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Abstract. We present an algorithm for computing thediscrete2-centerof a setP of n
points in the plane; that is, computing two congruent disks of smallest possible radius, cen-
tered at two points ofP, whose union coversP. Our algorithm runs in timeO(n4/3 log5 n).

1. Introduction

Problem Statement and Previous Results. Let P be a set ofn points in the plane. The
discrete2-centerproblem forP is to coverP by (the union of) two congruent closed
disks whose radius is as small as possible, and whose centers are two points ofP.
This is a restricted version of the standard 2-center problem, where the centers of the
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two covering disks can be any pair of points in the plane. This latter problem has been
studied extensively, where the best algorithm, due to Sharir [14] and slightly improved
by Eppstein [6], runs in randomized expectedO(n log2 n) time.

The discrete 2-center problem has been studied in [7], where a near-quadratic al-
gorithm is proposed (such an algorithm is briefly described later in this introduction).
Before discussing it further, we note that the discrete 1-center problem, seeking the
smallest disk centered at a point ofP and containingP, is much easier to solve, in
time O(n logn), using the furthest-neighbor Voronoi diagram ofP. That is, the diagram
allows us to find, inO(n logn) time, the furthest neighborf (p) of each pointp ∈ P.
The pointp that minimizes the distance betweenp and f (p) is the center of the desired
smallest enclosing disk.

The discrete 2-center problem appears to be more difficult than the standard 2-center
problem. Both problems involve a “decision procedure” that, given a fixed radiusr ,
aims to determine whetherP can be covered by two disks of radiusr . As an informal
explanation of the additional difficulty of the discrete 2-center problem, suppose that we
have already guessed one centerp. The second center must then lie in (“pierce”) each
of the disks of radiusr centered at the points ofP and not containingp. In the standard
2-center problem we simply need to determine whether the intersection of all these disks
is nonempty, whereas in the discrete 2-center problem we need to determine whether
this intersection contains a point ofP, which is a harder task.

Main Results and the Overall Approach. In this paper we obtain an efficient solution
to the discrete 2-center problem that runs in timeO(n4/3 log5 n). This is the first sub-
quadratic algorithm for solving the problem. We note that a near-quadratic solution is
rather easy: It suffices to show a near-quadratic solution to the fixed-size problem, and
then follow (a simpler version of) the binary-search technique (on the radiusr ) that is
described below, in Section 5, to find the optimal solution. The fixed-size problem, for a
given radiusr , determines whether there existp,q ∈ P so thatP ⊂ D(p, r )∪ D(q, r ),
whereD(x, r ) denotes the closed disk of radiusr centered atx. We try each pointp ∈ P
as the first center and obtain the setNp ⊂ P of points not contained inD(p, r ). By
computing the farthest-point Voronoi diagram ofNp, we can determine inO(n logn)
time whether there exists a pointq ∈ P so thatNp ⊂ D(q, r ). The running time of the
fixed-size procedure is thereforeO(n2 logn).

In order to improve the running time of the fixed-size problem, we proceed as follows:
For eachp ∈ P, let Kp be the intersection of all the disksD(q, r ) centered at the points
of P and not containingp. If any setKp contains a pointq of P, then we are done:p and
q are centers of two disks of radiusr whose union coversP. Conversely, ifp,q ∈ P are
centers of two such disks, thenp ∈ Kq andq ∈ Kp. In other words, we need to compute
the unionU of all the Kp’s, and determine whetherU ∩ P 6= ∅. The difficult step is to
computeU in time close ton4/3.

We consider a more general problem: LetP be a set ofm points and letD be a set of
n congruent disks. For eachp ∈ P, defineDp = {D ∈ D | p 6∈ D}, Kp =

⋂
D∈Dp

D,
K = {Kp | p ∈ P}, andU = ⋃

p∈P Kp. In Section 2 we present some important
properties ofK, which we believe to be of independent interest. The main property is
thatK is a collection ofconvex pseudodisks; i.e., these sets are compact and convex, and,
for any pairKp, Kq of such sets, bothKp\Kq andKq\Kp are connected.
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In Section 3 we show that the combinatorial complexity ofU is O(m2/3n2/3 log1/3 n+
n logn). While this bound is nontrivial, and “consistent” with the running time we are
aiming at, we have so far been unable to exploit this bound to obtain an alternative simpler
solution, of comparable complexity, of the discrete 2-center problem. The reasons for
this are technical and are noted below.

In Section 4 we present anO(n4/3 log4 n)-time algorithm for computingU (and for
testing whetherU ∩ P 6= ∅) for the case in whichD = {D(p, r ) | p ∈ P}. The algo-
rithm constructs and searches inU in a semi-implicit manner, using appropriate range-
searching data structures and techniques similar to those used in parametric searching,
for performing various primitive operations on the semi-implicit representation ofU .
Finally, we describe the overall algorithm for the discrete 2-center problem in Section 5.
As mentioned, its running time isO(n4/3 log5 n).

2. Structure ofK

In this section we prove some interesting properties ofK. These properties, besides being
of independent interest, are crucial for making our algorithm efficient.

Theorem 2.1. Let D be a finite set of congruent disks in the plane, and let P be a
finite set of points. LetK be the same as defined in the Introduction. ThenK is a family
of convex pseudodisks; that is, each Kp is a compact convex set, and for each pair of
distinct sets Kp, Kq, both sets Kp\Kq and Kq\Kp are connected.

We prove the theorem by a sequence of lemmas.

Lemma 2.2. For a point p, two distinct disks D1, D2 ∈ D that do not contain p and
another disk D∈ D that contains p, the set D\(D1 ∩ D2) is connected.

Proof. Suppose to the contrary thatD\(D1 ∩ D2) is disconnected. Sincep ∈ D and
p 6∈ D1, D2, all three disksD, D1, D2 are distinct. SinceD\(D1∩ D2) is disconnected,
∂D and ∂(D1 ∩ D2) must cross at exactly four points, all lying on the boundary of
E = D∩ D1∩ D2. This however is impossible, since the intersection of three congruent
disks can have at most three such intersection points on its boundary.

