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Abstract. This paper considers the following problem, which we call the largest common
point set problem (LCP): given two point sésaandQ in the Euclidean plane, find a subset

of P with the maximum cardinality that is congruent to some subs€.dlMe introduce a
combinatorial-geometric quantity( P, Q), which we call the inner product of the distance-
multiplicity vectors of P andQ, show its relevance to the complexity of various algorithms
for LCP, and give a nontrivial upper bound ®0P, Q). We generalize this notion to higher
dimensions, give some upper bounds on the quantity, and apply them to algorithms for
LCP in higher dimensions. Along the way, we prove a new upper bound on the number of
congruent triangles in a point set in four-dimensional space.

1. Introduction
Matching of point sets in the plane or in space is an important problem that arises, in

various forms, in computer vision [17] and computational biology [2], [30], [14]. In the
simplest form of the problem, we are asked whether two finite sets of geiatslQ are
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congruent, that is, whether there is a transformafi@monsisting of translation, rotation,
and possibly reflection such that{P) = Q [5], [27], [4], [3]. A generalization of this
guestion is to ask wheth€} is congruent to some subset®fcongruent copy detection

or CCD for short) [8], [15], [26]. We consider in this paper a yet further generalization:
we ask for a seR of the maximum cardinality that is simultaneously congruent to some
subset ofP and to some subset @. We call suchR the largest common point set
betweenP and Q, and name this problem tHargest common point set problemr

LCP. A version of LCP in which congruence is replaced by similarity (i.e., in which we
allow scaling as well) was previously considered by Irani and Raghavan [18]. We set
n = |P|, m=|QJ, and assume without loss of generality that m.

To solve the LCP, we consider two standard schemes for point matching problems,
namely,voting and alignment We consider both deterministic and randomized algo-
rithms based on these schemes. Since the randomization techniques we use are also
rather standard, our focus is on combinatorial-geometric analyses of the performance
of those algorithms. In particular, we study a quantity that we calirther product of
distance-multiplicity vectorsf two point sets. This quantity is naturally related to the
running time of the algorithms we consider for the LCP. We derive a new upper bound
on this quantity and hence new upper bounds for the LCP.

Given a sefP of n points in the plane and a positive réalve define thenultiplicity
of distancd in P, denoted byHp[l], to be the number of ordered pairg, g) of P such
that the distance betwegrandqis|. Thedistance-multiplicity vectoof P, denoted by
M (P), is the vectoKHp[l1], ..., Hp[l,]) wherely, ..., 1, is the list of distinct distances
with positive multiplicities, sorted in the nonincreasing order of their multiplicitieB.in
Erdds [11] asked for theoretical boundswe= v(P), the number of distinct distances in
P, andHp[l4], the largest multiplicity of a distance iR; currently, the best-known upper
bound onHp[l,] is O(n*?3) and the best-known lower bound onP) is Q (n*/®) [28],

[29].

Given two point setd and Q, we definer(P, Q) = >, Hp[I]Hg[l], where the
summation is taken over all distances occurrin@iar in Q. We callr (P, Q) the “inner
product” of the distance-multiplicity vectors! (P) and M (Q), a natural term if we
regardM (P) as a finite representation of a vector(ii*)R. Sincer(P, Q) represents
the number of matches between the distanceB #nd those inQ, it is not difficult
to imagine that this quantity may play an essential role in the complexity analysis of
algorithms based on distance comparisons—the more distance matches we have, the
more potential congruences we have to consider. We will see that this is indeed the case
for both voting- and alignment-based algorithms.

LetA(n, M) = MaXpj=n o=m A (P, Q). Atrivial upper bound on.(n, m) is O(n’m?),
while a result of Erds [11] implies thak(n, m) > Q (nn?,/logm). The above known
bound ofO(n*?) on the maximum multiplicity of a distance immediately implies that
A(n, m) = O(n*3m?). Our result is an upper bound 6f(n*43m*77), which is stronger
for all values ofn < m?3. This bound is proved by extending the technique akaty,
who has recently developed and simplified proofs of@ta*?) bound on the maximum
multiplicity and the$2 (n*®) bound on the number of distinct distances. We remark that
further improving our upper bound, especially the special cagg(af?) on A(n, n),
is arguably difficult, because it would mean improving the best-known lower bound
Q(n*5) onv(P), a long standing open problem. To see this, first notexhat P) >
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v(P)(n(n—1)/v(P))? ~ n*/v(P) for any setP of n points. This is because, givenP),

A(P, P) is minimized when the number of occurrences are equally distributed among
the distinct distances. Therefore ifn, n) = O(n®2~¢) for some positive constat
thenn*/v(P) = O(n%2-¢) or v(P) = Q(n°&+¢) for any setP of n points.

Similarly to the importance of the distance multiplicities in the plane, the multiplicity
of distances and triangles plays an important role in the analysis of LCP algorithms in
three-dimensional space. Here, the multiplicity of a triangeC in a point setP is de-
fined as the number of ordered triplgs g, r) of P such thafpqris congruenttdABC. A
set of three colinear points is considered as a degenerate triangle. Triangle-multiplicity
vectors and their inner products are defined analogously to distance-multiplicity vec-
tors. Given point set and Q in three-dimensional space, 1&t>Y (P, Q) (resp.

132 (P, Q)) denote the inner product of the distance-multiplicity (resp. triangle mul-
tiplicity) vectors of P and Q. Let A@V(n, m) and 232 (n, m) be defined as before,
taking the maximum oveP and Q with |P| = n and|Q| = m. Our upper bounds
are A®Y(n,m) = n¥?m?(log* N)°?P and A2 (n, m) = min{n*8m?3, n1-8875m28
nl.95m2A68}(|og* n)oM 1

From the known bound on the multiplicity of a distance in three dimensions [9], we can
showthatthe number of trianglesfrcongruent to a given triangle®(n'(log* n)°®).
Hence, the first bound 2 (n, m) is trivially implied; the second bound comes from
the incidence bound of points and circles (with multiplicities) in the space.

These notions naturally carry over to higher dimensions: for a point setlimen-
sional space, we consider the multiplicity of mdimensional simplex in the point set,
where 1< i < d — 1, and define. @) (P, Q) to be the inner product of the multiplicity
vectors ofP andQ, as before.

We only have a naive (though not entirely trivial) bound®fn?—*m®) on A@.d-D
for d > 5. Ford = 4, we have a slightly stronger bound®{n?8’m*) onA*¥_ This is
proved by showing that, for any sBtof n points in four-dimensional space, the number
of triangles inP congruent to a given triangle is at ma3tn?83).

From a practical point of view, the relevance of the running-time upper bounds of
the LCP algorithms obtained from our combinatorial-geometric analyses might be ques-
tioned, because they depend heavily on the exactness of the input and computation.
Because of the inevitable errors in the input and computation, several authors formulate
the point matching problem as that of approximate matching [4], [8], [15]. For example,
the CCD is formulated as asking for a transformatiorthat minimizes the directed
Hausdorff distance fronT (Q) to P, i.e., maxecq Minyep dist(T (q), p) [8]. Although
this is a mathematically clean formulation and has been adopted by many authors, the
time complexity of solving the CCD in this model is rather high (the best-known upper
bound for the two-dimensional cased$n?m? log? n) [8]). Goodrich et al. [15] propose
giving up exact minimization and to look for a transformation that achieves a Hausdorff
distance within some constant number of times the minimum possible, obtaining an
algorithm with a reduced running time 6f(nmlog? n). It is not clear, however, if this
approach can be extended to the general LCP to produce algorithms with a practical
running time. In fact, itis not even clear how we should formulate the LCP in this model,

2"
1log* nis the height of the lowest tower of the powers satisfying tRat 2>n.
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Table 1. Time complexities for LCP problems.

Dimension
2 3 4 >5

LCP nL43MLT7 4 2 n189m28 | 3 n287md 4 nd pd-Imd 4 nd
LSP n2m?(trivial) n’/3mé/3 4 nd nd3m?* + n* nd=tmd 4 pd
LCP

(randomized) LCP/K LCP/K?2 NA NA
e-Approximate LCP/K?2 LCP/K3 NA NA
CCD min{n1'43m°'77, n4/3m} n1.89m0.8 + min{n2.5’ n3m—2} n2.87m + n3.83 nd—lm + nd
SCD n?m [26] n’/3m?/3 4 ndm—2 ndm+ n* nd=!m4 nd

since we have two quantities to optimize (the subset size and the Hausdorff distance
between the subsets).

