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Abstract. This paper considers the following problem, which we call the largest common
point set problem (LCP): given two point setsP andQ in the Euclidean plane, find a subset
of P with the maximum cardinality that is congruent to some subset ofQ. We introduce a
combinatorial-geometric quantityλ(P, Q), which we call the inner product of the distance-
multiplicity vectors ofP andQ, show its relevance to the complexity of various algorithms
for LCP, and give a nontrivial upper bound onλ(P, Q). We generalize this notion to higher
dimensions, give some upper bounds on the quantity, and apply them to algorithms for
LCP in higher dimensions. Along the way, we prove a new upper bound on the number of
congruent triangles in a point set in four-dimensional space.

1. Introduction

Matching of point sets in the plane or in space is an important problem that arises, in
various forms, in computer vision [17] and computational biology [2], [30], [14]. In the
simplest form of the problem, we are asked whether two finite sets of pointsP andQ are
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congruent, that is, whether there is a transformationT consisting of translation, rotation,
and possibly reflection such thatT(P) = Q [5], [27], [4], [3]. A generalization of this
question is to ask whetherQ is congruent to some subset ofP (congruent copy detection
or CCD for short) [8], [15], [26]. We consider in this paper a yet further generalization:
we ask for a setR of the maximum cardinality that is simultaneously congruent to some
subset ofP and to some subset ofQ. We call suchR the largest common point set
betweenP and Q, and name this problem thelargest common point set problem, or
LCP. A version of LCP in which congruence is replaced by similarity (i.e., in which we
allow scaling as well) was previously considered by Irani and Raghavan [18]. We set
n = |P|, m= |Q|, and assume without loss of generality thatn ≥ m.

To solve the LCP, we consider two standard schemes for point matching problems,
namely,voting andalignment. We consider both deterministic and randomized algo-
rithms based on these schemes. Since the randomization techniques we use are also
rather standard, our focus is on combinatorial-geometric analyses of the performance
of those algorithms. In particular, we study a quantity that we call theinner product of
distance-multiplicity vectorsof two point sets. This quantity is naturally related to the
running time of the algorithms we consider for the LCP. We derive a new upper bound
on this quantity and hence new upper bounds for the LCP.

Given a setP of n points in the plane and a positive reall , we define themultiplicity
of distancel in P, denoted byHP[l ], to be the number of ordered pairs(p,q) of P such
that the distance betweenp andq is l . Thedistance-multiplicity vectorof P, denoted by
M(P), is the vector(HP[l1], . . . , HP[lν ])wherel1, . . . , lν is the list of distinct distances
with positive multiplicities, sorted in the nonincreasing order of their multiplicities inP.
Erdös [11] asked for theoretical bounds onν = ν(P), the number of distinct distances in
P, andHP[l1], the largest multiplicity of a distance inP; currently, the best-known upper
bound onHP[l1] is O(n4/3) and the best-known lower bound onν(P) isÄ(n4/5) [28],
[29].

Given two point setsP and Q, we defineλ(P, Q) = ∑
l HP[l ]HQ[l ], where the

summation is taken over all distances occurring inP or in Q. We callλ(P, Q) the “inner
product” of the distance-multiplicity vectorsM(P) and M(Q), a natural term if we
regardM(P) as a finite representation of a vector in(Z+)R. Sinceλ(P, Q) represents
the number of matches between the distances inP and those inQ, it is not difficult
to imagine that this quantity may play an essential role in the complexity analysis of
algorithms based on distance comparisons—the more distance matches we have, the
more potential congruences we have to consider. We will see that this is indeed the case
for both voting- and alignment-based algorithms.

Letλ(n,m) = max|P|=n,|Q|=m λ(P, Q). A trivial upper bound onλ(n,m) is O(n2m2),
while a result of Erd¨os [11] implies thatλ(n,m) ≥ Ä(nm2√logm). The above known
bound ofO(n4/3) on the maximum multiplicity of a distance immediately implies that
λ(n,m) = O(n4/3m2). Our result is an upper bound ofO(n1.43m1.77), which is stronger
for all values ofn ≤ m2.3. This bound is proved by extending the technique of Sz´ekely,
who has recently developed and simplified proofs of theO(n4/3) bound on the maximum
multiplicity and theÄ(n4/5) bound on the number of distinct distances. We remark that
further improving our upper bound, especially the special case ofO(n3.2) on λ(n,n),
is arguably difficult, because it would mean improving the best-known lower bound
Ä(n4/5) on ν(P), a long standing open problem. To see this, first note thatλ(P, P) ≥
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ν(P)(n(n−1)/ν(P))2 ' n4/ν(P) for any setP of n points. This is because, givenν(P),
λ(P, P) is minimized when the number of occurrences are equally distributed among
the distinct distances. Therefore, ifλ(n,n) = O(n3.2−ε) for some positive constantε,
thenn4/ν(P) = O(n3.2−ε) or ν(P) = Ä(n0.8+ε) for any setP of n points.

Similarly to the importance of the distance multiplicities in the plane, the multiplicity
of distances and triangles plays an important role in the analysis of LCP algorithms in
three-dimensional space. Here, the multiplicity of a triangleABC in a point setP is de-
fined as the number of ordered triples(p,q, r) of P such thatpqr is congruent toABC. A
set of three colinear points is considered as a degenerate triangle. Triangle-multiplicity
vectors and their inner products are defined analogously to distance-multiplicity vec-
tors. Given point setsP and Q in three-dimensional space, letλ(3,1)(P, Q) (resp.
λ(3,2)(P, Q)) denote the inner product of the distance-multiplicity (resp. triangle mul-
tiplicity) vectors of P and Q. Let λ(3,1)(n,m) andλ(3,2)(n,m) be defined as before,
taking the maximum overP and Q with |P| = n and |Q| = m. Our upper bounds
are λ(3,1)(n,m) = n3/2m2(log∗ n)O(1) and λ(3,2)(n,m) = min{n1.8m3,n1.8875m2.8 +
n1.95m2.68}(log∗ n)O(1).1

From the known bound on the multiplicity of a distance in three dimensions [9], we can
show that the number of triangles inP congruent to a given triangle isO(n1.8(log∗ n)O(1)).
Hence, the first bound inλ(3,2)(n,m) is trivially implied; the second bound comes from
the incidence bound of points and circles (with multiplicities) in the space.

These notions naturally carry over to higher dimensions: for a point set ind-dimen-
sional space, we consider the multiplicity of ani -dimensional simplex in the point set,
where 1≤ i ≤ d− 1, and defineλ(d,i )(P, Q) to be the inner product of the multiplicity
vectors ofP andQ, as before.

We only have a naive (though not entirely trivial) bound ofO(nd−1md) on λ(d,d−1)

for d ≥ 5. Ford = 4, we have a slightly stronger bound ofO(n2.87m4) onλ(4,3). This is
proved by showing that, for any setP of n points in four-dimensional space, the number
of triangles inP congruent to a given triangle is at mostO(n2.83).

From a practical point of view, the relevance of the running-time upper bounds of
the LCP algorithms obtained from our combinatorial-geometric analyses might be ques-
tioned, because they depend heavily on the exactness of the input and computation.
Because of the inevitable errors in the input and computation, several authors formulate
the point matching problem as that of approximate matching [4], [8], [15]. For example,
the CCD is formulated as asking for a transformationT that minimizes the directed
Hausdorff distance fromT(Q) to P, i.e., maxq∈Q minp∈P dist(T(q), p) [8]. Although
this is a mathematically clean formulation and has been adopted by many authors, the
time complexity of solving the CCD in this model is rather high (the best-known upper
bound for the two-dimensional case isO(n2m3 log2 n) [8]). Goodrich et al. [15] propose
giving up exact minimization and to look for a transformation that achieves a Hausdorff
distance within some constant number of times the minimum possible, obtaining an
algorithm with a reduced running time ofO(n2m log2 n). It is not clear, however, if this
approach can be extended to the general LCP to produce algorithms with a practical
running time. In fact, it is not even clear how we should formulate the LCP in this model,

1 log∗ n is the height of the lowest tower of the powers satisfying that 2222.
..

≥ n.
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Table 1. Time complexities for LCP problems.

Dimension

2 3 4 ≥ 5

LCP n1.43m1.77+ n2 n1.89m2.8 + n3 n2.87m4 + n4 nd−1md + nd

LSP n2m2(trivial) n7/3m8/3 + n3 n3m4 + n4 nd−1md + nd

LCP
(randomized) LCP/K LCP/K2 NA NA

ε-Approximate LCP/K2 LCP/K3 NA NA
CCD min{n1.43m0.77,n4/3m} n1.89m0.8 +min{n2.5,n3m−2} n2.87m+ n3.83 nd−1m+ nd

SCD n2m [26] n7/3m2/3 + n3m−2 n3m+ n4 nd−1m+ nd

since we have two quantities to optimize (the subset size and the Hausdorff distance
between the subsets).