Corollary 2.3. For a point p∈ P and a disk D∈ D that contains p, the set Kp\D is
connected.

Proof. Suppose to the contrary thatKp\D is disconnected. SinceD 6∈ Dp, it is distinct
from any of the disks that formKp, so any intersection of∂D with ∂Kp must be a proper
crossing. Moreover, sinceKp\D is disconnected, the boundaries ofD and ofKp must
cross at least four times. This, however, implies thatD\Kp is also disconnected (this
follows from the convexity ofKp). Nonetheless,

D\Kp = D\
⋂

D′∈Dp

D′ = D ∩
⋃

D′∈Dp

(D′)c =
⋃

D′∈Dp

(D\D′).
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If a union of a collection of sets is disconnected, then either one of the sets is disconnected,
or there exist two distinct sets in the collection whose union is disconnected. In our
setting,D\D′ is always connected, and the second case contradicts Lemma 2.2 (because
for D′, D′′ ∈ Dp, (D\D′) ∪ (D\D′′) = D\(D′ ∩ D′′)). Hence,Kp\D is connected.

Lemma 2.4. For a point p, two distinct disks D1, D2 ∈ D that do not contain p and
two other distinct disks D3, D4 ∈ D that contain p, the set(D1 ∩ D2)\(D3 ∩ D4) is
connected.

Proof. Suppose again to the contrary that(D1 ∩ D2)\(D3 ∩ D4) is disconnected.
Lemma 2.2 implies (using the argument in the proof of Corollary 2.3) that(D1∩D2)\D3

is connected, and so is(D1 ∩ D2)\D4. It follows that∂(D1 ∩ D2) and∂D3 intersect at
most twice, and the same holds for∂(D1 ∩ D2) and∂D4. These conditions, along with
our assumption, imply that∂(D1 ∩ D2) and∂(D3 ∩ D4) intersect exactly four times.
Moreover, putE = D1 ∩ D2 ∩ D3 ∩ D4, fix a pointo in the interior ofE, and consider
the boundaries ofD1, . . . , D4 andE as graphs of functionsr = D1(θ), . . . , r = E(θ)
in polar coordinates abouto. Let u, v, w, z be the four points of intersection between
∂(D1 ∩ D2) and∂(D3 ∩ D4), appearing in this circular counterclockwise order along
∂E. Let θu < θv < θw < θz be the polar orientations ofu, v, w, z, respectively. Since
D1, . . . , D4 are congruent disks, each∂Di appears along∂E in a single connected arc.
Hence, with no loss of generality, we may assume that∂E is attained by∂D1 over [θu, θv],
by ∂D3 over [θv, θw], by ∂D2 over [θw, θz], and by∂D4 over [θz, θu]. See Fig. 1. Letθp

be the polar orientation ofEop. It is impossible thatθp lies in [θv, θw], for otherwise, since
p ∈ D3, we have|op| ≤ D3(θp) ≤ D1(θp), implying thatp ∈ D1, contrary to assump-
tion. Similarly,θp cannot lie in [θz, θu]. (We use the notation [θ, θ ′] to denote the angular
interval extending counterclockwise fromθ to θ ′.) Suppose then thatθp ∈ [θu, θv]. Let
F = D3 ∩ D4 and regard it too as a graphr = F(θ). Sincep ∈ F but p /∈ D2, we have
D2(θp) < F(θp), and this inequality is reversed over the intervals [θv, θw] and [θz, θu]. It
follows that∂F and∂D2 intersect at least twice over the interval [θu, θv], which, together
withw andz, yields four points of intersection between these boundaries, all lying along

Fig. 1. The proof of Lemma 2.4.
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∂(D2 ∩ D3 ∩ D4). This is impossible for congruent disks (see the proof of Lemma 2.2).
A similar contradiction occurs whenθp ∈ [θw, θz]. All these contradictions establish the
lemma.

Following the same argument as in the proof of Corollary 2.3, we obtain the following.

Corollary 2.5. For a point p ∈ P and two disks D, D′ ∈ D that contain p, the set
Kp\(D ∩ D′) is connected.

We are now ready to prove Theorem 2.1.

Proof of Theorem2.1. Suppose to the contrary that there existp,q ∈ P such that
Kp\Kq is disconnected. As in the proof of Corollary 2.3, we can expressKp\Kq as

Kp\Kq = Kp\
⋂

D∈Dq

D = Kp ∩
⋃

D∈Dq

Dc

=
⋃

D∈Dq

(Kp\D)

=
⋃

D∈Dq\Dp

(Kp\D) .

(The last equality follows from the fact that the disks inDq∩Dp contribute empty sets to
this union.) Again, as in the proof of Corollary 2.3, ifKp\Kq is disconnected, then either
there exists a diskD ∈ Dq\Dp so thatKp\D is disconnected, or there exists two disks
D1, D2 ∈ Dq\Dp so thatKp\(D1∩ D2) is disconnected. The first condition contradicts
Corollary 2.3 and the second contradicts Corollary 2.5. Hence,Kp\Kq is connected (and
so isKq\Kp).

Theorem 2.1 fails for noncongruent disks, as is illustrated in Fig. 2. Nevertheless, the
following variant of the theorem holds in even more generality:

Theorem 2.6. LetD be a finite set of convex pseudodisks in the plane; that is, each
D ∈ D is a compact convex set, and, for each pair of distinct sets D, D′ ∈ D, both

Fig. 2. Kq\Kp (the shaded region) consists of two connected components.
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sets D\D′ and D′\D are connected; we also assume that∂D and∂D′ cross each other
transversally at any point of intersection. Let P be a finite set of points. For each p∈ P,
letDp denote the set of pseudodisks inD that do not contain p, and let Kp denote their
intersection. Then, for any p,q ∈ P, ∂Kp and∂Kq can cross each other at most twice.

(Note that for the setsKp andKq in Fig. 2, their boundaries do not cross at all.)