A more heuristic approach for approximate matching is to take an algorithm for the
exact matching model and use its approximate version, where approximate equality
is used instead of exact equality to test matches. This is the approach taken by Irani
and Raghavan [18], and probably the one preferred in practice. The generalized Hough
transformation method [6], [19] commonly used in computer vision may be interpreted
as following such an approach. Our position is that it is meaningful to analyze idealized
algorithms as long as their approximate versions are used in practice. The hope that such
an analysis will tell us something about the performance of the approximate versions is
only heuristic, as much as the hope that such approximate versions will produce answers
of any well-defined correctness.

Table 1 summarizes the algorithmic results of this paper, omitting logarithmic factors
and usingK to denote the size of the largest common point set. Some minor terms are
abbreviated from the complexity of the three-dimensional LCP. We have included some
results on the largest similar point set problem (LSP) and the similar copy detection
problem (SCD), where similarity rather than congruence is the condition for matches,
which can be obtained in a similar approach. Note that our SCD results improve the
O(n%m) time bound of Rezende and Lee [26] in three or more dimensions (and when
specialized to CCD, in two dimensions as well).

The rest of this paper is organized as follows. In Section 2 we review the algorithms
based on voting and alignment and see how the inner-product of multiplicity vectors
appears in their analysis. Combinatorial-geometric analyses of the inner products are
given in subsequent sections.

2. Algorithms

The goal of this section is to provide a motivation of our combinatorial-geometric analysis
ofthe inner product of the multiplicity vectors by showing how itis related to the analysis
of several algorithms for the LCP. We consider algorithms based on a voting scheme and
algorithms based on an alignment scheme. In the description of the following algorithms,
we consider congruence transformations that consist only of translations and rotations,
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since reflections can be taken care of by running the algorithm on&&dndQ and once

for P and the mirror image of. We refer to such congruence transformations simply as
transformations. We usié consistently to denote the size of the largest common point
set betweerP andQ.

2.1. \Voting Scheme

In this and the next subsection we assume that the poinPsatsl Q are in the plane.
Let dist(x, y) be the distance between pointandy. Consider pairg, p’ andq, ' of
points of P and Q, respectively. Idist(p, p') = dist(q, (), these four points determine
a unique transformatiom such thafl (p) = qandT (p’) = (. This transformation is
denoted byl'[p, p’; 9, d].

For each paitp, g) of pointsp € P andg € Q, and each transformatidn we define
mult, 4(T) to be the number of pairse P andy € Q satisfyingthail [p, x; g, y] = T.

If IT(P)N Q| =Kk, itis easy to see thamult, (T) = k — 1 foranyg e T(P) N Q and
p=T"aq

Hence, may q(maxr mult, o(T)) = K — 1 and the transformation achieving this
maximum is the transformation that gives the largest common point set.

For each paip € P andg € Q, maxr mult, 4(T) can be computed by considering
all matching pairs of edga®x, qy), x € P, y € Q, and letting each pair cast a vote to
the transformatior [ p, x; g, y]. We call this process thiecal votingfor pair (p, g).

A similar voting idea is used in the generalized Hough transformation [6], where a vote
is cast to a bucket in the transformation space rather than to an individual transformation
as in our case. In other words, our scheme may be viewed as an extreme version of the
generalized Hough transformation where the bucket size goes to zero.

In the deterministic version of the algorithm, we need to execute the local voting
process for each paip, g), with p € P andq € Q, and take the best result. The total
number of votes cast in the algorithm executioh(®, Q), because each matching pair
(pp, qq) of edges contributes exactly one vote. ThHus, m) bounds the essential term
in the running time.

Theorem 2.1. In an efficient implementatigthe deterministic voting algorithm com-
putes the two-dimensional LCP in(Q.(n, m) + n?) logn) time and Qn) space

Proof. Foreachp € P,wefirstsortthe s€i(p, x)|x € P} of pairsinterms oflist(p, x)
and store it in a binary search data structig P). This requiresO(nlogn) time for
eachp € P. In the local voting for a fixed pai¢p, ), we search fodist(q, y), for
eachy € Q, in the data structur®,(P) in O(logn) time to obtain the matchesx of
the edgayy. This requiresO(mlogn) time for each ohm local voting processes. The
rest of the running time is at mo&i(log n) per vote. Thus, the overall running time is
O((A(n, m) + nn? + n?) logn), but we haver(n, m) = Q(nn¥), as noted earlier. See
Appendix A for how to reduce the space complexityQa). O

Observe that, in the above deterministic voting algorithm, the optimal transformation
T receives the maximum vote ¢ — 1 in the voting process for eadtp,, T(p;)),
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i =1,..., K, where{p,} is the largest common point set. This is a redundancy that is
difficult to avoid deterministically. However, we can reduce the redundancy at the cost
of a small failure probability by using a standard random sampling procedure: sample
a random subseR of P and do local voting only for pairs iR x Q. Here, once we

fix a pair p € Randqg € Q, the local voting for(p, ) is done exactly as before,
scanning the entire seBsandQ (not justR). This speeds up the algorithm by a factor of
|P|/|R|: the term$? log n andnn? log n of the deterministic time becomB|n lognand

|RIm? log n, respectively, and the expected total number of votes ciRtris*A(P, Q).

The algorithm makes an error only whéhis disjoint from the largest common point
set. This occurs only if all thER| random draws are picked outside the largest common
point set. Thus, the probability {4 — K/n)/R' = {(1 — K/n)"VK}IRIK/n ‘which is is at
moste!RIK/" since(1 — K/n)"/K < 1/e, wheree is the base of the natural logarithm.
We set a numberand apply the algorithm tdR| of size Zcfors = 1, 2, ... until we get

an LCP which is larger thaen/|R|. When|R| becomes larger thaan/K , the algorithm
outputs the correct LCP of the sike> cn/|R| with probabilitye~¢, and terminates. The
total computation time i©(c(x(n, m) + n?)K ~Llogn). Hence, we have the following
theorem:

Theorem 2.2. LCP canbe solvedin @(x(n, m)+n?)K ~1logn) time with probability
l1-e°

If we can be satisfied with an approximately optimal solution, which has a size
of at least(1 — ¢)K, we can further reduce the running time by adopting a different
sampling strategy. We sampiRecC P with on points andQ ¢ Q with sm points, where
apf = clogn/K for some sufficiently large constamitand compute the largest common
set betweerP and Q.

To see why this sampling approach works, Tebe any transformation. For each
p € P such thatT(p) € Q, the probability that bothp and T (p) are sampled is
aB = clogn/K. Therefore, ifT gives a common point set of sixe betweenP andQ,
it gives a common point set of expected sidegn betweenP and Q and, with high
probability, of size at leastlL — £ /2)clogn. From Chernoff’'s bound [23], the probability
is at least - exp(—clogne?/8) > 1 — n—c*/8,

On the other hand, a transformatidris calledbadif it satisfies both T (P) N Q| <
(1-¢)K (i.e.,itisnotanear-optimal solution for LCP) aid( P)NQ| > (1—-¢/2)clogn.
Again from Chernoff's bound, the probability that a given transformation is bad is at
mostn—¢°/8, Since there are at mastn, m) < n?m? possible transformations mapping
a pair of points ofP to a pair of points ofQ, the probability that there is any bad
transformation is at most2m2n—c=*/8,

Thus, the solution of LCP foP andQ gives, with probability - (n?m? 4 1)n—¢"/8,

a near-optimal transformation f& and Q as desired. If we take larger than 462,

the above probability is + o(n~1). For the running time analysis, observe that the
expected value of(P, Q) is «2821(P, Q), because the multiplicity of a fixed distance
in P (resp.Q) is reduced by a factor @f? (resp.g2) and becaus® andQ are sampled
independently. (Note that this is a better bound tham, gm).)