A more heuristic approach for approximate matching is to take an algorithm for the
exact matching model and use its approximate version, where approximate equality
is used instead of exact equality to test matches. This is the approach taken by Irani
and Raghavan [18], and probably the one preferred in practice. The generalized Hough
transformation method [6], [19] commonly used in computer vision may be interpreted
as following such an approach. Our position is that it is meaningful to analyze idealized
algorithms as long as their approximate versions are used in practice. The hope that such
an analysis will tell us something about the performance of the approximate versions is
only heuristic, as much as the hope that such approximate versions will produce answers
of any well-defined correctness.

Table 1 summarizes the algorithmic results of this paper, omitting logarithmic factors
and usingK to denote the size of the largest common point set. Some minor terms are
abbreviated from the complexity of the three-dimensional LCP. We have included some
results on the largest similar point set problem (LSP) and the similar copy detection
problem (SCD), where similarity rather than congruence is the condition for matches,
which can be obtained in a similar approach. Note that our SCD results improve the
O(ndm) time bound of Rezende and Lee [26] in three or more dimensions (and when
specialized to CCD, in two dimensions as well).

The rest of this paper is organized as follows. In Section 2 we review the algorithms
based on voting and alignment and see how the inner-product of multiplicity vectors
appears in their analysis. Combinatorial-geometric analyses of the inner products are
given in subsequent sections.

2. Algorithms

The goal of this section is to provide a motivation of our combinatorial-geometric analysis
of the inner product of the multiplicity vectors by showing how it is related to the analysis
of several algorithms for the LCP. We consider algorithms based on a voting scheme and
algorithms based on an alignment scheme. In the description of the following algorithms,
we consider congruence transformations that consist only of translations and rotations,
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since reflections can be taken care of by running the algorithm once forP andQ and once
for P and the mirror image ofQ. We refer to such congruence transformations simply as
transformations. We useK consistently to denote the size of the largest common point
set betweenP andQ.

2.1. Voting Scheme

In this and the next subsection we assume that the point setsP andQ are in the plane.
Let dist(x, y) be the distance between pointsx and y. Consider pairsp, p′ andq,q′ of
points ofP andQ, respectively. Ifdist(p, p′) = dist(q,q′), these four points determine
a unique transformationT such thatT(p) = q andT(p′) = q′. This transformation is
denoted byT [ p, p′;q,q′].

For each pair(p,q) of pointsp ∈ P andq ∈ Q, and each transformationT , we define
multp,q(T) to be the number of pairsx ∈ P andy ∈ Q satisfying thatT [ p, x;q, y] = T .
If |T(P) ∩ Q| = k, it is easy to see thatmultp,q(T) = k− 1 for anyq ∈ T(P) ∩ Q and
p= T−1q.

Hence, maxp,q(maxT multp,q(T)) = K − 1 and the transformation achieving this
maximum is the transformation that gives the largest common point set.

For each pairp ∈ P andq ∈ Q, maxT multp,q(T) can be computed by considering
all matching pairs of edges(px,qy), x ∈ P, y ∈ Q, and letting each pair cast a vote to
the transformationT [ p, x;q, y]. We call this process thelocal votingfor pair (p,q).

A similar voting idea is used in the generalized Hough transformation [6], where a vote
is cast to a bucket in the transformation space rather than to an individual transformation
as in our case. In other words, our scheme may be viewed as an extreme version of the
generalized Hough transformation where the bucket size goes to zero.

In the deterministic version of the algorithm, we need to execute the local voting
process for each pair(p,q), with p ∈ P andq ∈ Q, and take the best result. The total
number of votes cast in the algorithm execution isλ(P, Q), because each matching pair
(pp′,qq′) of edges contributes exactly one vote. Thus,λ(n,m) bounds the essential term
in the running time.

Theorem 2.1. In an efficient implementation, the deterministic voting algorithm com-
putes the two-dimensional LCP in O((λ(n,m)+ n2) logn) time and O(n) space.

Proof. For eachp ∈ P, we first sort the set{(p, x)|x ∈ P}of pairs in terms ofdist(p, x)
and store it in a binary search data structureDp(P). This requiresO(n logn) time for
each p ∈ P. In the local voting for a fixed pair(p,q), we search fordist(q, y), for
eachy ∈ Q, in the data structureDp(P) in O(logn) time to obtain the matchespx of
the edgeqy. This requiresO(m logn) time for each ofnm local voting processes. The
rest of the running time is at mostO(logn) per vote. Thus, the overall running time is
O((λ(n,m) + nm2 + n2) logn), but we haveλ(n,m) = Ä(nm2), as noted earlier. See
Appendix A for how to reduce the space complexity toO(n).

Observe that, in the above deterministic voting algorithm, the optimal transformation
T receives the maximum vote ofK − 1 in the voting process for each(pi , T(pi )),
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i = 1, . . . , K , where{pi } is the largest common point set. This is a redundancy that is
difficult to avoid deterministically. However, we can reduce the redundancy at the cost
of a small failure probability by using a standard random sampling procedure: sample
a random subsetR of P and do local voting only for pairs inR× Q. Here, once we
fix a pair p ∈ R and q ∈ Q, the local voting for(p,q) is done exactly as before,
scanning the entire setsP andQ (not justR). This speeds up the algorithm by a factor of
|P|/|R|: the termsn2 logn andnm2 logn of the deterministic time become|R|n logn and
|R|m2 logn, respectively, and the expected total number of votes cast is|R|n−1λ(P, Q).
The algorithm makes an error only whenR is disjoint from the largest common point
set. This occurs only if all the|R| random draws are picked outside the largest common
point set. Thus, the probability is(1− K/n)|R| = {(1− K/n)n/K }|R|K/n, which is is at
moste−|R|K/n, since(1− K/n)n/K < 1/e, wheree is the base of the natural logarithm.
We set a numberc and apply the algorithm to|R| of size 2sc for s= 1,2, . . . until we get
an LCP which is larger thancn/|R|. When|R| becomes larger thancn/K , the algorithm
outputs the correct LCP of the sizeK > cn/|R|with probabilitye−c, and terminates. The
total computation time isO(c(λ(n,m)+ n2)K−1 logn). Hence, we have the following
theorem:

Theorem 2.2. LCP can be solved in O(c(λ(n,m)+n2)K−1 logn) time with probability
1− e−c.

If we can be satisfied with an approximately optimal solution, which has a size
of at least(1− ε)K , we can further reduce the running time by adopting a different
sampling strategy. We samplẽP ⊂ P with αn points andQ̃ ⊂ Q with βm points, where
αβ = c logn/K for some sufficiently large constantc, and compute the largest common
set betweeñP andQ̃.

To see why this sampling approach works, letT be any transformation. For each
p ∈ P such thatT(p) ∈ Q, the probability that bothp and T(p) are sampled is
αβ = c logn/K . Therefore, ifT gives a common point set of sizeK betweenP andQ,
it gives a common point set of expected sizec logn betweenP̃ and Q̃ and, with high
probability, of size at least(1−ε/2)c logn. From Chernoff’s bound [23], the probability
is at least 1− exp(−c lognε2/8) > 1− n−cε2/8.

On the other hand, a transformationT is calledbad if it satisfies both|T(P) ∩ Q| <
(1−ε)K (i.e., it is not a near-optimal solution for LCP) and|T(P̃)∩Q̃| > (1−ε/2)c logn.
Again from Chernoff’s bound, the probability that a given transformation is bad is at
mostn−cε2/8. Since there are at mostλ(n,m) < n2m2 possible transformations mapping
a pair of points ofP to a pair of points ofQ, the probability that there is any bad
transformation is at mostn2m2n−cε2/8.

Thus, the solution of LCP for̃P andQ̃ gives, with probability 1− (n2m2+1)n−cε2/8,
a near-optimal transformation forP and Q as desired. If we takec larger than 40ε−2,
the above probability is 1− o(n−1). For the running time analysis, observe that the
expected value ofλ(P̃, Q̃) is α2β2λ(P, Q), because the multiplicity of a fixed distance
in P (resp.Q) is reduced by a factor ofα2 (resp.β2) and becausẽP andQ̃ are sampled
independently. (Note that this is a better bound thanλ(αn, βm).)

We choose the pair(α, β), so as to reduce the preprocessing time of the determin-
istic algorithm applied toP̃ and Q̃ as much as possible: ifn logn/K , then we set
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(α, β) = (c logn/K ,1) and otherwise set(α, β) = (√cmlogn/nK,
√

cn logn/mK)
(so thatαn = βm = √cnmlogn/K ). In the former case, the preprocessing time is
O((αn)2 logn) = O(n2 log3 n/K 2). In the latter case, it isO((αn)2 logn) =
O(nmlog2 n/K ) = O(nm2 log2 n/K 2). Sinceλ(n,m) = Ä(nm2) as noted earlier,
this preprocessing time in the latter case is subsumed by the time for the main part.
Therefore, we have the following:

Theorem 2.3. For any fixed constantε > 0, we can find, with probability1− n−1, a
common point set between P and Q of size at least(1−ε)K in an expected O((λ(n,m)+
n2)K−2 log3 n) time.

