, then letci (uj ) (resp.di (uj )) denote the length of the longest noncrossing path inEi

starting atuj , all of whose vertices lie in{uj ,uj+1, . . . ,up} (resp.{up+1,up+2, . . . ,uj }).
(Otherwise we change the orientation.) Finally, ifi > I , then putci (uj ) = cI (uj ) and
di (uj ) = dI (uj ).

Claim 4.1. For every0≤ i ≤ m,

n∑
j=1

ci (uj )+
n∑

j=1

di (uj ) ≥ 2|Ei |.

The claim is clearly true fori = 0. Let 0< i ≤ m, and assume that the assertion
has already been proved fori − 1. Suppose that the endpoints ofei areuj andul . Since
ci (u) ≥ ci−1(u) anddi (u) ≥ di−1(u) for every fixed vertexu, it is enough to prove that

ci (uj )+ di (uj )+ ci (ul )+ di (ul ) ≥ ci−1(uj )+ di−1(uj )+ ci−1(ul )+ di−1(ul )+ 2.

However, we either haveci (uj ) > di−1(ul )anddi (ul ) > ci−1(uj ), or we haveci (ul ) >

di−1(uj ) anddi (uj ) > ci−1(ul ), depending on which side ofei = uj ul contains no edge
of Ēi , and the statement follows.

Now it is easy to complete the proof of the first part of Theorem 1.4. Since|Em| >
b(k − 1)n/2c, there is 1≤ j ≤ n for which cm(uj ) + dm(uj ) ≥ k. By the definition of
cm anddm, this means that there is a noncrossing path of lengthk, passing throughuj .

The following construction shows that the bound in Theorem 1.4 is tight.
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Fig. 1

Construction. Let 0,1, . . . ,n− 1 (modn) denote the vertices of a regularn-gon.

(i) If n ≡ k (mod 2), then connect each vertex to thek− 1 vertices furthest from it.
(ii) If n 6≡ k (mod 2), then connect each vertexi to thek− 2 vertices furthest fromi ,

and, for 0≤ i ≤ bn/2c − 1, also toi + (n− k+ 1)/2.

In case (i), every edge has at least(n− k)/2 vertices on both sides. In particular, this
holds for the first and last edges of any noncrossing path. This implies that any such path
misses at leastn− k vertices, so it is of length at mostk− 1.

In case (ii), suppose thatk+ 3 ≤ n. Consider any noncrossing pathP. Call an edge
of P extremal if the whole pathP lies in one of the closed half-spaces determined by
P. If P has at least three extremal edges, then it has at mostn − 3(n − k − 1)/2 ≤ k
vertices, showing that its length is at mostk − 1. However, ifP has only two extremal
edges, thenP is a “zigzag,” in particular, for eachj , bn/2c ≥ j ≥ (n − k + 1)/2, it
has at most two edges of the form(i, i + j ). If at most one edge ofP is of the form
(i, i + (n− k+ 1)/2), thenP contains at mostk− 1 edges. Otherwise, the first and the
last edges ofP are of the form(i, i + (n− k + 1)/2) and( j, j + (n− k + 1)/2) with
0≤ i < i + (n− k+ 1)/2< j ≤ bn/2c − 1. In this case, the length ofP is at most

2

(
j −

(
i + n− k+ 1

2

)
+ 1

)
≤ 2

(⌊
n

2

⌋
− n− k+ 1

2

)
≤ k− 1 ,

as required.
The casen = k+ 1 can be treated similarly.

We prove the following equivalent form of Theorem 1.3.

Theorem 4.2. LetPk be the class of all noncrossing paths of length k. Then Rc(Pk) =
2k− 1 unless k= 1.

Proof. First, we show thatRc(Pk) > 2k − 2. Let G be a convex geometric graph on
2k − 2 vertices, and letp, v1, v2, . . . , vk−2,q,u1, u2, . . . ,uk−2 be its vertices listed in
clockwise order. For alli, j , color all edges(vi , vj ), (p, vi ), and(q, vi ) blue; (ui ,uj ),
(p,ui ), and(q,ui ) red;(vi ,uj ) red if i+ j is odd and blue ifi+ j is even. The edge(p,q)
can have any color. It is not difficult to check that this graph contains no noncrossing
monochromatic path of lengthk.
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For the upper bound, first letk be even and take a convex complete geometric graph on
2k−1 vertices, all of whose edges are colored red or blue. This graph has(2k−1)(k−1)
edges, so one of the color classes (say, red) contains at leastd(2k − 1)(k − 1)/2e >
b(2k− 1)(k− 1)/2c edges. Therefore, by Theorem 1.4, there is a noncrossing red path
of lengthk.