Proof. We partitionD into four subsets: the subsetDp∩Dq of pseudodisks that contain
neitherp nor q, the subsetDp\Dq of pseudodisks that containq but not p, the subset
Dq\Dp of pseudodisks that containp but notq, and the subsetD\(Dp ∪ Dq) of pseu-
dodisks that contain bothp andq. We can ignore the last subset since the pseudodisks
in this set have no effect onKp or Kq. Let I = ⋂(Dp ∩Dq). Clearly, bothKp andKq

are contained inI, so any crossing between their boundaries must be interior toI. In
particular, if such a crossing occurs between a pseudodiskD ∈ Dp and a pseudodisk
D′ ∈ Dq, then we must haveD ∈ Dp\Dq andD′ ∈ Dq\Dp (that is,q ∈ D andp ∈ D′).

Now suppose that∂Kp and∂Kq cross each other three times, at pointsu, v, andw.
By the above argument, there exist six (not necessarily all distinct) pseudodisks,D(p)

u ,
D(q)

u , D(p)
v , D(q)

v , D(p)
w , D(q)

w , such thatD(p)
u , D(p)

v , andD(p)
w are inDp\Dq; D(q)

u , D(q)
v ,

andD(q)
w are inDq\Dp; D(p)

u andD(q)
u cross atu; D(p)

v andD(q)
v cross atv; andD(p)

w and
D(q)
w cross atw.
Let o be a point in the interior ofKp ∩ Kq. There must exist two of the crossing

points, sayu andv, such thatp andq appear betweenu andv in counterclockwise
angular order abouto. Without loss of generality, assume thatu, p, q, andv appear in
this counterclockwise order abouto, and letθu < θp < θq < θv be the orientations of
the vectorsEou, Eop, Eoq, and Eov, respectively.

Now consider the two pseudodisksD(q)
u and D(p)

v , and regard their boundaries as
functionsr = D(q)

u (θ) andr = D(p)
v (θ) in polar coordinates abouto. Then we have (see

Fig. 3)

D(q)
u (θu) ≤ D(p)

v (θu),

D(q)
u (θp) > D(p)

v (θp),

D(q)
u (θq) < D(p)

v (θq),

D(q)
u (θv) ≥ D(p)

v (θv).

These inequalities follow from the convexity ofKp and Kq, from the fact thatu and
v lie on their boundaries, and from the fact thatD(p)

v ∈ Dp\Dq and D(q)
u ∈ Dq\Dp.

However, this implies thatD(q)
u andD(p)

v intersect at least three times, contradicting the
assumption thatD is a set of pseudodisks. This completes the proof.

The following corollary is an immediate consequence of the results of [10]:

Corollary 2.7. In the setting of Theorem2.6, if P has m points, then the boundary of⋃
p∈P Kp consists of O(m) connected portions of the boundaries of the individual Kp’s.
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Fig. 3. Proof of Theorem 2.6.

We now return to the assumption thatD is a set of congruent disks. For a pointp ∈ P,
we say thatp lies above(resp.below) Kp if the downward-directed (resp. upward-
directed) vertical ray fromp intersectsKp, andp lies to theleft (resp.right) of Kp if p
lies to the left of the leftmost (resp. right to the rightmost) point ofKp. To facilitate our
solution to the fixed-size decision problem, presented in Section 4, we need the following
stronger property of theKp’s: Define

PT = {p ∈ P | p lies aboveKp},
PB = {p ∈ P | p lies belowKp},
PL = {p ∈ P | p lies to the left ofKp},
PR = {p ∈ P | p lies to the right ofKp}.

Theorem 2.8. Let p,q be two distinct points in PT. Then the top boundaries of Kp
and Kq cross at most once, and the same holds for the bottom boundaries. The same
properties hold for each of the other three sets PB, PL, and PR.

Proof. Suppose that the top boundaries ofKp andKq cross at two pointsu andv. The
intersectionu must be witnessed by two disksD(u)

p andD(u)
q with u on the top boundaries

of these disks,D(u)
p ∩{p,q} = {q} andD(u)

q ∩{p,q} = {p}. Similarly, there exist witness
disksD(v)

p andD(v)
q , with similar properties, for the intersectionv.

We first prove that two such intersections are not possible ifp,q ∈ PT.
We call the top boundary of a diskD extended by vertical rays downward at its

endpoints thetop curve of D. Since we are dealing with disks of equal radius, the top
curves ofD(u)

p and D(u)
q intersect in exactly one point (they have to intersect, since

otherwiseKp and Kq are disjoint). Sincep is aboveD(u)
p , and not aboveD(u)

q , and
vice versa forq, thex-coordinate of this unique intersection has to lie between thex-
coordinates ofp andq. So we have shown that thex-coordinate ofu has to lie between
p andq, and the same is true forv. We may assume that thex-coordinates ofp, u, v,
andq appear in this increasing order.

Now consider the top curvesγ (v)p andγ (u)q of disksD(v)
p andD(u)

q , respectively, and
refer to Fig. 4(i). The curveγ (v)p lies below p (since p 6∈ D(v)

p and p lies aboveKp),



294 P. K. Agarwal, M. Sharir, and E. Welzl

Fig. 4. Impossible crossings between the top boundaries: (i)p,q ∈ PT; (ii) p,q ∈ PB.

lies aboveu or passes throughu (otherwiseu cannot lie on the boundary ofKp), passes
throughv, and lies aboveq (sinceq ∈ D(v)

p ). The curveγ (u)q lies abovep, passes through
u, continues abovev, and lies belowq. It follows that the two curves switch sides three
times: betweenp andu, betweenu andv, and betweenv andq. (This also covers the
case where, say,γ (v)p passes throughu, because the curvesγ (v)p andγ (u)q mustcrossat this
point, as is easily verified.) This gives three intersections of these curves, a contradiction,
which concludes the argument for the case in whichp,q ∈ PT.

Suppose next thatp,q ∈ PB. Let D(u)
p , D(u)

q , D(v)
p , andD(v)

q be four respective witness
disks, defined as above. We exploit now the previously proved fact thatK ′p := D(v)

p ∩D(u)
p

andK ′q := D(v)
q ∩ D(u)

q behave like pseudodisks and thus their boundaries do not cross
at any point other thanu andv. We assume that the top boundary ofK ′q lies above the
top boundary ofK ′p in the range between thex-coordinates ofu andv. Now recall that
p must lie inK ′q\K ′p, and thus it lies below the top boundary ofK ′q andabovethe top
boundary ofK ′p, in contradiction to the fact thatp lies belowKp which is contained in
K ′p; see Fig. 4(ii).

