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Abstract. We introduce a new family of nonperiodic tilings, based on a substitution rule
that generalizes the pinwheel tiling of Conway and Radin. In each tiling the tiles are similar
to a single triangular prototile. In a countable number of cases, the tiles appear in a finite
number of sizes and an infinite number of orientations. These tilings generally do not meet
full-edge to full-edge, butcanbe forced through local matching rules. In a countable number
of cases, the tiles appear in a finite number of orientations but an infinite number of sizes,
all within a set range, while in an uncountable number of cases both the number of sizes
and the number of orientations is infinite.

1. Introduction

We introduce a new family of nonperiodic tilings, indexed by a continuous parameter. In
each tiling the tiles are similar to a single triangular prototile. In a countable number of
cases, the tiles appear in a finite number of sizes and an infinite number of orientations.
In a countable number of cases, the tiles appear in a finite number of orientations but
an infinite number of sizes, all within a set range. In one case both the number of sizes
and orientations is finite, while in an uncountable number of cases both the number of
sizes and the number of orientations is infinite. A piece of a tiling with two sizes and an
infinite number of orientations is shown in Fig. 1.

These tilings all arise from a substitution scheme that is quite similar to the pinwheel
tiling of Conway and Radin [R1]. In all cases the tilings have the “sibling edge-to-edge”
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Fig. 1. Part of the tilingTil(1/2).

property, which is to say that two daughter tiles of a single parent tile can only meet
full-edge to full-edge. However, in general the tiling is notgloballyedge-to-edge. Tiles
that are not siblings generally do meet in ways that are not full-edge to full-edge.

Goodman-Strauss [G] has recently announced that substitution tilings with a finite
number of prototiles, with each prototile appearing in a finite number of sizes, and with
the sibling edge-to-edge property, may be associated to local matching rules. These rules
are less restrictive than local atlases, and in some cases may allow two adjacent tiles to
slide freely along their common edge. However, the rules are restrictive enough to force
any tiling to be hierarchical (i.e., generated by the substitution scheme), and hence to be
nonperiodic. In a countable number of cases considered in this paper, the hypotheses of
Goodman-Strauss’s theorem are met.

This is striking, because these examples are definitely not globally edge-to-edge.
Indeed, some of these tilings contain infinitely many pairs of tiles with edges that partially
overlap. This phenomenon, called “slippage,” can be seen in Fig. 1, especially along the
long diagonal. The lengths of the overlaps are not the same for all pairs of tiles. In the
tiling of Fig. 1, in fact, overlaps occur with aninfinite number of distinct lengths. Thus
we have the (seemingly) paradoxical situation that Goodman-Strauss’s local matching
rules force a hierarchical pattern that, in turn, forces an infinite variety of local behavior.

The tilings of this paper also suggest a relaxation of the rules of the tiling dynamical
systems game. Prior to Conway and Radin’s work, a tiling dynamical system required
that all tiles be generated from a finite set of prototiles by translation only, with rotation
and reflection not allowed. By those rules, the pinwheel tiling, which involves an infinite
number of orientations of a single triangle, uniformly distributed about the circle, was
not a tiling! The pinwheel example helped force a reconsideration of the rules, and a
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new consensus has emerged that tiles may be generated from prototiles by Euclidean
motions, not just by translations.

The present examples suggest a further extension from the Euclidean group to the
conformal group. In almost all cases, these tilings consist of a single prototile appearing
in an infinite number of sizes and an infinite number of orientations. Although the
distribution of sizes is not constant (which it could not be, as the conformal group has
no Haar measure), it is described by a piecewise-constant function.

Such symmetry is related to properties of the spectrum. In the case of the pinwheel,
Radin [R2] showed that the statistical rotational invariance of the system results in
a spectrum that is rotationally invariant, and hence contains no discrete component.
However, Radin’s argument did not address the dependence of the spectrum on the radial
variable, which corresponds to a length scale. Almost all the examples in this paper have
a joint distribution of sizes and orientation that is rotationally invariant, proving (by
Radin’s argument) that they have continuous spectrum. In addition, in almost all these
examples the distribution is absolutely continuous in the size parameter. We conjecture
that, in these cases, the spectrum is purely absolutely continuous.

Purists who object to the extension to the conformal group may restrict their attention
to the countable and dense set of examples for which only a finite number of sizes
appear. They may then take these sizes of the basic triangle as their prototiles, which
then generate all tiles via Euclidean motions. We call such examples “rational tilings.”

The division of the paper is as follows. In Section 2 we explain the substitution rules
and the resulting constructions of the tilings, and classify right triangles according to
whether they generate finite numbers of sizes and orientations, finite sizes and infinite
orientations, infinite sizes and finite orientations, or infinite sizes and infinite orientations.
In Section 3 we examine in detail an example in which tiles appear in two sizes and an
infinite number of orientations. We prove that this tiling is sibling edge-to-edge but
exhibits slippage; this tiling contains pairs of tiles that meet in an infinite number of
distinct ways. In Section 4 we compute the limiting distribution of sizes and orientations
in all rational tilings. In Section 5 we compute the statistical distribution of sizes and
orientations in irrational tilings. In Section 6 we examine two exceptional rational tilings.

2. Definitions and Constructions

As with any substitution scheme, we obtain a tiling of the plane by a succession of
subdivisions (“deflations”), rescalings, and repositionings. We start with a single prototile
T , define a subdivision rule, and letTn be the result of subdividing the basic tilen times.
We construct infinite sequences of integersN1 < N2 < · · ·, rescalingssi and Euclidean
motionsei such thatei (si (TNi )) is a proper subtiling ofei+1(si+1(TNi+1)). By taking the
union of the finite tilingsei (si (TNi )), we obtain a tiling of an infinite region, typically
the entire plane.

Our task is complicated by the fact that there is not a straightforward connection
betweenNi andsi . (Unlike, say, the pinwheel tiling, wheresi is an expansion by a linear
factor 5Ni /2.) We cannot, in general, define a simple rule for deflating and rescaling by a
fixed factor, and simply iterate this rule. We must be more subtle. However, in the end,
everything does work out.
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Fig. 2. The basic triangle.

Our basic prototile is a right triangle, with baseb, altitudea, and hypotenusec, as
shown in Fig. 2. We refer to the base as the “long” leg, although in principle we might
haveb ≤ a. At this point we put no restrictions on the acute angleθ = sin−1(a/c). We
divideT into five triangles as in Fig. 3. Subtriangles 1–4 are similar toT , but are smaller
by a linear factor ofb/2c. Subtriangle 5 is also similar toT , but is smaller thanT by
a linear factor ofa/c. This completes the first subdivision ofT . In thenth subdivision
of T , we take the largest triangles inTn−1, and subdivide each of them into five similar
triangles.

The pattern of subdivision depends on the angleθ . For example, ifa > b/2, then the
largest triangle inT1 has hypotenusea, and only this triangle is subdivided in step 2. Thus
in T2 there are nine triangles, one with hypotenusea2/c, four with hypotenuseab/2c, and
four with hypotenuseb/2, as shown in Fig. 4. The third subdivision depends on whether
b/2> a2/c, in which case the four triangles of hypotenuseb/2 are subdivided next, or
whethera2/c > b/2, in which case the one triangle of hypotenusea2/c is subdivided
once again.

The subdivision of a triangle withb/2> a is shown in Fig. 5.T2 has twenty-one trian-
gles, sixteen of hypotenuseb2/4c, four of hypotenuseab/2c, and one of hypotenusea.

Finally, if b = 2a, then all five triangles inT1 have the same size. All five are
subdivided in the next stage, yieldingT2 with 25 congruent triangles, all of which are
then subdivided to giveT3 with 125 congruent triangles, and so on. This is the pinwheel
tiling of Conway and Radin [R1].

Fig. 3. The substitution rule.
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Fig. 4. Two subdivisions of a triangle witha > b/2.

We will show that, for any angleθ , this subdivision scheme generates nonperiodic
tilings of the plane. We first need three technical lemmas:

Lemma 1. In Tn, the ratio of the hypotenuse of the largest tile to the hypotenuse of the
smallest tile is strictly less thanmax(c/a, 2c/b).

Proof. The proof is by induction onn. It is clearly true forT1. Now suppose that in
Tk the largest tile has hypotenuseH , while the smallest tile has hypotenuseh, with
H/h < max(c/a, 2c/b). After subdividing all the triangles with hypotenuseH , the
largest hypotenuse is strictly less thanH , while the smallest hypotenuse is the smallest
of h, aH/c, andbH/2c. The ratio of largest to smallest hypotenuses inTk+1 is therefore
strictly less than the largest ofH/h, c/a, and 2c/b.

We often consider an individual tile inTn, and examine the effect of further subdivision
of Tn on that tile. When we writet ∈ Tn, we mean thatt is a single tile. When we write
t ⊂ TN , for someN > n, we mean the collection of tiles inTN whose union ist . When
we write thatt ⊂ TN is similar toTk, we mean that the individual tiles in this collection
fit together to form the single tilet ∈ Tn in exactly the same pattern that the individual
tiles of Tk fit together to formT .

Lemma 2. Given an integer n and a tile t∈ Tn, there exists an integer N> n such
that t ⊂ TN is the union of more than one tile. That is, every tile in Tn, no matter how
small, is eventually subdivided further.

Fig. 5. Two subdivisions of a triangle witha < b/2.
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Proof. The number of tiles grows without bound (increasing by at least four every
turn). By Lemma 1, the area of each tile is at least min(a2/c2, b2/4c2) times the area of
the largest tile. Thus, asN →∞, the area of the largest tile inTN must go to zero. For
N large enough, this maximal area will be less than the area oft , indicating that the tile
t has necessarily been subdivided.