We choose the paifw, 8), SO as to reduce the preprocessing time of the determin-
istic algorithm applied toP and Q as much as possible: iflogn/K, then we set
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(o, B) = (clogn/K, 1) and otherwise sdir, 8) = (/cmlogn/nK, /cnlogn/mK)

(so thatan = gm = ,/cnmlogn/K). In the former case, the preprocessing time is
O((@n)?logn) = O(n?log®n/K?). In the latter case, it isO((en)?logn) =
O(nmlog?n/K) = O(nmélog?n/K?). Sincei(n,m) = Q(nnm?) as noted earlier,

this preprocessing time in the latter case is subsumed by the time for the main part.
Therefore, we have the following:

Theorem 2.3. For any fixed constart > 0, we can fingwith probabilityl — n7%, a
common point set between P and Q of size atlgast)K in an expected QA (n, m)+
n?)K —2log® n) time

2.2. Alignment Scheme

In thealignmentscheme, we consider each pair of edges of equal lemgtfrom P and
qq from Q, align pp with gq, and count the number of points Bfthat now coincide
with a point of Q. In other words, we count the size of the intersectiofP) N Q,
whereT = T[p, p’; g, d]. In the deterministic version, we need to considéP, Q)
alignments and the counting for each alignment taRém log n) time. Alignments can
be enumerated in amanner similar to the voting-based algorithm. Thus, we have arunning
time bound ofO((x(n, m)ym + n?) logn). This is worse than that of the voting-based
algorithm. However, when we apply random sampling (for exact optimization), the rate
of reduction in the running time is larger in this case. Sample a suRsH#tP with
sizecn/K, with sufficiently largec so thatR contains at least two points of the largest
common point set with high probability. Then we need only consider each gpga
R for alignment. This is in contrast to the voting case, where we need to consider each
edgepp with p € Randp’ e P for voting. Thus, the first term of the running time is
reduced by a factor af?/K? and, wherK is close tom, is comparable with the voting
scheme. Irani and Raghavan [18] apply random sampling to an alignment scheme for
the LSP; this is reasonable, becalsés linear inm in the applications they intend.

For the CCD, where our goal is to determine whetiiee= m, the alignment scheme
has the advantage of giving a fast Las Veegas algorithm (i.e., an algorithm that does not
risk an error), in contrast to the voting scheme, which gives a Monte Carlo randomized
algorithm (i.e., an algorithm that has some probability of making an error). The idea is to
sample fromQ rather than fronP. The reason we sample frofhfor the general LCP is
because we want to reduce tirdog n term in the deterministic time complexity, which
accounts for the preprocessing of distancePR ifror the CCD, this preprocessing can
be avoided, and sampling frof@ turns out to be advantageous.

Theorem 2.4. The CCD can be solved in @"/3mlogn + n*3log®? n) deterministic
time and in @min{x(n, mym~tlogn, n*3mlogn} + n*3log®®n) Las Vegas expected
time

Proof. We randomly sample a pady, g of points fromQ. Using the the methods of
Agarwal et al. [1], we find all occurrences of the distandist(g,q) in P in
0(n*210g®¥3 n + klogn) time, wherek is the number of occurrences of the distance.
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Even for the worst paig, ¢, we havek = O(n*?) from the bound on the repeated dis-
tances; moreover, the expected valuk isfA (P, Q)/m?. For each such occurrenpey,
we alignqq with pp and test whether the entif@ is matched intd?, usingO(mlogn)
time. The total running time i© (kmlog n+n*23log®* n), from which the claim follows
when the bounds ok are plugged in. O

2.3. Higher Dimensions

Both the voting and alignment schemes can be easily generalized to higher dimensions.
We discuss only the voting scheme here. The generalization of the alignment scheme
(and especially its specialization to the CCD) can be done similarly. We start with the
voting scheme in three dimensions.

Let the point set$ and Q be in three-dimensional space. Local voting is now done
fixing a pair of edges of equal lengihp’ from P andqq from Q. Each pair of points
x € P andy € Q such that the trianglepp'x andqqy are congruent casts a vote to
the transformation that matches the triangles. When these triangles are degenerate, that
is, whenx lies on the linepp andy on the lineqq, and hence does not determine a
transformation, the vote becomes “public,” that is, it conceptually adds a count to every
candidate in this particular local voting process. Public votes are counted separately and
added to the maximum vote count in the end of the local voting. We do local voting for
every matching paitpp, qq) of edges and take the transformation with the maximum
vote count. It is clear that the maximum vote courKis- 2.

The number of local voting processes to be performed is boundedbyn, m) and
the number of total votes cast b{?? (n, m). To enumerate matching pairs of edges for
which to perform local voting, we use a sorted list of distancePR ias we did in the
planar case, so that the time consumed for finding all matching pairs be@¢@s+
23D (n, m)) logn). To enumerate matching triangles that cast votes, we similarly prepare
a sorted list of triangles i®(n®logn) preprocessing time, so that the time consumed
for finding all matching triangles becom&(1 &Y (n, mymlogn + A2 (n, m)). Thus,
we have:

Theorem 2.5. The LCP in three-dimensional space can be solved in time
O((AB2(n, m) + AGD(n, mym + n3) logn).

When we use our current bounds &2 (n, m) andA®? (n, m), which are roughly
O (n*¥¥m?28) andO(n*°m?), respectively, it turns out that the second term is subsumed
by the first. Random sampling approaches also work for three-dimensional space and give
a speed-up oK ? for exact optimization and roughl 2 for approximate optimization.
We omit the routine details.

Corollary 2.1. The CCD in three-dimensional space can be solved in time
O((AC2(n, mm~2 4+ AGY(n, mym~1) logn + min(n?®, n3m~2logn)).

Proof. WeseK = mtoobtainO((3? (n, mym~—2413Y(n, mym~—14+n3m~2) logn).
If mis smaller tham®/4, we select a triangla and its edge from Q. We find all possible
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(atmostO(n'®)) locations okin P in O(n?) time. Then we can find all possible locations
of A in P in O(n?®) time to improve thex®m~2logn term. O

Theorem 2.5 can be generalized to higher dimensions.

Theorem 2.6. For any fixed d> 3,the LCP in the d-dimensional space can be solved
in O((A44=D(n, m) 4+ 1@9-2(n, mym + n%) logn) time.

Analysis of random sampling schemesdor 4 appears difficult if our goal is to achieve
a speed-up oK 9-1, due to the possible degeneracy of the largest common point set.

3. BoundingA(n, m)

We now turn to the combinatorial-geometric analysis of the inner product of multiplicity
vectors. We start with the planar case.

Theorem 3.1. A(n, m) = O(n**3mt77).

The following simple application of the Szemdi—Trotter theorem [29] turns out to
be useful.

Lemma 3.1. Let P be a set of n points and I¢t be a set of lines in the plane or
higher-dimensional space such that each lin€icontains at least y points of,here
y > 2. Then the number of incidences between P Arigl O(n 4+ n?y~2).

Proof. We may assume th& and £ are configured in a plane: otherwise we may
take an appropriate projection, such that at most one incidence in the space is mapped
to each incidence in the plane, and bound the number of incidences in the plane. Let
I denote the number of incidences betwdeand £. The Szerefdi—Trotter theorem

[29] (see also [20]) states that< c(n + |£| + n?3|£]?/?), wherec is some constant.
Since each line of contains at least two points &, |£| < n? and thereford < 3cn?.

Thus, fory < 2c, we havel < 12c3n2y—2 so the bound ofd(n + n2y—2) certainly

holds. We assumeg > 2c in the following. From the assumption that each ling£ffis
incident to at leasy points of P, we havey|£| < | < c(n+ |£| + n?3|£|%3). Since

y > 2¢, itfollows thaty|£|/2 < c(n+n?/3|£|%3) which implies that eithelll| < 4cn/y

or |£| < 4cn?3|L£|?/3/y. In the first case, using the Szemli-Trotter theorem again,

we havel = O(n + n*¥3y=%3)_ In the latter case, we havé€| < (4c)®n?y—2 and
hencel = O(n + n?y2). Combining these cases we have= O(n + n*3y~2/3 4
n?y—2). The second term is subsumed by the first wizen n*/? and by the third when

y < n%2, O

We also need some lemmas due tel&y [28], [20] (Lemmas 3.2 and 3.3 below),
which he used in proving th@ (n*®) bound on the number of distinct distances in an
arbitrary set oh points.
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Thecrossing numbeof a drawing of a grapks on a plane is the number of intersec-
tions of drawn edges (see [24] and [25]). ketG) denote the minimum of the crossing
numbers over all drawings @3.

Lemma 3.2. Inthe graph G withn vertices andt edgdeach edge has at most y edges
parallel to it, then there are constants and ¢ satisfying c(G) = cit3/yn? — coy?n.

Recall the notation in the Introduction(P) is the number of distinct distances in
P, D(P) ={l1,...,l,(p} is the set of such distances listed in the nonincreasing order
of multiplicity, and Hp[l] is the multiplicity of the distancéin P. Let 1 < k < v(P).

We consider the subsély, ..., Ik} of D(P), consisting of the firsk entries, and let
f(k) = Zik:l Hp[li]. Seeking an upper bound din(k), we createk concentric circles
of radiil4, ..., ¢ around each point oP. Hence, we havek circles in total: letC (k)
denote the set of these circles.

