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Abstract. We introduce a new family of nonperiodic tilings, based on a substitution rule
that generalizes the pinwheel tiling of Conway and Radin. In each tiling the tiles are similar
to a single triangular prototile. In a countable number of cases, the tiles appear in a finite
number of sizes and an infinite number of orientations. These tilings generally do not meet
full-edge to full-edge, butanbe forced through local matching rules. In a countable number
of cases, the tiles appear in a finite number of orientations but an infinite number of sizes,
all within a set range, while in an uncountable number of cases both the number of sizes
and the number of orientations is infinite.

1. Introduction

We introduce a new family of nonperiodic tilings, indexed by a continuous parameter. In
each tiling the tiles are similar to a single triangular prototile. In a countable humber of
cases, the tiles appear in a finite number of sizes and an infinite number of orientations.
In a countable number of cases, the tiles appear in a finite humber of orientations but
an infinite number of sizes, all within a set range. In one case both the number of sizes
and orientations is finite, while in an uncountable number of cases both the number of
sizes and the number of orientations is infinite. A piece of a tiling with two sizes and an
infinite number of orientations is shown in Fig. 1.

These tilings all arise from a substitution scheme that is quite similar to the pinwheel
tiling of Conway and Radin [R1]. In all cases the tilings have the “sibling edge-to-edge”

* This research was supported in part by an NSF Mathematical Sciences Postdoctoral Fellowship and
Texas ARP Grant 003658-037.
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Fig. 1. Part of the tilingTil(1/2).
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property, which is to say that two daughter tiles of a single parent tile can only meet
full-edge to full-edge. However, in general the tiling is igtdbally edge-to-edge. Tiles
that are not siblings generally do meet in ways that are not full-edge to full-edge.

Goodman-Strauss [G] has recently announced that substitution tilings with a finite
number of prototiles, with each prototile appearing in a finite number of sizes, and with
the sibling edge-to-edge property, may be associated to local matching rules. These rules
are less restrictive than local atlases, and in some cases may allow two adjacent tiles to
slide freely along their common edge. However, the rules are restrictive enough to force
any tiling to be hierarchical (i.e., generated by the substitution scheme), and hence to be
nonperiodic. In a countable number of cases considered in this paper, the hypotheses of
Goodman-Strauss’s theorem are met.

This is striking, because these examples are definitely not globally edge-to-edge.
Indeed, some of these tilings contain infinitely many pairs of tiles with edges that partially
overlap. This phenomenon, called “slippage,” can be seen in Fig. 1, especially along the
long diagonal. The lengths of the overlaps are not the same for all pairs of tiles. In the
tiling of Fig. 1, in fact, overlaps occur with a@nfinite number of distinct lengths. Thus
we have the (seemingly) paradoxical situation that Goodman-Strauss’s local matching
rules force a hierarchical pattern that, in turn, forces an infinite variety of local behavior.

The tilings of this paper also suggest a relaxation of the rules of the tiling dynamical
systems game. Prior to Conway and Radin’s work, a tiling dynamical system required
that all tiles be generated from a finite set of prototiles by translation only, with rotation
and reflection not allowed. By those rules, the pinwheel tiling, which involves an infinite
number of orientations of a single triangle, uniformly distributed about the circle, was
not a tiling! The pinwheel example helped force a reconsideration of the rules, and a
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new consensus has emerged that tiles may be generated from prototiles by Euclidean
motions, not just by translations.

The present examples suggest a further extension from the Euclidean group to the
conformal group. In almost all cases, these tilings consist of a single prototile appearing
in an infinite number of sizes and an infinite number of orientations. Although the
distribution of sizes is not constant (which it could not be, as the conformal group has
no Haar measure), it is described by a piecewise-constant function.

Such symmetry is related to properties of the spectrum. In the case of the pinwheel,
Radin [R2] showed that the statistical rotational invariance of the system results in
a spectrum that is rotationally invariant, and hence contains no discrete component.
However, Radin’s argument did not address the dependence of the spectrum on the radial
variable, which corresponds to a length scale. Almost all the examples in this paper have
a joint distribution of sizes and orientation that is rotationally invariant, proving (by
Radin’s argument) that they have continuous spectrum. In addition, in almost all these
examples the distribution is absolutely continuous in the size parameter. We conjecture
that, in these cases, the spectrum is purely absolutely continuous.

Purists who object to the extension to the conformal group may restrict their attention
to the countable and dense set of examples for which only a finite number of sizes
appear. They may then take these sizes of the basic triangle as their prototiles, which
then generate all tiles via Euclidean motions. We call such examples “rational tilings.”

The division of the paper is as follows. In Section 2 we explain the substitution rules
and the resulting constructions of the tilings, and classify right triangles according to
whether they generate finite numbers of sizes and orientations, finite sizes and infinite
orientations, infinite sizes and finite orientations, or infinite sizes and infinite orientations.
In Section 3 we examine in detail an example in which tiles appear in two sizes and an
infinite number of orientations. We prove that this tiling is sibling edge-to-edge but
exhibits slippage; this tiling contains pairs of tiles that meet in an infinite number of
distinct ways. In Section 4 we compute the limiting distribution of sizes and orientations
in all rational tilings. In Section 5 we compute the statistical distribution of sizes and
orientations in irrational tilings. In Section 6 we examine two exceptional rational tilings.

2. Definitions and Constructions

As with any substitution scheme, we obtain a tiling of the plane by a succession of
subdivisions (“deflations”), rescalings, and repositionings. We start with a single prototile
T, define a subdivision rule, and &t be the result of subdividing the basic tiidimes.

We construct infinite sequences of integllis< N, < - - -, rescalings and Euclidean
motionse such that (s (Ty;)) is a proper subtiling o0& 1(s+1(Tn;,,))- By taking the
union of the finite tilingse (s (Ty,)), we obtain a tiling of an infinite region, typically

the entire plane.

Our task is complicated by the fact that there is not a straightforward connection
between\; ands. (Unlike, say, the pinwheel tiling, wheseis an expansion by a linear
factor 3Y/2) We cannot, in general, define a simple rule for deflating and rescaling by a
fixed factor, and simply iterate this rule. We must be more subtle. However, in the end,
everything does work out.
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Fig. 2. The basic triangle.

Our basic prototile is a right triangle, with babgaltitudea, and hypotenuse, as
shown in Fig. 2. We refer to the base as the “long” leg, although in principle we might
haveb < a. At this point we put no restrictions on the acute arjte sin~*(a/c). We
divide T into five triangles as in Fig. 3. Subtriangles 1-4 are simildr tbut are smaller
by a linear factor ob/2c. Subtriangle 5 is also similar t0, but is smaller tha by
a linear factor ofa/c. This completes the first subdivision ®f In thenth subdivision
of T, we take the largest triangles TR_;, and subdivide each of them into five similar
triangles.

The pattern of subdivision depends on the adgleor example, ifh > b/2, then the
largest triangle iff; has hypotenusg and only this triangle is subdivided in step 2. Thus
in T, there are nine triangles, one with hypotenarsée, four with hypotenusab/ 2c, and
four with hypotenusé/2, as shown in Fig. 4. The third subdivision depends on whether
b/2 > a?/c, in which case the four triangles of hypotenig@ are subdivided next, or
whethera?/c > b/2, in which case the one triangle of hypotenasdgc is subdivided
once again.

The subdivision of a triangle with/2 > a is shown in Fig. 5T, has twenty-one trian-
gles, sixteen of hypotenu®d/4c, four of hypotenusab/2c, and one of hypotenuse

Finally, if b = 2a, then all five triangles inl; have the same size. All five are
subdivided in the next stage, yieldiflg with 25 congruent triangles, all of which are
then subdivided to givé&; with 125 congruent triangles, and so on. This is the pinwheel
tiling of Conway and Radin [R1].

b/2 b2

Fig. 3. The substitution rule.
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Fig. 4. Two subdivisions of a triangle with > b/2.

We will show that, for any anglé, this subdivision scheme generates nonperiodic
tilings of the plane. We first need three technical lemmas:

Lemmal. InT,,the ratio of the hypotenuse of the largest tile to the hypotenuse of the
smallest tile is strictly less thamax(c/a, 2c/b).

Proof. The proof is by induction om. It is clearly true forT;. Now suppose that in
Tk the largest tile has hypotenusé, while the smallest tile has hypotenusgwith
H/h < max(c/a, 2c/b). After subdividing all the triangles with hypotenust the
largest hypotenuse is strictly less thidn while the smallest hypotenuse is the smallest
of h,aH/c, andbH/2c. The ratio of largest to smallest hypotenusesiny is therefore
strictly less than the largest #f/h, ¢/a, and Z/b. O

We often consider an individual tile ify,, and examine the effect of further subdivision
of T, on that tile. When we writé € T,,, we mean that is a single tile. When we write
t C Tn, for someN > n, we mean the collection of tiles ifiy whose union i$. When
we write thatt C Ty is similar toTy, we mean that the individual tiles in this collection
fit together to form the single tile € T, in exactly the same pattern that the individual
tiles of Ty fit together to formr .