Lemma 3. Given an integer n, a tile t ∈ Tn, and an integer m, there exists an integer
N ≥ n such that t⊂ TN is similar to Tm.

Proof. The proof is by induction onm. First we considerm= 1. Let N be the smallest
integer such thatt ∈ TN is subdivided. By Lemma 2, such anN exists. Sincet ⊂ TN−1

is a single tile,t ⊂ TN is the result of taking a single triangle and applying the deflation
rule of Fig. 3 once. Thust ∈ TN is similar toT1.

Now suppose the theorem has been proved form = k, and suppose thatt ⊂ TN0 is
similar toTk. We consider what happens at the (N0 + 1)st step. The largest triangles in
T get subdivided. This means that either the largest triangles int get subdivided, or that
none of the triangles int get subdivided. In the first caset will then become similar to
Tk+1, and we are done. In the second case we consider the possibilities for the (N0+2)nd
step, and so on. By Lemma 2, the largest triangle int musteventuallybe subdivided, say
on theNth turn, sot ⊂ TN will be similar toTk+1.

Definition. A supertile of order nis a collection of tiles that is similar toTn. Equiva-
lently, a supertile of ordern is a region of the forme(s(Tn)), wheres is a rescaling and
e is a Euclidean motion.

Theorem 1. Given any right triangle T, there exist tilings of the plane with right
triangles similar to T, such that any finite set of tiles lies in a supertile, and such that
the areas of tiles are bounded both above and below.

Proof. First pick a succession of integersn1, n2, . . . and tilesti ∈ Tni . Let N1 = n1.
Pick additional integersNi , i = 2, 3, . . ., such that, takingti ∈ Tni and subdividingTni

an additionalNi − ni times,ti ⊂ TNi is similar toTNi−1. By Lemma 3, such integers
always exist.

Now pick a triangle similar toT0 and place it in the plane. A supertileS1 of order
N1 that contains this triangle in positiont1 can be constructed. Then a supertileS2 of
order N2 such thatS1 sits insideS2 as t2 sits insideTn2 is constructed. The process is
continued, building supertileSk+1 such thatSk sits insideSk+1 astk+1 sits insideTnk+1.

The union of all the supertiles is a tiling of an infinite region. For almost all choices
of theti ’s (e.g., having the edges ofti lie in the interior ofTni infinitely often), this region
will be the entire plane.

Since the ratio of largest to smallest triangle is uniformly bounded forSn by Lemma 1,
no tile may have a hypotenuse longer than max(c/a, 2c/b) times the hypotenuse of a fixed
tile, and no tile may have a hypotenuse less than min(a/c, b/2c) times the hypotenuse
of the same fixed tile. This provides both an upper and lower bound to the size of the
tiles.
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In this construction, many choices were made. Different choices generally lead to
different tilings, but these different tilings have many properties in common. Theorems 2
and 3 following apply to all tilings constructed in the manner of Theorem 1.

Theorem 2. In a tiling, the number of orientations in which the basic triangle appears
is finite if θ/π is rational and infinite ifθ/π is irrational.

Proof. First suppose thatθ/π is rational. Consider a tile, positioned as in Fig. 3, with
sideb along thex axis. Let P denote reflection about thex axis, and letRα denote a
counterclockwise rotation by angleα. After subdividing once, the orientations of the five
daughter tiles, relative to the parent tile, are given by the following elements ofO(2):
Rθ P (twice), Rθ , Rπ+θ , andRπ/2+θ P. The orientations of tiles in a further subdivision
are words in these five elements ofO(2). However, withθ/π rational, these five elements
generate a finite subgroup ofO(2), so only a finite number of orientations can ever appear
in a future subdivision.

Since any region of our tiling of the plane sits inside a supertile, any two tiles must have
their orientations, relative to the supertile itself, in this group. Thus their orientations,
relative to each other, and hence to a fixed reference tile, must lie in the group. Thus only
a finite number of orientations can appear in the tiling.

Now suppose thatθ/π is irrational. In a basic subdivision, we keep track only of the
four triangles of hypotenuseb/2, ignoring the triangle of hypotenusea. When these four
triangles divide, we only keep track of the sixteen resultant triangles of sideb2/4c, and
so on. In the second generation we find orientations 1= (Rθ P)2 andR2θ = R2

θ , among
others. In the 2nth generation we find 1, R2θ , R4θ , . . . , R2nθ . Sinceθ/π is irrational,
these 2n + 1 orientations are distinct. Since our tiling of the plane contains supertiles
of arbitrarily large size, there is no bound to the number of different orientations that
appear.

Theorem 3. In a tiling, the number of sizes in which the basic triangle appears is
infinite if ln(sin(θ))/ln[cos(θ)/2] is irrational and finite if ln(sin(θ))/ln[cos(θ)/2] is
rational. In particular, if ln(sin(θ))/ln[cos(θ)/2] = p/q, with p and q relatively prime
integers, then the number of sizes in the tiling ismax(p,q).

Proof. Let A = a/c and letB = b/2c. If ln(A)/ln(B) is irrational, the only way two
monomialsAa Bb and AcBd can be equal is ifa = c andb = d. We will show that the
sizes of triangles inTn (relative to the original triangle) is given by such monomials, and
that the number of distinct powers ofA grows without bounds asn → ∞. This will
show that the number of distinct sizes grows without bound asn→∞.

In each subdivision there are four tiles of sizeB relative to the parent and one tile
of size A. Thus the descendants of a given tile all have sizes that are monomialsAa Bb

relative to the ancestor. For everyn > 0, Tn contains at least one tile with sizeA0Bb; just
take aB child of a B child of . . . of one of the originalB children (or theB child itself,
if it has not subdivided). For everyn > 0, Tn contains at least one tile with sizeA1Bb;
take aB B B. . . descendant of the originalA child. Oncen is large enough to have the
original A child divide, there is at least one tile with sizeA2Bb. In general, oncen is
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large enough to allow anath generationAA. . . child, it will always have at least one tile
whose size has exactlya powers ofA. This completes the irrational case.

Now suppose that ln(A)/ln(B) = p/q, with p andq relatively prime. ThusAq = Bp.
Let r = A1/p = B1/q. Every monomialAa Bb is a power ofr . Assume for the moment
that p ≤ q. By Lemma 1, the ratio of sizes of any two tiles is greater thanB = r q.
Thus only at mostq distinct sizes can appear. To see thatq sizesdoappear, we note that
A0Bb0, A1Bb1, . . . , Aq−1Bbq−1 are all distinct powers ofr .

If p > q, Lemma 1 states that the ratio of any two sizes is at leastA = r p, so at most
p different sizes can occur. We producep different sizes by examining different powers
of B. In either case, the number of distinct sizes is max(p,q).

We refer to tilings with ln(A)/ln(B) = p/q as (p/q) rational tilings, and denote
the class of such tilings asTil(p/q). For z irrational, we similarly denote the class of
tilings with ln(A)/ln(B) = z asTil(z). The different tilings in a class are all derived
from the same substitution rule, and have many properties derivable from this rule. When
discussing such properties, we sometimes refer to a typical element of the class as “the
tiling Til(z).”

Note that ln(sin(θ))/ln[cos(θ)/2] is a strictly decreasing function ofθ on the interval
(0, π/2). From this monotonicity, and from the countability of the rationals, it is clear
that only a countable set of anglesθ give rise to a finite number of rotations, and only a
countable set of anglesθ give rise to a finite number of sizes. The intersection of these
two countable sets turns out to be a single point.

Theorem 4. The only angle that gives rise to both a finite number of orientations and
a finite number of sizes isθ = π/4. That is, the tiling Til(1/3).

Proof. Let x = exp(i θ), with 0 < θ < π/2. We are looking for solutions to the
equation sin(θ)q = [cos(θ)/2]p, which we rewrite as

2q(x + x̄)p = 22p(−i )q(x − x̄)q, (2.1)

wherex̄ = exp(−i θ) = x−1. Note that, for fixedp, q, there is at most one solution to
(2.1) in the first quadrant, since ln[sin(θ)]/ln[cos(θ)/2] is monotonic.

Since by assumptionθ is a rational multiple ofπ , x is a primitiventh root of unity for
some integern. If x is a solution andq is even, then (2.1) has (real) integer coefficients,
andall the primitiventh roots of unity are also solutions. Ifq is odd, all the primitive
nth roots of unity are solutions either to (2.1) or to the conjugate equation

2q(x + x̄)p = 22pi q(x − x̄)q. (2.2)

Equation (2.2), withq odd, has no solutions in the first quadrant, as the right-hand side
is positive but the left-hand side is negative. Since (2.1) admits only one solution in the
first quadrant, there must be exactly one primitiventh root of unity in the first quadrant.

This means thatn must equal 5, 6, 7, 8, 10, 12, or 18. Checking these individually,
we see that onlyn = 8, orθ = π/4, yields a rational value of ln[sin(θ)]/ln[cos(θ)/2].
In that one case sin(θ) = cos(θ) = √2/2, and sin3(θ) = cos(θ)/2.
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In a periodic tiling, all of the sizes and orientations are exhibited in a compact region,
so neither the number of sizes nor the number of orientations can be infinite. Thus we
have

Corollary. If z 6= 1/3, then the tiling Til(z) is not periodic.

In fact, it turns out thatTil(1/3) is not periodic, either. This is shown in Section 6.