The circles inC(k) have 2f (k) incidences with the point sd®. We delete circles
containing at most two points d?, and letC’(k) denote the set of remaining circles.
Each circle o’ (k) contains at least three points®f and these points cut the circle into
at least three arcs. If we I1& denote the set of these arcs coming from all the circles of
C’'(k), then| A is equal to the number of incidences between the circl€s(&f and the
points of P, and hence is at leasf 2k) — 2kn. Define a multigrapl@ (k) whose vertices
are points ofP, and whose edges are arcsfofSince each pair of at mokh circles of
C’(k) intersect at most twice, the crossing numbeiG (k)) of G(k) is at mosk?n?.

The following lemma is due (in a slightly different form) to&&ly. The proof is a
straightforward adaptation of his proof [20], [28].

Lemma 3.3. For each ythe number of edges in(@®) having at least y edges parallel
to them is at most @?k/y? 4 knlogn).

Proof. Let M; be the set of pairu, v} of vertices ofG (k) such that there are at least 2
and fewer than'2! parallel edges connectingandvin G(k), and letE; be the set of all
edges each connecting a paiti. Our goal is to find an upper bound f@jyfg <n lEil.
Let L, , denote the perpendicular bisector of the segnusrand letl; = {Ly, |
{u, v} € M;}. Each edge connectingandv determines one incidence of the lihg ,
with P, since the center of a circle througtandv must lie onLyy y. On the other hand,
we note that one such point-line inciderige L), wherep € P andL € £;, corresponds
to at most R edges ofE; because there are orthydifferent radii. Therefore, the size of
E; is at most RN;, whereN; is the number of incidences @f with P. By Lemma 3.1,
we haveN;, = O(n + n?2-2 + n) and hencéE; | = O(nk + n?k2-2), from which the
lemma follows when we sum over O

The following basic fact is useful.

Lemma 3.4. LetX = Xy, ..., Xy be a nonincreasing sequence of positive real num-
bers For sequence¥ = vys, ..., yy andZ = zy, ..., zy of real numbersif there exists
afixed positive constant ¢ satisfyidg_, z > ¢ Y, yi fork =1,2,..., N, the inner

product(X, Z) of X andZ is at least ¢X, Y).
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Proposition 3.1. (k) = O(min{n*%7k%7 n?}).

Proof. O(n?) is a trivial bound. TheD(n'%k®") bound needs to be proved for<
n*®, where we can assume thik) > knlogn.

We constructG(k), sety = ,/Cn2k/f (k) for some constart, and delete all edges
of multiplicity larger thany. From Lemma 3.3, at modt(k) edges are removed, if we
setC to be sufficiently large. Then we have a graphwith Q(f(k)) edges, whose
edge multiplicity is at mosy. From Lemma 3.2k’n? > cr(G) = Q(f(k)3/yn?) —
O(y?n). Hence k?n? = Q(f (k)3°/n3%k%%) (the O(y?n) term is negligible). It follows
that f (k)3® = O(k?®n®) and hencef (k) = O(n1Y7k57). O

We are now ready to prove Theorem 3.1. L&P) = {I4, ..., l,p)} (resp.D(Q) =
{I1. ..., 1}q}) denote the set of distinct distancesRPf(resp.Q) sorted in the nonin-
creasing order of their multiplicities. Note first that

min((P),v(Q))

MP,Q = Y HelllHolll= >~ HellHolll, 6

1eD(P)ND(Q) k=1

due to the monotonicity of the multiplicity sequences. The monotonicity also implies
that Hp[lk] < f(k)/k and hence, from the above bound dik), that Hp[ly] =
oOY7k=2/7y for k < O(N*®). Hp[l] : k = 1,2,...,v(P) is a nonincreasing se-
quence.

Similarly, we haveHg[l;] = O(mM%’k=2/7) for k < O(m*®). We can replace
Holli] by m%7k=2/7 for k < m%® and 0 fork > m¥> in inequality (1) in order to
give an asymptotic upper bound fo¢(P, Q). Indeed,y"i_, m'%7k=2/7 > m1¥/7K5/7
¢y Holli] for t = 1,2,...,m*5 and some constamt and Y™ mi%/7k~2/7
m? > Y"!_, Hol[l{] for anyt > m*5; therefore, Lemma 3.4 works.

Hence,

vV v

m?/5
AP, Q) < Z Ok 4Tl mlo7) — O(nio7mB2/35),
k=1

Because > m, we can write the bound a3 (n*43m*77).

4. The Three-Dimensional Case

We now turn to three-dimensional space. In the followi@g( f (n)) is used as an ab-
breviation of(log* n)°® f (n), hiding polynomial factors of logn. It is known that the
number of occurrences of a given distance in a satggints in three-dimensional space
is O’(n%?) [9]. This trivially implies that,® (n, m) = O’(n¥?m?). In the following,
we derive an upper bound a*? (n, m) by using a result on the circle-point incidence
problem. We use a classical lemma in extremal graph theory:

Lemma 4.1(Bipartite Graph Lemma). LetH = (U, V, E) be abipartite graptwhere
E is the set of edges between vertex sets U anfii¥ contains no subgraph isomorphic
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to the complete bipartite graph £, the following inequality holds

U (LIEI{IUIJ) “s-1 <|\t/|).

In particular, if s and t are constant$E| = O(|U |*"Y1 V| + |U)).

Proof. This can be proved by counting the number of subgraphs isomorpliig to
contained inH. See Lemma 2.1, p. 309 of [7] for the details of the proof. The proof for
the special case whessandt are constants can also be found in [9] and [24]. O

Lemma 4.2. Given a set of N circles and n points in the d-dimensional space for
d > 3,there are QN + n + min{N%3n, Nn%2, N*>n%>5}) circle-point incidences

Proof. We apply the scheme of Clarkson et al. [9]. First, we consider the bipartite graph
H = (U, V, E), whereU corresponds to the set of circlés,corresponds to the set of
points, ancE is the edge set, where a verteXbfind a vertex o¥/ are connected with an
edge if the corresponding circle and point are incident. Since two circles intersect at no
more than two points (in any-dimensional space), the graph does not cBataiffrom

the Bipartite Graph Lemma applying to bdth and the graph obtained by exchanging
the roles ofJ andV in H, we have thatH containsO(N + n + min{N%3n, Nn%/?})
edges. We call this bound ti@anham-likebound, abusing the terminology of [9].

Next, we project the figure to a two-dimensional plane, so that no pairs of projected
points overlap. Since the projected image of a spatial circle is an ellipse, we haeod set
ellipses. We constructeuttingfrom these ellipses as follows: We takeample ellipses
and construct the arrangement of ellipses. We subdivide each cell of the arrangement
into “funnels” by vertical line segments each of which either is tangent to an ellipse or
passes a vertex of the arrangement; here, a funnel is a region bounded by at most two
ellipses and two vertical line segments. There@re?) the funnelsFy, . .., Fx.

Let n; be the number of projected points locatedrin except the vertices of the
arrangement. A point on the boundary between two funnels is counted for each of the
funnels.

A circle inthe space has anincidence with a point only if its projected image intersects
the funnel containing the projected image of the point.Nigbe the number of projected
ellipses of€ intersecting the interior of;. If we lift up these points and ellipses to the
points and circles in three-dimensional space to the original position, thef@(afe+
Ni2/3ni) incidences between these points and circles because of the Canham-like bound.

The number of incidences at the points projected to the vertices of the arrangement
is that betwee ellipses andD(r?) points, and henc®(N +r? 4+ Nr) = O(Nr) (by
definition,r < N)fromthe Canham-like bound. Therefo@(N r+Zik=1(ni Ni2/3+ Ni))
incidences are counted in total.

Clarkson etal.'s “sampling lemma” (Lemma 5.3in [9]) shows that there exists a cutting
satisfying thafy_"¥_, n;N7* = O(n(N/r)23) and Y} , Ni = O(rN). We remark that
the sampling lemma is stated for pseudolines and pseudocircles in [9]; however, it can
be applied to ellipses in a straightforward way.
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Thus, the total number of incidences@¥n(N/r)%3 +rN). We setr = n¥5N-/5
to obtain theO (N*°n%%) bound. O

Erdss and Purdy [13] gave a®(n®1/3) bound for the number of triangles with a
given volume in the space, and asked a question aldg{in], the number of pairwise
congruent triangles.

Proposition 4.1. The number of triangles in P congruent to a given trianglas
O’(n'®). The number of triangles in P similar t& is O(n??).