If k is odd, then we have to be more careful. Suppose there is a two-coloring of the
edges of a complete geometric graphG on 2k − 1 vertices without a noncrossing path
of lengthk. It follows from Theorem 1.4 that(2k − 1)(k − 1)/2 edges are red and the
same number of edges are blue. LetGb denote the subgraph ofG obtained fromG by
removing all red edges. Analyzing the proof of Theorem 1.4 forGb, we obtain that (in
the notation of the proof of Theorem 1.4)

n∑
j=1

ci (uj )+
n∑

j=1

di (uj ) = 2|Ei |, i = 1,2, . . . ,m.

Consequently,

ci (uj )+ di (uj )+ ci (ul )+ di (ul ) = ci−1(uj )+ di−1(uj )+ ci−1(ul )+ di−1(ul )+ 2.

(Otherwise, we would havecm(uj ) + dm(uj ) ≥ k for some j , and we could find a
noncrossing path of lengthk.) This means, for example, that ifei = uj ul andĒi has no
element on the vertex set{uj ,uj+1, . . . ,ul−1,ul }, thenci (uj ) = di−1(ul )+ 1, di (ul ) =
ci−1(uj )+ 1.

Looking at all possible ways of how we may arrange the edges ofGb in the sequence
e1,e2, . . . ,em, we obtain the following proposition.

Proposition 4.3. Letv,w ∈ {1,2, . . . ,2k− 1}.
(a) If uvuw is blue, then at least one of the longest blue noncrossing paths starting at

uv, all of whose vertices lie in{uv,uv+1, . . . ,uw}, contains the edge uvuw.
(b) If uvuw is blue, then at least one of the longest blue noncrossing paths starting at

uw, all of whose vertices lie in{uv,uv+1, . . . ,uw}, contains the edge uvuw.
(c) If uvuw is red, then at least one of the longest blue noncrossing paths starting at

uv, all of whose vertices lie in{uv,uv+1, . . . ,uw}, does not contain uw.
(d) If uvuw is red, then at least one of the longest blue noncrossing paths starting at

uw, all of whose vertices lie in{uv,uv+1, . . . ,uw}, does not contain uv.

Exchanging the roles of the colors, a similar statement can be formulated about red
paths in the graphGr obtained fromG by deleting all blue edges.

Consider the 2k−1 edgesui ui+1. At leastk of them are colored by the same color (blue,
say). Letupup+1 · · ·uq be the longest noncrossing blue path using some of the edges
ui ui+1 (certainly, its length is at least 2). First, observe that Proposition 4.3(c) yields that
all edges within{up,up+1, . . . ,uq} are blue. Indeed, ifusut , p ≤ s < t ≤ q, was a red
edge such that all other edgesus′ut ′ , s ≤ s′ < t ′ ≤ t , were blue, then Proposition 4.3(c)
would be false withu = s andw = t . This implies that the blue pathupup+1 · · ·uq

cannot visit all or all but one of the vertices ofG. By the maximality of this path, the
edgesup−1up anduquq+1 are red. It follows from the the dual of Proposition 4.3(a) and
(c) with v = p−1 andw = q+1 thatupuq+1 is blue. Analogously,up−1uq is also blue.
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Suppose now that some of the edgesup−1ur , r = p+ 1, p+ 2, . . . ,q − 1, are red.
Take one of them for whichr is maximum. Then Proposition 4.3(b) would be violated
for v = p− 1 andw = r + 1. Thus, all edgesup−1ur , r = p+ 1, p+ 2, . . . ,q, are
blue. Analogously, all edgesuq+1ur , r = p, p+ 1, . . . ,q − 1, are also blue.

The edgeup−2up−1 cannot be red. Otherwise, starting with the longest noncrossing
red pathupup−1 · · · and using a similar argument as above, we would conclude that
up−1up+1 must be red, but we already know that it is blue. Thus,up−2up−1 is blue, and
we get a contradiction with Proposition 4.3(a) or (c) forv = p− 2 andw = p+ 1.