We now switch to the case ofPL, wherep andq lie to the left of their regionsKp

andKq. Without loss of generality, suppose thatp lies to the left ofq. SinceKq is to the
right of q, any intersection of the boundaries ofKp andKq must lie to the right ofq. So
we assume that two such intersectionsu andv exist, both between the top boundaries of
Kp andKq, and that thex-coordinates ofp, q, u, andv appear in this increasing order.
Let D(u)

p , D(u)
q , D(v)

p , andD(v)
q be four respective witness disks, defined as above.

First consider the top boundary of the diskD(v)
q . It must lie abovep andu and pass

throughv. We claim that the top boundary ofD(v)
q lies aboveq. Suppose, on the contrary, it

lies belowq; see Fig. 5(i). The top boundary ofD(u)
p lies aboveq, goes throughu, and lies

above (or passes through)v, and so it must intersect the top boundary ofD(v)
q twice, once

betweenq andu, and once betweenu andv; a contradiction (as in a preceding argument,
this also covers the case where∂D(v)

q passes throughu). Hence, the top boundary of
D(v)

q must lie aboveq, which implies that the whole diskD(v)
q must lie aboveq, since

q 6∈ D(v)
q . This implies thatD(u)

q must also lie aboveq, for otherwise it must lie entirely
belowq, and so the vertical line throughq is disjoint from the intersection ofD(v)

q and
D(u)

q . However, this intersection containsp to the left of this line, and the pointu to the
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Fig. 5. The proof ofp,q ∈ PL: (i) D(v)
q lies belowq; (ii) the other situation.

right of this line, which is a contradiction, since this intersection has to be connected.
Hence, bothD(u)

q , D(v)
q lie aboveq.

Now we investigate the interplay betweenD(u)
q andD(v)

p . Their top boundaries inter-
sect betweenu andv. Since the top boundaries of two congruent disks intersect at most
once, the top boundary ofD(v)

p passes throughv, and the top boundary ofD(u)
q passes

abovev, we can conclude that the top boundary ofD(v)
p lies above the top boundary of

D(u)
q at thex-coordinate ofq. We have already noted thatD(u)

q lies aboveq. Now the
bottom boundary ofD(u)

q must lie aboveq, while the bottom boundary ofD(v)
p must

lie below (one disk must not containq, the other has to). So either the boundaries of
these two disks intersect twice to the left ofq, or they do not intersect there. In the first
case there are at least three intersections between these boundaries (including the one
betweenu andv), which is impossible. In the latter caseD(v)

p containsD(u)
q to the left

of the vertical line throughq (see Fig. 5(ii)), butp ∈ D(u)
q , which impliesp ∈ D(v)

p ; a
contradiction.

The cases of bottom boundaries, and ofPR, are symmetric, which concludes the proof
of the theorem.

Remark. Top boundaries (or two bottom boundaries) of two setsKp, Kq, for points
p,q in, sayPT, may also interact in somewhat more involved manners. First, we can have
aweak crossingbetween two such top boundaries, in which the two boundaries have an
overlapping portion, so that the top portion of∂Kp lies below the top portion of∂Kq

to the left of the overlap, and above the top portion of∂Kq to the right of the overlap.
See Fig. 6(i) for an illustration. Another possibility is that these top boundaries meet
twice, without crossing, and overlap between these two meeting points, as is illustrated
in Fig. 6(ii). Situations of the second type will not affect our algorithm, and we will have
to exercise some care to accommodate situations of the first type in the algorithm; see
Section 4 for details.
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Fig. 6. Counterexamples for Theorem 2.8 if we just consider intersection points (including noncrossings).

3. Complexity ofK

Let D be a set ofn congruent disks and letP be a set ofm points in the plane. Let
K andU be the same as defined in the Introduction. In this section we obtain a bound
on the combinatorial complexity ofK, which is defined as follows. LetV(D, P) be
the set of intersection points of disks inD that lie on the boundary of someKp. Set
κ(D, P) = |V(D, P)| andκ(n,m) = maxκ(D, P), where the maximum is taken over
all sets ofn congruent disks and over all sets ofm points in the plane. Note that if a
vertex appears on the boundaries of several sets inK, we count it only once. If we count
the vertices with multiplicity, thenκ(n,m) ≥ mn—taken congruent disks, all of whose
boundaries appear on their common intersection, and choosem points in their common
exterior. The main result of this section is the following theorem.

Theorem 3.1. κ(n,m) = O(m2/3n2/3 log1/3 n+ n logn).

The proof of the theorem is based on the random-sampling technique, and proceeds
along the same lines as the proof by Clarkson et al. [4] for the bound on the complexity
of many faces in an arrangement of lines in the plane. We first prove a technical lemma
and a weaker bound onκ(n,m), and then prove the theorem.

Lemma 3.2. Let D1, D2, . . . , Dk be a set of congruent disks, all of whose boundaries
appear on their common intersectionI. Assume that∂D1, ∂D2, . . . , ∂Dk appear in
this clockwise order along∂I. Then the sets Di \Di+1, for 1 ≤ i ≤ k (where we put
Dk+1 = D1), are pairwise disjoint, and the same holds for the sets Di+1\Di .

Proof. Suppose that there exist a pair of indices 1≤ i < j ≤ k so thatDi \Di+1 and
Dj \Dj+1 intersect. Note thatj must be at leasti +2, andi must be at leastj + two− k;
without loss of generality, we can assume thati = 1, j = 3, andk ≥ 4. Consider the
arrangementA({D1, D2, D3, D4}), and letI ′ = ⋂4

i=1 Di . We assume that the origin,
o, lies in the interior ofI ′. Let vi be the (unique) intersection point of∂Di and∂Di+1

that appears onI ′, and letσi be the other intersection point of these circles. Letθi (resp.
αi ) denote the orientation ofvi (resp.σi ). We regard∂Di as the graph of a univariate
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Fig. 7. Proof of Lemma 3.2.

function Di (θ) in polar coordinates. We denote by(θ1, θ2) the (open) counterclockwise
circular interval fromθ1 to θ2.