Proof. For the congruency, lex = ABZ, and leth be the distance frord to the line
AB. For each paimp, g of points of P with dist(p, ) = dist(A, B), the trajectory of
the vertexZ of a triangle congruent ta locating A and B at p andq, respectively,
forms a circle of radiu$. Thus, if N is the multiplicity of distancelist(A, B) in P,
the multiplicity of A is at most the number of incidences betweéércircles andn
points. SinceN = O’(n¥?) [9], it immediately follows from the above lemma that
HP[A] — o/((n3/2)4/5n3/5) — O/(nl.S)_

For the similarity, there ar®(n?) circles andO(n) points. Hence, the incidence is
O((n2)4/5n3/5) — o(n2.2). O

For each trianglez, let Hp[A] denote the multiplicity ofA in P (i.e., the num-
ber of ordered triples oP forming an occurrence af) and recall thai®? (P, Q) =
>, Hp[A]Hg[A]. Since Hp[A] = O’(n'8), it can immediately be shown that
AG2(, m) = O'(n*®m?®). If n = m, the bound become®’(n*?). We can obtain
another bound that is slightly bettemifis large.

Let 7/(P) = {Al. ..., Al } denote the set of distinct triangles Bf each of which
contains an edge of lengthoccurring inP, listed in the nonincreasing order of their
multiplicities. We boundFp(k; 1) = Zik:l Hp(A}) for eachl. Suppose thakt occurs
Lp () = n* times inP. Neglecting log n factors, we can assume that< 1.5 because
of the upper bound on the repeated distances in the space.

Lemma4.3. Fp(k:1) = OKn/5 + k#5n08+0.7) ‘Algg Fp(k: 1) = O(nt®),

Proof. The O(n'**) bound is almost trivial, since, for each locationl pthere are at
mostn possible locations of the opposite vertexdn

We show the other bound. We can asstmen, since otherwise th®(n'*+*) bound
is better. If we fix the location of the edge of lengtbf the triangleA!, the trajectory of
the opposite vertex of the possible location of the triangle is a circle. Since the number
of possible locations of the edge of lendtis n®, and we considek different triangles
each containing an edge of lendttwe have a family (k) of O(kn®) circles.Fp(k; I)
is at most the number of incidences between the circl€gkin andn points. However,
the family C(k) should be considered as a multiset: If the distdngaecurss times on
a line, it may happen that up to n§B) k} triangles counted ifrp (k; I) define the same
circle. Hence, we cannot use the incidence bound in a straightforward manner.
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Let C’(k) denote the set of circles obtained from the multiggd) disregarding mul-
tiplicities. For eachy > 0, we want to bound the number of circles@tk) that have
multiplicity at leasty in C(k). Suppose a circl€ € C’(k) has multiplicity at leasy in
C(k). Then the lineL ¢ perpendicular to the plane containi@gand going through the
center ofC contains at leasy occurrences of the distantdetween points o and
hence must contain at leagt+ 1 points of P. We apply Lemma 3.1 t® and the lines
L¢ for all C € C’(k) with multiplicity at leasty in C(k): the total number of incidences
betweenP and those lines i® (n + n?y~2). Each occurrence dfcontributes to at most
k circles inC(k). Hence, the number of circles @ti(k) whose multiplicities are at least
yin C(k) is O(kny* + kn?y=3).

Let C'(k, y) denote the subset @f (k), each of whose circles has a multiplicity
betweeny and 2 in C(k); let C(k, y) denote the corresponding subfamily ©fk).
Since the multiplicity is at mostk we havey < 2k. From the above analysis we
have|C'(k, y)| = O(kny ! + kn?y~3). On the other hand, the number of circles in
C(k) is O(kn¥) so we also have that’(k, y)| = O(kn*y~1). The termskny! and
kn?y~—3 balance whery = n%/?; the termskn*y~! andkn?y—3 wheny = n®=®/2, For
y < n@ /2 (case 1), we use the second boudkn*y~1). Forn?=/2 <y < n%/2
(case 2), which is a nonempty case onlwif> 1, we use the first bound which is
simplified to O(kn?y—2). Finally, fory > maxn%?2, n?-*/2} (case 3), we use the first
bound which is simplified t® (kny1). We analyze the number of incidences betwBen
andC(k, y) according to these cases. This is done by bounding the number of incidences
betweerP andC’ (k, y), using Lemma 4.2, and multiplying the result by. ¥ we denote
IC’(k, y)| by N, Lemma 4.2 gives the bound &f(N + n + N*°n%>%) on the number of
incidences betweeR andC’(k, y). The termN#/°n%° dominatesN as long as\N < n?,
which always holds in the following cases under our assumptiorkthkan, so we ignore
the termN in this bound.

Casel:y < n®®/2 and we have N= O(kn*y~1). Thus, the number of incidences
betweenP andC(k, y) is O(y(N#°n¥5 + n)) = O(k¥5yl/5n06+08« 4 ny),

Case2: n?9/2 < y < n%2 and we have N= O(kn?y—3). The number of incidences
betweenP andC(k, y) is O(y(N#°n¥® 4+ n)) = OKk¥°y~"/°>ntV/5 4 ny).

Case3:y > maxn/?, n®=®/2} and we have N= O(kny™'). The number of incidences
betweenP andC(k, y) is O(y(N*°n%> + n)) = OK*>yY/°n’/> + ny).

Our bound onFp(k; |) is obtained by summing up these bounds jor= 2°,
21,22 ..., 2k. The common terrmy sums toO(kn) since it forms a geometric series
with the maximum termn. The termk®5y?/5n06+08« jn case 1 also forms a geometric
series with the maximum terff/5(n@-2/2)1/5n082+06 — k4/5n0.8+0.7¢ gnd thus sums
up to O(k*/°n08+0.72) Similarly, the termk*°y~7/°n'Y/5 in case 2 takes its maximum
aty = n@ /2 and thus sums up t@®K*5(n@-/2)=7/5n11/5) — Q(k#5n08+0.7e)
Finally the termk®°y'/5n’/> in case 3 takes its maximum at= 2k and thus sums up
to O(kn’/%). Adding all these four terms, we obtain the bound in the first part of the
lemma. |

Corollary 4.1. Hp(A}) is O(n"/5 4 k=/5n08+0.7) ‘Alsg Hp(A}) = O(k~Intte).



Computing the Largest Common Point Sets 321
Theorem 4.1. G2 (P, Q) = O'(min{m3n’8, m?68n195 4 m28n18875))

Proof. For convenience sake, we onit() for the complexities and all equalities and
inequalities in this proof are given in an asymptotic sense ignoring factors of polynomials
of log* n. Them®n'® bound has already been shown. Hence it suffices to give the other
bound.

Let ZAeT.(P)me) Hp(A)Hg(A) be the inner product of triangle sequendp&)
and7(Q). This inner product is bounded I§(P, Q,1) = 3", Hp(Al)Ho(V!), where
Let {V!, ..., V,'q} is the set of distinct triangles & (Q), listed in the nonincreasing
order of their multiplicities.

We want to estimate

S(P.Q =) S(P.Q:H=Y > Hp(ADHo(V) ©)
| | i

to bound.@2 (P, Q).

Consider a lengtt such that 2 < Lp(l) < 251 and 2 < Lq() < 21 For
convenience sake, we denott 2 n* and 2 = m? Of course, bothr and g are at
most 15. Let G(s, t) andg(s, t) be the set and number of different lengthsatisfy-
ing the above condition, respectively. Natural(P, Q) = > s > gt S(P. Q. 1),
wheres andt run up to 15logm and 15 logn, respectively. We also denote the union
Ui<t<(1510gm) G(S, 1) by G(s, %), and letg(s, *) be its cardinality.