3. An Example with Two Sizes

In this section we consider in detail the tilingTil(1/2), shown in Fig. 1. This example is
chosen not as a special case, but rather as a simple example of some general phenomena.
Based on the statistical analysis of Section 4, we expect all tilingsTil(p/q), with q > 1
and p/q 6= 1/3, to be qualitatively similar toTil(1/2). Specifically, in all these cases
the population matrix has two or more eigenvalues with modulus bigger than one. This
causes fluctuations in the statistical composition of supertilesSn to grow withn. This,
in turn, can cause the tiling to fail to be globally edge-to-edge.

Theorem 5. Til(1/2) is a tiling with two sizes of tiles, each of which appears in an
infinite number of orientations. The substitution scheme has the sibling edge-to-edge
property, but the tiling is not globally edge-to-edge. Specifically, the tiles meet in an
infinite number of ways.

Proof. The existence of the tiling, the number of sizes, and the number of orientations
follow from Theorems 1–3. The sibling edge-to-edge property is manifest, if we consider
the basic tile to have four vertices—the three obvious ones and the midpoint of the long
leg. The difficulty is in proving that tiles meet in an infinite number of distinct ways.

The process by which this happens is as follows. There are certain special lines in the
tiling. The long diagonal in Fig. 1 is an example. On each side of such a line there are
triangles, all of the same size, whose hypotenuses or long legs make up part of the long
line. The pattern isdifferenton the two sides of the line, with one side having (say) more
legs in a certain region and the other side having more hypotenuses. This imbalance
causes the tiles on one side of the line to appear shifted relative to those on the other
side, a phenomenon we call “slippage.” We will exhibit regions where the imbalance is
arbitrarily large. Since the imbalance is unbounded, the slippage of one side relative to
the other reaches arbitrarily high multiples ofb, moduloc, whereb andc are the lengths
of the long leg and hypotenuse. Sinceb/c is irrational, this gives rise to an infinite number
of ways in which one triangle can meet another across the long line.

Lines where slippage occurs are called “fault lines.” Note that each fault line has only
finite length, and allows only a finite amount of slippage. However, we will find fault
lines of arbitrarily long length with arbitrarily much slippage. This precludes there being
a finite bound on how many ways one triangle can meet another.

The Til(1/2) tiling is based on a right triangle with legsa =
√

2(
√

17− 1) and

b = √17−1 and hypotenusec = 4. Several degrees of subdivision are shown in Fig. 6.



88 L. Sadun

Fig. 6. Three stages of subdivision forTil(1/2).

At each level there are two sizes of triangle, whose linear sizes differ by a factor of
a/c. The heavily shaded lines in Fig. 6 are fault lines. For eachTn, with n even, only
large triangles abut the illustrated fault line. Once a fault line is formed, the triangles on
opposite sides of the line evolve separately, and begin to slip. We shall prove that this
slippage increases without bound.

Til(1/2)may be viewed as a traditional substitution system, with two prototiles, which
we call B and S (for big and small). Each subdivision, followed by rescaling byc/a,
may be viewed as a replacement of eachS triangle by aB triangle, and replacement of
eachB triangle by aB triangle and fourS triangles. Let the population ofTn be

9n =
(

NB

NS

)
,

whereNB and NS are the numbers of big and small tiles.9 satisfies9n+1 = M9n,
where the population matrix is

M =
(

1 1
4 0

)
, (3.1)

with eigenvaluesλ± = (1±
√

17)/2 and eigenvectors

ζ± =
(√

17± 1
±8

)
.
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As n grows, the ratio ofNB to NS approaches(
√

17+ 1)/8 ≈ 0.6404. The exact
populations are

NB(n) = 1√
17

((√
17+ 1

2

)n+1

−
(

1−√17

2

)n+1)
,

NS(n) = 4NB(n− 1) = 4√
17

((√
17+ 1

2

)n

−
(

1−√17

2

)n)
.

(3.2)

Note that|λ−| > 1, so that|8NB − (
√

17+ 1)NS| grows withn.
Next we consider what happens along a fault line. To do this we must consider the

boundary ofT2n. Note that the hypotenuse and long leg ofT2 consist only of hypotenuses
and long legs of big triangles. Applying the subdivision again, we get that the hypotenuse
and long leg ofT4 also consists only of hypotenuses and long legs of big triangles.
Similarly for all T2n.

The evolution of these legs and hypotenuses is a substitution system in its own right,
only in one dimension. There are four symbols,H+, H−, L+, andL−, representing the
two orientations of the hypotenuse and long leg, respectively. From Fig. 6(b), we see
that the substitution rule, which we denoteσ0, is

σ0(H
+) = L+L−H+, σ0(H

−) = H−L+L−, σ0(L
±) = H±H±. (3.3)

SinceL+ andL− only appear in the combinationL+L−, we can define a new symbol
L = L+L− and have a substitution system with three elements, whose rule we denote
σ :

σ(H+) = L H+, σ (H−) = H−L , σ (L) = H+H+H−H−. (3.4)

Lemma 4. The sequenceσ n(H+) contains neither the subsequence LL nor the sub-
sequence H−H+.

Proof. The proof is simple induction. The only way to generate anLL is from an
H−H+, and the only way to generate anH−H+ is from LL. Since neither appear in the
first generation, neither appears in any subsequent generation.

Lemma 5. The sequenceσ n(H+) does not contain a subsequence of more than six
consecutive H’s.

Proof. SinceLL does not occur inσ n−1(H+), the longest possible sequence ofH ’s
in σ n(H+) would come from a sequenceH+L H− in σ n−1(H+). This gives rise to
L H+H+H+H−H−H−L, or six H ’s in a row.

Let f (n) equal the number ofL ’s in the first half of the sequenceσ n(H+)minus the
number ofL ’s in the second half of the sequence. As we shall see,f (n) is closely related
to the extent to which slippage occurs along the largest fault line inT2n+2.
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Lemma 6. If | f (n)| > 6, then| f (n+ 1)| ≥ | f (n)| + 2.

Proof. Letsands′ denote the first and second halves ofσ n(H+), respectively. Suppose
thats containsh H’s andl L ’s, while s′ containsh′ H ’s andl ′ L ’s. Note that f (n) =
l − l ′ = h′ − h. Since eachH generates anH and anL, while eachL generates four
H ’s, σ(s) contains 4l + h H’s andh L’s, while σ(s′) contains 4l ′ + h′ H ’s andh′ L ’s.
Thusσ(s) contains 2f (n) more terms, butf (n) fewerL ’s, thanσ(s′).

Now supposef (n) > 0. The first half ofσ n+1(H+) is all ofσ(s), minus the lastf (n)
elements, while the second half ofσ n+1(H+) is the last f (n) elements ofσ(s) and all
of σ(s′). Thus f (n+ 1) equals− f (n) minus twice the number ofL ’s in the last f (n)
elements ofσ(s). Since f (n) > 6, there must be at least oneL in the last f (n) elements
of σ(s), so| f (n+ 1)| = − f (n+ 1) ≥ f (n)+ 2.

If f (n) < 0, then the first half ofσ n+1(H+) is all of σ(s), plus the first| f (n)|
elements ofσ(s′). We then havef (n + 1) equalling− f (n) plus twice the number of
L ’s in the first| f (n)| elements ofσ(s). By Lemma 5, there must be at least one suchL,
so| f (n+ 1)| = f (n+ 1) ≥ 2− f (n) = | f (n)| + 2.

Lemma 7. limn→∞| f (n)| = +∞.

Proof. By explicit computation,f (1) = 1, f (2) = −1, f (3) = 1, f (4) = −3,
f (5) = 3, f (6) = −5, and f (7) = 9. By Lemma 6, forn ≥ 7, | f (n+ 1)| > | f (n)|, so
| f (n)| ≥ n+ 2 goes to infinity asn→∞.

We have proven that| f (n)| grows without bound, which is all that we need. In
fact, | f (n)| grows exponentially. For largen, an approximate fraction 2/(3+√17) of
the elements ofσ n(H+) are L ’s, so f (n + 1) ≈ − f (n) + 2 f (n) × 2/(3+ √17) =
f (n)(1−√17)/2. The growth rate,(1−√17)/2, equalsλ−, the second eigenvalue of
the population matrixM .

We now return to the question of slippage along fault lines. Consider two large
triangles that meet hypotenuse to hypotenuse to form a rectangle, as in Fig. 7. LetP
andR be the ends of the common hypotenuse, and letQ be the midpoint. Rotation byπ
aboutQ sends each triangle into the other.

Fig. 7. A fault line.
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Subdivide the pair of triangles 2n times. The pattern of subdivision of triangle 2 along
the intervalP Q is the same as that of triangle 1 along the intervalRQ. We have already
seen that only large triangles abut the main diagonal, and that they do so only along their
hypotenuses and long legs. For each pointx on the intervalP Q, let gn(x) be the number
of complete long legs on the triangle 1 side ofPx minus the number of complete long
legs on the triangle 2 side ofPx.

Lemma 8. |gn(Q)| ≥ (c/b)| f (n)| − 1. In particular, limn→∞|gn(Q)| = ∞.

Proof. Consider the 2n-fold subdivision of the pair of triangles in Fig. 7. The hy-
potenuse of triangle 2 gets divided intoσ n(H+). Let Mn be the point on the hypotenuse
corresponding to the middle of the sequenceσ n(H+). By construction, there are 2f (n)
more long legs, andf (n) fewer hypotenuses, betweenP andMn than betweenMn and
R. Since legs have lengthb, hypotenuses have lengthc, and 2b > c, Mn lies a distance
f (n)(2b− c) closer toR than toP, or a distancef (n)(2b− c)/2 beyondQ.