2.2. Alignment Scheme

In thealignmentscheme, we consider each pair of edges of equal lengthpp′ from P and
qq′ from Q, align pp′ with qq′, and count the number of points ofP that now coincide
with a point of Q. In other words, we count the size of the intersectionT(P) ∩ Q,
whereT = T [ p, p′;q,q′]. In the deterministic version, we need to considerλ(P, Q)
alignments and the counting for each alignment takesO(m logn) time. Alignments can
be enumerated in a manner similar to the voting-based algorithm. Thus, we have a running
time bound ofO((λ(n,m)m+ n2) logn). This is worse than that of the voting-based
algorithm. However, when we apply random sampling (for exact optimization), the rate
of reduction in the running time is larger in this case. Sample a subsetR of P with
sizecn/K , with sufficiently largec so thatR contains at least two points of the largest
common point set with high probability. Then we need only consider each edgepp′ in
R for alignment. This is in contrast to the voting case, where we need to consider each
edgepp′ with p ∈ R and p′ ∈ P for voting. Thus, the first term of the running time is
reduced by a factor ofc2/K 2 and, whenK is close tom, is comparable with the voting
scheme. Irani and Raghavan [18] apply random sampling to an alignment scheme for
the LSP; this is reasonable, becauseK is linear inm in the applications they intend.

For the CCD, where our goal is to determine whetherK = m, the alignment scheme
has the advantage of giving a fast Las Vegas algorithm (i.e., an algorithm that does not
risk an error), in contrast to the voting scheme, which gives a Monte Carlo randomized
algorithm (i.e., an algorithm that has some probability of making an error). The idea is to
sample fromQ rather than fromP. The reason we sample fromP for the general LCP is
because we want to reduce then2 logn term in the deterministic time complexity, which
accounts for the preprocessing of distances inP. For the CCD, this preprocessing can
be avoided, and sampling fromQ turns out to be advantageous.

Theorem 2.4. The CCD can be solved in O(n4/3m logn+n4/3 log8/3 n) deterministic
time and in O(min{λ(n,m)m−1 logn,n4/3m logn} + n4/3 log8/3 n) Las Vegas expected
time.

Proof. We randomly sample a pairq,q′ of points fromQ. Using the the methods of
Agarwal et al. [1], we find all occurrences of the distancedist(q,q′) in P in
O(n4/3 log8/3 n + k logn) time, wherek is the number of occurrences of the distance.
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Even for the worst pairq,q′, we havek = O(n4/3) from the bound on the repeated dis-
tances; moreover, the expected value ofk isλ(P, Q)/m2. For each such occurrencepp′,
we alignqq′ with pp′ and test whether the entireQ is matched intoP, usingO(m logn)
time. The total running time isO(kmlogn+n4/3 log8/3 n), from which the claim follows
when the bounds onk are plugged in.

2.3. Higher Dimensions

Both the voting and alignment schemes can be easily generalized to higher dimensions.
We discuss only the voting scheme here. The generalization of the alignment scheme
(and especially its specialization to the CCD) can be done similarly. We start with the
voting scheme in three dimensions.

Let the point setsP andQ be in three-dimensional space. Local voting is now done
fixing a pair of edges of equal lengthpp′ from P andqq′ from Q. Each pair of points
x ∈ P and y ∈ Q such that the trianglespp′x andqq′y are congruent casts a vote to
the transformation that matches the triangles. When these triangles are degenerate, that
is, whenx lies on the linepp′ and y on the lineqq′, and hence does not determine a
transformation, the vote becomes “public,” that is, it conceptually adds a count to every
candidate in this particular local voting process. Public votes are counted separately and
added to the maximum vote count in the end of the local voting. We do local voting for
every matching pair(pp′,qq′) of edges and take the transformation with the maximum
vote count. It is clear that the maximum vote count isK − 2.

The number of local voting processes to be performed is bounded byλ(3,1)(n,m) and
the number of total votes cast byλ(3,2)(n,m). To enumerate matching pairs of edges for
which to perform local voting, we use a sorted list of distances inP as we did in the
planar case, so that the time consumed for finding all matching pairs becomesO((n2+
λ(3,1)(n,m)) logn). To enumerate matching triangles that cast votes, we similarly prepare
a sorted list of triangles inO(n3 logn) preprocessing time, so that the time consumed
for finding all matching triangles becomesO(λ(3,1)(n,m)m logn+ λ(3,2)(n,m)). Thus,
we have:

Theorem 2.5. The LCP in three-dimensional space can be solved in time
O((λ(3,2)(n,m)+ λ(3,1)(n,m)m+ n3) logn).

When we use our current bounds onλ(3,2)(n,m) andλ(3,1)(n,m), which are roughly
O(n1.89m2.8) andO(n1.5m2), respectively, it turns out that the second term is subsumed
by the first. Random sampling approaches also work for three-dimensional space and give
a speed-up ofK 2 for exact optimization and roughlyK 3 for approximate optimization.
We omit the routine details.

Corollary 2.1. The CCD in three-dimensional space can be solved in time
O((λ(3,2)(n,m)m−2+ λ(3,1)(n,m)m−1) logn+min(n2.5,n3m−2 logn)).

Proof. We setK = m to obtainO((λ(3,2)(n,m)m−2+λ(3,1)(n,m)m−1+n3m−2) logn).
If m is smaller thann1/4, we select a triangle1 and its edgeefrom Q. We find all possible
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(at mostO(n1.5)) locations ofein P in O(n2) time. Then we can find all possible locations
of 1 in P in O(n2.5) time to improve then3m−2 logn term.

Theorem 2.5 can be generalized to higher dimensions.

Theorem 2.6. For any fixed d≥ 3, the LCP in the d-dimensional space can be solved
in O((λ(d,d−1)(n,m)+ λ(d,d−2)(n,m)m+ nd) logn) time.

Analysis of random sampling schemes ford ≥ 4 appears difficult if our goal is to achieve
a speed-up ofK d−1, due to the possible degeneracy of the largest common point set.

3. Boundingλ(n,m)

We now turn to the combinatorial-geometric analysis of the inner product of multiplicity
vectors. We start with the planar case.

Theorem 3.1. λ(n,m) = O(n1.43m1.77).

The following simple application of the Szem´erdi–Trotter theorem [29] turns out to
be useful.

Lemma 3.1. Let P be a set of n points and letL be a set of lines in the plane or
higher-dimensional space such that each line inL contains at least y points of P, where
y ≥ 2. Then the number of incidences between P andL is O(n+ n2y−2).

Proof. We may assume thatP andL are configured in a plane: otherwise we may
take an appropriate projection, such that at most one incidence in the space is mapped
to each incidence in the plane, and bound the number of incidences in the plane. Let
I denote the number of incidences betweenP andL. The Szem´erdi–Trotter theorem
[29] (see also [20]) states thatI ≤ c(n + |L| + n2/3|L|2/3), wherec is some constant.
Since each line ofL contains at least two points ofP, |L| ≤ n2 and thereforeI ≤ 3cn2.
Thus, for y < 2c, we haveI ≤ 12c3n2y−2 so the bound ofO(n + n2y−2) certainly
holds. We assumey ≥ 2c in the following. From the assumption that each line of|L| is
incident to at leasty points of P, we havey|L| ≤ I ≤ c(n + |L| + n2/3|L|2/3). Since
y ≥ 2c, it follows thaty|L|/2≤ c(n+n2/3|L|2/3)which implies that either|L| ≤ 4cn/y
or |L| ≤ 4cn2/3|L|2/3/y. In the first case, using the Szem´erdi–Trotter theorem again,
we haveI = O(n + n4/3y−2/3). In the latter case, we have|L| ≤ (4c)3n2y−3 and
henceI = O(n + n2y−2). Combining these cases we haveI = O(n + n4/3y−2/3 +
n2y−2). The second term is subsumed by the first wheny > n1/2 and by the third when
y ≤ n1/2.

We also need some lemmas due to Sz´ekely [28], [20] (Lemmas 3.2 and 3.3 below),
which he used in proving theÄ(n4/5) bound on the number of distinct distances in an
arbitrary set ofn points.
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Thecrossing numberof a drawing of a graphG on a plane is the number of intersec-
tions of drawn edges (see [24] and [25]). Letcr(G) denote the minimum of the crossing
numbers over all drawings ofG.

Lemma 3.2. In the graph G with n vertices and t edges, if each edge has at most y edges
parallel to it, then there are constants c1 and c2 satisfying cr(G) = c1t3/yn2− c2y2n.

Recall the notation in the Introduction:ν(P) is the number of distinct distances in
P, D(P) = {l1, . . . , lν(P)} is the set of such distances listed in the nonincreasing order
of multiplicity, and HP[l ] is the multiplicity of the distancel in P. Let 1≤ k ≤ ν(P).
We consider the subset{l1, . . . , lk} of D(P), consisting of the firstk entries, and let
f (k) = ∑k

i=1 HP[l i ]. Seeking an upper bound onf (k), we createk concentric circles
of radii l1, . . . , lk around each point ofP. Hence, we havenk circles in total: letC(k)
denote the set of these circles.