We examine expression (2). The terms whekg(Al) < n”/5in (2) contributes at
mostm®n”/® < m?8nl875 and hence can be ignored. Next, we consider the terms
whereHq(V)) < m’/5in the expression. Far < m’/%, we consider the triangles in
7/(Q) which occur inQ at most 2 but at leastz times. Letp(l; z) be the number of
different such triangles. From tH&n®8+07« pound in Lemma 4.3, contribution of
such triangles td ) ..., S(P. Q. 1) is bounded by s ,, Z0(I; 2)°8n°8+07 Since
> @l 2) < m?/z, thisis maximized whep(l; 2) = (m3/2)/g(s, *) foralll € G(s, ).
The maximum value ig(s, )%22°2m?*n%8+0.7 Sinceg(s, *) < N> * andz < m’/5,
the value ian?68n12t05% Hence the contribution t8(P, Q) is Zifllog” m?268n1.220.5s
which is m2.68n1.2+0.75 — m2.68nl495_

Therefore, from now on, we remove all indiceswhere eitherHq(V!) < m”/®
or Hp(A!) < n’/> from expression (2), and hence we can assume mam'k) <
k=1/5n08+07 and Hqo(Vy) < k Y5m%8+07% for any k. We want to estimate
(s, t)S(P, Q, 1) for the distancé = I(s,t) € G(s,t) maximizing S(P, Q, ). Com-
paring the two bounds in Corollary 4.&;*m*# < k=1/5m08+0.78 jf k ~ m025+0375%
Lety = min{n025+0375 ,0.25+0375)

If y = m025+0375

y
S(P, Q7 |) < Z k‘2/5m°‘8+0'7’3 nO.8—+—0.701
k=1
mi+h

+ Z k76/5n0.8+0.7a m1+f3 ]
k=y

Hence,S(P, Q, 1) < y08n08+0.7a08+0.75 _ 08+0.7xy0.95+0.925
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The same bound can be similarly obtainedyif= n®25t037% Since g(s, t)
min{n>*, m*#} = min{n?2-5, m?27Y, g(s,t) < N*@OMI=0C=A for any 0
X < 1. Thus, settingc = 0.075,g(s, t)S(P, Q, (s, t)) < n08+0.15+0625%130.95+1.85
n0-95+062% 28 — 0952062528 gnd equality (in an asymptotic sense) holds only if
n%2-% = m?2~!. This attains the maximum valué-8"9m?8 whens takes the maximum
value|[1.5logn].

More precisely, in?2-S > m?27,

=
=<

g(S, t)S(P, Q’ | (S, t)) < n0.9520.62$m2.8(n2273/m227t)70.025’

and otherwiseg(s, t)S(P, Q,I(s,t)) < n0952062%5m28(n22=S/m22-10975 Hence,
(s, 1)S(P, Q, (s, t)) behaves as a geometric sequence with respecinat for each
of above cases, and the peak is wisés | 1.5 logn| andn?/25 = m?/2! holds.

Hence, Y139 S T9™ S gy S(P. Q. 1) = n#875m?28. Combining the ob-
tained two upper bounds, we have the theorem. |

Corollary 4.2. 132(n, n) = O'(n*875),

Corollary 4.3. A set of n points of space defines at least'#’/(log* n)°@® distinct
triangles under congruency

Proof. This comes from the fact than3-1-31252n13125 — n4.6875, O

Theorem 4.2. The LSP can be solved in(@nin{n”/3m®3log? n, n22m3} +n3) logn)
time

Proof. We compute alD(n®) (resp.O(m?)) triangles inP (resp.Q), and classify them
under similarity inO(n®logn) time (resp.O(m?®logm) time). For each triangle, we
search similar triangles iR and Q by using the above classification, and give one vote

to the corresponding similar transformation for each pair of triangles, oReaind the

other in Q. Each vote can be done @(logn) time, and the transformation gathering

the largest number of votes gives the solution of LSP. The number of votes is bounded
by >, HZ™(A)HZ™(A), whereHZ™(A) is the number of similar triangles t in P.

It is O(n%>?mq) by Proposition 4.1.

Moreover, abusing the notations for the congruent caséplékt) be the upper bound
for the number of triangles if® similar to one of the elements of a s€tof givenk
triangles. We will show below thap (k) = O(min{n®, k¥3n’/3logn}). Without loss
of generality, we assume thep (k) — Fp(k — 1) > Fp(k+ 1) — Fp(k), since we can
consider th& triangles maximizing=p (k).

Thus,)", HE™(A)HZ™(A) is bounded by, (Fp (k) — Fp(k—1)) (Fo(k) — Fo(k—

1)). Here, we can assume thag (k) so thatFq(m) = m® andFq(k) — Fo(k—1) =0
for k > m because of Lemma 3.4. Thus,, (Fp(k) — Fp(k — 1))(Fo(k) — Fao(k —
1)) is asymptotically bounded by ;" ,(k~m’/2logm)(k=-*3n"3logn), which is
O(n"*mé3lognlogm). Hence, LSP can be solved@((min{n”/3m®?3log? n, n>2m3}+
n®) logn) time.
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Now, it suffices to prové=p (k) = O(k?3n’/2logn) for k < n. There are? possible
edges, and for each distance therekatacles, each corresponding to a triangle<inA
circle C can appear for migk, y(y + 1)/2} different triangles if the line perpendicular
to C through the center contairyspoints of P.

We consider the incidence between a multiseOgkn?) circles and a set oD (n)
points. The number of lines containing betweeamd 2/ points of P is maxny 2, n?y=3}.

If y> < k < n, the number of triangles created by edges on these lines is
O(y?(kny—3)%3n), whichisO(k?3n"/3).1f y? > k,andy < n°®3,itis O(k(kn?y?)%/3n),
which isO(k?3n"/3). If y? > k andy > n%5, for each lineL. containingy points, each
pointv of P defines at most one triangle similar to a given trianglehich has its longest
edge orlL and the opposite vertexatHence, the line defines at mostimilar triangles to
each ok given triangles. Thus, there akrtriangles associated with and there arey !

such lines. Hence, we have @ky 'n?) bound, which isO(k¥?n?) = o(k?3n’/3).
Since we have cut the interval of into logn subintervals, the total complexity is
O(k?3n"2logn). O

5. The Four-Dimensional Case
5.1. Number of Congruent Triangles

In this subsection we prove the following theorem:

Theorem 5.1. Inthe given set P of n points in four-dimensional spdlce multiplicity
of any given triangle is @®%2%) = O(n?83),

In the following, all geometric objects are in four-dimensional space unless otherwise
stated. We consider triangles congruent to a given triangte ABZ, whose longest
edgeAB has a length of 1, and whose heighX is h. We call AB thebase edgef A.

We need the following basic fact:

Proposition 5.1. The intersection of four mutually distinct three-dimensional unit
spheres is either a circle or a set of no more than two points

We call two circlesC; andC, adistance-circle paiif the distancedist(u, v) = 1 for
anyu € C; andv € C,. Note that for any circl€C; of radiusr < 1, there is a unique
circleC, such thatC; andC, form a distance-circle pair. To show the existence, choose a
coordinate system so th@{ = {(x, y,0,0) | X2+ y? =r?}and seC, = {(0,0, z, w) |
z2 + w? = 1 — r?}. For uniqueness, take an arbitrary four points frémand observe
thatC, must lie in the intersection of the four three-dimensional unit spheres centered at
these four points. Therefore, we denote the circle forming the distance pair with a circle
C by D(C). The existence of a distance-circle pair kills the hope of getting a nontrivial
asymptotic bound on the multiplicity of a distance in four dimensions, because one may
placen/2 points on each circle of a distance-circle pair tomg® occurrences of the
unit distance.
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Given a point seP of n points, we say that a circlé is heavyif it contains more
thann® points of P, wherea = 213 Let N denote the number of heavy circles.

Lemma5.1. N = O(n®5).

Proof. By Lemma 4.2 on the number of circle-point incidences, we hHavg =
O(N + n + N¥3n%%). Hence,N = O(n® ™), sincex < 0.5. O

We construct a bipartite grapgh = (U, V, E), so that each df) andV corresponds
to the point seP, and(u, v) € E if and only if dist(u, v) = 1. An edge(u, v) is called
specialif u (orv) is in a heavy circleC, v e D(C) (oru € D(C)), andD(C) has at least
four points of P. Let Eg be the set of special edges, aid= E — E.

Lemma5.2. |Ej| = O(n+o)/4,

Proof. First we show that the bipartite gragll, V, E;) has noK. 4 as a subgraph

(with the n* points onU’s side and the four points ox’s side). Suppose otherwise,
namely, thatU, V, E;) has a subgraph isomorphickg. 4. Then then® points ofU in

this subgraph must lie in the intersection of four unit three-dimensional spheres centered
at the four pointss, Vo, v3, v4 0f V in this subgraph. By Proposition 5.1, thegepoints

must lie on a circleC, making the circle heavy. Moreover, the four poimisvs, Vs, V4

must lie in the intersection of* spheres, and hence must lie DiC). This contradicts

the definition ofE;. Hence(U, V, E;) has ndK« 4 as a subgraph, and, from the Bipartite

Graph Lemma, we have
U <|51%|U|> < <|\£|).