Supposef (n) < 0. ThenMn lies betweenP and Q. The number of hypotenuses
betweenP andQ is at least the number of hypotenuses betweenP andMn, and so is at
least− f (n) more than the number of hypotenuses betweenQ andR. Since the length
of P Q equals that ofQR, and length equalsb× legs plusc× hypotenuses, there are at
least−(c/b) f (n) more legs inQRthan inP Q. Thus|gn(Q)| is at least the integer part
of (c/b)| f (n)|, which is greater than(c/b) f (n)− 1.

If f (n) > 0 this situation is reversed. ThenMn lies betweenQ andR, and the interval
betweenMn andR has the surplus off (n) hypotenuses. The intervalQRhas a surplus
of at least that many hypotenuses, so the intervalP Q has a surplus of at least(c/b) f (n)
legs. Taking the integer part, we see thatP Q has a surplus of at least(c/b) f (n) − 1
complete legs.

We are now in a position to prove Theorem 5. Letx be a point onP Q that is the
vertex of a tile in the subdivision of triangle 2, and lety be the nearest vertex, onPR, of
a tile in the subdivision of triangle 1. The intervalxy is the interval of contact between
two tiles, one in triangle 1 and the other in triangle 2. Ify lies betweenP andx, then
the length ofxy is congruent, moduloc, to bgn(x). If x lies betweenP andy, then the
length is congruent either to−bgn(x) or b− bgn(x) (modc), depending on whetherxy
is part of the hypotenuse or long leg of a tile on side 1.

As we pick pointsx from P to Q, gn(x) goes, by steps of one, from 0 togn(Q). Thus
the intervalsxy take on at least|gn(Q)|/2 distinct lengths. Since|gn(Q)| grows withn,
all we need for Theorem 5 is to show that fault lines modeled onσ n(H+), for arbitrarily
large values ofn, occur in the tilingTil(1/2).

By construction,Til(1/2) contains supertiles modeled onTm, for arbitrarily large
values ofm. If m is even, then the primary fault line exhibited in Fig. 6 is modeled on
σ n(H+), with m= 2n+ 2. If m is odd, then there is also a supertile modeled onTm−1,
namely the descendants of the large tile in the first subdivision ofT . Sincem−1 is even,
this supertile contains a fault line modeled onσ n(H+), with m = 2n + 3. Sincem is
unbounded, we have obtained our requisite arbitrarily long fault lines.

This completes the proof of Theorem 5.
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4. Statistical Properties of Rational Tilings

In this section we consider the statistical distribution of sizes and orientations of tiles in
the various rational tilingsTil(p/q). More precisely, we consider the distribution of sizes
and orientations in a supertile modeled onTn, and take the limit asn → ∞. We first
show that the distribution of sizes approaches a simple limit asn → ∞. The limiting
distribution is given by the eigenvector associated to the largest eigenvalue of ap× p
(or q× q) population matrix. We also analyze the second eigenvalue of this matrix. The
failure of the edge-to-edge property forTil(1/2) was a result of fluctuations that were
governed by this second eigenvalue. We conjecture that the edge-to-edge property holds
only for those tilings with second eigenvalue smaller than one, and we classify these
tilings.

We then turn to the joint distribution of sizes and orientations in rationalp/q tilings.
We show that, for each size, the distribution of orientations is asymptotically uniform.
Specifically, we parametrizeO(2), the group of orientations, by two copies of the unit
circle. Given an interval in this set, the fraction of tiles inTn, of a given size, whose ori-
entations lie in that interval, approaches a constant times the length of the interval. In the
terminology of Radin [R3], the tilingsT(p/q) exhibit “statistical rotational symmetry.”

By Theorem 3,Til(p/q) contains triangles ofm= max(p,q) distinct sizes.Til(p/q)
is equivalent to a traditional substitution tiling, with prototilesD1, . . . , Dm of m sizes.
We takeD1 to be the largest size andDm to be the smallest. Subdivision and linear
rescaling byr−1, wherer = (a/c)1/p = (b/2c)1/q, takesDi+1 to Di , and takesD1 to
four copies ofDq and one copy ofDp. That is, the population matrix, which gives the
population ofTn+1 in terms of the population ofTn, has matrix elements

Mi j =


1 if j = i + 1;
1 if j = 1 and i = p;
4 if j = 1 and i = q;
0 otherwise.

(4.1)

The properties ofM are summarized in the following theorem:

Theorem 6.

(1) The characteristic polynomial of M is

p(λ) =
{
λq − λq−p − 4 if p < q;
λp − 4λp−q − 1 if p > q.

(4.2)

(2) The largest eigenvalue of M is r−2.
(3) There are exactly q eigenvalues with modulus greater than one.
(4) The eigenvectorsψ of M, for fixed eigenvalueλ, take the form

ψk = λk − λk−pH(k− p− 1)− 4λk−q H(k− q − 1), (4.3)

where H(n) is the discrete Heaviside function

H(n) =
{

1 if n ≥ 0;
0 otherwise.

(4.4)
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(5) Asymptotically, the number of tiles of size Dk is a fraction

νk = 1− r 2

4c2
(a2H(p− k)+ b2H(q − k))r−2k (4.5)

of the total.
(6) Asymptotically, the area covered by tiles of size Dk is a fraction

ρk = a2H(p− k)+ b2H(q − k)

pa2+ qb2
(4.6)

of the total.

Note that ifp < q, thenH(k− q− 1) is identically zero andH(q− k) is identically
one. If p > q, thenH(k − p− 1) is identically zero andH(p− k) is identically one.
As written, expressions (4.3), (4.5), and (4.6) apply to both thep < q andp > q cases.

Corollary. Let t be a tile of size k. Let Nk(n) be the number of descendants of t after
the nth application of the substitution rule. Then

lim
n→∞ r 2nNk(n) = 4c2r 2k

(1− r 2)(pa2+ qb2)
. (4.7)

Proof of the Corollary. From the distribution (4.5), we compute the average area per
tile to be(1− r 2)ab(pa2+qb2)/8c2. A tile of sizeDk, subdivided and rescaledn times,
has areaabr2k−2n/2. Dividing by the area per unit tile we obtain (4.7).

Remark. If q > 1, then the second largest eigenvalue ofM is greater than one. The
fluctuations in population associated to the corresponding eigenvector then grow with
subdivision, although they do not grow as fast as the population as a whole. It was
precisely this phenomenon that caused the edge-to-edge property to fail forTil(1/2). If
q = 1, then the second eigenvalue is less than one. In Section 6 we shall see that, in
Til(2), this causes the triangles to meet in only a finite number of ways.

Conjecture. If p and q are relatively prime integers, q > 1 and p/q 6= 1/3, then the
tiling Til (p/q) has tiles that meet in an infinite number of different ways. If p > 1, then
the tiles in Til(p) meet in only a finite number of ways.

Proof of Theorem6. Fork < m, thekth row of the vector equationMψ = λψ reads

ψk+1 = λψk − (δk,p + 4δk,q)ψ1. (4.8)

Settingψ1 = λ, we repeatedly use (4.8) to obtain expression (4.3) forψ2, . . . , ψm.
Plugging this into themth row of Mψ = λψ then gives the characteristic polynomial
(4.2).

Now supposep < q, and consider the functionp(λ) for λ real and positive. Note that
p(r−2) = r−2q − r 2p−2q − 4 = 4c2/b2 − 4a2/b2 − 4 = 0, sincea2 + b2 = c2. When
λ ≥ 1, p′(λ) = qλq−1− (q − p)λq−p−1 > 0. Thusp(λ) > 0 for all λ > r−2.
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Now letλ 6= r−2 be a root ofp(λ). We show that|λ| < r−2. If λ is real and positive,
thenλ < r−2. If λ is not real and positive, then, sinceq andq − p are relatively prime,
we cannot haveλq andλq−p both real and positive. Thus, by the triangle inequality,

0= |p(λ)| = |λq − λq−p − 4| > |λq| − |λq−p| − 4= p(|λ|). (4.9)

Sincep(|λ|) < 0, we must have|λ| < r−2.
We count the number of roots in the unit circle via the argument principle, tracking

the argument ofp(exp(i θ)) asθ goes from 0 to 2π . When|λ| = 1, p(λ) always has
negative real part, as 4> |λq+λq−p|. Thus the winding is zero, and none of the roots of
p(λ) lie in the unit circle. Thus there areq roots, counted with multiplicity, outside the
unit circle. Sincep′(λ) is never zero outside the unit circle, all these roots are distinct.

Now supposep > q. Thenp(λ) = λp−q(λq − λq−p− 4). By the same arguments as
before,p(r−2) = 0, andp(λ) > 0 for realλ > r−2. For any eigenvalueλ other thanr−2,
0= |p(λ)| > p(|λ|). Sincep(|λ|) < 0, |λ| < r−2. By the argument principle, there are
p− q roots inside the unit circle, since the dominant term ofp(λ) on the unit circle is
4λp−q. This leavesq roots outside the unit circle. This completes the proof of statements
(1)–(4).

To obtain the asymptotic distribution of sizes, we must decompose the initial pop-
ulation into eigenvectors ofM . The asymptotic distribution will be the eigenvector
corresponding to the largest eigenvalue, assuming the coefficient of that eigenvector
is nonzero. We have shown that this largest eigenvalue isr−2. Since the total area of
the system grows by a factor ofr−2 each time, the coefficient of this eigenvector is not
zero. Thus the asymptotic distribution of population is given by a multiple of the ex-
pression (4.3), withλ = r−2. Normalizing, we obtain expression (4.6). Multiplying
this by the area of each tile and normalizing again gives the asymptotic distribution of
areas (4.7).