5. General Estimates—Proof of Theorem 1.5

For any set ofn points P in the plane, ani -element subset ofP is called ani -set if it
can be obtained by intersectingP with an open half-plane. It is easy to see that alli -sets
can be generated by the following procedure [ELSS]: Take an oriented line` passing
through precisely one pointp ∈ P and havingi elements ofP on its left side. Rotatè
aroundp in the clockwise direction until it hits another pointq ∈ P, and then continue
the rotation aroundq, etc. Whenever̀ passes through only one element ofP, the points
lying on its left side form ani -set.

Any geometric subgraphKR(G) induced by anR(G)-element subset ofP contains a
subgraph of the classG, all of whose edges are of the same color. If these edges are red
(blue), we say that thetypeof the corresponding subset isred(blue). Note that a set may
have both types.

Lemma 5.1. LetG be any class of geometric graphs. Then R(2G) ≤ 2R(G)+ 1.

Proof. Let N = 2R(G)+ 1 and letP be the vertex set of a complete geometric graph
KN whose edges are colored by red and blue.

If all R(G)-sets ofP have the same type, then take two disjointR(G)-sets. Both contain
a monochromatic geometric subgraph belonging toG, so their union is a monochromatic
member of 2G.

On the other hand, if there are twoR(G)-sets of different types, then we can also
find two R(G)-sets,A andB, of different types such that|A∪ B| = R(G)+ 1 and that
P\(A ∪ B) is also anR(G)-set. The type ofP\(A ∪ B) will coincide with the type of
A or B.

Proof of Theorem1.5. Part (i) is an immediate corollary of Lemma 5.1.
Let G be a (fixed) class of geometric graphs. Letr = r (k, l ) be the smallest number

with the property that every complete geometric graph withr vertices, whose edges are
colored by red and blue, contains either a subgraph belonging tokG, all of whose edges are
red, or a subgraph belonging tolG, all of whose edges are blue. So,R= R(G) = r (1,1),
R(kG) = r (k, k).
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Lemma 5.2. For k ≥ l ≥ 1,

r (k, l ) = r (l , k) ≤ (R+ 1)k+
⌈

R+ 1

2

⌉
l −

⌈
R+ 1

2

⌉
.

Proof. By symmetry, clearlyr (k, l ) = r (l , k). We proceed by induction onk and l .
First we show thatr (k,1) ≤ k R. LetG be a complete geometric graph withk Rvertices,
whose edges are colored by red and blue. Suppose that no two vertices determine a
vertical line. Then we can choosek− 1 vertical lines that divide the vertex set ofG into
k equal parts. Since each part containsR of the vertices, the subgraph spanned by every
part contains a monochromatic copy of a geometric graph from the classG. Either all
of them are red or one of them is blue. Therefore, the lemma holds for any pair(k, l ),
where eitherk = 1 or l = 1.

Let k ≥ l be fixed, and suppose that we already know that the lemma is true for every
pair (k′, l ′) 6= (k, l ), wherek′ ≤ k, l ′ ≤ l .

Consider a complete geometric graphG with vertex setV , whose edges are colored
red and blue, and

|V | = (R+ 1)k+
⌈

R+ 1

2

⌉
l −

⌈
R+ 1

2

⌉
.

By Theorem 1.5(i), for anyn ≥ 1, if f (n) = 2n(R+1)−1≤ |V |, then any geometric
subgraph induced by anf (n)-set contains a monochromatic subgraph from the class 2nG.
Its color will be thetypeof the correspondingf (n)-set.

If there are twof (n)-sets of different types, we can cut off an( f (n)+ 1)-set which
contains anf (n)-set of both types. Since

(R+ 1)k+
⌈

R+ 1

2

⌉
l − 2n(R+ 1) ≥ (R+ 1)(k− 2n)+

⌈
R+ 1

2

⌉
(l − 2n),

we can apply the induction hypothesis for the subgraph induced by the rest of the vertices,
with k′ = k− 2n, l ′ = l − 2n.

So we can assume that, for alln, all f (n)-sets are of the same type, providedf (n) =
2n(R+ 1) − 1 ≤ |V |. Suppose that, forn1 < n2, the f (n1)- and f (n2)-sets are of
different types. Then there exists ann1 ≤ n < n2 such that thef (n)- and f (n+ 1)-sets
are also of different types. Cut off anf (n + 1)-set. Since it contains anf (n)-set, the
subgraph induced by thef (n+1)-set contains a blue (resp. red) subgraph from the class
2n+1G and a red (resp. blue) subgraph from the class 2nG.