Since|U| = |V| = n, we havelE;| = O(n7+®)/4), O

Corollary 5.1. The number of triangles congruent towhose base edge is in, £
O(n(11+a)/4)'

Proof. Each edge defines at mastriangles inP; Hence the corollary holds. O

We next consider triangles whose base edge is located at edge$Ve fix a distance-
circle pair(C, D(C)) in which C is heavy, and consider the embedding\o$o that its
base edge is mapped to an edge betwesnd D (C). We assume each edge is directed
from C to D(C), so that the copy of the vertekis in C, and the copy oB isin D(C).
Recall thatX is the point on the liné\ B such that the line segmeBAtX defines the height
h of A, and letX (e) denote the image of whenAB is mapped to a directed edgef
unit length. Then the locus of the opposite verigof A when we transformAB into
e forms a two-dimensional sphe®&? (e) with radiush, centered aiX (e). Moreover,
e is the normal vector of the three-dimensional space containing the two-dimensional
sphere. We consider the family of sphef&C, D(C)) = {S?(xy)|x € C, y € D(C)}.
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Lemma 5.3. Consider the family of two-dimensional spheres with radius h containing
a fixed circle C The centers of these spheres are located on a cirCléBreovey the
hyperplane containing each sphere has its normal vector that is tangent &b {Ge
center of the sphere

Proof. Let p be the center andthe radius ofC. Let L be the two-dimensional plane
determined byC and letL’ be the two-dimensional plane containipgand orthogonal

to L. Let Sbe any sphere belonging to the family in the lemma, and ket the center
of S. Thengis onL’ and at a distance’h? — r2 from p; that is to say, it is on a circle
C’ of radius+/h? — r2 centered ap and contained i.’. The three-dimensional space
containingSis spanned by the linpgandL; and hence is perpendicular to the tangent
of C" atg. O

Lemmab5.4. For any circle G, there are at most four spheres JA(C, D(C)) that
contain G,.

Proof. Let F(Cp) denote the set of spheres®Bt{C, D(C)) that contairCy and assume
that F(Cp) is nonempty. By the above lemma, there is some ci@&lsuch that each
sphere of (Cp) has its center o€’ and has its normal tangent@. Lete = xy, x € C,

y € D(C), be an edge such th&t? (e) € F(Cy). Then, from the observation preceding
the above lemma, the normal of the space contaiBifige) is e and the center & (e)

is X(e). Thereforeg must be tangent t&’ and hence contained in the two-dimensional
planeL containingC’. L cannot contairC, because if it does then it does not intersect
D(C) and hence does not contain any edge betwzandD (C). Similarly, L does not
containD(C). Therefore L intersects each o and D (C) at no more than two points
and hence there are at most four edges betWeand D (C) contained irL. Therefore,
S@(e) e F(Cyp) for at most four edges. O

We are now ready to bound the number of triangle®inongruent toA that have
their base edge ifty. We consider the bipartite graggko, P, T), which has vertex set
Eo andP, and connect € Ep andp € P by an edge ofl if and only ifeand p form a
triangle congruent té\. Each edge € Eq defines a sphere corresponding to the locus
of the opposite vertex ok, and hencep must lie on this sphere. Eaeghe Eq has one
end on a heavy circl€ and the other end on the circl&(C).

Consider any 8l + 1 elements oE, and its corresponding spheres. These spheres
mustbe inl_J F(C, D(C)), where union is taken over all heavy circlesSince there are
only N heavy circles, there is a distance-circle g&r D(C)) such that at least five of
those spheres are JA(C, D(C)). By Lemma 5.4, the intersection of these five spheres
cannot contain a circle and hence is a set of at most two points. Thus, our bipartite graph
does not contaisn 1.3 as a subgraph. Sin¢Eg| < n?and|P| = n, from the Bipartite

Graph Lemma, we have
n? LIT |/“2J AN n
( 3 = 3/

and henceT| = O(NY3n"/3). SinceN = O(n® ), |T| = O(n1¥/3-5%/3),
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Putting this together with Corollary 5.1, the number of triangles congruettitoP
is O(n+e/4 4 nl0/3-5/3) We setw = % to obtain the bound o®(n®%/2%).

5.2. LCP in Four-Dimensional Space
We consider three-dimensional simplices in four-dimensional space.

Theorem 5.2. The maximum number of three-dimensional simplices of n points in
four-dimensional space congruent to a given three-dimensional simp0(n%87).

Proof. If we a fix a location of a triangle faca& of T, the locus of the opposite vertex
65

v of I" forms a circle. The number of triangles congruenatm P is O(n”) for y = 3.
Thus, we have a s&(I") of n” circles corresponding to the possible locations of the
three-dimensional simplices.

We would like to use the circle-point incidence to bound the number of three-
dimensional simplices. Unfortunately, different locationsfofmay create the same
circle C, and therefore we cannot use Lemma 4.2 directly.

Suppose that locations ofA can creat&€. These triangles must lie on the plane that
contains the centerof C and is perpendicular to the plane contain®\gMoreover, the
set of vertices of the triangles must lie on (at most) three ciies (C), Circ,(C), and
Circ3(C) centered ab. Circ,(C) containss vertices, andCirc,(C) cannot coincide with
Circ,1(C") if C #£ C’: Consider the case in whidbirc,(C) has its center at the origin
and is contained in the-y plane. If the height of" with respect to the faca ish, C
must be the unique circle defined ky= y = 0, 22 + t? = h°.

We consider the subséts) of C(I") in which each member has multiplicities equal
to or greater thars but less than & Then, for eaclC € C(s), Circ1(C) contains at
leasts points of P. From Lemma 4.2, there are at m@ft(ns—* + n3s°) circles, each
containing more thas points. Hence((s) containsO’(min{ns~! + n3s~° n’s™1})
circles.

If s > n%2, the incidence betweeR andC(s) is O(s(ns 1)%8n%6) = O(s%2nl4),
which is small even i = n. If s > n¥/23 n3s™> < n”s™!, and the incidence betweéh
andC(s) is O(s(n®s~2)%8n%6) whichisO(n®s~3). Hence, there ar® (n/2%) incidences
created by circles whose multiplicities are at le@%te.

If s < n%23, the incidence betweeR andC(s) is the incidence betweem points
andO(n”s™?) circles each of which has multiplicity, this is O(s®?n%8+06) Hence,
there areD (n®%23) incidences created by circles whose multiplicities are lessrikah
Hence, the number of 3-dimensional simplice©®i®%?3) = O(n?87). O

Proposition 5.2.  The maximum number of three-dimensional simplices of n points in
four-dimensional space similar to a given three-dimensional simplisxO(n®).

Proof. If we a fix the location of a similar copy of the triangle fageof T, the lo-
cus of the opposite vertex of the similar copy ofl" forms a circle. The number of
triangles congruent ta in P is O(n®). Thus, we have a s@(I") of n® circles corre-
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sponding to the possible locations of the similar copies of three-dimensional simplices.
The rest is almost the same as the proof of Theorem 5.2. Abusing the noté&tiens,
containsO(ns~! 4 n3s~®) circles, and the incidence betweBrandC(s) is O(s(ns™* +

n3s=5)%8n06) = O(s®?nt*+n3s—3). By summingthisoves = 1, 2, ..., n, we have the
o
bound. O

Theorem 5.3. The LCP in four-dimensional space can be solved i(r®8’m* +
n*) logn) time The LSP in four-dimensional space can be solvedim@m?*+n*) logn)
time The CCD can be solved in @38 + n?8’mlogn) time

Proof. From the bounds of triangles and three-dimensional simplic&g,(n, m) =
n%8’m3 andA“?(n, m) = n®%8m2. Hence, from Theorem 2.6, we have the bound for
the LCP.

Analysis for the LSP is analogous. For the CCD, we choose a three-dimensional
simplexT" and its faceA from Q, and find all possibléD (n*%%) locations ofA in P
within O(n®) time. Next, we find all possibl® (n?%") locations ofl" in O(n3%3) time
from all three-dimensional simplices containing copieaadn P. Then we check within
O(mlogn) time whether each copy df is associated with a congruent embedding of
QinP. O

6. The Higher-Dimensional Case

Lemma6.1. In d-dimensional spaced > 5, the number of(d — 1)-dimensional
simplices in P similar to a givetd — 1)-dimensional simplex is @9-1).

Proof. Ford = 5, we need special care, as we show in Appendix B.d gt 6,
given a(d — 1)-dimensional simplexX”, suppose that we fixd — 1) points of P and
the (d — 2)-dimensional simplex\ spanned by these points, which is a facet of a copy
(under similarity) ofT". Then the locus of the remaining vertexf a copy ofl" forms a
circle.