We now turn to the joint distribution of sizes and orientation. To do this we must first
parametrize the space of possible orientations of a single size. This space is isomorphic
to two copies of the unit circle. We specify both the handedness of the triangle and the
direction a fixed vector in it points in the plane. We take as our reference vector the ray
from the small angle to the right angle. In Fig. 8, the first triangle has orientation(+, ϕ1),
while the second has orientation(−, ϕ2). We letÄ denote the ordered pair(±, ϕ), and
let dÄ = dϕ/4π be the Haar measure on the space of orientations. The space of all
possible tiles up to translation, which we denoteX, is 2m copies ofS1.

Fig. 8. Orientation of triangles.
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Let f be a function onX. Given a collectionSof tiles, let〈 f, S〉 be the average value
of f on the individual tiles inS, where each tile is given equal weight. Let〈 f, S〉′ be the
average value off on the individual tiles inS, where each tile is weighted proportionally
to its area.

Theorem 7. Assume a tiling Til(p/q), with p and q relatively prime and p/q 6= 1/3.
Let f be a continuous function on X,and let{Sn}be a sequence of supertiles of increasing
size. Let dν =∑k νk dÄk and dρ =∑k ρk dÄk be measures on X, whereνk andρk are
as in Theorem6. Then

lim
n→∞〈 f, Sn〉 =

∫
X

f dν, (4.10a)

lim
n→∞〈 f, Sn〉′ =

∫
X

f dρ. (4.10b)

These limits also apply if f is the characteristic function of an interval in X.

Proof. We first reduce the problem to establishing (4.10a) for an arbitrary continuous
function f . Once we have established (4.10a), (4.10b) follows by applying (4.10a) to
the continuous functioñf (k, Ä) = r 2k f (k, Ä). Once (4.10a,b) have been established
for continuous functions, the extension to characteristic functions is standard (for details
see [CFS]). LetI be an interval, and letχI be its characteristic function. We choose
continuous functionsf ±ε , such thatf −ε ≤ χI ≤ f +ε , and such that limε→0

∫
X f ±ε dν =∫

I dν. limn→∞〈χI , Sn〉 is sandwiched between limn→∞〈 f −ε , Sn〉 and limn→∞〈 f +ε , Sn〉,
hence between

∫
X f −ε dν and

∫
X f +ε dν, and so must equal

∫
I dν.

To establish (4.10a) we must introduce some notation. Iff is a function onX andS
is a collection of tiles, let( f, S) be the sum off evaluated on the individual tiles ofS.
Let8 denote the action of subdividing and rescaling. That is,8 acting on a tile of size
Dk+1 gives a tile of sizeDk of the same orientation, while8 acting on a tile of sizeD1

gives one tile of sizeDp and four of sizeDq, having various orientations. Let8∗ be the
dual of8 by (·, ·), acting on the space of functions:

(8∗ f, S) = ( f,8(S)). (4.11)

Let fn = (8∗)n f . Note that8∗ is linear and sends nonnegative functions to nonnegative
functions, so if f ≤ g, then fn ≤ gn.

Now suppose we have a sequence of tilestn and supertilesSn = 8ntn. We have that

〈 f, Sn〉 = ( f, Sn)

# of tiles inSn
= ( fn, tn)

# of tiles inSn
. (4.12)

Since the number of tiles is given asymptotically by (4.7), (4.10a) is equivalent tor 2n fn

converging uniformly to
∫

X f dν times

ζ0(k, Ä) = 4c2r 2k

(1− r 2)(pa2+ qb2)
. (4.13)

We examine the spectrum of the linear operator8∗ on the function spaceC(X). The
key lemma, whose proof we defer, follows.



96 L. Sadun

Lemma 9. The spectrum of8∗ is pure point. ζ0 is an eigenfunction with eigenvalue
r−2. All other eigenvalues have norm strictly less than r−2. Any continuous function f
can be written as a(possibly infinite) sum of eigenfunctions of(8∗)|q−p|, such that a
subsequence of partial sums converges uniformly to f.

Remark. If p < q, it turns out that there are a number of functionsζ for which
(8∗)|q−p|ζ = 0, but8∗ζ 6= 0. Thus, to achieve a basis for the space of continuous
functions, we must use eigenfunctions of(8∗)|q−p| rather than just eigenfunctions of8∗.

Given the lemma, we write

f =
∞∑

i=0

ci ζi . (4.14)

Since a subsequence of the partial sums converges uniformly, and sinceζ0 has a positive
minimum, for eachε > 0 we can find an integerN such that

f − ≡
(

N∑
i=0

ckζi

)
− εζ0 < f <

(
N∑

i=0

ckζi

)
+ εζ0 ≡ f +, (4.15)

where eachζi is an eigenfunction with eigenvalueλi . (Strictly speaking,ζi is merely
an eigenfunction of(8∗)|q−p|, not necessarily of8∗, but this distinction makes no
difference.) Since|r−2λi | < 1 for all i > 0, for n > |p− q| we have

(c0− ε)ζ0+
N∑

i=1

ck(r
2λi )

nζi ≤ r 2n fn ≤ (c0+ ε)ζ0+
N∑

i=1

ck(r
2λi )

nζi . (4.16)

Asn→∞, the left-hand side converges uniformly to(c0−ε)ζ0, while the right-hand side
converges uniformly to(c0 + ε)ζ0. Sinceε is arbitrary,r 2n fn must converge uniformly
to c0ζ0.

All that remains is to computec0 in terms of f . Sinceζ0 is invariant under rotation
and reflection,c0 must be of the form

∑
k dk

∫
f (k, Ä)dÄ for some universal constants

dk. By comparing characteristic functions of different sizes, we see that the constants
dk must be proportional toνk. Finally, for the constant functionf = 1, fn(k, Ä) is the
number of descendants of a tile of sizeDk, which we have already computed in (4.7).
This fixes the proportionality constant.

Proof of Lemma9. 8∗ commutes with rotations, so we may simultaneously diagonal-
ize 8∗ and the rotation operator−i (d/dϕ). The eigenvalues of the rotation operator
are of course the integers, with each eigenspace being 2m-dimensional. Specifically,
the eigenspace corresponding to an integern is the span of the 2m functions obtained
by restricting exp(inϕ) to each of the 2m circles inX. Operators on finite-dimensional
spaces always have pure point spectra. Summing overn, we see that the spectrum of8∗

is pure point.
On each 2m-dimensional subspace corresponding to the Fourier mode exp(inϕ), the

action of8∗ is described by a 2m by 2m matrix E, which we write as anm×m array
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of 2× 2 matrices. Letθ = tan−1(a/c) be the acute angle in our basic triangle. Consider
the matrices

A =
(

0 exp[−in(θ + π/2)]
exp[in(θ + π/2)] 0

)
, (4.17)

B =
(

exp(inθ)+ exp(in(θ + π)) 2 exp(−inθ)
2 exp(inθ) exp(−inθ)+ exp(in(−θ + π))

)
. (4.18)

A and B describe the orientations of the five daughter tiles in terms of the orientation
of the parent tile, as expressed in thenth representation of the rotation groupSO(2).
Specifically,A describes the daughter tile of hypotenusea, while B describes the four
daughter tiles of hypotenuseb/2. In each case the first column describes the daughters of
a positively oriented tile, while the second column describes the daughters of a negatively
oriented tile. See Fig. 9.

Fig. 9. Orientation of daughter tiles.
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Our matrixE has the following matrix elements:

Ei j =


1 if j = i − 1;
A if i = 1 and j = p;
B if i = 1 and j = q;
0 otherwise.

(4.19)

Notice thatE is essentially the transpose of our population matrixM , with the daughters
represented by the matricesA andB rather than the numbers 1 and 4. We compute the
eigenvalues and eigenvectors ofE by directly solving the equationEψ = λψ .

Supposeψm = v, wherev is a two-component vector. Each row but the first of
Eψ = λψ implies thatψk−1 = λψk, and hence thatψk = λm−kv for all k. The first row
then says that

(λm − λm−q B− λm−p A)v = 0. (4.20)

Taking the determinant of the matrix on the left-hand side, we obtain the characteristic
polynomial ofE,

p(λ) = λ2m − λ2m−q(2 cos(nθ)+ 2 cos(nπ + nθ))+ λ2m−2q(2 cos(nπ)− 2)

−λ2m−2p − λ2m−p−q(4 cos(nπ/2)). (4.21)

First we considern = 0. If p < q, p(λ) = (λq − λq−p − 4)(λp + 1)λq−p. We
recognize the first factor as the characteristic polynomial ofM , with one rootr−2 and
all other roots smaller in norm. The roots of the second and third factors have norm one
and zero, respectively. The eigenvector corresponding to eigenvaluer−2 isψk = r 2k

(1
1

)
,

i.e.,ζ0 (up to scale).
We can understand the eigenvalues as follows. The roots of the first factor all cor-

respond tov = (1
1

)
, and describe fluctuations in the numbers of tiles of various sizes,

irrespective of orientation. This is the problem we previously studied in Theorem 6. The
unit and zero eigenvalues correspond tov = ( 1

−1

)
. The zero eigenvalue has algebraic

multiplicity q− p and geometric multiplicity one. Since the basic subdivision produces
equal numbers of positively and negatively oriented “B” tiles, afterq − p subdivisions
there must be the same number of positively and negatively oriented tiles of each size
Dp+1, . . . , Dm. Since there is but one “A” daughter of each subdivided tile, the imbalance
between positive and negative orientation in the larger sizes neither grows nor shrinks,
but oscillates with period 2p. These correspond to the roots ofλp + 1.