Lemma 2. Given an integer n and a tile € T,, there exists an integer N n such
thatt c Ty is the union of more than one til&€hat is every tile in T,, no matter how
small is eventually subdivided further

Fig. 5. Two subdivisions of a triangle with < b/2.
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Proof. The number of tiles grows without bound (increasing by at least four every
turn). By Lemma 1, the area of each tile is at least(@adpic?, b?/4c?) times the area of

the largest tile. Thus, ad — oo, the area of the largest tile ify must go to zero. For

N large enough, this maximal area will be less than the ar¢aidicating that the tile

t has necessarily been subdivided. O

Lemma 3. Given an integer natile t € T,, and an integer mthere exists an integer
N > n such that tC Ty is similar to T,.

Proof. The proof is by induction om. First we considem = 1. LetN be the smallest
integer such that € Ty is subdivided. By Lemma 2, such &hexists. Sincé C Ty_1

is a single tilet Ty is the result of taking a single triangle and applying the deflation
rule of Fig. 3 once. Thus e Ty is similar toT;.

Now suppose the theorem has been provedrfes k, and suppose thatC Ty, is
similar to Tx. We consider what happens at théy(+ 1)st step. The largest triangles in
T get subdivided. This means that either the largest triangleget subdivided, or that
none of the triangles ih get subdivided. In the first casewill then become similar to
Tk+1, and we are done. In the second case we consider the possibilities fdipth@jnd
step, and so on. By Lemma 2, the largest trianglkenmusteventuallybe subdivided, say
on theNth turn, sot ¢ Ty will be similar to Ty, ;. O

Definition. A supertile of order ris a collection of tiles that is similar t@,. Equiva-
lently, a supertile of orden is a region of the forne(s(T,)), wheres is a rescaling and
eis a Euclidean motion.

Theorem 1. Given any right triangle T there exist tilings of the plane with right
triangles similar to T, such that any finite set of tiles lies in a superté@d such that
the areas of tiles are bounded both above and below

Proof. First pick a succession of integears, n,, ... and tilest; € T,. Let Ny = n;.
Pick additional integerd\;, i = 2,3, ..., such that, takingg € T,, and subdividingT,,
an additionalN; — n; times,t; C Ty, is similar toTy,_,. By Lemma 3, such integers
always exist.

Now pick a triangle similar tdlp and place it in the plane. A supertifg of order
N; that contains this triangle in positidpn can be constructed. Then a supertieof
order N, such thatS; sits insideS, ast; sits insideTy, is constructed. The process is
continued, building supertil§.; such thatS, sits insideS.;; astyy1 Sits insideT,,, ,.

The union of all the supertiles is a tiling of an infinite region. For almost all choices
of thet;’s (e.g., having the edges pflie in the interior ofT,, infinitely often), this region
will be the entire plane.

Since the ratio of largest to smallest triangle is uniformly bounde&fbly Lemma 1,
no tile may have a hypotenuse longer than feaa, 2c/b) times the hypotenuse of a fixed
tile, and no tile may have a hypotenuse less thanajin b/2c) times the hypotenuse
of the same fixed tile. This provides both an upper and lower bound to the size of the
tiles. |
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In this construction, many choices were made. Different choices generally lead to
different tilings, but these different tilings have many properties in common. Theorems 2
and 3 following apply to all tilings constructed in the manner of Theorem 1.

Theorem 2. In atiling, the number of orientations in which the basic triangle appears
is finite if0 /7 is rational and infinite if9 / is irrational.

Proof. First suppose that/z is rational. Consider a tile, positioned as in Fig. 3, with
sideb along thex axis. LetP denote reflection about theaxis, and letR, denote a
counterclockwise rotation by angle After subdividing once, the orientations of the five
daughter tiles, relative to the parent tile, are given by the following elemen®y 2.

Ry P (twice), Ry, Ry10, andR, 2.4 P. The orientations of tiles in a further subdivision
are words in these five elements®€2). However, withd /z rational, these five elements
generate afinite subgroup ©f(2), so only afinite number of orientations can ever appear
in a future subdivision.

Since any region of our tiling of the plane sits inside a supertile, any two tiles must have
their orientations, relative to the supertile itself, in this group. Thus their orientations,
relative to each other, and hence to a fixed reference tile, must lie in the group. Thus only
a finite number of orientations can appear in the tiling.

Now suppose that/ is irrational. In a basic subdivision, we keep track only of the
four triangles of hypotenud® 2, ignoring the triangle of hypotenuaeWhen these four
triangles divide, we only keep track of the sixteen resultant triangles obsjdie, and
so on. In the second generation we find orientatiors (R, P)? and Ry = R2, among
others. In the 8th generation we find 1Ry, Ry, ..., Rong. Sinced/x is irrational,
these 2 + 1 orientations are distinct. Since our tiling of the plane contains supertiles
of arbitrarily large size, there is no bound to the number of different orientations that
appear. O

Theorem 3. In a tiling, the number of sizes in which the basic triangle appears is
infinite if In(sin(@))/In[cos(0)/2] is irrational and finite ifIn(sin())/In[cos®)/2] is
rational. In particular, if In(sin(9))/In[cos(#)/2] = p/q, with p and q relatively prime
integers then the number of sizes in the tilingmax(p, q).

Proof. LetA = a/candletB = b/2c. If In(A)/In(B) is irrational, the only way two
monomialsA2BP and A°BY can be equal is i = c andb = d. We will show that the
sizes of triangles i, (relative to the original triangle) is given by such monomials, and
that the number of distinct powers @f grows without bounds as — oo. This will
show that the number of distinct sizes grows without bound as oco.

In each subdivision there are four tiles of siBerelative to the parent and one tile
of size A. Thus the descendants of a given tile all have sizes that are monoWafs
relative to the ancestor. For evary- 0, T, contains at least one tile with siZ¢B®; just
take aB child of aB child of . .. of one of the originaB children (or theB child itself,
if it has not subdivided). For every > 0, T, contains at least one tile with siz& B®;
take aBBB. .. descendant of the origin@l child. Oncen is large enough to have the
original A child divide, there is at least one tile with siZ€BP. In general, once is
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large enough to allow aath generatiorAA. .. child, it will always have at least one tile
whose size has exacttypowers ofA. This completes the irrational case.

Now suppose that ) /In(B) = p/q, with pandq relatively prime. Thuf\Y = BP.
Letr = AYP = BY9, Every monomialA2BP is a power ofr . Assume for the moment
that p < g. By Lemma 1, the ratio of sizes of any two tiles is greater tBag- r9.
Thus only at most) distinct sizes can appear. To see thatzesdo appear, we note that
APB™ AlBP: . AI-1BM-1 agre all distinct powers af.

If p> g, Lemma 1 states that the ratio of any two sizes is at |8astr P, so at most
p different sizes can occur. We produpélifferent sizes by examining different powers
of B. In either case, the number of distinct sizes is fpex). O

We refer to tilings with IfA)/In(B) = p/q as(p/q) rational tilings, and denote
the class of such tilings agl(p/q). For z irrational, we similarly denote the class of
tilings with In(A)/In(B) = z asTil(z). The different tilings in a class are all derived
from the same substitution rule, and have many properties derivable from this rule. When
discussing such properties, we sometimes refer to a typical element of the class as “the
tiling Til(2).”

Note that Irsin(6))/In[cos(@) /2] is a strictly decreasing function 6fon the interval
(0, 7/2). From this monotonicity, and from the countability of the rationals, it is clear
that only a countable set of anglegive rise to a finite number of rotations, and only a
countable set of anglesgive rise to a finite number of sizes. The intersection of these
two countable sets turns out to be a single point.

Theorem 4. The only angle that gives rise to both a finite number of orientations and
a finite number of sizes 6= 7 /4. That is the tiling Til(1/3).

Proof Letx = exp(if), with 0 < 6 < =/2. We are looking for solutions to the
equation si®)? = [cos(#)/2]P, which we rewrite as

29(x 4+ X)P = 22P(—i)9(x — x)9, 2.1

wherex = exp(—if) = x~1. Note that, for fixedp, g, there is at most one solution to
(2.1) in the first quadrant, since In[$#)]/In[cos(0)/2] is monotonic.

Since by assumptiofis a rational multiple ofr, X is a primitiventh root of unity for
some integen. If X is a solution andj is even, then (2.1) has (real) integer coefficients,
andall the primitiventh roots of unity are also solutions. dfis odd, all the primitive
nth roots of unity are solutions either to (2.1) or to the conjugate equation

29(x + X)P = 22Pi9(x — x)9. (2.2)

Equation (2.2), witlg odd, has no solutions in the first quadrant, as the right-hand side

is positive but the left-hand side is negative. Since (2.1) admits only one solution in the

first quadrant, there must be exactly one primititie root of unity in the first quadrant.
This means that must equal 5, 6, 7, 8, 10, 12, or 18. Checking these individually,

we see that only = 8, or6 = 7 /4, yields a rational value of In[s{f1)]/In[cos(#)/2].

In that one case sifl) = cog6) = +/2/2, and sii(¥) = cog8)/2. O
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In a periodic tiling, all of the sizes and orientations are exhibited in a compact region,
so neither the number of sizes nor the number of orientations can be infinite. Thus we
have

Corollary. If z £ 1/3, then the tiling Ti(2) is not periodic

In fact, it turns out thaTil (1/3) is not periodic, either. This is shown in Section 6.