By construction,D1(θ) > D2(θ) for θ ∈ (θ1, α1), and thereforeD1\D2 is nonempty
only forθ ∈ (θ1, α1). Similarly,D3(θ) > D4(θ) for θ ∈ (θ3, α3) andD3\D4 is nonempty
only for θ ∈ (θ3, α3). Since∂D1, ∂D2, ∂D3, and∂D4 appear in this counterclockwise
order along∂I ′, it follows thatθ2 ∈ (θ1, α1) andθ4 ∈ (θ3, α3), and thatα1 ∈ (θ2, θ4)

andα3 ∈ (θ4, θ2).
Let ξ be a point in(D1\D2) ∩ (D3\D4), and letη be the orientation ofξ . Then we

have min{D3(η), D1(η)} > max{D4(η), D2(η)}. Moreover,η ∈ (θ1, α1)∩ (θ3, α3). The
order relationships noted at the preceding paragraph are easily seen to imply that only
the following two cases can arise:

(i) η ∈ (θ3, α1) ⊆ (θ3, θ4).
(ii) η ∈ (θ1, α3) ⊆ (θ1, θ2).

In case (i),∂D2 appears along∂(D1∩D2∩D3) in at least two disjoint arcs—the arc with
angular range(θ1, θ2) and another arc containing a point at orientationη (observe that
∂D2 cannot appear on the boundary of this intersection in the angular range(θ2, θ3)).
This however is impossible for congruent disks. Symmetrically, in case (ii),∂D4 appears
along∂(D1∩ D3∩ D4) in at least two disjoint arcs—the arc with angular range(θ3, θ4)

and another arc containing a point at orientationη. These two contradictions complete
the proof that the regionsDi \Di+1, for 1 ≤ i ≤ k, are pairwise disjoint. A symmetric
argument shows that the regionsDi \Di−1 are also pairwise disjoint. This completes the
proof of the lemma.

Lemma 3.3. For m,n ≥ 1, κ(n,m) = O(m
√

n+ n).

Proof. LetD be a set ofn congruent disks and letP be a set ofm points in the plane. It
suffices to prove thatκ(n,m) ≤ 2m2+ n. By partitioningP into t = ⌈m/√n

⌉
subsets,

each of size at most
√

n, and observing thatκ(D, Pi ) = O(n) for eachi ≤ t , the bound
onκ(n,m) can be improved toO(m

√
n+ n); see, e.g., [4].
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We partitionD into maximal subsetsD1, . . . ,Dk, so that all disks within eachDi

contain the same subset ofP. Let Vi be the set of vertices on the boundary of
⋂
Di .

Obviously
∑k

i=1 |Vi | ≤
∑

i |Di | = n. We partition the vertices inV(D, P) into two
subsetsA andB, whereA consists of those verticesv for which the two disks on whose
boundariesv lies belong to the sameDi , and B consists of those vertices whose two
associated disks belong to differentDi ’s. In the first case,v is a vertex of

⋂
Di ; therefore

|A| ≤∑k
i=1 |Vi | ≤ n. We next bound|B|.

For each pointp ∈ P, let Bp ⊆ B be the set of vertices inB that appear on the
boundary ofKp, and let(D1, D2, . . .) be the circular sequence of disks whose boundaries
appear in this counterclockwise order along∂Kp. Supposev ∈ Bp is an intersection point
of the circles bounding two consecutive disks in this sequence, say,D1 and D2. Since
D1 andD2 belong to two different subsets, the symmetric differenceD1⊕ D2 contains
at least one pointq of P. We chargev to q. If v′ is another vertex ofBp, which is
an intersection point of the circles bounding two other consecutive disksD3 and D4,
then, by Lemma 3.2,D1\D2 and D3\D4 are disjoint, and the same holds forD2\D1

and D4\D3. Hence, each pointq ∈ P can be charged at most twice (once for lying in
someDi \Di+1 and once for lying in someDj \Dj−1), thereby implying that|Bp| ≤ 2m.
Summing over all pointsp ∈ P, we obtain that|B| ≤ 2m2, and therefore

κ(D, P) ≤ 2m2+ n,

as asserted.

Proof of Theorem3.1. Letr ≥ 1 be a fixed parameter, to be specified later. We choose
a random subsetR ⊆ D of sizer , where each subset of sizer is chosen with equal
probability, and consider thevertical decompositionA∗(R) of the arrangementA(R)
[2], [4]. For each cell1 ∈ A∗(R), letD1 ⊆ D be the set of disks whose boundaries
intersect1 (including the edges of1), let E1 ⊆ D be the set of disks that are disjoint
from1, and letP1 ⊆ P be the set of points that lie in1 (a point lying on an edge or
a vertex ofA∗(R) is assigned to one of the cells adjacent to it). Putm1 = |P1| and
n1 = |D1|. We denote byI1 the common intersection of the disks inE1.

Letv be a vertex ofKp, for somep ∈ P1, not lying on a vertex ofA∗(R). Suppose that
v is an intersection point of the boundaries of two disksD andD′. Since, by definition,
none of these disks can fully contain1, we can classifyv into three categories:

(i) Both D andD′ belong toD1,
(ii) D ∈ D1 andD′ ∈ E1 (or vice versa), or

(iii) both D, D′ ∈ E1.

A vertex of type (i) is also a vertex ofV(D1, P1), so the number of such vertices is
at mostκ(D1, P1) ≤ κ(n1,m1). SinceE1 ⊆ Dp for every p ∈ P1, every vertex of
type (ii) lies on the boundary ofI1. The boundary of each disk inD1 intersectsI1 in
at most two points, so the number of type (ii) vertices is at most 2n1. Summing over all
cells, the number of type (i) and type (ii) vertices is

∑
1∈A∗(R) O(n1 + κ(n1,m1)).