If p > q, then p(λ) factorizes asp(λ) = (λp − 1− 4λp−q)(λp + 1). Again, the
first factor is the characteristic polynomial ofM , and governs the total number of tiles
of each size, with all eigenvectors havingv = (11). The largest eigenvalue isr−2, with
eigenvectorζ0. The roots of(λp + 1) describe oscillations in the numbers of positively
versus negatively oriented tiles and havev = ( 1

−1

)
.

Next we considernodd. Then exp(inπ) = −1, andp(λ) simplifies toλ2m−4λ2m−2q−
λ2m−2p. This is just the characteristic polynomial ofM applied toλ2. By Theorem 6, the
largest roots haveλ2 = r−2 or λ = ±r−1.

Finally we considern even and nonzero. Thenp(λ) = λ2m − λ2m−q(4 cos(nθ)) −
λ2m−2p − λ2m−p−q(4 cos(nπ/2)). We show that all roots are smaller thanr−2 by the
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argument principle. Note thatθ is an irrational multiple ofπ , so cos(nθ) 6= ±1. On the
circle |λ| = r−2 we have

|λ2m−q(4 cos(nθ))| + |λ2m−2p| + |λ2m−p−q(4 cos(nπ/2))|
= |λ2m|

(
b2|cos(nθ)|

c2
+ a4

c4
+ a2b2

c4

)
= |λ2m|a

2+ b2|cos(nθ)|
c2

< |λ2m|. (4.22)

Thus theλ2m term of p(λ) dominates on the circle|λ| = r−2, so the winding of the
argument ofp(r−2 exp(iα)), asα goes from zero to 2π , is 2m, and all 2m eigenvalues
of E lie inside the circle of radiusr−2.

This completes the analysis of the spectrum of8∗. Now we need only consider the
decomposition into eigenvectors. Sincef is continuous, it has an absolutely summable
Fourier series. So we may writef (k, Ä) = ∑

n cnψ
(n)
k exp(inϕ), where thecn’s are

absolutely summable andψ(n)
k is a vector inC2m with no component larger than one.

In particular, the partial sums converge uniformly tof . However,9k is itself a sum
of eigenvectors ofE|q−p|, so we may rewrite our sum as a sum of eigenfunctions of
(8∗)|q−p|.

5. Irrational Tilings

In this section we consider tilingsTil(z), with z irrational. The analysis is formally similar
to that of Section 4, except that we are now dealing with an infinite number of possible
sizes. In place of the discrete-size parameterk we introduce a continuous-size parameter
s. In place of the discrete evolution operator8n we introduce a one-parameter semigroup
et L . Although the continuous case is technically more difficult than the discrete cases,
the results are extremely similar. Indeed, if one has a sequence of rational numberspi /qi

converging to the irrational numberz, then the statistical properties ofTil(z) may be
obtained as limits of the corresponding properties ofTil(pi /qi ). (Note that the reverse
does not hold. The statistics of a rational tiling cannot be obtained by taking a limit of
irrational tilings.)

As always, we consider a basic right triangleT0 with sidesa andb and hypotenusec.
Let α = ln(c/a), β = ln(2c/b), and assume thatz= α/β is irrational. By a triangle of
sizes, we mean a triangle, similar toT0, with hypotenusece−s. Note that larger values
of s correspond to smaller triangles, just as in the rational case, where the sizeDk of
triangles decreased withk. In our tiling the size parameters will take values in [0, µ),
whereµ = max(α, β).

We now describe a semigroup similar to8n. Let Sbe a collection of tiles, all with size
in [0, µ). Expand this collection by a linear factoret , resulting in triangles with sizes in
[−t, µ− t). Then subdivide the largest triangle, subdivide the largest remaining triangle,
and so on, until all triangles have nonnegative size parameter. By Lemmas 1 and 2, this
occurs in a finite number of steps, and results in a collection of tiles with sizes in [0, µ).
This collection iset L S.
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The semigroupet L naturally acts on the distribution of sizes. The properties of
this action are summarized by the following theorem, which should be compared with
Theorem 6:

Theorem 8.

(1) The eigenvaluesλ of L are the roots of p(λ) = 0, where

p(λ) = eµλ − e(µ−α)λ − 4e(µ−β)λ. (5.1)

There are no multiple eigenvalues.
(2) λ = 2 is an eigenvalue. All other eigenvalues have real part strictly less than

2. If α < β, all eigenvalues have real part greater or equal to the real root of
eβλ+e(β−α)λ−4,while ifα > β, all eigenvalues have real part greater or equal
to the real root of eαλ + 4e(α−β)λ − 1.

(3) The eigenfunctionψ(s), for fixed eigenvalueλ, takes the form

ψ(s) = eλs − eλ(s−α)h(s− α)− 4eλ(s−β)h(s− β), (5.2)

where h(x) is the Heaviside function

h(x) =
{

1 if x ≥ 0;
0 otherwise.

(5.3)

(4) Given an interval I⊂ [0, µ), the number of tiles with size in I is asymptotically
a fraction

1

2c2

∫
I
ds(a2h(α − s)+ b2h(β − s))e2s (5.4)

of the total.
(5) Given an interval I⊂ [0, µ), the area covered by tiles with size in I is asymp-

totically a fraction

1

a2α + b2β

∫
I
dsa2h(α − s)+ b2h(β − s) (5.5)

of the total.

Corollary. Let T be a tile of size s. Let Nt (s) be the number of tiles in et L(T). Then

lim
t→∞e−2t Nt (s) = 2c2e−2s

a2α + b2β
. (5.6)

Proof of the Corollary. From the distribution (5.4), we compute the average area per
tile to beab(a2α+b2β)/4c2. A tile of sizes, rescaled by a factoret , has areaabe2t−2s/2.
Dividing by the area per unit tile we obtain (5.6).
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Proof of Theorem8. For 0< t < min(α, β, |α−β|), the action ofet L on the population
distribution functions is

(et Lψ)(s) =
ψ(s+ t)+ 4ψ(s+ t − β) if s ∈ [β − t, β);
ψ(s+ t)+ ψ(s+ t − α) if s ∈ [α − t, α);
ψ(s+ t) all other s ∈ [0, µ),

(5.7)

whereψ(s) and et Lψ(s) are understood to be zero fors ≥ µ or s < 0. et L acts
continuously on functions that are continuous away from 0, α, β, and for which the
oscillations atα andβ are given by

ψ(α−)− ψ(α+) = f (0); ψ(β−)− ψ(β+) = 4 f (0). (5.8)

Settinget Lψ = etλψ we see that the eigenfunctionψ(s)must equaleλs times a piece-
wise constant function with discontinuities at 0, α, β. Applying the boundary conditions
(5.8), we obtain the eigenfunction (5.2). Fors> µ,ψ(s) then equalse(s−µ)λ timesp(λ).
The vanishing ofψ(s) for s > µ is equivalent to the eigenvalue equationp(λ) = 0.
Thus eigenfunctions satisfying the boundary conditions are in 1–1 correspondence with
roots of p(λ), with the eigenfunctions given by (5.2).

Supposeα < β, in which casep takes the form

p(λ) = eβλ − e(β−α)λ − 4. (5.9)

λ = 2 is a root, sincep(2) = e2β − e2(β−α) − 4 = 4c2/b2 − 4a2/b2 − 4 = 0. This is
the only real root, insofar asp(λ) is an increasing function ofλ for λ > 0, andp(λ) is
negative forλ ≤ 0. In particular,p(λ) < 0 implies thatλ < 2.

Now consider complex rootsλ = λR+ iλI . If λI 6= 0,eβλ ande(β−α)λ cannot both be
real, insofar asβ is not a rational multiple ofβ − α. Thus|eβλ|, |e(β−α)λ|, and 4 satisfy
a strict triangle inequality. In particular,

0> |eβλ| − |e(β−α)λ| − 4= p(λR), (5.10)

soλR < 2. Also,

0< |eβλ| + |e(β−α)λ| − 4= eβλR + e(β−α)λR − 4, (5.11)

soλR is greater than the real root ofeβλ + e(β−α)λ − 4.
Now we exclude the possibility of multiple roots. A multiple root would require

p(λ) = p′(λ) = 0. Suppose 0= p′(λ) = βeβλ + (β − α)e(β−α)λ. Theneβλ ande(β−α)λ

must have the same phase, and their difference must also have that phase. However, if
λ is not real,eβλ ande(β−α)λ cannot both be real, so their difference is not real, so their
difference is not four. Thusp′(λ) = 0 implies thatp(λ) 6= 0, and there are no multiple
roots away from the real axis. On the real axis, the only root isλ = 2, and we have
already seen thatp′(2) is positive, not zero.
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This establishes statements (1)–(3) for the caseα < β. The argument forα > β is
almost identical, and is not repeated.

Now suppose that we initially have a population distribution that is a linear combi-
nation of the eigenfunctionsψλ. Applying et L to the system, the total area grows ase2t ,
so the number of tiles is bounded, both above and below, by a multiple ofe2t . Applying
et L and dividing by the number of tiles damps out all the modes with eigenvalue less
than two, i.e., all eigenvectors other thanψ2. In this case, the final distribution of sizes
approaches a multiple ofψ2, and statements (4) and (5) of the theorem follow.

Unfortunately, we cannota priori assume that the initial condition is a linear combina-
tion of eigenfunctions ofL, or that a test function is a linear combination of eigenfunctions
of the dual operatorL∗. et L andet L∗ are neither finite-rank operators nor self-adjoint
operators on a Hilbert space, so standard theorems about the completeness of a basis is
eigenfunctions cannot be applied. In principle it is possible for a test functionf to have
the property thatet(L∗−2) f does not converge at all. We must show that, whenf = χI

(the characteristic function of an intervalI ), et(L∗−2) f doesconverge.