3. An Example with Two Sizes

In this section we consider in detail the tilifg (1/2), shown in Fig. 1. This example is
chosen not as a special case, but rather as a simple example of some general phenomena.
Based on the statistical analysis of Section 4, we expect all tiliiigp/q), withg > 1

and p/q # 1/3, to be qualitatively similar tdil(1/2). Specifically, in all these cases

the population matrix has two or more eigenvalues with modulus bigger than one. This
causes fluctuations in the statistical composition of super@leés grow withn. This,

in turn, can cause the tiling to fail to be globally edge-to-edge.

Theorem 5. Til(1/2) is a tiling with two sizes of tileseach of which appears in an
infinite number of orientationsThe substitution scheme has the sibling edge-to-edge
property but the tiling is not globally edge-to-edg8pecifically the tiles meet in an
infinite number of ways

Proof. The existence of the tiling, the number of sizes, and the number of orientations
follow from Theorems 1-3. The sibling edge-to-edge property is manifest, if we consider
the basic tile to have four vertices—the three obvious ones and the midpoint of the long
leg. The difficulty is in proving that tiles meet in an infinite number of distinct ways.

The process by which this happens is as follows. There are certain special lines in the
tiling. The long diagonal in Fig. 1 is an example. On each side of such a line there are
triangles, all of the same size, whose hypotenuses or long legs make up part of the long
line. The pattern iglifferenton the two sides of the line, with one side having (say) more
legs in a certain region and the other side having more hypotenuses. This imbalance
causes the tiles on one side of the line to appear shifted relative to those on the other
side, a phenomenon we call “slippage.” We will exhibit regions where the imbalance is
arbitrarily large. Since the imbalance is unbounded, the slippage of one side relative to
the other reaches arbitrarily high multiplesyimoduloc, whereb andc are the lengths
ofthe long leg and hypotenuse. Sirye is irrational, this gives rise to an infinite number
of ways in which one triangle can meet another across the long line.

Lines where slippage occurs are called “fault lines.” Note that each fault line has only
finite length, and allows only a finite amount of slippage. However, we will find fault
lines of arbitrarily long length with arbitrarily much slippage. This precludes there being
a finite bound on how many ways one triangle can meet another.

The Til(1/2) tiling is based on a right triangle with legs = /2(+/17— 1) and
b = v/17— 1 and hypotenuse = 4. Several degrees of subdivision are shown in Fig. 6.
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(a)

D)

©
Fig. 6. Three stages of subdivision fdil (1/2).

At each level there are two sizes of triangle, whose linear sizes differ by a factor of
a/c. The heavily shaded lines in Fig. 6 are fault lines. For egghwith n even, only
large triangles abut the illustrated fault line. Once a fault line is formed, the triangles on
opposite sides of the line evolve separately, and begin to slip. We shall prove that this
slippage increases without bound.

Til(1/2) may be viewed as a traditional substitution system, with two prototiles, which
we call B and S (for big and small). Each subdivision, followed by rescalingdsg,
may be viewed as a replacement of e&dhiangle by aB triangle, and replacement of
eachB triangle by aB triangle and fouiStriangles. Let the population df, be

Ng
W, = :
" (Ns>

whereNg and Ng are the numbers of big and small tilek. satisfies¥,,; = MY,
where the population matrix is
11
M= <4 0) , (3.1

with eigenvalues.. = (14 +/17)/2 and eigenvectors

fa = (mﬁ).

+8
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As n grows, the ratio ofNg to Ns approaches+/17 + 1)/8 ~ 0.6404. The exact

populations are
1 ((vTT+1\"" [(1-vT?\"

J17 2 2
(3.2)
4 ((viz+1\" [1-v17\
Ns(n) =4Ng(n—1) = JT?((T) — (T) )

Note thatja_| > 1, so that8Ng — (+/17 + 1)Ng| grows withn.

Next we consider what happens along a fault line. To do this we must consider the
boundary ofT,,. Note that the hypotenuse and long legetonsist only of hypotenuses
and long legs of big triangles. Applying the subdivision again, we get that the hypotenuse
and long leg ofT, also consists only of hypotenuses and long legs of big triangles.
Similarly for all Typ.

The evolution of these legs and hypotenuses is a substitution system in its own right,
only in one dimension. There are four symbdifst, H—, L™, andL~, representing the
two orientations of the hypotenuse and long leg, respectively. From Fig. 6(b), we see
that the substitution rule, which we denetg is

oo(HT) = LTL H, oo(HT)=H L*L", oo(L¥) = HEHE. (3.3

SinceL™ andL~ only appear in the combinatidn™L~, we can define a new symbol
L = L*L~ and have a substitution system with three elements, whose rule we denote
o:

o(H") =LHT, o(H)=HTL, o(L)y=HTHTH H". (3.4

Lemma4. The sequence"(H™) contains neither the subsequence LL nor the sub-
sequence HH™.

Proof. The proof is simple induction. The only way to generateldnis from an
H~H™, and the only way to generate &t H* is from L L. Since neither appear in the
first generation, neither appears in any subsequent generation. O

Lemmab5. The sequence"(H*) does not contain a subsequence of more than six
consecutive H's

Proof. SinceLL does not occur im""*(H™), the longest possible sequencetbvt
in o"(H*) would come from a sequend¢*LH~ in ¢"~1(H*). This gives rise to
LHTHTHtTH-H-H~L, or sixH's in a row. O

Let f (n) equal the number df’s in the first half of the sequened'(H ) minus the
number ofL’s in the second half of the sequence. As we shall §é) is closely related
to the extent to which slippage occurs along the largest fault lifdg,irp.
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Lemma6. If|f(n)| > 6,then|f(n+ 1) >|f(n)| + 2.

Proof. Letsands' denote the first and second halves8{H ™), respectively. Suppose
thats containsh H'’s andl L's, while s’ containsh’ H's andl’ L's. Note thatf (n) =

I — 1" = h’ — h. Since eactH generates ail and anL, while eachL generates four
H'’s, o(s) contains 4+ h H’'s andh L's, while o (') contains # + h’ H's andh’ L’s.
Thuso (s) contains & (n) more terms, buf (n) fewerL'’s, thano (s).

Now supposd (n) > 0. The first half ob"t(H ) is all of o' (s), minus the lasf (n)
elements, while the second half@f+1(H™) is the lastf (n) elements ok (s) and alll
of o(8'). Thus f (n + 1) equals— f (n) minus twice the number df’s in the lastf (n)
elements o (s). Sincef (n) > 6, there must be at least ohén the lastf (n) elements
ofo(s),so|f(n+1|=—-—Ff(n+1) > f(n)+2.

If f(n) < 0, then the first half ob"*X(H*) is all of o (s), plus the first| f (n)]
elements ot (s'). We then havef (n + 1) equalling— f (n) plus twice the number of
L’s in the first| f (n)| elements o0& (s). By Lemma 5, there must be at least one sugch
so|fn+D|=fn+D>2—-f(n)=|f(n)|+2. O

Lemma7. limp_ | f(N)| = +o0.

Proof. By explicit computation,f (1) = 1, f(2) = -1, f(3) = 1, f(4 = -3,
f(5) =3, f(6) = —5,andf (7) = 9. By Lemma6, fon > 7,|f(n+ 1)| > | f(n)|, so
| f(n)] > n+ 2 goes to infinity as — oo. O

We have proven thatf (n)| grows without bound, which is all that we need. In
fact, | f (n)| grows exponentially. For large, an approximate fraction/23 + +/17) of
the elements of"(H*) areL’s, so f(n + 1) ~ —f(n) + 2f () x 2/(3+ V/17) =
f(n)(1 — +~/17)/2. The growth rate(1 — +/17)/2, equals._, the second eigenvalue of
the population matridM.

We now return to the question of slippage along fault lines. Consider two large
triangles that meet hypotenuse to hypotenuse to form a rectangle, as in Fig.H. Let
andR be the ends of the common hypotenuse, an@lbe the midpoint. Rotation by
aboutQ sends each triangle into the other.

Triangle 1

Q

Triangle 2

Fig. 7. Afaultline.
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Subdivide the pair of trianglesniZimes. The pattern of subdivision of triangle 2 along
the intervalP Q is the same as that of triangle 1 along the inteR&. We have already
seen that only large triangles abut the main diagonal, and that they do so only along their
hypotenuses and long legs. For each prioh the intervaP Q, let g, (x) be the number
of complete long legs on the triangle 1 sideR% minus the number of complete long
legs on the triangle 2 side éfx.

Lemma8. |gn(Q)] = (c/b)| f(n)| — 1.In particular, limp_ o |gn(Q)| = oco.

Proof. Consider the @-fold subdivision of the pair of triangles in Fig. 7. The hy-
potenuse of triangle 2 gets divided irt8(H ™). Let M, be the point on the hypotenuse
corresponding to the middle of the sequea€éH ). By construction, there arefZn)
more long legs, and (n) fewer hypotenuses, betwenand M, than betweemM, and

R. Since legs have length hypotenuses have lengthand 2 > ¢, M, lies a distance

f (n)(2b — c) closer toR than toP, or a distancef (n)(2b — ¢)/2 beyondQ.