Finally, each vertex of type (iii) is a vertex ofI1. Hence, in order to bound the number
of (distinct) vertices of type (iii), we need an upper bound on the total number of distinct
vertices of all theI1’s, over all cells1 ∈ A∗(R). Let G be the graph dual toA∗(R), that
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is, each node ofG corresponds to a cell ofA∗(R), and two nodes corresponding to cells
1,1′ are connected by an edge if the boundaries of1 and1′ overlap along (a portion
of) an edge. We compute a path5 in G that visits each node ofG at least once and at
most four times. The existence of such a path was proved in [2]. We traverse5, and at
each node corresponding to a cell1, we maintainI1, as follows. When we move from
a node corresponding to1 to the next node in5, corresponding to a cell1′ ∈ A∗(R),
we delete all the disks ofD1\D1′ from the intersection, and insert the disks ofD1′ \D1
into the intersection. SinceE1 ∪ E1′ ⊆ D1 ∪ D1′ , we now have the setE1′ . We thus
perform at mostn1 + n1′ insertions and deletions as we move from one node of5 to
the next. Summing over all nodes of5, we performO(

∑
1 n1) insertions and deletions.

We wish to bound the number of distinct vertices that ever appear on the intersection,
we traverse5. Tamir [15] (see also [1]) has shown that the number of distinct vertices
that ever appear on the intersection of half-planes, as we perform a mixed sequence
of k insertions and deletions (starting at the empty set), isO(k logk). Using the same
argument, we can show that the total number of distinct vertices that ever appear on
the intersection of a set of congruent disks, as we perform a sequence ofk insertions
and deletions (again, starting at the empty set), is alsoO(k logk). Hence, the number of
distinct type (iii) vertices isO(

∑
1 n1 logn).

Finally, each vertex ofA∗(R)may be a vertex ofV(D, P). Putting everything together,
we obtain

κ(D, P) ≤
∑

1∈A∗(R)
κ(D1, P1)+ O

( ∑
1∈A∗(R)

n1 logn

)
+ O(r 2)

= O

( ∑
1∈A∗(R)

(m1

√
n1 + n1 logn)

)
+ O(r 2).

SinceR is a random subset ofD, the random-sampling technique of Clarkson and Shor
[5] implies that there existsR for which∑

1∈A∗(R)
n1 = O(nr),

∑
1∈A∗(R)

m1

√
n1 = O

(
m

√
n

r

)
.

Substituting these values and choosingr = dm2/3/(n1/3 log2/3 n)e, we obtain

K (n,m) = O(m2/3n2/3 log1/3 n+ n logn).

This completes the proof of the theorem.

An immediate consequence of Theorem 3.1 and Corollary 2.7 is the following.

Corollary 3.4. The complexity of U is O(n4/3 log1/3 n).

Unfortunately, we have not been able to exploit this bound to obtain an efficient algo-
rithm, of comparable complexity, that computesU explicitly. The results of this section,
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although of interest in their own right, are not needed for the analysis of the algorithm
that we present in the next two sections.

4. The Decision Algorithm

Let P be a set ofn points in the plane, and letD = {D(p, r ) | p ∈ P}. LetK andU be
the same as defined in the Introduction. We describe anO(n4/3 log4 n)-time algorithm
to determine whetherU ∩ P 6= ∅. Our strategy is to construct separately each of the four
subunionsUT =

⋃
p∈PT

Kp, UB =
⋃

p∈PB
Kp, UL =

⋃
p∈PL

Kp, andUR =
⋃

p∈PR
Kp,

and to test whether any of them contains any point ofP. We next describe in detail
the construction of one such subunion, sayUT. As already mentioned, we do not know
how to compute these unions efficiently in an explicit manner (for instance, it may be
too expensive to constructU by computing eachKp explicitly, for all p ∈ P). We
therefore represent theKp’s and their unions implicitly; this implicit representation will
be sufficient to determine whetherUT ∩ P 6= ∅.

4.1. Representation ofK and of Its Union

For a subsetA ⊆ P, let U A denote the union
⋃

p∈A Kp. For each connected component
of ∂U A, we store its concave vertices (points of crossing of the boundaries of two distinct
Kp’s) and the points that are locallyx-extremal along∂U A. If two top (or two bottom)
boundaries have a weak crossing along∂U A, as in the remark following Theorem 2.8,
we store the left endpoint of the common overlap between these boundaries, and think
of it as a “weakly concave” vertex of∂U A. A maximal portionγ of ∂U A that does not
contain any of these points isx-monotone and lies on the boundary of a singleKp (such
a portion,γ , may overlap with the boundaries of manyKp’s, but there is (at least) one
point p such thatγ is fully contained in∂Kp). We refer toγ as aboundary arcof U A.
We maintainγ implicitly, by recording the pointp for which γ ⊂ ∂Kp and a bit that
indicates whetherγ is a portion of the top or bottom part of∂Kp.

Next, to represent eachKp implicitly, we compute a family{D(1), . . . ,D(s)}of “canon-
ical” subsets ofD such that

∑s
i=1 |D(i )| = O(n4/3 logn), and such that, for anyp ∈ P,

Dp can be represented as the union ofO(n1/3 logn) canonical subsets. LetJp be the set
of indices of these canonical subsets (i.e.,Dp =

⋃
i∈Jp
D(i )). Katz and Sharir [9] have

shown that the construction of such a family of canonical sets, and of the corresponding
sets of indices{Jp}p∈P, can be accomplished in timeO(n4/3 logn). For each canonical
subsetD( j ), we compute the intersectionI( j ) = ⋂

D( j ) in O(|D( j )| log|D( j )|) time.
We store the vertices of the top and bottom parts ofI( j ) in separate lists, each sorted
in increasing order of theirx-coordinates. For each vertexv ∈ I( j ), we also store the
disk whose boundary appears on∂I( j ) immediately to its right. Finally, we store the
vertices of all theI( j )’s in a single master list3, sorted in increasing order of their
x-coordinates. The total time spent in computing this implicit representation of theKp’s
is
∑s

i=1 O(|D( j )| logn) = O(n4/3 log2 n).
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4.2. Basic Operations onK

In order to compute the implicit representation ofUT, we need subroutines for the
following basic operations on the boundaries of the sets inK.