Lemma 10. Given an interval I∈ [0, µ). The fraction of the area of et L(T0) covered
by tiles with size in I approaches a limit as t→∞.

Given this lemma, it follows that the distribution of area ofet L(S), for any collection
of tiles S, approaches a limit, from which it follows that the distribution of population of
et L(S) also approaches a limit. Since these limits are invariant under further evolution,
and since the total area is proportional toe2t , these limits must correspond to theλ = 2
eigenvector ofL, hence must take the form (5.4) and (5.5).

Proof of Lemma10. Assumeα < β; the other case is similar. LetFI (t) be the fraction
of area ofet L(T0) covered by tiles with size inI . Given anε > 0, we show how to
compute a number such that, for allt sufficiently large,FI (t) is within ε of this number.
Since this can be done for anyε, limt→∞ FI (t) must exist.

It suffices to show that the eventual fraction in an interval of size1, entirely in [0, α)
or in [α, β), and with1 sufficiently small, can be estimated to withinO(12). Any larger
interval can be broken up into a finite number of such small pieces, such that

∑
errors

< ε. So we fix an intervalI , centered ats0, with width1.
The strategy is this: We begin with an exact expression for the fraction of area of

et L(T0) represented by tiles of sizes. We sum this overs ∈ I to get an exact formula for
FI (t). By taking certain limits and replacing certain sums with integrals, we obtain an
expression that is independent oft . In the process we introduce two types of errors. One
type can be made arbitrarily small by requiringt to be sufficiently large. The other type
is O(12).

How many triangles of sizes appear inet L(T0)? That depends on whethers+ t can be
written asn1α+n2β for nonnegativen1 andn2. If s+ t = n1α+n2β, then a triangle of
sizes may be obtained by taking a triangle of size−t , subdividing it, picking a daughter,
subdividing it, picking a daughter, and so on forn1 + n2 subdivisions, with the descent
involving n1 daughters of typeA andn2 daughters of typeB. If s ≥ α, then the last
daughter must be of typeB, or else aftern1 + n2 − 1 steps we would have already
obtained a tile of size in [0, β), and would not have made the final subdivision. Ifs< α
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there is no such constraint. We thus have

number of tiles of sizes

=



(
n1+ n2

n1

)
4n2 if s+ t = n1α + n2β and s ∈ [0, α);(

n1+ n2− 1

n1

)
4n2 if s+ t = n1α + n2β and s ∈ [α, β);

0 otherwise.

(5.12)

Since at each division a fractiona2/c2 of the area goes into theA daughter, while a
fractionb2/c2 goes into theB daughters, then the fraction of the total area represented
by tiles of sizes is

Fs(t) =



(
n1+ n2

n1

)(
a2

c2

)n1 (b2

c2

)n2

if s+ t = n1α + n2β

and s ∈ [0, α);(
n1+ n2− 1

n1

)(
a2

c2

)n1 (b2

c2

)n2

if s+ t = n1α + n2β

and s ∈ [α, β);
0 otherwise.

(5.13)

Note thatn2 = (s+ t − αn1)/β. Now let

f (s, t, n) =



(
(s+ t + n(β − α))/β

n

)(
a2

c2

)n (
b2

c2

)(s+t−αn)/β

if s ∈ [0, α);

(
(s+ t + n(β − α)− β)/β

n1

)(
a2

c2

)n (
b2

c2

)(s+t−αn)/β

if s ∈ [α, β),

(5.14)
and letδp be the periodicδ-function

δp(x) =
∑
n∈Z

δ(x − n). (5.15)

Note that f (s, t, n) is well-defined even when(s+ t + n(β − α))/β is not an integer.
For t large, f (s, t, n) is a slowly varying function ofs andn.

We then compute, exactly,

FI (t) =
∑
s∈I

Fs(t) =
[t/α]∑
n=0

∫
I

f (s, t, n)δp((s+ t − nα)/β). (5.16)

Next we approximate, by replacingf (s, t, n) by f (s0, t, n), wheres0 is the midpoint of
I . This introduces an error that is a fractionO(1) of the total. Since the total will turn
out to beO(1), the error introduced isO(12). We thus have

FI (t) =
[t/α]∑
n=0

f (s0, t, n)
∫

I
δp((s+ t − nα)/β)+ O(12). (5.17)
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Next we use the fact that multiples of an irrational number are uniformly distributed
onR/Z. For any desired degree of accuracy, anN can be found such that, for anyN
consecutive integersni ,

∫
I δp((s+ t − niα)/β) equals one a fraction1/β of the time

(to within the allowed error), and zero the rest of the time. If we restrict ourselves tot
so large thatf (s0, t, n) is nearly constant asn varies over intervals of sizeN, then

[t/α]∑
n=0

f (s0, t, n)
∫

I
δp((s+ t − nα)/β) ≈ (1/β)

[t/α]∑
n=0

f (s0, t, n). (5.18)

Finally, thet →∞ limit of the resulting sum can be expressed as an integral, and yields
a nonzero number.

We now turn, as in Section 4, to the joint distribution of sizes and orientation. We
parametrize the space of possible orientations of a single size, as in Section 4, by two
copies of the unit circle, with Haar measuredÄ. (See Fig. 8.) The space of all possible
tiles up to translation, which we denoteX, is two copies ofS1× [0, µ).

Let f be a function onX. Given a collectionSof tiles, let〈 f, S〉 be the average value
of f on the individual tiles inS, where each tile is given equal weight. Let〈 f, S〉′ be the
average value off on the individual tiles inS, where each tile is weighted proportionally
to its area. Let( f, S) be the sum off on the individual tiles ofS. We define a semigroup
et L∗ acting on functions onX by

(et L∗ f, S) = ( f, et L(S)). (5.19)

Theorem 9. Assume a tiling Til(z), with z irrational and withθ = tan−1(a/b) an
irrational multiple ofπ . Let f be a continuous function on X, and let{Sn} be a sequence
of supertiles of increasing size. Let dν = e2s(a2h(α− s)+ b2h(β − s)) dÄ ds/2c2 and
dρ = 2c2e−2sdν/(a2α + b2β) be measures on X, where h is the Heaviside function
(5.3).Then

lim
n→∞〈 f, Sn〉 =

∫
X

f dν, (5.20a)

lim
n→∞〈 f, Sn〉′ =

∫
X

f dρ. (5.20b)

These limits also apply if f is the characteristic function of a rectangle in X.

Remark. The measuresdν anddρ are closely related to the integrands in (5.4) and
(5.5), respectively. Theorem 9 states that the joint distribution of sizes and orientations is a
product: the size distribution previously found in Theorem 8 times a uniform distribution
of orientations.

Proof. The proof is extremely similar to the proof of Theorem 7. As in that case, it is
sufficient to establish (5.20a) for an arbitrary continuous functionf . Such a function can
be written as an absolutely convergent sum of Fourier modes (with respect to rotations).
The coefficient of each mode is aC2-valued function ofs. The operatoret L∗ commutes
with rotation, and so acts separately on each Fourier mode.
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On thenth Fourier mode,et L∗ , for t small, acts as follows:(
et L∗ f

)
(s) =

{
Aψ(s− t + α)+ Bψ(s− t + β) if s ∈ [0, t);
ψ(s− t) all other s ∈ [0, µ),

(5.21)
where the matricesA andB are, as in Section 4,

A =
(

0 exp[−in(θ + π/2)]
exp[in(θ + π/2)] 0

)
, (5.22)

B =
(

exp(inθ)+ exp(in(θ + π)) 2 exp(−inθ)
2 exp(inθ) exp(−inθ)+ exp(in(−θ + π))

)
. (5.23)

The zeroth Fourier mode decouples into
(1

1

)
and

( 1
−1

)
components. The

(1
1

)
component

is the distribution of sizes regardless of orientation, and its asymptotic behavior was
already computed in Theorem 8. We must show that then = 0

( 1
−1

)
component, and all

the Fourier modes withn 6= 0, grow strictly slower than the size of the system, and so
represent a decreasing fraction of the system.

We will control theL1 norms of the unwanted Fourier modes. To do this we need the
L1 norms of the matricesA andB, and various products ofA andB. TheL1 norm of a
matrix is maximum, over all columns, of the sum of the absolute values of the entries in
that column. One can get a bound on the growth of theL1 norm of a mode by the mode
with its absolute value, and replacing the matricesA andB by their norms.

Forn = 0, B
( 1
−1

) = 0. With B = 0 it is as if there is only one daughter per division,

hence theL1 norm of the
( 1
−1

)
mode at timet is bounded by theL1 norm of the mode at

time zero. Hence, as a fraction of the system, this mode shrinks likee−2s.
Next we considern odd, for which the diagonal terms inB vanish. The sum of the

absolute values of the entries of each column ofB equals two. This is as if, at each
subdivision, only two daughterB tiles are produced, instead of four. To put it another
way, at each subdivision a fractionb2/2c2 of the area is lost. Since each piece of a tile
of size−t must be divided at leastt/β times, this means that theL1 norm of thenth
mode, forn odd, can grow no faster thane2t [1− (b2/2c2)]t/β and so, as a fraction of the
system, goes to zero.

Finally we considern even but nonzero. Here the column sums ofA and B are the
same as in then = 0 case, namely one and four, respectively. However, theL1 norms
of various products ofA and B are smaller that in then = 0 mode. For example,
B2 = 4 cos(nθ)B has norm 16|cos(nθ)|, which is strictly smaller than 16. The norm of
BABis also 16|cos(nθ)|. Indeed, the only words inA andB which have norms as large as
in then = 0 case areAm andAm1BAm2. Since the expansion ofet L∗ f , for t > β, involves
expressions such asB2, the growth of theL1 norm ofnth Fourier mode is bounded by an
exponent strictly less than two. As a fraction of the system, thenth mode goes to zero.