More than one location ok can have the same circe as the locus ofi. Suppose
there areK locations of A creatingC. Let vy, ..., Vy_1 be the set of vertices ah.
The copies of; in the K locations of A must lie on a(d — 3)-dimensional spher€;
which is centered at the centeof C and contained in théd — 2)-dimensional plane
perpendicular te.

We projects the points t6; using the central projection with the centetet F be a
face of A. Then copies of in theK locations are projected to thid — 3)-dimensional
simplices which are congruent to each other.

Thus,K must be smaller than the number of congruent 3)-dimensional simplices
in the (d — 3)-dimensional sphere. This is bounded by the number of congtdent
4)-dimensional simplices, since there are at most td/e- 3)-dimensional congruent
simplices sharing &d — 4)-dimensional simplex in the sphere. The sa@@’~*) bound
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as in the case afd — 3)-dimensional space can be applied to the sphere, which holds if
d — 3 =3, 4, as we have seen, and inductively tbr 3 > 4.

Thus, we have a set of circles with multiplicities, so that the maximum multiplicity
is O(n9—*) and the total sum of the multiplicities ®(n-1). The worst scenario for us
is that we have a set dd(n®) circles, each of which has multiplicit®(n9=*). From
Lemma 4.2, the incidence of a set©in?) circles andn points isO(n®). Hence, the
total number of incidences ®(n?-1). O

Theorem 6.1. The LSP and LCP ind-dimensional space can be solved{n®©*m?+
n%)logn) time for d > 5. The SCD and CCD can be solved if(@ + n4~mlogn)
time for d> 5.

Proof. Ittrivially follows from Lemma 6.1 that @4V (n, m) = O(n%—*md). This and

the trivial O(n%~*m?-1) bound oni(4-9-2 (n, m) make the first two terms comparable

in the running-time upper bound of Theorem 2.6. Therefore, the bound for LCP holds.
Since Lemma 6.1 holds for similarity, we can give the same argument for LSP. For the
SCD (and CCD), we pick & — 1)-dimensional simplex fron®, find all (O(n®-1))
copies of it inP within O(n%) time, and check whether each associated transformation
gives an embedding @ in O(mlogn) time. O

Bounding the number of pairwise congruent (similelimensional simplices in a
set of n points ind-dimensional space is a classical problem posed by Moser [21],
Erdds and Purdy [13], and Elekes and Bsdq10]. A better solution to this problem for
k =d —1andk = d — 2 will improve the bounds oa®-9-Y (n, m) andx@9-2(n, m),
and hence the bound on the analysis of the algorithms for the LCP (or LSP).
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Appendix A. Linear Space Implementation

The following argument can be extended to the voting algorithms in any dimensions.
However, for simplicity, we give the description for the planar case.

We first note that we process the local voting processes g tfeg in lexicographic
order with respect toand j. Hence, we keep the sorted list{dlist(p, u) : u € P} only
during local voting processes at theq; (j = 1,2,...,m) run.

The space complexity of the voting algorithm is naiv€lynm), because the size of
the voting table may becom@(nm). We can improve it tdO(n) by avoiding explicit
construction of the voting table, as follows: In the local voting process, without loss of
generality, we assume that= q = O. The transformatiofl corresponds to the rotation
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anglet (T), which equal® (u) — 6(v) if T mapsu to v, whered (u) is the argument of
the vectomu.

Let A (P) be the family of lines consisting of = x + 6(u) for all u € P satisfying
lul = 1. Let A{(Q) be the family of lines consisting of = 0 (v) for all v € Q satisfying
[v| = |. The total number (over dl) of lines is at mosh + m, and thusO(n). For a real
valuex, letg (x) be the number of segmentintersectiongoi= Aj(P)UA (Q) thathave
x as theirx-coordinate value. Then the number of votes collected by a transforniation
is ") o ((T)).

We process the segment intersection computation by using Bentley—Ottman’s sweep
algorithm, with a slight modification that the algorithm shares a priority queue controlling
the sweeping processes for &ll), so that it can find the next-coordinate value of
the intersection (more precisely, the lexicographically smallest intersection) among all
arrangements.

Using O(n) space, the algorithm maintains tkecoordinate value (on the left of the
sweep line) of the largest number of intersection points (summed ouer\alé remark
that, in a real implementation, we need not consider segments explicitly.

Appendix B. The Five-Dimensional Case for Lemma 6.1

We are given a 4-simplek, its facetA, which is a 3-simplex, and a triangke, which
is a facet ofA. The vertex opposite ta is v, and the vertices of arew(1), w(2), w(3),
andw(4). We assume that the vertical distance freio A is 1, and that the projection
of vto A isV. The distance from’ tow(s) isd(s) fors =1, 2, 3, 4.

The setP of n points inR® creates less tham* 3-simplices. Thus, the number of
possible locations ah using points ofP as vertices is less thart. For a fixed location
Ao of A, the trajectory of the possible locationswois a unit circleC centered by, and
perpendicular to the hyperplane (of codimension tiogontainingAo; here,v; is the
copy ofv'in Ap.

Different locations ofA may define the same circe. Suppose that each member of
t copiesAi (i = 1,...,t) of A defines the same circle. Letw(s); be the copy ofv(s)
in Aj. Thenw(s); must be contained iil, and, moreover, is in the sphe8€C; s) with
diameterd(s) centered av; .

Without loss of generality, we only consider the circi@such that the number of
points of P located onS(C; 1) is at least a quarter of that ¢n_; , 34, S(C; ), since
otherwise we choose another index. Note i uniquely defined fron$(C; 1) so that
it is the circle centered at the centerS{fC; 1) and perpendicular to the hyperplaHe

We project the points ®i=1,2,3.,4 S(C; j) ontoS(C; 1). They must define at least
copies of the same triangle (say;), which is the projective image of the copiesbf
ontoS(C; 1). On the spher&(C; 1), at most two possible locations &f are permitted
if its shortest edge is fixed. From the distance bound on the plane, which holds for the
point set on the sphere= O(m*?3) if S(C; 1) containsm points of P. (Note: the only
difference between the case of sphere and plane is that more than two diameter circles
on the sphere intersect at two points (north and south poles.) This can be resolved by
decomposing the sphere into three parts: the equator and upper and lower hemispheres).

For a fixedt, we consider a setq, Co, ..., Cy of different circles, each of which
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is defined by at leadtbut at most P different locations ofA, and there aren; points
S(Ci: 1). Sincet = O(m**), m; = Q(t¥4).

We can give an upper bound loin terms oft andn. S(Cj; 1) hasQ (m;) points. We
sayC; is a special circle if all the points iB(C;, 1) are located on a circle.

These points defin@ (mi4) three-dimensional simplices in the space; moreové€r, if
is not speciaISZ(miZ) = Q(t¥3), three-dimensional simplices among them are nonde-
generate. For the time being, we omit special circles. Since there are abhthste-
dimensional simplices iR, and it cannot happen that a nondegenerate three-dimensional
simplex lies onthe intersection 8(C;; 1) andS(C;; 1) fori # j,kt®¥3 = O(n*). Hence,

k = O(n*/t%?).

The number of incidences between the circles (counting the multiplicitiesPaad
O(tk¥®n%5 4tk 4 tn). Thus, it isO(n*¥5t =02 4 n%t~05 4 tn). By summing this term
overt =2 for j =1,2,..., [logn*3], we obtain arO(n*) bound.

Finally, we consider the special circlesGfis special, all points o8(C; 1) lie on a
circleY. Consider the projected images of points3j; 2) ontoS(C; 1). If the original
point onS(C; 2) contributes to a copy ok definingC, its projected point must lie on a
circle centered at the points dhwith diameterdist(w(1)w (2)). However, the number
of incidences betwee®(m) equidiameter circles centered at pointsYorand O(m)
points onS(C; 1) is O(m), since three such circles cannot intersect at a point (except
for two points corresponding to north and south poles).

Hence, they can create at m&tm) edges of the copies of the triangé, and hence
t = O(m). If we sett = 2/, and suppose there &¢j) special circles defined by at least
t but at most 2 different locations ofA.

The sum of the multiplicities of the circles gives the formﬁ[#jgm 21k(j) = O(nH.

The upper bound of the associated incidencgs 83" 2/k(j)¥°n%° + 2ik(j) + 2/n,
which isO(n%) + O(Y_ 8" 2°2In19%) = O(n%).
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