(S1) Leftmost and Rightmost Points. Given a point p, compute the leftmost and the
rightmost points of Kp.

This requires computing the leftmost and the rightmost points of
⋂

j∈Jp
I( j ). Reichling

[13] has shown that the leftmost (or rightmost) point of the intersection ofk convex
polygons with a total ofn vertices can be computed in timeO(k log2 n). In fact, his
algorithm can also be applied to a family of intersections of congruent disks. Applying
Reichling’s algorithm to the set{I( j ) | j ∈ Jp}, we can compute the leftmost (or
rightmost) point ofKp in time O(|Jp| log2 n) = O(n1/3 log3 n).

(S2) Intersection Points with a Vertical Line. Given a vertical linè and a point p∈
P, determine the intersection points of` with ∂Kp.

For eachj ∈ Jp, we can computè ∩ I( j ) in O(logn) time. Repeating this step for
all j ∈ Jp, we obtain a collection ofO(n1/3 logn) intervals along̀ . We can compute the
endpoints of the intersection of these intervals (or detect that the intersection is empty)
in an additionalO(n1/3 logn) time. Hence, the total running time of this procedure is
O(n1/3 log2 n). This procedure can also be used to determine whether a query point in
the plane lies above, below, or on a boundary arcγ .

(S3) Crossing Points of Two Top (or Two Bottom) Boundary Arcs. Given two
points p,q ∈ PT and an x-interval[a,b] contained in the x-span of both Kp and Kq,
determine whether the top boundaries of Kp and Kq cross in[a,b]. If so, return their
crossing point. If they weakly cross in[a,b], then return the leftmost endpoint of their
common overlap in[a,b]. A similar operation is prescribed for the bottom boundaries
of Kp and Kq.

Let γp (resp.γq) be the portion of the top boundary ofKp (resp.Kq) in thex-interval
[a,b], and let`a : x = a and`b : x = b. By computing the intersection points of∂Kp

and∂Kq with `a, we can determine, inO(n1/3 logn) time, whetherγp lies above or
belowγq at`a. Supposeγp lies aboveγq at`a. We repeat the same procedure at`b. Note
that, by Theorem 2.8,γp lies belowγq at`b too if and only ifγp andγq cross (or weakly
cross). If they do cross, then, by performing a binary search over the points stored in the
master list3, we obtain two consecutive verticesα, β ∈ 3 so that the crossing point (or,
in case of weak crossing, the leftmost point of the common overlap) ofγp andγq lies in
the x-interval I betweenα andβ. Each step of the binary search involves determining
whetherγp lies aboveγq at a vertical linè : x = x0, for somex0 ∈ 3, and is performed
using subroutine (S2). Hence the total cost of the binary search isO(n1/3 log3 n). The
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top boundary of eachI( j ), for j ∈ Jp, is composed of a single circular arc in thex-
interval I . We therefore collect theO(n1/3 logn) corresponding disks, and compute, in
O(n1/3 log2 n) time, the top boundarŷγp of their intersection withinI . Similarly, we
computeγ̂q, the top boundary ofKq overI . We can now compute the crossing point (or the
leftmost point of the common overlap) ofγ̂p andγ̂q in an additionalO(n1/3 logn) time,
by merging the lists of vertices of̂γp andγ̂q, and by inspecting each “atomic” interval
formed by this merge. The total time spent by this procedure is thusO(n1/3 log3 n). A
symmetric procedure can compute the unique crossing point (or the leftmost point of the
common overlap of a weak crossing) of the bottom boundaries ofKp andKq, within the
same time bound.

(S4) Crossing Points of a Top Boundary Arc and a Bottom Boundary Arc. Given
two points p,q ∈ PT and an x-interval[a,b] contained in the x-span of both Kp

and Kq, determine whether the top boundary of Kp crosses the bottom boundary of Kq

in the interval[a,b]. If so, return their crossing point(s).

Let γp be the portion of the top boundary ofKp lying in the interval [a,b], and letγq

be the portion of the bottom boundary ofKq lying in the interval [a,b]. Note that, by
convexity,γp andγq can cross in at most two points. By comparing they-coordinates of
the endpoints ofγp, γq, using an appropriate variant of subroutine (S2), we can determine
whether they cross exactly once. In this case, we can determine their unique crossing
point (or the leftmost point of overlap of a weak crossing) using an appropriate variant
of subroutine (S3). Suppose that we determine thatγp andγq cross at zero or two points,
and thatγq lies aboveγp at the vertical linex = a (and also atx = b); if γq lies belowγp

at these points, the arcs do not intersect. If we regardγp andγq as graphs of univariate,
partially defined functionsγp(x), γq(x), respectively, then1γ (x) = γq(x)− γp(x) is a
convex function. Therefore, by a binary search through3, each step of which requires
determining the intersection points of a vertical line withγp andγq, we can determine,
in overall O(n1/3 log3 n) time, the uniquex-valuex0 at which1γ attains its minimum.
If 1γ (x0) > 0, thenγp andγq do not intersect. If1γ (x0) = 0, then the minimum of1γ
is the unique point of intersection (actually, of tangency) ofγp andγq. If 1γ (x0) < 0,
thenγp andγq have two crossings, one of which lies in the interval [a, x0] and the other
lies in the interval [x0,b]. Now we can compute both crossing points inO(n1/3 log3 n)
time, using an appropriate variant of subroutine (S3).