Supposef (n) < 0. ThenM, lies betweenP and Q. The number of hypotenuses
betweenP andQ is at least the number of hypotenuses betwleemdM,, and so is at
least— f (n) more than the number of hypotenuses betw®easnd R. Since the length
of P Q equals that oQR, and length equalks x legs plusc x hypotenuses, there are at
least—(c/b) f (n) more legs iMRthan inP Q. Thus|g,(Q)| is at least the integer part
of (c/b)| f (n)|, which is greater thatc/b) f (n) — 1.

If f(n) > Othis situation is reversed. Théf, lies betweerQ andR, and the interval
betweenM, andR has the surplus of (n) hypotenuses. The interv@R has a surplus
of at least that many hypotenuses, so the inteP/@lhas a surplus of at leagt/b) f (n)
legs. Taking the integer part, we see tiaf has a surplus of at leagt/b) f (n) — 1
complete legs. O

We are now in a position to prove Theorem 5. Ixebe a point onP Q that is the
vertex of a tile in the subdivision of triangle 2, and {ebe the nearest vertex, &R, of
a tile in the subdivision of triangle 1. The intervay is the interval of contact between
two tiles, one in triangle 1 and the other in triangle 2y lies betweerP andx, then
the length ofxy is congruent, module, to bg,(x). If x lies betweerP andy, then the
length is congruent either tebg,(x) or b — bg,(x) (modc), depending on whethety
is part of the hypotenuse or long leg of a tile on side 1.

As we pick pointx from P to Q, gn(X) goes, by steps of one, from 0gg(Q). Thus
the intervalsxy take on at leasig,(Q)|/2 distinct lengths. Sincgy, (Q)| grows withn,
all we need for Theorem 5 is to show that fault lines modeled'tiH ), for arbitrarily
large values oh, occur in the tilingTil(1/2).

By construction,Til(1/2) contains supertiles modeled dp,, for arbitrarily large
values ofm. If mis even, then the primary fault line exhibited in Fig. 6 is modeled on
o"(H™T), withm = 2n + 2. If mis odd, then there is also a supertile modeledigny,
namely the descendants of the large tile in the first subdivisidn 8incem — 1 is even,
this supertile contains a fault line modeled ®(H ™), with m = 2n + 3. Sincem is
unbounded, we have obtained our requisite arbitrarily long fault lines.

This completes the proof of Theorem 5. O
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4. Statistical Properties of Rational Tilings

In this section we consider the statistical distribution of sizes and orientations of tiles in
the various rational tilingsil (p/q). More precisely, we consider the distribution of sizes
and orientations in a supertile modeled By and take the limit as — co. We first
show that the distribution of sizes approaches a simple limit as co. The limiting
distribution is given by the eigenvector associated to the largest eigenvalug »f @
(orqg x q) population matrix. We also analyze the second eigenvalue of this matrix. The
failure of the edge-to-edge property foit(1/2) was a result of fluctuations that were
governed by this second eigenvalue. We conjecture that the edge-to-edge property holds
only for those tilings with second eigenvalue smaller than one, and we classify these
tilings.

We then turn to the joint distribution of sizes and orientations in ratigrgltilings.
We show that, for each size, the distribution of orientations is asymptotically uniform.
Specifically, we parametriz®(2), the group of orientations, by two copies of the unit
circle. Given an interval in this set, the fraction of tilesTi of a given size, whose ori-
entations lie in that interval, approaches a constant times the length of the interval. In the
terminology of Radin [R3], the tiling3 (p/q) exhibit “statistical rotational symmetry.”

By Theorem 3Til(p/q) contains triangles ah = max(p, q) distinct sizesTil(p/q)
is equivalent to a traditional substitution tiling, with prototilBsg, ..., Dy, of m sizes.
We takeD; to be the largest size arid,, to be the smallest. Subdivision and linear
rescaling byr =1, wherer = (a/c)¥P = (b/2c)Y/9, takesD;, 1 to D;, and takeD; to
four copies ofD4 and one copy oD,. That is, the population matrix, which gives the
population ofT,, 1 in terms of the population ofF,,, has matrix elements

1 if j=141

1 if j=1 and i=p;
4 if j=1 and i =q;
0 otherwise.

Mij = (4.1)

The properties oM are summarized in the following theorem:

Theorem 6.
(1) The characteristic polynomial of M is

Ad—2p0"P—14 if p<aq;

P() = {Ap —4HP9-1 if p>aq. 4.2)

(2) The largest eigenvalue of M ist.
(3) There are exactly g eigenvalues with modulus greater than one
(4) The eigenvectorg of M, for fixed eigenvalue, take the form

Yk =2 A PHKk-—p—-1) -4 9HK-q- 1), (4.3)
where H(n) is the discrete Heaviside function

1 if n>0;

Hm) = {0 otherwise (44)
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(5) Asymptoticallythe number of tiles of sizeDs a fraction

r2

2z @H(P =K +bH (@ —kr=* (4.5)

Vk =

of the total
(6) Asymptoticallythe area covered by tiles of sizg I3 a fraction

_a’H(p—k) +b?H(q—k)

paz + gb? 4.6

Pk
of the total

Note thatifp < g, thenH (k — q — 1) is identically zero andH (q — k) is identically
one. If p > q, thenH (k — p — 1) is identically zero andH (p — k) is identically one.
As written, expressions (4.3), (4.5), and (4.6) apply to boththeq and p > g cases.

Corollary. Lett be atile of size K.et N¢(n) be the number of descendants of t after
the nth application of the substitution rul€hen

4C2r2k
(1—-r?)(pa2+qb?)’

nIim r2"N(n) = 4.7

Proof of the Corollary From the distribution (4.5), we compute the average area per
tile to be(1—r?)ab(pa’ 4+ qb?)/8c2. Atile of size D, subdivided and rescaledimes,
has areabr?-2"/2. Dividing by the area per unit tile we obtain (4.7). O

Remark. If g > 1, then the second largest eigenvaluévbfs greater than one. The
fluctuations in population associated to the corresponding eigenvector then grow with
subdivision, although they do not grow as fast as the population as a whole. It was
precisely this phenomenon that caused the edge-to-edge property to fail igp). If

g = 1, then the second eigenvalue is less than one. In Section 6 we shall see that, in
Til(2), this causes the triangles to meet in only a finite number of ways.

Conjecture. If p and q are relatively prime integerg > 1 and p/q # 1/3, then the
tiling Til (p/qg) has tiles that meet in an infinite number of different wédfyp > 1, then
the tiles in Til p) meet in only a finite number of ways

Proof of Theoren6. Fork < m, thekth row of the vector equatioMy = Ay reads

Y1 = APk — Bk, p + 40k ) V1. (4.8

Settingy; = A, we repeatedly use (4.8) to obtain expression (4.3)ar. .., ¥m.
Plugging this into thenth row of My = Ay then gives the characteristic polynomial
(4.2).

Now suppose < g, and consider the functiop() for A real and positive. Note that
p(r=2) =r=29 —r2P~2 _ 4 = 4¢?/b? — 4a’/b? — 4 = 0, sincea’ + b®> = ¢®. When
A>1,p) =qgrdt—(q— pr% P10 Thusp(r) > Oforallx >r~2,
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Now let A # r~2 be a root ofp(1). We show thati| < r =2, If A is real and positive,
theni < r=2.If A is not real and positive, then, singeandq — p are relatively prime,
we cannot have?® andA%~P both real and positive. Thus, by the triangle inequality,

0=[p@)| =A% —=A%"P —4] > A9 — 2P| — 4 = p(|A)). 4.9

Sincep(|A|) < 0, we must havér| < r—2.

We count the number of roots in the unit circle via the argument principle, tracking
the argument op(exp(if)) asd goes from 0 to 2. When|r| = 1, p(A) always has
negative real part, as4 |A9+4 197 P|. Thus the winding is zero, and none of the roots of
p(*) lie in the unit circle. Thus there argroots, counted with multiplicity, outside the
unit circle. Sincep’ (1) is never zero outside the unit circle, all these roots are distinct.

Now suppose > . Thenp(x) = AP~9(A% — A9~P — 4), By the same arguments as
before,p(r =) = 0, andp(x) > O for realr > r —2. For any eigenvalug other tharr —2,
0= |p)| > p(A]). Sincep(Jr]) < 0, || < r 2. By the argument principle, there are
p — g roots inside the unit circle, since the dominant ternp¢f) on the unit circle is
4).P~9, This leaveg roots outside the unit circle. This completes the proof of statements
(1)—4).