The circles inC(k) have 2f (k) incidences with the point setP. We delete circles
containing at most two points ofP, and letC ′(k) denote the set of remaining circles.
Each circle ofC ′(k) contains at least three points ofP, and these points cut the circle into
at least three arcs. If we letA denote the set of these arcs coming from all the circles of
C ′(k), then|A| is equal to the number of incidences between the circles ofC′(k) and the
points ofP, and hence is at least 2f (k)−2kn. Define a multigraphG(k)whose vertices
are points ofP, and whose edges are arcs ofA. Since each pair of at mostkn circles of
C ′(k) intersect at most twice, the crossing numbercr(G(k)) of G(k) is at mostk2n2.

The following lemma is due (in a slightly different form) to Sz´ekely. The proof is a
straightforward adaptation of his proof [20], [28].

Lemma 3.3. For each y, the number of edges in G(k) having at least y edges parallel
to them is at most O(n2k/y2+ kn logn).

Proof. Let Mi be the set of pairs{u, v} of vertices ofG(k) such that there are at least 2i

and fewer than 2i+1 parallel edges connectingu andv in G(k), and letEi be the set of all
edges each connecting a pair inMi .Our goal is to find an upper bound for

∑
y≤2i≤n |Ei |.

Let Lu,v denote the perpendicular bisector of the segmentuv and letLi = {Lu,v |
{u, v} ∈ Mi }. Each edge connectingu andv determines one incidence of the lineLu,v

with P, since the center of a circle throughu andv must lie onLu,v. On the other hand,
we note that one such point-line incidence(p, L), wherep ∈ P andL ∈ Li , corresponds
to at most 2k edges ofEi because there are onlyk different radii. Therefore, the size of
Ei is at most 2kNi , whereNi is the number of incidences ofLi with P. By Lemma 3.1,
we haveNi = O(n+ n22−2i + n) and hence|Ei | = O(nk+ n2k2−2i ), from which the
lemma follows when we sum overi .

The following basic fact is useful.

Lemma 3.4. Let X = x1, . . . , xN be a nonincreasing sequence of positive real num-
bers. For sequencesY = y1, . . . , yN andZ = z1, . . . , zN of real numbers, if there exists
a fixed positive constant c satisfying

∑k
i=1 zi ≥ c

∑k
i=1 yi for k = 1,2, . . . , N, the inner

product(X,Z) of X andZ is at least c(X,Y).
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Proposition 3.1. f (k) = O(min{n10/7k5/7,n2}).

Proof. O(n2) is a trivial bound. TheO(n10/7k5/7) bound needs to be proved fork <
n4/5, where we can assume thatf (k)À kn logn.

We constructG(k), sety =
√

Cn2k/ f (k) for some constantC, and delete all edges
of multiplicity larger thany. From Lemma 3.3, at mostf (k) edges are removed, if we
set C to be sufficiently large. Then we have a graphG with Ä( f (k)) edges, whose
edge multiplicity is at mosty. From Lemma 3.2,k2n2 > cr(G) = Ä( f (k)3/yn2) −
O(y2n). Hence,k2n2 = Ä( f (k)3.5/n3k0.5) (the O(y2n) term is negligible). It follows
that f (k)3.5 = O(k2.5n5) and hencef (k) = O(n10/7k5/7).

We are now ready to prove Theorem 3.1. LetD(P) = {l1, . . . , lν(P)} (resp.D(Q) =
{l ′1, . . . , l ′ν(Q)}) denote the set of distinct distances ofP (resp.Q) sorted in the nonin-
creasing order of their multiplicities. Note first that

λ(P, Q) =
∑

l∈D(P)∩D(Q)
HP[l ]HQ[l ] ≤

min(ν(P),ν(Q))∑
k=1

HP[lk]HQ[l ′k], (1)

due to the monotonicity of the multiplicity sequences. The monotonicity also implies
that HP[lk] ≤ f (k)/k and hence, from the above bound onf (k), that HP[lk] =
O(n10/7k−2/7) for k ≤ O(n4/5). HP[lk] : k = 1,2, . . . , ν(P) is a nonincreasing se-
quence.

Similarly, we haveHQ[l ′k] = O(m10/7k−2/7) for k ≤ O(m4/5). We can replace
HQ[l ′k] by m10/7k−2/7 for k ≤ m4/5 and 0 fork > m4/5 in inequality (1) in order to
give an asymptotic upper bound forλ(P, Q). Indeed,

∑t
i=1 m10/7k−2/7 ≥ m10/7k5/7 ≥

c
∑t

i=1 HQ[l ′k] for t = 1,2, . . . ,m4/5 and some constantc, and
∑m4/5

i=1 m10/7k−2/7 ≥
m2 >

∑t
i=1 HQ[l ′k] for any t > m4/5; therefore, Lemma 3.4 works.

Hence,

λ(P, Q) ≤
m4/5∑
k=1

O(k−4/7n10/7m10/7) = O(n10/7m62/35).

Becausen > m, we can write the bound asO(n1.43m1.77).

4. The Three-Dimensional Case

We now turn to three-dimensional space. In the following,O′( f (n)) is used as an ab-
breviation of(log∗ n)O(1) f (n), hiding polynomial factors of log∗ n. It is known that the
number of occurrences of a given distance in a set ofn points in three-dimensional space
is O′(n3/2) [9]. This trivially implies thatλ(3,1)(n,m) = O′(n3/2m2). In the following,
we derive an upper bound onλ(3,2)(n,m) by using a result on the circle-point incidence
problem. We use a classical lemma in extremal graph theory:

Lemma 4.1(Bipartite Graph Lemma). Let H = (U,V, E)be a bipartite graph,where
E is the set of edges between vertex sets U and V. If H contains no subgraph isomorphic
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to the complete bipartite graph Ks,t , the following inequality holds:

|U |
(
b|E|/|U |c

t

)
≤ (s− 1)

(
|V |
t

)
.

In particular, if s and t are constants, |E| = O(|U |1−1/t |V | + |U |).

Proof. This can be proved by counting the number of subgraphs isomorphic toK1,t

contained inH . See Lemma 2.1, p. 309 of [7] for the details of the proof. The proof for
the special case wheres andt are constants can also be found in [9] and [24].

Lemma 4.2. Given a set of N circles and n points in the d-dimensional space for
d ≥ 3, there are O(N + n+min{N2/3n, Nn1/2, N4/5n3/5}) circle-point incidences.

Proof. We apply the scheme of Clarkson et al. [9]. First, we consider the bipartite graph
H = (U,V, E), whereU corresponds to the set of circles,V corresponds to the set of
points, andE is the edge set, where a vertex ofU and a vertex ofV are connected with an
edge if the corresponding circle and point are incident. Since two circles intersect at no
more than two points (in any-dimensional space), the graph does not containK2,3. From
the Bipartite Graph Lemma applying to bothH and the graph obtained by exchanging
the roles ofU andV in H , we have thatH containsO(N + n +min{N2/3n, Nn1/2})
edges. We call this bound theCanham-likebound, abusing the terminology of [9].

Next, we project the figure to a two-dimensional plane, so that no pairs of projected
points overlap. Since the projected image of a spatial circle is an ellipse, we have a setE of
ellipses. We construct acuttingfrom these ellipses as follows: We taker sample ellipses
and construct the arrangement of ellipses. We subdivide each cell of the arrangement
into “funnels” by vertical line segments each of which either is tangent to an ellipse or
passes a vertex of the arrangement; here, a funnel is a region bounded by at most two
ellipses and two vertical line segments. There areO(r 2) the funnelsF1, . . . , Fk.

Let ni be the number of projected points located inFi , except the vertices of the
arrangement. A point on the boundary between two funnels is counted for each of the
funnels.

A circle in the space has an incidence with a point only if its projected image intersects
the funnel containing the projected image of the point. LetNi be the number of projected
ellipses ofE intersecting the interior ofFi . If we lift up these points and ellipses to the
points and circles in three-dimensional space to the original position, there areO(Ni +
N2/3

i ni ) incidences between these points and circles because of the Canham-like bound.
The number of incidences at the points projected to the vertices of the arrangement

is that betweenN ellipses andO(r 2) points, and henceO(N + r 2+ Nr) = O(Nr) (by
definition,r < N) from the Canham-like bound. Therefore,O(Nr+∑k

i=1(ni N
2/3
i +Ni ))

incidences are counted in total.
Clarkson et al.’s “sampling lemma” (Lemma 5.3 in [9]) shows that there exists a cutting

satisfying that
∑k

i=1 ni N
2/3
i = O(n(N/r )2/3) and

∑k
i=1 Ni = O(r N ). We remark that

the sampling lemma is stated for pseudolines and pseudocircles in [9]; however, it can
be applied to ellipses in a straightforward way.
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Thus, the total number of incidences isO(n(N/r )2/3 + r N ). We setr = n3/5N−1/5

to obtain theO(N4/5n3/5) bound.

Erdös and Purdy [13] gave anO(n3−1/3) bound for the number of triangles with a
given volume in the space, and asked a question aboutHP[1], the number of pairwise
congruent triangles.

Proposition 4.1. The number of triangles in P congruent to a given triangle1 is
O′(n1.8). The number of triangles in P similar to1 is O(n2.2).