If the f (n + 1)-sets are of type blue, then eitherl ≤ 2n+1 and we are done, or we
can apply the induction hypothesis for the graph induced by the remaining vertices with
k′ = k− 2n andl ′ = l − 2n+1 since it is easy to check that

(R+ 1)k+
⌈

R+ 1

2

⌉
l − 2n+1(R+ 1) ≥ (R+ 1)(k− 2n)+

⌈
R+ 1

2

⌉
(l − 2n+1).

On the other hand, if thef (n + 1)-sets are of type red, then we can assume that
k > 2n+1 andl > 2n and we can apply the induction hypothesis withk′ = k− 2n+1 and
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l ′ = l − 2n since

(R+ 1)k+
⌈

R+ 1

2

⌉
l − 2n+1(R+ 1) ≥ (R+ 1)(k− 2n+1)+

⌈
R+ 1

2

⌉
(l − 2n)

and

(R+ 1)k+
⌈

R+ 1

2

⌉
l − 2n+1(R+ 1) ≥ (R+ 1)(l − 2n)+

⌈
R+ 1

2

⌉
(k− 2n+1).

Therefore, in what follows we assume that, forall n, all f (n)-sets are of the same
type. For simplicity we assume that they are of typered. The case where these sets are of
typebluecan be settled very similarly. Writek in base 2, that is,k = 2n1+2n2+· · ·+2na ,
n1 < n2 < · · · < na. Let V0 = V . By the assumption, everyf (n1)- and f (n2)-set ofV0

are of type red. LetS1 be anf (n1)-set and letV1 = V0\S1. If every f (n2)- and f (n3)-set
of V1 is of type red, then letS2 be such anf (n2)-set and letV2 = V1\S2. In general, if
Vi has already been defined by this procedure and everyf (ni+1)- and f (ni+2)-set ofVi

is of type red, then letSi+1 be any f (ni+1)-set and letVi+1 = Vi \Si+1. Otherwise, if not
all f (ni+1)-sets or not allf (ni+2)-sets ofVi are of type red, ori = a− 1, then stop and
let j = i .

If j = a− 1, thenVa−1 still has anf (na)-set,Sa of type red, andS1 ∪ S2 ∪ · · · ∪ Sa

contains a red subgraph from the classkG and we are done. Supposej < a − 1. We
distinguish two cases.

Case a: There is an f(nj+1)-set of Vj of type blue. Since all f (nj+1)-sets ofVj−1 were
of type red, at least one of thef (nj+1)-sets ofVj is of type red. Therefore, we can find
an( f (nj+1)+1)-set,Sj+1, which contains anf (nj+1)-set of both types.|S1∪S2∪ · · ·∪
Sj+1| ≤ (2n1+2n2+· · ·+2nj+1)(R+1) andS1∪S2∪· · ·∪Sj+1 contains a red subgraph
from the class(2n1 + 2n2 + · · · + 2nj+1)G and a blue subgraph from the class 2nj+1G.
If either k ≤ 2n1 + 2n2 + · · · + 2nj+1 or l ≤ 2nj+1, then we are done. Otherwise, easy
calculation shows that we can apply the induction hypothesis for the graph induced by
the remaining vertices withk′ = k− (2n1 + 2n2 + · · · + 2nj+1) andl ′ = l − 2nj+1.

Case b: Every f(nj+1)-set of Vi is of type red, but there is an f(nj+2)-set of Vj of
type blue. In this case, there exists annj+1 ≤ n < nj+2 such that everyf (n)-set of
Vi is of type red, but there is anf (n + 1)-set ofVj of type blue. Then letSj+1 be an
f (n+ 1)-set ofVj of type blue. Clearly, it contains anf (n)-set ofVj , which is of type
red.|S1∪S2∪· · ·∪Sj+1| ≤ (2n1+2n2+· · ·+2nj +2n+1)(R+1) andS1∪S2∪· · ·∪Sj+1

contains a red subgraph from the class(2n1+2n2+· · ·+2nj +2n)G and a blue subgraph
from the class 2n+1G. Again, easy calculation shows that we can proceed as in case a.