To obtain the asymptotic distribution of sizes, we must decompose the initial pop-
ulation into eigenvectors oM. The asymptotic distribution will be the eigenvector
corresponding to the largest eigenvalue, assuming the coefficient of that eigenvector
is nonzero. We have shown that this largest eigenvalue3sSince the total area of
the system grows by a factor bf? each time, the coefficient of this eigenvector is not
zero. Thus the asymptotic distribution of population is given by a multiple of the ex-
pression (4.3), witlih. = r—2. Normalizing, we obtain expression (4.6). Multiplying
this by the area of each tile and normalizing again gives the asymptotic distribution of
areas (4.7). O

We now turn to the joint distribution of sizes and orientation. To do this we must first
parametrize the space of possible orientations of a single size. This space is isomorphic
to two copies of the unit circle. We specify both the handedness of the triangle and the
direction a fixed vector in it points in the plane. We take as our reference vector the ray
from the small angle to the right angle. In Fig. 8, the first triangle has orientation; ),
while the second has orientatidr, ¢,). We letQ2 denote the ordered paitt, ¢), and
let d2 = dg/47 be the Haar measure on the space of orientations. The space of all
possible tiles up to translation, which we dentgis 2m copies ofSt.

¢l ¢2

Fig. 8. Orientation of triangles.
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Let f be a function orX. Given a collectiorS of tiles, let( f, S) be the average value
of f on the individual tiles ir5, where each tile is given equal weight. Lidt S)’ be the
average value of on the individual tiles irs, where each tile is weighted proportionally
to its area.

Theorem 7. Assume a tiling Tilp/q), with p and g relatively prime and /g # 1/3.
Let f be acontinuous function on Xnd let{S,} be a sequence of supertiles of increasing
sizeLetdv =), wdQeand dp = ), o« dS2 be measures on Xvherev, and pi are

as in Theoren®. Then

lim (f, &) 2/ fdv, (4.109
n— oo X
lim (f, S =/ fdo. (4.10b)
n—o0 X

These limits also apply if f is the characteristic function of an interval in X

Proof. We first reduce the problem to establishing (4.10a) for an arbitrary continuous
function f. Once we have established (4.10a), (4.10b) follows by applying (4.10a) to
the continuous functiorf (k, ) = rZf (k, ). Once (4.10a,b) have been established
for continuous functions, the extension to characteristic functions is standard (for details
see [CFS]). Letl be an interval, and leg, be its characteristic function. We choose
continuous functiond *, such thatf,” < x; < f;, and such that linwo fx fgidv =
f, dv. limn_ o0 (x1, S} is sandwiched between lim«(f,7, S) and lim_ o (f.", S),
hence betweer, f,"dv and [, f;"dv, and so must equg| dv.

To establish (4.10a) we must introduce some notatiof.iff a function onX andS
is a collection of tiles, let f, S) be the sum off evaluated on the individual tiles &.
Let ® denote the action of subdividing and rescaling. Tha®isicting on a tile of size
Dy.1 gives a tile of sizeDy of the same orientation, whik®¢ acting on a tile of sizé;
gives one tile of sizé, and four of sizeDq, having various orientations. Ldt" be the
dual of ® by (-, -), acting on the space of functions:

(@1, S) = (f, D(9)). (4.11)

Let f, = (®*)" f. Note thatd* is linear and sends nonnegative functions to nonnegative
functions, so iff < g, thenf, < gy.
Now suppose we have a sequence of tijeend supertile§, = ®"t,. We have that
( fs S]) ( fn, tn)

(S = #oftlesing, #oftlesing,’ (4.12)

Since the number of tiles is given asymptotically by (4.7), (4.10a) is equivalefit fe
converging uniformly tofX fdv times

4C2|' 2k
(1—-r?)(pa2 +qb?)’

We examine the spectrum of the linear operatdron the function spac€(X). The
key lemma, whose proof we defer, follows.

Sok, Q) = (4.13
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Lemma 9. The spectrum ob* is pure point ¢o is an eigenfunction with eigenvalue
r —2. All other eigenvalues have norm strictly less thad.rAny continuous function f
can be written as gpossibly infinit¥ sum of eigenfunctions @f*)'9~P!, such that a
subsequence of partial sums converges uniformly.to f

Remark. If p < q, it turns out that there are a number of functign$or which
(d")Ia-Plz = 0, but®*¢ # 0. Thus, to achieve a basis for the space of continuous
functions, we must use eigenfunctiong @f)!9— P! rather than just eigenfunctions ®f.

Given the lemma, we write
o0
f=Y aq. (4.14)
i=0

Since a subsequence of the partial sums converges uniformly, andghe®a positive
minimum, for eackx > 0 we can find an integeM such that

N N
f~= (ZC&) —elo< f < <ch§i> +eo=f+, (4.15)

i=0 i=0

where eaclt; is an eigenfunction with eigenvalug. (Strictly speakingg; is merely
an eigenfunction of®*)!9=P!, not necessarily ofb*, but this distinction makes no
difference.) Sincér —2A;| < 1 foralli > 0, forn > |p — q| we have

N N
(Co— &0+ Y a(r?4)"G <r¥fo < (Co+e)lo+ ) G (416
i=1 i=1
Asn — oo, the left-hand side converges uniformly(tg— ) ¢o, while the right-hand side
converges uniformly técy + £)¢o. Sincee is arbitrary,r 2" f, must converge uniformly
to Co&o-

All that remains is to compute, in terms of f. Since¢y is invariant under rotation
and reflectiongo must be of the fornd ", d f f (k, ) d2 for some universal constants
dk. By comparing characteristic functions of different sizes, we see that the constants
d« must be proportional tok. Finally, for the constant functiofi = 1, f,(k, Q) is the
number of descendants of a tile of si2g, which we have already computed in (4.7).
This fixes the proportionality constant. O

Proof of Lemmd&®. &* commutes with rotations, so we may simultaneously diagonal-
ize ®* and the rotation operatori (d/d¢). The eigenvalues of the rotation operator
are of course the integers, with each eigenspace bemditensional. Specifically,
the eigenspace corresponding to an integer the span of therd functions obtained
by restricting exping) to each of the & circles in X. Operators on finite-dimensional
spaces always have pure point spectra. Summingrowee see that the spectrumof
is pure point.

On each th-dimensional subspace corresponding to the Fourier modérexy the
action of®* is described by ar by 2m matrix E, which we write as am x m array
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of 2 x 2 matrices. Le® = tarr!(a/c) be the acute angle in our basic triangle. Consider
the matrices

_ 0 expl-in( + 7 /2)]
A= (exp[m(@ +7/2)] 0 ) ’ (4.17)
B — exp(ing) + exp(in(@ + m)) 2exp—ing) (4.18)
o 2 exping) exp(—ing) +expin(—0 +m)) J

A and B describe the orientations of the five daughter tiles in terms of the orientation
of the parent tile, as expressed in thith representation of the rotation gro®0(2).
Specifically, A describes the daughter tile of hypotenasevhile B describes the four
daughter tiles of hypotenusg?. In each case the first column describes the daughters of
a positively oriented tile, while the second column describes the daughters of a negatively
oriented tile. See Fig. 9.

(—.6+n/2)

(+0+1) | (+,6)

=9 (-0

+-9) (+.-6)

(=m—0) \(~-0)

(+,-6-1/2)

Fig. 9. Orientation of daughter tiles.
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Our matrixE has the following matrix elements:

1 if j=i-1;
B A if i=1 and j=p;
Eij = B if i=1 and j=q; 419
0 otherwise.

Notice thatE is essentially the transpose of our population mattipwith the daughters
represented by the matricésand B rather than the numbers 1 and 4. We compute the
eigenvalues and eigenvectorsioby directly solving the equatioByr = Av).

Supposey, = v, wherewv is a two-component vector. Each row but the first of
Ey = Ay implies thatyy_1 = Ay, and hence that, = A™ v for all k. The first row
then says that

(M AM-Ag _ \M-PA)y = 0. (4.20)

Taking the determinant of the matrix on the left-hand side, we obtain the characteristic
polynomial of E,

p(r) = A¥M —22M9(2 cognd) + 2 cognr + nk)) + A2M2(2 cognr) — 2)
—AZM=2p _ 5 2m-P=4 (4 cognz/2)). (4.21)

First we considen = 0. If p < g, p(0) = (A9 — AP —4H(AP + DHAIP. We
recognize the first factor as the characteristic polynomiaWipfvith one rootr ~? and
all other roots smaller in norm. The roots of the second and third factors have norm one
and zero, respectively. The eigenvector corresponding to eigenvaigyy = r(3),
i.e.,¢o (up to scale).

We can understand the eigenvalues as follows. The roots of the first factor all cor-
respond tow = (1) and describe fluctuations in the numbers of tiles of various sizes,
irrespective of orientation. This is the problem we previously studied in Theorem 6. The
unit and zero eigenvalues correspondte- (_i) The zero eigenvalue has algebraic
multiplicity g — p and geometric multiplicity one. Since the basic subdivision produces
equal numbers of positively and negatively oriented “B” tiles, after p subdivisions
there must be the same number of positively and negatively oriented tiles of each size
Dp+1, - - .. Dm. Since there is but one “"A’ daughter of each subdivided tile, the imbalance
between positive and negative orientation in the larger sizes neither grows nor shrinks,
but oscillates with period 2. These correspond to the rootsidf+ 1.