Proof. For the congruency, let1 = ABZ, and leth be the distance fromZ to the line
AB. For each pairp,q of points of P with dist(p,q) = dist(A, B), the trajectory of
the vertexZ of a triangle congruent to1 locating A and B at p andq, respectively,
forms a circle of radiush. Thus, if N is the multiplicity of distancedist(A, B) in P,
the multiplicity of 1 is at most the number of incidences betweenN circles andn
points. SinceN = O′(n3/2) [9], it immediately follows from the above lemma that
HP[1] = O′((n3/2)4/5n3/5) = O′(n1.8).

For the similarity, there areO(n2) circles andO(n) points. Hence, the incidence is
O((n2)4/5n3/5) = O(n2.2).

For each triangle1, let HP[1] denote the multiplicity of1 in P (i.e., the num-
ber of ordered triples ofP forming an occurrence of1) and recall thatλ(3,2)(P, Q) =∑

1 HP[1]HQ[1]. Since HP[1] = O′(n1.8), it can immediately be shown that
λ(3,2)(n,m) = O′(n1.8m3). If n = m, the bound becomesO′(n4.8). We can obtain
another bound that is slightly better ifm is large.

Let Tl (P) = {1l
1, . . . , 1

l
kl
} denote the set of distinct triangles ofTl , each of which

contains an edge of lengthl , occurring inP, listed in the nonincreasing order of their
multiplicities. We boundFP(k; l ) =

∑k
i=1 HP(1

l
i ) for eachl . Suppose thatl occurs

L P(l ) = nα times inP. Neglecting log∗ n factors, we can assume thatα ≤ 1.5 because
of the upper bound on the repeated distances in the space.

Lemma 4.3. FP(k; l ) = O(kn7/5+ k4/5n0.8+0.7α). Also, FP(k; l ) = O(n1+α).

Proof. The O(n1+α) bound is almost trivial, since, for each location ofl , there are at
mostn possible locations of the opposite vertex inP.

We show the other bound. We can assumek < n, since otherwise theO(n1+α) bound
is better. If we fix the location of the edge of lengthl of the triangle1l

i , the trajectory of
the opposite vertex of the possible location of the triangle is a circle. Since the number
of possible locations of the edge of lengthl is nα, and we considerk different triangles
each containing an edge of lengthl , we have a familyC(k) of O(knα) circles.FP(k; l )
is at most the number of incidences between the circles inC(k) andn points. However,
the familyC(k) should be considered as a multiset: If the distancel occurss times on
a line, it may happen that up to min{s, k} triangles counted inFP(k; l ) define the same
circle. Hence, we cannot use the incidence bound in a straightforward manner.
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Let C ′(k) denote the set of circles obtained from the multisetC(k) disregarding mul-
tiplicities. For eachy > 0, we want to bound the number of circles ofC ′(k) that have
multiplicity at leasty in C(k). Suppose a circleC ∈ C ′(k) has multiplicity at leasty in
C(k). Then the lineLC perpendicular to the plane containingC and going through the
center ofC contains at leasty occurrences of the distancel between points ofP and
hence must contain at leasty+ 1 points ofP. We apply Lemma 3.1 toP and the lines
LC for all C ∈ C ′(k) with multiplicity at leasty in C(k): the total number of incidences
betweenP and those lines isO(n+ n2y−2). Each occurrence ofl contributes to at most
k circles inC(k). Hence, the number of circles inC ′(k) whose multiplicities are at least
y in C(k) is O(kny−1+ kn2y−3).

Let C ′(k, y) denote the subset ofC ′(k), each of whose circles has a multiplicity
betweeny and 2y in C(k); let C(k, y) denote the corresponding subfamily ofC(k).
Since the multiplicity is at most 2k, we havey ≤ 2k. From the above analysis we
have|C ′(k, y)| = O(kny−1 + kn2y−3). On the other hand, the number of circles in
C(k) is O(knα) so we also have that|C ′(k, y)| = O(knαy−1). The termskny−1 and
kn2y−3 balance wheny = n1/2; the termsknαy−1 andkn2y−3 wheny = n(2−α)/2. For
y ≤ n(2−α)/2 (case 1), we use the second boundO(knαy−1). For n(2−α)/2 ≤ y ≤ n1/2

(case 2), which is a nonempty case only ifα ≥ 1, we use the first bound which is
simplified toO(kn2y−3). Finally, for y ≥ max{n1/2,n(2−α)/2} (case 3), we use the first
bound which is simplified toO(kny−1). We analyze the number of incidences betweenP
andC(k, y) according to these cases. This is done by bounding the number of incidences
betweenP andC ′(k, y), using Lemma 4.2, and multiplying the result by 2y. If we denote
|C ′(k, y)| by N, Lemma 4.2 gives the bound ofO(N + n+ N4/5n3/5) on the number of
incidences betweenP andC ′(k, y). The termN4/5n3/5 dominatesN as long asN < n3,
which always holds in the following cases under our assumption thatk < n, so we ignore
the termN in this bound.

Case1: y ≤ n(2−α)/2 and we have N= O(knαy−1). Thus, the number of incidences
betweenP andC(k, y) is O(y(N4/5n3/5+ n)) = O(k4/5y1/5n0.6+0.8α + ny).

Case2: n(2−α)/2 ≤ y ≤ n1/2 and we have N= O(kn2y−3). The number of incidences
betweenP andC(k, y) is O(y(N4/5n3/5+ n)) = O(k4/5y−7/5n11/5+ ny).

Case3: y ≥ max{n1/2,n(2−α)/2} and we have N= O(kny−1). The number of incidences
betweenP andC(k, y) is O(y(N4/5n3/5+ n)) = O(k4/5y1/5n7/5+ ny).

Our bound onFP(k; l ) is obtained by summing up these bounds fory = 20,

21,22, . . . ,2k. The common termny sums toO(kn) since it forms a geometric series
with the maximum term 2kn. The termk4/5y1/5n0.6+0.8α in case 1 also forms a geometric
series with the maximum termk4/5(n(2−α)/2)1/5n0.8α+0.6 = k4/5n0.8+0.7α and thus sums
up to O(k4/5n0.8+0.7α). Similarly, the termk4/5y−7/5n11/5 in case 2 takes its maximum
at y = n(2−α)/2 and thus sums up toO(k4/5(n(2−α)/2)−7/5n11/5) = O(k4/5n0.8+0.7α).
Finally the termk4/5y1/5n7/5 in case 3 takes its maximum aty = 2k and thus sums up
to O(kn7/5). Adding all these four terms, we obtain the bound in the first part of the
lemma.

Corollary 4.1. HP(1
l
k) is O(n7/5+ k−1/5n0.8+0.7α). Also, HP(1

l
k) = O(k−1n1+α).
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Theorem 4.1. λ(3,2)(P, Q) = O′(min{m3n1.8,m2.68n1.95+m2.8n1.8875}).

Proof. For convenience sake, we omitO′() for the complexities and all equalities and
inequalities in this proof are given in an asymptotic sense ignoring factors of polynomials
of log∗ n. Them3n1.8 bound has already been shown. Hence it suffices to give the other
bound.

Let
∑

1∈Tl (P)∩Tl (Q)
HP(1)HQ(1) be the inner product of triangle sequencesTl (P)

andTl (Q). This inner product is bounded byS(P, Q, l ) =∑i HP(1
l
i )HQ(∇ l

i ), where
Let {∇ l

1, . . . ,∇ l
kl
} is the set of distinct triangles ofTl (Q), listed in the nonincreasing

order of their multiplicities.
We want to estimate

S(P, Q) =
∑

l

S(P, Q; l ) =
∑

l

∑
i

HP(1
l
i )HQ(∇ l

i ) (2)

to boundλ(3,2)(P, Q).
Consider a lengthl such that 2s < L P(l ) ≤ 2s+1 and 2t < L Q(l ) ≤ 2t+1. For

convenience sake, we denote 2s = nα and 2t = mβ Of course, bothα andβ are at
most 1.5. Let G(s, t) andg(s, t) be the set and number of different lengthsl satisfy-
ing the above condition, respectively. Naturally,S(P, Q) = ∑s,t

∑
l∈G(s,t) S(P, Q, l ),

wheres andt run up to 1.5 logm and 1.5 logn, respectively. We also denote the union⋃
1≤t≤b1.5 logmc G(s, t) by G(s, ∗), and letg(s, ∗) be its cardinality.
We examine expression (2). The terms whereHP(1

l
i ) ≤ n7/5 in (2) contributes at

most m3n7/5 < m2.8n1.8875, and hence can be ignored. Next, we consider the terms
whereHQ(∇ l

i ) ≤ m7/5 in the expression. Forz ≤ m7/5, we consider the triangles in
Tl (Q) which occur inQ at most 2z but at leastz times. Letϕ(l ; z) be the number of
different such triangles. From thek0.8n0.8+0.7α bound in Lemma 4.3, contribution of
such triangles to

∑
l∈G(s,∗) S(P, Q, l ) is bounded by

∑
l∈G(s,∗) zϕ(l ; z)0.8n0.8+0.7α. Since∑

l ϕ(l ; z) < m3/z, this is maximized whenϕ(l ; z) = (m3/z)/g(s, ∗) for all l ∈ G(s, ∗).
The maximum value isg(s, ∗)0.2z0.2m2.4n0.8+0.7α. Sinceg(s, ∗) ≤ n2−α andz ≤ m7/5,
the value ism2.68n1.2+0.5α. Hence the contribution toS(P, Q) is

∑1.5 logn
s=1 m2.68n1.220.5s,

which ism2.68n1.2+0.75 = m2.68n1.95.
Therefore, from now on, we remove all indicesi where eitherHQ(∇ l

i ) ≤ m7/5

or HP(1
l
i ) ≤ n7/5 from expression (2), and hence we can assume thatHP(1

l
k) ≤

k−1/5n0.8+0.7α and HQ(∇ l
k) ≤ k−1/5m0.8+0.7β for any k. We want to estimate

g(s, t)S(P, Q, l ) for the distancel = l (s, t) ∈ G(s, t) maximizing S(P, Q, l ). Com-
paring the two bounds in Corollary 4.1,k−1m1+β < k−1/5m0.8+0.7β if k > m0.25+0.375β .
Let y = min{n0.25+0.375α,m0.25+0.375β}.