Return to the proof of Theorem 1.5. Part (ii) is an immediate corollary of Lemma 5.2.
In part (iii), if all Rc(G)-sets have the same type then, using the convexity of the geometric
graph, we can takek disjoint Rc(G)-sets and we get a monochromatic geometric graph
from kG.

If there are twoR(G)-sets of different types, we can proceed by induction as in part
(ii).
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6. Triangles—Proof of Theorem 1.6

The proof is quite technical, therefore we sketch here only the main ideas.
It is sufficient to show thatR1(k) > 7k − 7 for everyk. Indeed, assume that this is

true, butR1(k0) ≤ 7k0 − 2 for some integerk0. Then, applying Theorem 1.5(i) with
G = k0T , we would obtain

R1(8k0) = R(8k0T ) ≤ (R(k0T )+ 1)8− 1

= (R1(k0)+ 1)8− 1≤ (7k0− 1)8− 1= 7(8k0)− 9,

a contradiction.

Construction. Let k be a positive integer,n = 7k−7. Let 0,1, . . . ,7k−8 denote the
vertices of a regularn-gon, in clockwise order. If two vertices are separated bym− 1
others, then we say that thelengthof the edge connecting them ism (m ≤ bn/2c). A
vertex is colored red ifi ≡ 0, 1, 3, or 5 (mod 7), and blue otherwise.

We color the edgesi j (0 ≤ i 6= j ≤ n− 1) according to the following rules. Letλ
denote the length ofi j .

(a) If λ ≡ 1,4, or 6 (mod 7), let i j be blue.
(b) If λ ≡ 2 or 3(mod 7), let i j be red.
(c) If λ ≡ 5 (mod 7), let i j be colored with the color of its starting point in the

clockwise direction.
(d) If λ ≡ 0 (mod 7), let i j be colored with the color other than the color ofi +

1 (mod 7).

The casek = 3 is depicted in Fig. 2. To see that this graph does not containk pairwise
noncrossing blue triangles, we need the following lemma that can be proved by induction.
By anarc we mean a set of consecutive vertices.

Fig. 2.
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Lemma 6.1. Suppose that an arc I of m≤ n/2 vertices contains the vertices of h
pairwise noncrossing blue triangles. Then m≥ 7h− 1. Moreover, if m = 7h− 1, then
the starting point of I is blue.

Consider a maximal set of pairwise noncrossing blue triangles. Suppose first that the
points can be partitioned into three arcs,I1, I2, I3, with mi = |Ii | ≤ n/2 such that the
vertices of each of these triangles belong to the same arc. Letki denote the number of
triangles whose vertices belong toIi . By Lemma 6.1, we have

7n− 7= m1+m2+m3 ≥ (7k1− 1)+ (7k2− 1)+ (7k3− 1) > 7(k1+ k2+ k3)− 7,

and we can conclude thatk1+ k2+ k3 < n.
Otherwise, there is a blue triangle so that the convex hull of its vertex set contains

the center of our regularn-gon. Its vertices,p,q, r , partition the remaining set of points
into three arcs of lengthsm1,m2,m3 containingk1, k2, k3 triangles, respectively. From
Lemma 6.1 we obtain

7n−7= m1+m2+m3+3≥ (7k1−1)+ (7k2−1)+ (7k3−1)+3= 7(k1+k2+k3),

implying n ≥ k = k1 + k2 + k3 + 1. Suppose thatn = k. Then we have equality in the
previous inequalities, therefore the length of each side of trianglepqr is divisible by 7.
On the other hand, by Lemma 6.1, all of the pointsp+ 1,q+ 1, r + 1 are blue, sopqr
is a monochromatic red triangle, a contradiction.

The existence ofn noncrossing red triangles can be excluded by a similar argument.
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[ELSS] P. Erdős, L. Lovász, A. Simmons, and E.G. Straus, Dissection graphs of planar point sets, in:A Survey
of Combinatorial Theory(G. Srivastava, ed.), North–Holland, Amsterdam, 1973, pp. 139–149.

[GMPP] P. Gritzmann, B. Mohar, J. Pach, and R. Pollack, Embedding a planar triangulation with vertices at
specified points (solution to problem E3341),American Mathematical Monthly98 (1991), 165–166.

[GRS] R.L. Graham, B.L. Rothschild, and J.H. Spencer,Ramsey Theory, 2nd edn., Wiley, New York, 1990.
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