If p > g, thenp(}) factorizes agp(A) = (AP — 1 — 4AP~ (AP 4 1). Again, the
first factor is the characteristic polynomial bf, and governs the total number of tiles
of each size, with all eigenvectors having= (i) The largest eigenvalue is?, with
eigenvectory. The roots of(AP + 1) describe oscillations in the numbers of positively

versus negatively oriented tiles and have: (_1)

Nextwe considen odd. Thenexfinr) = —1, andp(}) simplifies tox?™—42m-24
A2M=2P_This is just the characteristic polynomial ldf applied tor2. By Theorem 6, the
largest roots have? =r =2 or x = #r 1,

Finally we considen even and nonzero. Them(1) = A?™ — A?™~9(4 cogno)) —
A2M=2p _ )32m-p-d(4 cognrmr/2)). We show that all roots are smaller thar? by the
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argument principle. Note thatis an irrational multiple ofr, so cognd) # £1. On the
circle |»| = r 2 we have

A2M9(4 cogng))| + [A2™ 2P| + |2 P=9(4 cognrr/2))|
b?lcogng)| a* a’b?
= [A2"] (L)| + =+ —)

c? ct ct
_p52m a2 + b?jcogno)|
= |T
< |A%m]. (4.22)

Thus thea?™ term of p(1) dominates on the circlp.| = r =2, so the winding of the
argument ofp(r 2 exp(ia)), asa goes from zero to2, is 2m, and all 2n eigenvalues
of E lie inside the circle of radius2.

This completes the analysis of the spectrun®ddf Now we need only consider the
decomposition into eigenvectors. Sintes continuous, it has an absolutely summable
Fourier series. So we may writ(k, Q) = Y, c,y"” expling), where thec,’s are
absolutely summable arg{zllﬁn) is a vector inC?™ with no component larger than one.
In particular, the partial sums converge uniformly to However, Wy is itself a sum
of eigenvectors oE!9~Pl, so we may rewrite our sum as a sum of eigenfunctions of
(qp*)\qul_ O

5. Irrational Tilings

In this section we consider tilingsl (z), with zirrational. The analysis is formally similar
to that of Section 4, except that we are now dealing with an infinite number of possible
sizes. In place of the discrete-size paramktee introduce a continuous-size parameter
s. In place of the discrete evolution operad@twe introduce a one-parameter semigroup
', Although the continuous case is technically more difficult than the discrete cases,
the results are extremely similar. Indeed, if one has a sequence of rational nymloers
converging to the irrational number then the statistical properties il (z) may be
obtained as limits of the corresponding propertiegitfp; /q;). (Note that the reverse
does not hold. The statistics of a rational tiling cannot be obtained by taking a limit of
irrational tilings.)

As always, we consider a basic right triandiewith sidesa andb and hypotenuse.
Leta = In(c/a), B = In(2¢c/b), and assume that= «/g is irrational. By a triangle of
sizes, we mean a triangle, similar &, with hypotenuse&e 5. Note that larger values
of s correspond to smaller triangles, just as in the rational case, where thB,sizie
triangles decreased with In our tiling the size parametarwill take values in [Q ),
whereu = maxa, B).

We now describe a semigroup similar®8. Let She a collection of tiles, all with size
in [0, u). Expand this collection by a linear facter, resulting in triangles with sizes in
[—t, w—1). Then subdivide the largest triangle, subdivide the largest remaining triangle,
and so on, until all triangles have nonnegative size parameter. By Lemmas 1 and 2, this
occurs in a finite number of steps, and results in a collection of tiles with sizes;in.[0
This collection ise'* S.
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The semigroupe' naturally acts on the distribution of sizes. The properties of
this action are summarized by the following theorem, which should be compared with
Theorem 6:

Theorem 8.

(1) The eigenvalues of L are the roots of p.) = 0, where
p(L) = e — el — 4e=h, (5.1)

There are no multiple eigenvalues

(2) » = 2is an eigenvalueAll other eigenvalues have real part strictly less than
2. If @ < B, all eigenvalues have real part greater or equal to the real root of
e L elf—% _ 4 while ifa > B, all eigenvalues have real part greater or equal
to the real root of & + 4e@=A* — 1,

(3) The eigenfunctiony (s), for fixed eigenvalug, takes the form

Y(s) = &S — e Yh(s—a) — 4 Ph(s— p), (5.2)
where h(x) is the Heaviside function

1 if x>0;

h(x) = {O otherwise (5.3)

(4) Given aninterval IC [0, w), the number of tiles with size in | is asymptotically
a fraction

2—(1:2 / ds(@®h(a — s) + b?h(B — s))e* (5.4)
|

of the total
(5) Given an interval Ic [0, u), the area covered by tiles with size in | is asymp-
totically a fraction

1 2
of the total

Corollary. Let T be a tile of size.d. et N(s) be the number of tiles in'e&(T). Then

202 e 2s

lim e 2N(s) = —————.
t—o0 t( ) alu + b2,3

(5.6)

Proof of the Corollary From the distribution (5.4), we compute the average area per
tile to beab(aa +b?8) /4c?. Atile of sizes, rescaled by a facta', has areabe~25/2.
Dividing by the area per unit tile we obtain (5.6). O
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Proof of Theoren8. ForO< t < min(a, B, |« —A]), the action o&'" onthe population
distribution functions is

V(S+t) +4y(s+t—p) if se[f—tB);
€)= v+t + s+t —a) if sela—t a); (5.7)
v(s+1t) all other se |0, w),

where ¥ (s) and e'“y (s) are understood to be zero fer> pu ors < 0. el acts
continuously on functions that are continuous away frara,®, and for which the
oscillations atx andg are given by

Y(a) =y = (0 V(BT —y(BT) =41(0). (5.8)

Settinge'- v = €*1 we see that the eigenfunctigi(s) must equa&*s times a piece-
wise constant function with discontinuities atQ 8. Applying the boundary conditions
(5.8), we obtain the eigenfunction (5.2). Bos u, ¥ (s) then equalgS—* timesp(i).
The vanishing ofys(s) for s > u is equivalent to the eigenvalue equatip) = 0.
Thus eigenfunctions satisfying the boundary conditions are in 1-1 correspondence with
roots of p(1), with the eigenfunctions given by (5.2).

Supposex < B, in which casep takes the form

p(h) = ef* —ef~0* _ 4, (5.9)

A = 2is aroot, sincg(2) = e — P~ _ 4 = 4c?/b? — 4a®/b?> — 4 = 0. This is
the only real root, insofar ag(1) is an increasing function ¢f for A > 0, andp(}) is
negative forx < 0. In particular,p() < 0 implies that, < 2.

Now consider complex roots= Ar+ii,.If A; # 0,e%* ande’”~®* cannot both be
real, insofar ag is not a rational multiple o — «. Thus|e?*|, |e#~**|, and 4 satisfy
a strict triangle inequality. In particular,

0> |ef* — |e¥~* — 4= p(rr), (5.10)
SOAR < 2. Also,
0 < ||+ P94 —4=eftr 4 fPr _4g (5.11)

SO AR is greater than the real root ef* + ef—* _ 4,

Now we exclude the possibility of multiple roots. A multiple root would require
p(L) = p'(A) = 0. Suppose 6= p'(A) = Be’* + (B — a)e#~* Thenef* andef—*
must have the same phase, and their difference must also have that phase. However, if
A is not real,e®* ande®~* cannot both be real, so their difference is not real, so their
difference is not four. Thug'(1) = 0 implies thatp(r) # 0, and there are no multiple
roots away from the real axis. On the real axis, the only roat is 2, and we have
already seen that'(2) is positive, not zero.
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This establishes statements (1)—(3) for the ease 8. The argument fox > g is
almost identical, and is not repeated.

Now suppose that we initially have a population distribution that is a linear combi-
nation of the eigenfunctiong, . Applying e'" to the system, the total area growseds
so the number of tiles is bounded, both above and below, by a multigfé. &pplying
e't and dividing by the number of tiles damps out all the modes with eigenvalue less
than two, i.e., all eigenvectors other thép. In this case, the final distribution of sizes
approaches a multiple af,, and statements (4) and (5) of the theorem follow.

Unfortunately, we cannatpriori assume that the initial condition is a linear combina-
tion of eigenfunctions df , or that a test function is a linear combination of eigenfunctions
of the dual operatoL*. €'- ande''” are neither finite-rank operators nor self-adjoint
operators on a Hilbert space, so standard theorems about the completeness of a basis is
eigenfunctions cannot be applied. In principle it is possible for a test funétiorhave
the property thae'“"~2 f does not converge at all. We must show that, wiiea x,
(the characteristic function of an intervig), €~ f doesconverge.

Lemma 10. Given an interval le [0, ). The fraction of the area of'e(Ty) covered
by tiles with size in | approaches a limit as+ oo.

Given this lemma, it follows that the distribution of areaegbf(S), for any collection
of tiles S, approaches a limit, from which it follows that the distribution of population of
€'t (S) also approaches a limit. Since these limits are invariant under further evolution,
and since the total area is proportionakth these limits must correspond to the= 2
eigenvector oL, hence must take the form (5.4) and (5.5). O

Proof of Lemmadl0. Assumex < f;the other case is similar. L&, (t) be the fraction
of area ofe''(Ty) covered by tiles with size in. Given ane > 0, we show how to
compute a number such that, for afufficiently large F (t) is within ¢ of this number.
Since this can be done for aaylim;_, o, F (t) must exist.