If y = m0.25+0.375β,

S(P, Q, l ) ≤
y∑

k=1

k−2/5m0.8+0.7βn0.8+0.7α

+
m1+β∑
k=y

k−6/5n0.8+0.7αm1+β.

Hence,S(P, Q, l ) ≤ y0.6n0.8+0.7αm0.8+0.7β = n0.8+0.7αm0.95+0.925β .
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The same bound can be similarly obtained ify = n0.25+0.375α. Since g(s, t) ≤
min{n2−α,m2−β} = min{n22−s,m22−t }, g(s, t) ≤ nx(2−α)m(1−x)(2−β) for any 0 ≤
x ≤ 1. Thus, settingx = 0.075,g(s, t)S(P, Q, l (s, t)) ≤ n0.8+0.15+0.625αm0.95+1.85 =
n0.95+0.625αm2.8 = n0.9520.625sm2.8, and equality (in an asymptotic sense) holds only if
n22−s = m22−t . This attains the maximum valuen1.8875m2.8 whens takes the maximum
valueb1.5 lognc.

More precisely, ifn22−s > m22−t ,

g(s, t)S(P, Q, l (s, t)) ≤ n0.9520.625sm2.8(n22−s/m22−t )−0.025,

and otherwiseg(s, t)S(P, Q, l (s, t)) ≤ n0.9520.625sm2.8(n22−s/m22−t )0.975. Hence,
g(s, t)S(P, Q, l (s, t)) behaves as a geometric sequence with respect tos andt for each
of above cases, and the peak is whens is b1.5 lognc andn2/2s = m2/2t holds.

Hence,
∑b1.5 lognc

s=1

∑b1.5 logmc
t=1

∑
l∈G(s,t) S(P, Q, l ) = n1.8875m2.8. Combining the ob-

tained two upper bounds, we have the theorem.

Corollary 4.2. λ(3,2)(n,n) = O′(n4.6875).

Corollary 4.3. A set of n points of space defines at least n1.3125/(log∗ n)O(1) distinct
triangles under congruency.

Proof. This comes from the fact that(n3−1.3125)2n1.3125= n4.6875.

Theorem 4.2. The LSP can be solved in O((min{n7/3m8/3 log2 n,n2.2m3}+n3) logn)
time.

Proof. We compute allO(n3) (resp.O(m3)) triangles inP (resp.Q), and classify them
under similarity inO(n3 logn) time (resp.O(m3 logm) time). For each triangle1, we
search similar triangles inP andQ by using the above classification, and give one vote
to the corresponding similar transformation for each pair of triangles, one inP and the
other in Q. Each vote can be done inO(logn) time, and the transformation gathering
the largest number of votes gives the solution of LSP. The number of votes is bounded
by
∑

1 H sim
P (1)H sim

Q (1), whereH sim
P (1) is the number of similar triangles to1 in P.

It is O(n2.2m3) by Proposition 4.1.
Moreover, abusing the notations for the congruent case, letFP(k) be the upper bound

for the number of triangles inP similar to one of the elements of a setX of given k
triangles. We will show below thatFP(k) = O(min{n3, k2/3n7/3 logn}). Without loss
of generality, we assume thatFP(k)− FP(k− 1) ≥ FP(k+ 1)− FP(k), since we can
consider thek triangles maximizingFP(k).

Thus,
∑

1 H sim
P (1)H sim

Q (1) is bounded by
∑

k(FP(k)−FP(k−1))(FQ(k)−FQ(k−
1)). Here, we can assume thatFQ(k) so thatFQ(m) = m3 andFQ(k)− FQ(k− 1) = 0
for k > m because of Lemma 3.4. Thus,

∑
k(FP(k) − FP(k − 1))(FQ(k) − FQ(k −

1)) is asymptotically bounded by
∑m

k=1(k
−1/3m7/3 logm)(k−1/3n7/3 logn), which is

O(n7/3m8/3 logn logm).Hence,LSPcanbesolved inO((min{n7/3m8/3 log2 n,n2.2m3}+
n3) logn) time.
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Now, it suffices to proveFP(k) = O(k2/3n7/3 logn) for k ≤ n. There aren2 possible
edges, and for each distance there arek circles, each corresponding to a triangle inX. A
circle C can appear for min{k, y(y + 1)/2} different triangles if the line perpendicular
to C through the center containsy points ofP.

We consider the incidence between a multiset ofO(kn2) circles and a set ofO(n)
points.Thenumberof linescontainingbetweenyand2ypointsofP ismax{ny−1,n2y−3}.
If y2 < k ≤ n, the number of triangles created by edges on these lines is
O(y2(kn2y−3)2/3n),which isO(k2/3n7/3). If y2 > k, andy ≤ n0.5, it is O(k(kn2y2)2/3n),
which is O(k2/3n7/3). If y2 > k andy > n0.5, for each lineL containingy points, each
pointv of P defines at most one triangle similar to a given triangle1which has its longest
edge onL and the opposite vertex atv. Hence, the line defines at mostnsimilar triangles to
each ofk given triangles. Thus, there arekntriangles associated withL, and there areny−1

such lines. Hence, we have anO(ky−1n2) bound, which isO(k1/2n2) = o(k2/3n7/3).
Since we have cut the interval ofy into logn subintervals, the total complexity is
O(k2/3n7/3 logn).

5. The Four–Dimensional Case

5.1. Number of Congruent Triangles

In this subsection we prove the following theorem:

Theorem 5.1. In the given set P of n points in four-dimensional space, the multiplicity
of any given triangle is O(n65/23) = O(n2.83).

In the following, all geometric objects are in four-dimensional space unless otherwise
stated. We consider triangles congruent to a given triangle1 = ABZ, whose longest
edgeAB has a length of 1, and whose heightZ X is h. We call AB thebase edgeof 1.
We need the following basic fact:

Proposition 5.1. The intersection of four mutually distinct three-dimensional unit
spheres is either a circle or a set of no more than two points.

We call two circlesC1 andC2 adistance-circle pairif the distancedist(u, v) = 1 for
anyu ∈ C1 andv ∈ C2. Note that for any circleC1 of radiusr < 1, there is a unique
circleC2 such thatC1 andC2 form a distance-circle pair. To show the existence, choose a
coordinate system so thatC1 = {(x, y,0,0) | x2+ y2 = r 2} and setC2 = {(0,0, z, w) |
z2 + w2 = 1− r 2}. For uniqueness, take an arbitrary four points fromC1 and observe
thatC2 must lie in the intersection of the four three-dimensional unit spheres centered at
these four points. Therefore, we denote the circle forming the distance pair with a circle
C by D(C). The existence of a distance-circle pair kills the hope of getting a nontrivial
asymptotic bound on the multiplicity of a distance in four dimensions, because one may
placen/2 points on each circle of a distance-circle pair to getn2/4 occurrences of the
unit distance.
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Given a point setP of n points, we say that a circleC is heavyif it contains more
thannα points ofP, whereα = 7

23. Let N denote the number of heavy circles.

Lemma 5.1. N = O(n3−5α).

Proof. By Lemma 4.2 on the number of circle-point incidences, we haveNnα =
O(N + n+ N4/5n3/5). Hence,N = O(n3−5α), sinceα < 0.5.

We construct a bipartite graphG = (U,V, E), so that each ofU andV corresponds
to the point setP, and(u, v) ∈ E if and only if dist(u, v) = 1. An edge(u, v) is called
specialif u (or v) is in a heavy circleC, v ∈ D(C) (or u ∈ D(C)), andD(C) has at least
four points ofP. Let E0 be the set of special edges, andE1 = E − E0.

Lemma 5.2. |E1| = O(n(7+α)/4).

Proof. First we show that the bipartite graph(U,V, E1) has noKnα,4 as a subgraph
(with the nα points onU ’s side and the four points onV ’s side). Suppose otherwise,
namely, that(U,V, E1) has a subgraph isomorphic toKnα,4. Then thenα points ofU in
this subgraph must lie in the intersection of four unit three-dimensional spheres centered
at the four pointsv1, v2, v3, v4 of V in this subgraph. By Proposition 5.1, thesenα points
must lie on a circleC, making the circle heavy. Moreover, the four pointsv1, v2, v3, v4

must lie in the intersection ofnα spheres, and hence must lie onD(C). This contradicts
the definition ofE1. Hence,(U,V, E1)has noKnα,4 as a subgraph, and, from the Bipartite
Graph Lemma, we have

|U |
(
|E1|/|U |

4

)
< nα

(
|V |
4

)
.