4.3. Computing UT

We now describe an algorithm for computing the implicit representation ofUT described
above, and for determining whetherUT ∩ P 6= ∅. We first compute, using subroutine
(S1), the leftmost and rightmost points,l p, r p, of eachKp, for p ∈ P. This, combined
with calls to subroutine (S2), allows us to compute the setsPT, PB, PL, andPR, in overall
O(n4/3 log3 n) time. Next, we computeUT, using a divide-and-conquer algorithm. If
|PT| = 1, thenUT = Kp, wherep is the only point inPT. In this case, we output∂UT as
consisting of two boundary arcs, both connectingl p andr p, where the top (resp. bottom)
arc is the top (resp. bottom) boundary ofKp. If |PT| > 1, we partitionPT into two subsets



The Discrete 2-Center Problem 303

P1
T andP2

T , each of size at mostd|PT|/2e. We recursively computeU1
T =

⋃
p∈P1

T
Kp and

U2
T =

⋃
p∈P2

T
Kp, and then computeUT = U1

T ∪U2
T, using a sweep-line algorithm. This

“merge” step computes the implicit representation ofUT from those ofU1
T,U

2
T, which

are output by the respective recursive calls.
The sweep line scans the plane from left to right, stopping at the concave vertices and

the locallyx-extremal points ofU1
T,U

2
T, andUT. By Corollary 2.7, the number of such

“event points” is onlyO(n). The algorithm maintains those arcs ofU1
T,U

2
T that currently

intersect the sweep line in a height-balanced treeT , sorted in the increasing order of the
y-coordinates of their intersection points with the line. At each event point, the algorithm
inserts a new arc, deletes an arc, or swaps two adjacent arcs in the treeT . In order to insert
a new arc intoT , the algorithm has to performO(logn) comparisons of the following
form: given a pointq and a boundary arcγ , determine whetherq lies above, below,
or onγ . Using subroutine (S2), such a comparison can be performed inO(n1/3 log2 n)
time. The time spent in inserting an arc is thusO(n1/3 log3 n). The deletion of an arc
follows a standard deletion procedure of a height-balanced tree. After having inserted
or deleted an arc, we obtain the newO(1) adjacent pairs of arcs inT , compute their
(leftmost) intersection points to the right of the current sweep line, and insert them into
the event queue. We thus need to performO(1) calls to the subroutines (S3) and (S4), each
of which takesO(n1/3 log3 n) time. Omitting all the other straightforward and standard
details of the sweep-line algorithm, we conclude that the algorithm spendsO(n1/3 log3 n)
time at each event point, therefore the total time spent by the sweep-line algorithm is
O(n4/3 log3 n). The overall time spent in computing the implicit representation ofUT is
thusO(n4/3 log4 n). (Note that the computation of the setsD( j ),I( j ), andJp is performed
only once, before starting the recursive construction ofUT.)

We next have to determine whetherUT ∩ P 6= ∅. This can easily be done, at no
increase in the asymptotic running time, during the topmost sweep of the recursion, in
which the entireUT is constructed. We include the points ofP as additional event points
of the line sweep. Whenever we encounter a pointp ∈ P, we find the arcγ of UT lying
immediately abovep. If γ is a portion of the top boundary of someKq, then p ∈ UT.
Moreover,D(p, r )∪D(q, r ) covers all points ofP, so we can returnp,q as the solution
to the fixed-size problem; ifγ is a portion of the bottom boundary of someKq, then
p /∈ UT. The arcγ can be determined by searching the tree withp, where each step
of the search determines whetherp lies above, below, or on an arcγ ′. Since each such
step can be performed inO(n1/3 log2 n) time, using subroutine (S2), we can determine
in O(n1/3 log3 n) time whetherp ∈ UT. Summing this cost over all pointsp ∈ P, the
total time spent by this stage isO(n4/3 log3 n).

We now construct and search inUB, UL andUR, using the algorithm just described.
If at least one of these unions contains a point ofP, then we have found, and can output,
two points p,q ∈ P such thatD(p, r ) ∪ D(q, r ) coversP; otherwise, no two such
points exist. The overall running time isO(n4/3 log4 n). Hence, we obtain the following
result.

Theorem 4.1. Given a set P of n points in the plane and a real value r> 0, we
can determine, in O(n4/3 log4 n) time, whether there are two points p,q ∈ P so that
P ⊂ D(p, r )∪ D(q, r ). If so, we can also find such a pair within the same time bound.
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5. The Overall Algorithm

The overall algorithm for the discrete 2-center problem proceeds as follows. We note that
the optimum radiusr ∗ is a distance between two points ofP, so we run a binary search
over these

(n
2

)
distances, using the fixed-size decision procedure given in the preceding

section to determine whether the optimumr ∗ is larger than, smaller than, or equal to a
distancer . Note thatr < r ∗∗ if U =⋃p∈P Kp, as defined in the Introduction, does not
contain a point ofP, thatr > r ∗ if the interior ofU contains a point ofP, andr = r ∗

if the interior ofU does not contain a point but its boundary contains a point ofP.
Of course, running this binary search explicitly will require quadratic time, so we

use instead the distance-selection algorithm of [9] (see also [2]), which computes the
kth smallest distance in a set ofn points in the plane in timeO(n4/3 log2 n). Since we
need to invoke this procedure, and also the fixed-size decision procedure, onlyO(logn)
times, the overall running time of the algorithm isO(n4/3 log5 n).

Theorem 5.1. The discrete2-center problem for a set of n points in the plane can be
solved in time O(n4/3 log5 n).

6. Conclusion

We have presented anO(n4/3 log5 n)-time algorithm for the planar discrete 2-center prob-
lem. We believe the running time can be improved by a logarithmic factor by exploiting
the special structures of canonical subsets and using fractional cascading. It, however,
remains a challenging open problem whether there exists a near-linear algorithm for this
problem.

Our decision algorithm relies heavily on the properties of the combinatorial structure
of K that we have proved in Section 2. Although we have shown in Section 3 that the
complexity ofU is roughlyn4/3, we do not have an algorithm with comparable running
time that computesU explicitly. There are, in fact, a number of substructures in an
arrangement of a set of congruent disks, whose worst-case complexity has the same
asymptotic upper bound as that of the corresponding structure in an arrangement of
lines. For example, the number of incidences between points and congruent disks, the
complexity of many faces, and the complexity ofU (one can define a structure analogous
to U for a set of half-planes in the plane). However, unlike the case of lines, no efficient
algorithm is known for computing most of these substructures. It is an open problem
whetherm distinct faces in an arrangement ofn congruent disks can be computed in
time close tom2/3n2/3 + n. A solution to any of these problems will most likely offer
insights for developing a simpler algorithm (still with running time close ton4/3) for the
discrete 2-center problem. A more challenging open problem is whether a near-linear-
time algorithm can be developed for the discrete 2-center problem.
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