It suffices to show that the eventual fraction in an interval of gizentirely in [Q «)
orin [«, B), and withA sufficiently small, can be estimated to witf@{A?). Any larger
interval can be broken up into a finite number of such small pieces, such teators
< ¢. So we fix an interval , centered as,, with width A.

The strategy is this: We begin with an exact expression for the fraction of area of
€'t (To) represented by tiles of sizeWe sum this oves < | to get an exact formula for
F, (t). By taking certain limits and replacing certain sums with integrals, we obtain an
expression that is independent ofn the process we introduce two types of errors. One
type can be made arbitrarily small by requiringp be sufficiently large. The other type
is O(A2).

How many triangles of sizeappear ire'" (Tp)? That depends on whethe-t can be
written asn,a + n, B for nonnegativan; andn,. If s+t = nia + Ny B, then a triangle of
sizes may be obtained by taking a triangle of sizg subdividing it, picking a daughter,
subdividing it, picking a daughter, and so on far+ n, subdivisions, with the descent
involving n; daughters of typeA andn, daughters of type. If s > «, then the last
daughter must be of typB, or else aftem; + ny — 1 steps we would have already
obtained a tile of size in [(8), and would not have made the final subdivisiors ¥ «
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there is no such constraint. We thus have

number of tiles of size

n n .
< 1: 2>4n2 if s+t= N + nzﬁ and se [Oa Ol),
1
< l+n2 4n2 |f S+t — nla+n2ﬂ and Se [aa ,8),
1
0 otherwise.

(5.12)

Since at each division a fracticaf/c? of the area goes into tha daughter, while a
fractionb?/c? goes into theB daughters, then the fraction of the total area represented
by tiles of sizes is

4 ny\ /az\™ /b2\™ .
(1: 2) <§) (§> if s+t=na+nB
1

and se]0,);

Fs(t) = _ 2\ M 2\ M (5.13
<n1+n2 1) <a) (b> if s+t=na+np

nq ? ?
and se€ o, f);
0 otherwise.

Note thatn, = (s+t — an;)/B. Now let

_ 2\ N /2N (s+t—an)/B
<(s—|—t + nr(1ﬁ a))/ﬁ) (%) (%) if s e[0,a);
f(s,t,n) = 2\ N /2, SH—en/p
+t+nB —a) - i
((s n(,Bnl @) ﬂ)/ﬁ) (%) (?) if s e [a, B),
(5.14)
and lets, be the periodié-function
8p() =Y 8(x —n). (5.15)
nez

Note thatf (s, t, n) is well-defined even whe(s + t + n(8 — «))/B is not an integer.
Fort large, f (s, t, n) is a slowly varying function o§ andn.
We then compute, exactly,

[t/a]
Fi(t)=) Fs(t)=
sel n=0
Next we approximate, by replacinigs, t, n) by f (s, t, n), wheres is the midpoint of
I. This introduces an error that is a fracti@{A) of the total. Since the total will turn
out to beO(A), the error introduced i©(A?). We thus have

/ f(s.t, NSp((S+t — Nnar)/B). (5.16)
|

[t/a]
FM =) fot, n)/lap((s+t —na)/B) + O(A?). (5.17)
n=0
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Next we use the fact that multiples of an irrational number are uniformly distributed
onR/Z. For any desired degree of accuracy,Mutan be found such that, for ay
consecutive integens, |, 8,((s+t — njr)/B) equals one a fraction /8 of the time
(to within the allowed error), and zero the rest of the time. If we restrict ourselves to
so large thatf (s, t, n) is nearly constant asvaries over intervals of sizN, then

] [t/a]
fotm [sus+t-na/p~@/p) fatn. 618
n=0

n=0

[t/e

Finally, thet — oo limit of the resulting sum can be expressed as an integral, and yields
a nonzero number. O

We now turn, as in Section 4, to the joint distribution of sizes and orientation. We
parametrize the space of possible orientations of a single size, as in Section 4, by two
copies of the unit circle, with Haar measw®. (See Fig. 8.) The space of all possible
tiles up to translation, which we denoXg is two copies ofSt x [0, w).

Let f be a function orX. Given a collectiorS of tiles, let( f, S) be the average value
of f on the individual tiles ir5, where each tile is given equal weight. Ldt S)’ be the
average value of onthe individual tiles irs, where each tile is weighted proportionally
toits area. Let f, S) be the sum off on the individual tiles os. We define a semigroup
e''" acting on functions oX by

€'f, 9 = (f, €L (9)). (5.19)

Theorem 9. Assume a tiling Tilz), with z irrational and withé = tarr(a/b) an
irrational multiple ofrr. Let f be a continuous function on, And let{ S} be a sequence
of supertiles of increasing sizeet dv = €(a’h(a — s) + b?h(8 —s)) dQ2ds/2c? and
dp = 2c’e > dv/(a’a + b?B) be measures on Xvhere h is the Heaviside function
(5.3).Then

lim (f,&):/ fd, (5.203
n—oo X
lim (f, sy:f fdp. (5.20b)
n—o00 X

These limits also apply if f is the characteristic function of a rectangle.in X

Remark. The measuredv anddp are closely related to the integrands in (5.4) and
(5.5), respectively. Theorem 9 states that the joint distribution of sizes and orientationsis a
product: the size distribution previously found in Theorem 8 times a uniform distribution
of orientations.

Proof. The proof is extremely similar to the proof of Theorem 7. As in that case, it is
sufficient to establish (5.20a) for an arbitrary continuous funcfio8uch a function can

be written as an absolutely convergent sum of Fourier modes (with respect to rotations).
The coefficient of each mode is@-valued function of. The operatog'" commutes

with rotation, and so acts separately on each Fourier mode.



Some Generalizations of the Pinwheel Tiling 105

On thenth Fourier modegtl’, for t small, acts as follows:

(etL*f)(s):{AI//(S—"‘F“)"‘BW(S—'["‘/B) if sel0,1);

Y(s—1) all other s e [0, w),
(5.21)
where the matrice# andB are, as in Section 4,
_ 0 expin® + 7/2)]
A= (expﬁn(@ + 7/2)] 0 ) (522
B _ exp(ing) + exp(in(®@ + m)) 2 exp(—ing) (5.23)
- 2 exping) exp(—ingd) + exp(in(=0 +m)) ) ° '

The zeroth Fourier mode decouples iffpand(_7) components. Th€) component
is the distribution of sizes regardless of orientation, and its asymptotic behavior was
already computed in Theorem 8. We must show thahtkeO (_i) component, and all
the Fourier modes with # 0, grow strictly slower than the size of the system, and so
represent a decreasing fraction of the system.

We will control theLL* norms of the unwanted Fourier modes. To do this we need the
L norms of the matrices andB, and various products ¢k andB. TheL* norm of a
matrix is maximum, over all columns, of the sum of the absolute values of the entries in
that column. One can get a bound on the growth ofitheorm of a mode by the mode
with its absolute value, and replacing the matriéesnd B by their norms.

Forn =0, B(j) = 0. With B = 0 itis as if there is only one daughter per division,
hence thd_* norm of the(_i) mode at timé is bounded by th& ! norm of the mode at
time zero. Hence, as a fraction of the system, this mode shrinks1ie

Next we considen odd, for which the diagonal terms B vanish. The sum of the
absolute values of the entries of each columrBogquals two. This is as if, at each
subdivision, only two daughteB tiles are produced, instead of four. To put it another
way, at each subdivision a fractidd/2c? of the area is lost. Since each piece of a tile
of size —t must be divided at leasy times, this means that tHe' norm of thenth
mode, fom odd, can grow no faster th@i[1 — (b?/2c?)]'/# and so, as a fraction of the
system, goes to zero.

Finally we considen even but nonzero. Here the column sumsAaéind B are the
same as in the = 0 case, namely one and four, respectively. However| thaorms
of various products ofA and B are smaller that in the@ = 0 mode. For example,

B2 = 4 cognd) B has norm 1@&0gng)|, which is strictly smaller than 16. The norm of
BABiIs also 16coqnd)|. Indeed, the only words iA andB which have norms as large as
inthen = 0 case ard™ andA™BA™. Since the expansion ef-"f, fort > g, involves
expressions such &%, the growth of the.* norm ofnth Fourier mode is bounded by an
exponent strictly less than two. As a fraction of the systemnthenode goes to zeral

Remark. The spectrum o&!"" may be obtained exactly as in Section 4. In seeking
eigenvectors, (4.20) is replaced by
(@ — e PR — el pyy = 0. (5.24)

Subsequent analysis may be repeated word for word, repladigg’, p by «, g by 8,
mby u, Y by ¥ (s), andr® by e~s.
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6. Two Exceptional Tilings—Til (1/3) and Til (2)

We saw in Section 4 how the population statistics of a rational tiliihgp/q) depends
onpandg. If g > 1, the second eigenvalue of the population matrix is greater than one,
and fluctuations increase with subdivision. This leads to phenomena such as slippage
along fault lines and a failure to be globally edge-to-edge. A typical examib(&,/2),

was studied in Section 3.

In this section we study examples of the remaining cases. We i@ as an
example of alil(p/1) tiling. In all such tilings, the second eigenvalue of the population
matrix is less than one. We shall see how, in the casBl@), this prevents slippage
along fault lines.