Since|U | = |V | = n, we have|E1| = O(n(7+α)/4).

Corollary 5.1. The number of triangles congruent to1 whose base edge is in E1 is
O(n(11+α)/4).

Proof. Each edge defines at mostn triangles inP; Hence the corollary holds.

We next consider triangles whose base edge is located at edges inE0. We fix a distance-
circle pair(C, D(C)) in whichC is heavy, and consider the embedding of1 so that its
base edge is mapped to an edge betweenC1 andD(C). We assume each edge is directed
from C to D(C), so that the copy of the vertexA is in C, and the copy ofB is in D(C).
Recall thatX is the point on the lineABsuch that the line segmentZ X defines the height
h of1, and letX(e) denote the image ofX whenAB is mapped to a directed edgee of
unit length. Then the locus of the opposite vertexZ of 1 when we transformAB into
e forms a two-dimensional sphereS(2)(e) with radiush, centered atX(e). Moreover,
e is the normal vector of the three-dimensional space containing the two-dimensional
sphere. We consider the family of spheresF(C, D(C)) = {S(2)(xy)|x ∈ C, y ∈ D(C)}.
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Lemma 5.3. Consider the family of two-dimensional spheres with radius h containing
a fixed circle C. The centers of these spheres are located on a circle C′. Moreover, the
hyperplane containing each sphere has its normal vector that is tangent to C′ at the
center of the sphere.

Proof. Let p be the center andr the radius ofC. Let L be the two-dimensional plane
determined byC and letL ′ be the two-dimensional plane containingp and orthogonal
to L. Let S be any sphere belonging to the family in the lemma, and letq be the center
of S. Thenq is on L ′ and at a distance

√
h2− r 2 from p; that is to say, it is on a circle

C′ of radius
√

h2− r 2 centered atp and contained inL ′. The three-dimensional space
containingS is spanned by the linepqandL; and hence is perpendicular to the tangent
of C′ atq.

Lemma 5.4. For any circle C0, there are at most four spheres inF(C, D(C)) that
contain C0.

Proof. Let F(C0) denote the set of spheres ofF(C, D(C)) that containC0 and assume
that F(C0) is nonempty. By the above lemma, there is some circleC′ such that each
sphere ofF(C0) has its center onC′ and has its normal tangent toC′. Lete= xy, x ∈ C,
y ∈ D(C), be an edge such thatS(2)(e) ∈ F(C0). Then, from the observation preceding
the above lemma, the normal of the space containingS(2)(e) is eand the center ofS(2)(e)
is X(e). Therefore,emust be tangent toC′ and hence contained in the two-dimensional
planeL containingC′. L cannot containC, because if it does then it does not intersect
D(C) and hence does not contain any edge betweenC andD(C). Similarly, L does not
containD(C). Therefore,L intersects each ofC andD(C) at no more than two points
and hence there are at most four edges betweenC andD(C) contained inL. Therefore,
S(2)(e) ∈ F(C0) for at most four edgese.

We are now ready to bound the number of triangles inP congruent to1 that have
their base edge inE0. We consider the bipartite graph(E0, P, T), which has vertex set
E0 andP, and connecte∈ E0 andp ∈ P by an edge ofT if and only if e andp form a
triangle congruent to1. Each edgee ∈ E0 defines a sphere corresponding to the locus
of the opposite vertex of1, and hencep must lie on this sphere. Eache ∈ E0 has one
end on a heavy circleC and the other end on the circleD(C).

Consider any 4N + 1 elements ofE0 and its corresponding spheres. These spheres
must be in

⋃
F(C, D(C)), where union is taken over all heavy circlesC. Since there are

only N heavy circles, there is a distance-circle pair(C, D(C)) such that at least five of
those spheres are inF(C, D(C)). By Lemma 5.4, the intersection of these five spheres
cannot contain a circle and hence is a set of at most two points. Thus, our bipartite graph
does not containK4N+1,3 as a subgraph. Since|E0| < n2 and|P| = n, from the Bipartite
Graph Lemma, we have

n2

(
b|T |/n2c

3

)
≤ 4N

(
n
3

)
,

and hence|T | = O(N1/3n7/3). SinceN = O(n3−5α), |T | = O(n10/3−5α/3).
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Putting this together with Corollary 5.1, the number of triangles congruent to1 in P
is O(n(11+α)/4+ n10/3−5α/3). We setα = 7

23 to obtain the bound ofO(n65/23).

5.2. LCP in Four-Dimensional Space

We consider three-dimensional simplices in four-dimensional space.

Theorem 5.2. The maximum number of three-dimensional simplices of n points in
four-dimensional space congruent to a given three-dimensional simplex0 is O(n2.87).

Proof. If we a fix a location of a triangle face1 of 0, the locus of the opposite vertex
v of 0 forms a circle. The number of triangles congruent to1 in P is O(nγ ) for γ = 65

23.
Thus, we have a setC(0) of nγ circles corresponding to the possible locations of the
three-dimensional simplices.

We would like to use the circle-point incidence to bound the number of three-
dimensional simplices. Unfortunately, different locations of1 may create the same
circleC, and therefore we cannot use Lemma 4.2 directly.

Suppose thats locations of1 can createC. These triangles must lie on the plane that
contains the centero of C and is perpendicular to the plane containingC. Moreover, the
set of vertices of the triangles must lie on (at most) three circlesCirc1(C),Circ2(C), and
Circ3(C) centered ato. Circ1(C) containss vertices, andCirc1(C) cannot coincide with
Circ1(C′) if C 6= C′: Consider the case in whichCirc1(C) has its center at the origin
and is contained in thex-y plane. If the height of0 with respect to the face1 is h, C
must be the unique circle defined byx = y = 0, z2+ t2 = h2.

We consider the subsetC(s) of C(0) in which each member has multiplicities equal
to or greater thans but less than 2s. Then, for eachC ∈ C(s), Circ1(C) contains at
leasts points ofP. From Lemma 4.2, there are at mostO′(ns−1 + n3s−5) circles, each
containing more thans points. Hence,C(s) containsO′(min{ns−1 + n3s−5,nγ s−1})
circles.

If s > n0.5, the incidence betweenP andC(s) is O(s(ns−1)0.8n0.6) = O(s0.2n1.4),
which is small even ifs= n. If s> n1/23, n3s−5 < nγ s−1, and the incidence betweenP
andC(s) is O(s(n3s−5)0.8n0.6), which isO(n3s−3). Hence, there areO(n66/23) incidences
created by circles whose multiplicities are at leastn1/23.

If s < n1/23, the incidence betweenP andC(s) is the incidence betweenn points
andO(nγ s−1) circles each of which has multiplicitys; this is O(s0.2n0.8γ+0.6). Hence,
there areO(n66/23) incidences created by circles whose multiplicities are less thann1/23.
Hence, the number of 3-dimensional simplices isO(n66/23) = O(n2.87).

Proposition 5.2. The maximum number of three-dimensional simplices of n points in
four-dimensional space similar to a given three-dimensional simplex0 is O(n3).

Proof. If we a fix the location of a similar copy of the triangle face1 of 0, the lo-
cus of the opposite vertexv of the similar copy of0 forms a circle. The number of
triangles congruent to1 in P is O(n3). Thus, we have a setC(0) of n3 circles corre-
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sponding to the possible locations of the similar copies of three-dimensional simplices.
The rest is almost the same as the proof of Theorem 5.2. Abusing the notations,C(s)
containsO(ns−1+n3s−5) circles, and the incidence betweenP andC(s) is O(s(ns−1+
n3s−5)0.8n0.6) = O(s0.2n1.4+n3s−3). By summing this overs= 1,2, . . . ,n, we have the
O(n3)

bound.

Theorem 5.3. The LCP in four-dimensional space can be solved in O((n2.87m4 +
n4) logn) time.The LSP in four-dimensional space can be solved in O((n3m4+n4) logn)
time. The CCD can be solved in O(n3.83+ n2.87m logn) time.

Proof. From the bounds of triangles and three-dimensional simplices,λ(4,3)(n,m) =
n2.87m3 andλ(4,2)(n,m) = n2.83m2. Hence, from Theorem 2.6, we have the bound for
the LCP.

Analysis for the LSP is analogous. For the CCD, we choose a three-dimensional
simplex0 and its face1 from Q, and find all possibleO(n2.83) locations of1 in P
within O(n3) time. Next, we find all possibleO(n2.87) locations of0 in O(n3.83) time
from all three-dimensional simplices containing copies of1 in P. Then we check within
O(m logn) time whether each copy of0 is associated with a congruent embedding of
Q in P.

6. The Higher-Dimensional Case

Lemma 6.1. In d-dimensional space, d ≥ 5, the number of(d − 1)-dimensional
simplices in P similar to a given(d − 1)-dimensional simplex is O(nd−1).