Finally, we consideffil(1/3), the only rational tiling to exhibit only a finite number
of orientations of each size of tile. As in all cases wdth- 1, there is an eigenvalue
greater than one in the problem. The fluctuations governed by this eigenvalue are enough
to forceTil(1/3) to be nonperiodic. However, because of rational relations between the
lengths of certain edges, the tilesTiih(1/3) meet in only a finite number of ways.

We begin withTil (2). Til (2) is based on the right triangle with= /5 — 2 ~ 0.2361,

b = 2/v/5—2 a 0.9717,c = 1. Several iterations of the subdivision are shown in
Fig. 10. An essential feature ofl(2) is

Theorem 10. The triangles in the tiling Tid2) meet in only a finite number of ways

Proof. The proof is essentially in two steps. First we show that the slippage along the
primary fault line is bounded. Then we show that slippage along a fault line wilye

@

©
Fig. 10. Three stages of subdivision fdil (2).
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means by which tiles in a rational tiling can meet in an infinite number of ways, and that
all fault lines are similar to the primary fault line.

To examine what happens along the primary fault line, we consider the boundary of
Ton, the hth subdivision of the basic triangle. Note that the hypotenuse and short leg of
T, consist only of hypotenuses and short legs of big triangles. Applying the subdivision
again, we get that the hypotenuse and short Ieg,@fiso consists only of hypotenuses
and short legs of big triangles. Similarly for l,,.

As inthe proof of Theorem 5, we consider the evolution of these legs and hypotenuses
as a one-dimensional substitution system in its own right.cLelenote the effect of
subdividing the basic triangle twice. Undeyeach hypotenuse (denotkl is replaced
by four hypotenuses and a short leg (dendigdwhile each short leg is replaced by a
hypotenuse. That is, the one-dimensional population matrix is

4 1
M:(l o)’ (6.1)

with eigenvalues.. = 2 + /5 and eigenvectors

viz(kli)

Now let H, and S, be the number of hypotenuses and short legs"ifH ), and let
H/ andS, be the number of hypotenuses and short legg'itB). By expanding(g) and

(é) in terms ofv.,, it is easy to see that

(VB-2H - S =-2-V9":  (VB-2H -§=-2-VD" 62

Next we measure slippage. L& and R be the endpoints of a hypotenuse, as in
Fig. 7, and letE be any intermediate point, not necessarily the midpoint.fl,éE) be
the number of complete short legs, betwéeandE, in ¢"(P R), minus the number of
short legs betweeR andE in ¢"(RP). As in the proof of Theorem 5f,(E) measures
the extent to which the two tiles @b, 2 that meet aE are offset.

Lemmall. |f.(E)| <b5.

Proof Letvy = P, and letvy be the vertex o0& X(PR), betweerP andE, that is closest

to E. Note that, incX(PR), there are at most four hypotenuses and at most one short
leg betweenvk_; and vy, since the intervabx_;vx was only part of a hypotenuse or
short leg inc*"1(PR). By (6.2), (+/5 — 2) times the number of hypotenusessif(PR)
betweervy_; andvg, minus the number of short legs, is bounded in absolute value by
(+/5 — 2)" %, Summing ovek, we get that(~/5 — 2) times the number of complete
hypotenuses betwedh andE in " (P R), minus the number of short legs, is bounded
in absolute value by 7°(v/5 —2)' < 2. A similar bound applies to the number of
hypotenuses and legsdti(RP). Thus the surplus of short legs on one sid@Bfrelative

to the other, plug+/5 — 2) times the deficit of hypotenuses, is bounded by 2 = 4.
Since a surplus of short legs implies a deficit of hypotenuses, the surplus of short legs is
itself bounded by four. O
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We return to the proof of Theorem 10. Lemma 11 limits the number of ways for
two tiles to meet across a fault line. Suppose two tijendt, meet across a fault line
PR modeled orv"(H). Let E be a point on their common edge. The distance from
the vertex oft, closest toP to the vertex oft, closest toP is either| f,(E)|(v/5 —

2) or 1 — |f,(E)|(+/5 — 2). Since|f,| is at most four, this means there are only a
finite number of ways for two triangles to meet across such fault lines. &) is

the result of subdividing the basic triangle an even number of times. However, since
subdivision is deterministic, having only a finite number of distinct configurations in the
even subdivisions implies that there are only a finite number of distinct configurations
in the odd subdivisions, and thus a finite number of configurations in all.

To complete the proof of Theorem 10, we must show that every pair of adjacent
triangles either meets full-face to full-face, or meets across a fault line based on successive
subdivisions of a hypotenuse. Consider two titeandt,, that meet. Lek be the smallest
integer such that both tiles lie in the same supe8ilef orderk. Sincet; andt, do not
meet in a supertile of ordér— 1, t; andt, must meet across one of the five lines of the
first subdivision ofS. See Fig. 10(a). There is a local reflection symmetry across edges
1 and 3, so ift; andt, meet across these edges they must meed full-face to full-face.
Edge 2 is the primary fault line. Further division (see Fig. 10(c)) shows that there is
local reflection symmetry across edge 4, while edge 5 is a hypotenuse-based fault line,
as considered above. O

We now turn to the tilingTil(1/3). By Theorem 4Til(1/3) is the only tiling in our
construction to have both a finite number of sizes of tiles, each of which appears only in
a finite number of orientation3il (1/3) is based on an isosceles right triangle. Although
the two legs have the same length, we distinguish between the two, calling’tbielé
“long” and the ‘a” side “short,” in analogy to the tilings with > a. In subdividing
we must specify which legs of the daughter tiles are labeled “long” and “short.” This is
shown in Fig. 11, and several further subdivisions are shown in Fig. 12.

Theorem 11. The tiling Til(1/3) is nonperiodic The tiles meet in only a finite number
of ways

S
H
/ H| S
s SNUL
HH
S}L
L S L S
H H
L

Fig. 11. “Long” and “short” edges ifil(1/3).
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S
//

e .

/

Fig. 12. Three stages of subdivision fof (1/3).

Proof. As usual, we consider the one-dimensional substitution scheme induced on
the edges by two-fold substitution. ThatB subdivision of the hypotenuse consists

of some hypotenuses of large triangles (dendtgdsome long legs of medium-sized
triangles (), and some hypotenuses of small triangles Let o denote the action of

two subdivisionso takes eachd to anH and twolL’s, eachL to two h’s, and eacth to

anH. The population matrix is

1
M=1]2
0

N OO

1
0 (6.3
0

with eigenvalues 2 an@-1 4+ +/—7)/2, and with the eigenveck(ri) corresponding to

eigenvalue 2. Note that the complex eigenvalues have magnifade
Asymptotically, the three types of edges appear in a ratio of 1:1:1. However, since the

initial condition ( o) is not an eigenvector, and since all eigenvalues are greater than one

(in magnitude), tﬁe difference in number betwé¢s andL’s, or L's andh’s, will grow
exponentially with time. That is, while the total population grows 34t fluctuations
grow asv/’2'.

If Til(1/3) were periodic, a long line of the form"(H) would consist of several
periods, plus aremainder at each end. Each period woulcHhayé 's, andh’s in exactly
a 1:1:1 ratio, so only the partial periods at each end could contribute to the difference in
population betweel andL. Thus the population difference would remain bounded as
n — oo. Since this difference is unbounddidl,(1/3) cannot be periodic.



110 L. Sadun

Finally we note that the length df is the same as that df, and half that ofH.
This simple ratio of lengths means that slippage along the fault line has no effect on the
number of ways triangles can meet. If two tiles meet aceds$1), either they have a
vertex in common or their closest vertices are separated by the lengthratis there
are only a finite number of ways for two tiles to meet across a fault line. By the same
argument as in the proof of Theorem 10, this implies that there are only a finite number
of ways for triangles to meet at all. |

7. Conclusions

We have constructed a family of substitution systems, indexed by the parameter
In(sin(®))/In[cos(6)/2], wheref is an angle in the basic triangular tile. We have estab-
lished the following properties.

(1) Thetilings generated by these substitutions are all nonperiodic.

(2) Thetilings have well-defined limiting distributions of size and orientatiof/ f
is irrational, this distribution is rotationally invariant. In Radin’s terminology, the
tilings have “statistical rotational symmetry.” The form of the joint distribution
of size and orientation suggests that the tiling has a purely absolutely continuous
spectrum.

(3) The tilings with rationak all satisfy the hypotheses of Goodman-Strauss’s theo-
rem, implying that they can be forced through local matching rules.

(4) The rational tilingsTil(p/q), with q > 1, have statistical fluctuations that grow
with iterations of the substitution rule (although they grow slower than the size
of the system). Iil(1/2) these fluctuations force triangles to meet in an infinite
number of distinct ways. We conjecture that this infinite diversity of local behavior
is a property of all rational tiling3il(p/q) with q > 1 andp/q # 1/3.

(5) Inthe rational tilingdil(p/1) the eigenvalues that control fluctuations are all less
than one. InTil(2) this forces the tiles to meet in only a finite number of local
patterns. We conjecture that this is a property of all tilingsp/1).
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