Proof. For d = 5, we need special care, as we show in Appendix B. Ford ≥ 6,
given a(d − 1)-dimensional simplex0, suppose that we fix(d − 1) points of P and
the(d − 2)-dimensional simplex3 spanned by these points, which is a facet of a copy
(under similarity) of0. Then the locus of the remaining vertexu of a copy of0 forms a
circle.

More than one location of3 can have the same circleC as the locus ofu. Suppose
there areK locations of3 creatingC. Let v1, . . . , vd−1 be the set of vertices of3.
The copies ofvi in the K locations of3 must lie on a(d − 3)-dimensional sphereCi

which is centered at the centero of C and contained in the(d − 2)-dimensional plane
perpendicular toC.

We projects the points toC1 using the central projection with the centero. Let F be a
face of3. Then copies ofF in theK locations are projected to the(d− 3)-dimensional
simplices which are congruent to each other.

Thus,K must be smaller than the number of congruent(d−3)-dimensional simplices
in the (d − 3)-dimensional sphere. This is bounded by the number of congruent(d −
4)-dimensional simplices, since there are at most two(d − 3)-dimensional congruent
simplices sharing a(d−4)-dimensional simplex in the sphere. The sameO(nd−4) bound
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as in the case of(d− 3)-dimensional space can be applied to the sphere, which holds if
d − 3= 3,4, as we have seen, and inductively ford − 3≥ 4.

Thus, we have a set of circles with multiplicities, so that the maximum multiplicity
is O(nd−4) and the total sum of the multiplicities isO(nd−1). The worst scenario for us
is that we have a set ofO(n3) circles, each of which has multiplicityO(nd−4). From
Lemma 4.2, the incidence of a set ofO(n3) circles andn points isO(n3). Hence, the
total number of incidences isO(nd−1).

Theorem 6.1. The LSP and LCP in d-dimensional space can be solved in O((nd−1md+
nd) logn) time for d≥ 5. The SCD and CCD can be solved in O′(nd + nd−1m logn)
time for d≥ 5.

Proof. It trivially follows from Lemma 6.1 thatλ(d,d−1)(n,m) = O(nd−1md). This and
the trivial O(nd−1md−1) bound onλ(d,d−2)(n,m) make the first two terms comparable
in the running-time upper bound of Theorem 2.6. Therefore, the bound for LCP holds.
Since Lemma 6.1 holds for similarity, we can give the same argument for LSP. For the
SCD (and CCD), we pick a(d − 1)-dimensional simplex fromQ, find all (O(nd−1))
copies of it inP within O(nd) time, and check whether each associated transformation
gives an embedding ofQ in O(m logn) time.

Bounding the number of pairwise congruent (similar)k-dimensional simplices in a
set ofn points ind-dimensional space is a classical problem posed by Moser [21],
Erdös and Purdy [13], and Elekes and Erd¨os [10]. A better solution to this problem for
k = d− 1 andk = d− 2 will improve the bounds onλ(d,d−1)(n,m) andλ(d,d−2)(n,m),
and hence the bound on the analysis of the algorithms for the LCP (or LSP).
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Appendix A. Linear Space Implementation

The following argument can be extended to the voting algorithms in any dimensions.
However, for simplicity, we give the description for the planar case.

We first note that we process the local voting processes at thepi ,qj in lexicographic
order with respect toi and j . Hence, we keep the sorted list of{dist(p,u) : u ∈ P} only
during local voting processes at thep,qj ( j = 1,2, . . . ,m) run.

The space complexity of the voting algorithm is naivelyO(nm), because the size of
the voting table may becomeO(nm). We can improve it toO(n) by avoiding explicit
construction of the voting table, as follows: In the local voting process, without loss of
generality, we assume thatp= q= O. The transformationT corresponds to the rotation



Computing the Largest Common Point Sets 329

angleτ(T), which equalsθ(u) − θ(v) if T mapsu to v, whereθ(u) is the argument of
the vectoru.

Let A′l (P) be the family of lines consisting ofy = x + θ(u) for all u ∈ P satisfying
|u| = l . Let A′l (Q) be the family of lines consisting ofy = θ(v) for all v ∈ Q satisfying
|v| = l . The total number (over alll ) of lines is at mostn+m, and thusO(n). For a real
valuex, letgl (x)be the number of segment intersections ofAl = A′l (P)∪A′l (Q) that have
x as theirx-coordinate value. Then the number of votes collected by a transformationT
is
∑

l gl (τ (T)).
We process the segment intersection computation by using Bentley–Ottman’s sweep

algorithm, with a slight modification that the algorithm shares a priority queue controlling
the sweeping processes for allA(l ), so that it can find the nextx-coordinate value of
the intersection (more precisely, the lexicographically smallest intersection) among all
arrangements.

UsingO(n) space, the algorithm maintains thex-coordinate value (on the left of the
sweep line) of the largest number of intersection points (summed over alll ). We remark
that, in a real implementation, we need not consider segments explicitly.

Appendix B. The Five-Dimensional Case for Lemma 6.1

We are given a 4-simplex0, its facet3, which is a 3-simplex, and a triangle1, which
is a facet of3. The vertex opposite to3 is v, and the vertices of3 arew(1),w(2),w(3),
andw(4). We assume that the vertical distance fromv to3 is 1, and that the projection
of v to3 is v′. The distance fromv′ to w(s) is d(s) for s= 1,2,3,4.

The setP of n points inR5 creates less thann4 3-simplices. Thus, the number of
possible locations of3 using points ofP as vertices is less thann4. For a fixed location
30 of3, the trajectory of the possible locations ofv is a unit circleC centered byv′0 and
perpendicular to the hyperplane (of codimension two)H containing30; here,v′0 is the
copy ofv′ in 30.

Different locations of3may define the same circleC. Suppose that each member of
t copies3i (i = 1, . . . , t) of3 defines the same circleC. Let w(s)i be the copy ofw(s)
in 3i . Thenw(s)i must be contained inH , and, moreover, is in the sphereS(C; s) with
diameterd(s) centered atv′1.

Without loss of generality, we only consider the circlesC such that the number of
points of P located onS(C;1) is at least a quarter of that on

⋃
s=1,2,3,4 S(C; s), since

otherwise we choose another index. Note thatC is uniquely defined fromS(C;1) so that
it is the circle centered at the center ofS(C;1) and perpendicular to the hyperplaneH .

We project the points of
⋃

j=1,2,3,4 S(C; j ) ontoS(C;1). They must define at leastt
copies of the same triangle (say,1′), which is the projective image of the copies of1
ontoS(C;1). On the sphereS(C;1), at most two possible locations of1′ are permitted
if its shortest edge is fixed. From the distance bound on the plane, which holds for the
point set on the sphere,t = O(m4/3) if S(C;1) containsm points ofP. (Note: the only
difference between the case of sphere and plane is that more than two diameter circles
on the sphere intersect at two points (north and south poles.) This can be resolved by
decomposing the sphere into three parts: the equator and upper and lower hemispheres).

For a fixedt , we consider a setC1,C2, . . . ,Ck of different circles, each of which
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is defined by at leastt but at most 2t different locations of3, and there aremi points
S(Ci ;1). Sincet = O(m4/3

i ), mi = Ä(t3/4).
We can give an upper bound ofk in terms oft andn. S(Ci ;1) hasÄ(mi ) points. We

sayCi is a special circle if all the points inS(Ci ,1) are located on a circle.
These points defineÄ(m4

i ) three-dimensional simplices in the space; moreover, ifCi

is not special,Ä(m2
i ) = Ä(t8/3), three-dimensional simplices among them are nonde-

generate. For the time being, we omit special circles. Since there are at mostn4 three-
dimensional simplices inP, and it cannot happen that a nondegenerate three-dimensional
simplex lies on the intersection ofS(Ci ;1)andS(Cj ;1) for i 6= j ,kt8/3 = O(n4). Hence,
k = O(n4/t3/2).

The number of incidences between the circles (counting the multiplicities) andP is
O(tk4/5n3/5+ tk+ tn). Thus, it isO(n19/5t−0.2+ n4t−0.5+ tn). By summing this term
overt = 2 j for j = 1,2, . . . , blogn4/3c, we obtain anO(n4) bound.

Finally, we consider the special circles. IfC is special, all points onS(C;1) lie on a
circleY. Consider the projected images of points onS(C;2) ontoS(C;1). If the original
point onS(C;2) contributes to a copy of3 definingC, its projected point must lie on a
circle centered at the points onY with diameterdist(w(1)w′(2)). However, the number
of incidences betweenO(m) equidiameter circles centered at points onY and O(m)
points onS(C;1) is O(m), since three such circles cannot intersect at a point (except
for two points corresponding to north and south poles).

Hence, they can create at mostO(m) edges of the copies of the triangle1′, and hence
t = O(m). If we sett = 2 j , and suppose there arek( j ) special circles defined by at least
t but at most 2t different locations of3.

The sum of the multiplicities of the circles gives the formula
∑blognc

j=0 2 j k( j ) = O(n4).

The upper bound of the associated incidences is
∑blognc

j=0 2 j k( j )4/5n3/5+ 2 j k( j )+ 2 j n,

which is O(n4)+ O(
∑blognc

j=0 20.2 j n19/5) = O(n4).
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