Remark. The spectrum ofet L∗ may be obtained exactly as in Section 4. In seeking
eigenvectors, (4.20) is replaced by

(eµλ − e(µ−β)λB− e(µ−α)λA)v = 0. (5.24)

Subsequent analysis may be repeated word for word, replacingλ by eλ, p by α, q by β,
m byµ, ψk byψ(s), andr k by e−s.
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6. Two Exceptional Tilings—Til (1/3) and Til (2)

We saw in Section 4 how the population statistics of a rational tilingTil(p/q) depends
on p andq. If q > 1, the second eigenvalue of the population matrix is greater than one,
and fluctuations increase with subdivision. This leads to phenomena such as slippage
along fault lines and a failure to be globally edge-to-edge. A typical example,Til(1/2),
was studied in Section 3.

In this section we study examples of the remaining cases. We studyTil(2) as an
example of aTil(p/1) tiling. In all such tilings, the second eigenvalue of the population
matrix is less than one. We shall see how, in the case ofTil(2), this prevents slippage
along fault lines.

Finally, we considerTil(1/3), the only rational tiling to exhibit only a finite number
of orientations of each size of tile. As in all cases withq > 1, there is an eigenvalue
greater than one in the problem. The fluctuations governed by this eigenvalue are enough
to forceTil(1/3) to be nonperiodic. However, because of rational relations between the
lengths of certain edges, the tiles inTil(1/3) meet in only a finite number of ways.

We begin withTil(2). Til(2) is based on the right triangle witha = √5−2≈ 0.2361,

b = 2
√√

5− 2 ≈ 0.9717,c = 1. Several iterations of the subdivision are shown in
Fig. 10. An essential feature ofTil(2) is

Theorem 10. The triangles in the tiling T il(2) meet in only a finite number of ways.

Proof. The proof is essentially in two steps. First we show that the slippage along the
primary fault line is bounded. Then we show that slippage along a fault line is theonly

Fig. 10. Three stages of subdivision forTil(2).
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means by which tiles in a rational tiling can meet in an infinite number of ways, and that
all fault lines are similar to the primary fault line.

To examine what happens along the primary fault line, we consider the boundary of
T2n, the 2nth subdivision of the basic triangle. Note that the hypotenuse and short leg of
T2 consist only of hypotenuses and short legs of big triangles. Applying the subdivision
again, we get that the hypotenuse and short leg ofT4 also consists only of hypotenuses
and short legs of big triangles. Similarly for allT2n.

As in the proof of Theorem 5, we consider the evolution of these legs and hypotenuses
as a one-dimensional substitution system in its own right. Letσ denote the effect of
subdividing the basic triangle twice. Underσ , each hypotenuse (denotedH ) is replaced
by four hypotenuses and a short leg (denotedS), while each short leg is replaced by a
hypotenuse. That is, the one-dimensional population matrix is

M =
(

4 1
1 0

)
, (6.1)

with eigenvaluesλ± = 2±√5 and eigenvectors

v± =
(
λ±
1

)
.

Now let Hn andSn be the number of hypotenuses and short legs inσ n(H), and let
H ′n andS′n be the number of hypotenuses and short legs inσ n(S). By expanding

(0
1

)
and(1

0

)
in terms ofv±, it is easy to see that

(
√

5− 2)Hn − Sn = −(2−
√

5)n+1; (
√

5− 2)H ′n − S′n = −(2−
√

5)n. (6.2)

Next we measure slippage. LetP and R be the endpoints of a hypotenuse, as in
Fig. 7, and letE be any intermediate point, not necessarily the midpoint. Letfn(E) be
the number of complete short legs, betweenP andE, in σ n(P R), minus the number of
short legs betweenP andE in σ n(RP). As in the proof of Theorem 5,fn(E)measures
the extent to which the two tiles ofT2n+2 that meet atE are offset.

Lemma 11. | fn(E)| < 5.

Proof. Letv0 = P, and letvk be the vertex ofσ k(PR), betweenP andE, that is closest
to E. Note that, inσ k(PR), there are at most four hypotenuses and at most one short
leg betweenvk−1 andvk, since the intervalvk−1vk was only part of a hypotenuse or
short leg inσ k−1(PR). By (6.2),(

√
5− 2) times the number of hypotenuses inσ n(PR)

betweenvk−1 andvk, minus the number of short legs, is bounded in absolute value by
(
√

5− 2)n−k. Summing overk, we get that(
√

5− 2) times the number of complete
hypotenuses betweenP andE in σ n(P R), minus the number of short legs, is bounded
in absolute value by

∑∞
i=0(
√

5− 2)i < 2. A similar bound applies to the number of
hypotenuses and legs inσ n(RP). Thus the surplus of short legs on one side ofPE relative
to the other, plus(

√
5− 2) times the deficit of hypotenuses, is bounded by 2+ 2 = 4.

Since a surplus of short legs implies a deficit of hypotenuses, the surplus of short legs is
itself bounded by four.
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We return to the proof of Theorem 10. Lemma 11 limits the number of ways for
two tiles to meet across a fault line. Suppose two tilest1 andt2 meet across a fault line
PR, modeled onσ n(H). Let E be a point on their common edge. The distance from
the vertex oft1 closest toP to the vertex oft2 closest toP is either | fn(E)|(

√
5 −

2) or 1− | fn(E)|(
√

5 − 2). Since| fn| is at most four, this means there are only a
finite number of ways for two triangles to meet across such fault lines. Nowσ n(H) is
the result of subdividing the basic triangle an even number of times. However, since
subdivision is deterministic, having only a finite number of distinct configurations in the
even subdivisions implies that there are only a finite number of distinct configurations
in the odd subdivisions, and thus a finite number of configurations in all.

To complete the proof of Theorem 10, we must show that every pair of adjacent
triangles either meets full-face to full-face, or meets across a fault line based on successive
subdivisions of a hypotenuse. Consider two tiles,t1 andt2, that meet. Letk be the smallest
integer such that both tiles lie in the same supertileS of orderk. Sincet1 andt2 do not
meet in a supertile of orderk− 1, t1 andt2 must meet across one of the five lines of the
first subdivision ofS. See Fig. 10(a). There is a local reflection symmetry across edges
1 and 3, so ift1 and t2 meet across these edges they must meed full-face to full-face.
Edge 2 is the primary fault line. Further division (see Fig. 10(c)) shows that there is
local reflection symmetry across edge 4, while edge 5 is a hypotenuse-based fault line,
as considered above.

We now turn to the tilingTil(1/3). By Theorem 4,Til(1/3) is the only tiling in our
construction to have both a finite number of sizes of tiles, each of which appears only in
a finite number of orientations.Til(1/3) is based on an isosceles right triangle. Although
the two legs have the same length, we distinguish between the two, calling the “b” side
“long” and the “a” side “short,” in analogy to the tilings withb > a. In subdividing
we must specify which legs of the daughter tiles are labeled “long” and “short.” This is
shown in Fig. 11, and several further subdivisions are shown in Fig. 12.

Theorem 11. The tiling Til(1/3) is nonperiodic. The tiles meet in only a finite number
of ways.

Fig. 11. “Long” and “short” edges inTil(1/3).
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Fig. 12. Three stages of subdivision forTil(1/3).

Proof. As usual, we consider the one-dimensional substitution scheme induced on
the edges by two-fold substitution. The 2nth subdivision of the hypotenuse consists
of some hypotenuses of large triangles (denotedH ), some long legs of medium-sized
triangles (L), and some hypotenuses of small triangles (h). Let σ denote the action of
two subdivisions.σ takes eachH to anH and twoL ’s, eachL to twoh’s, and eachh to
an H . The population matrix is

M =
1 0 1

2 0 0
0 2 0

 (6.3)

with eigenvalues 2 and(−1±√−7)/2, and with the eigenvector
(

1
1
1

)
corresponding to

eigenvalue 2. Note that the complex eigenvalues have magnitude
√

2.
Asymptotically, the three types of edges appear in a ratio of 1:1:1. However, since the

initial condition
(

1
0
0

)
is not an eigenvector, and since all eigenvalues are greater than one

(in magnitude), the difference in number betweenH ’s andL ’s, or L ’s andh’s, will grow
exponentially with time. That is, while the total population grows as 2n, the fluctuations
grow as

√
2

n
.

If Til(1/3) were periodic, a long line of the formσ n(H) would consist of several
periods, plus a remainder at each end. Each period would haveH ’s, L ’s, andh’s in exactly
a 1:1:1 ratio, so only the partial periods at each end could contribute to the difference in
population betweenH andL. Thus the population difference would remain bounded as
n→∞. Since this difference is unbounded,Til(1/3) cannot be periodic.
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Finally we note that the length ofh is the same as that ofL, and half that ofH .
This simple ratio of lengths means that slippage along the fault line has no effect on the
number of ways triangles can meet. If two tiles meet acrossσ n(H), either they have a
vertex in common or their closest vertices are separated by the length ofh. Thus there
are only a finite number of ways for two tiles to meet across a fault line. By the same
argument as in the proof of Theorem 10, this implies that there are only a finite number
of ways for triangles to meet at all.

7. Conclusions

We have constructed a family of substitution systems, indexed by the parameterz =
ln(sin(θ))/ln[cos(θ)/2], whereθ is an angle in the basic triangular tile. We have estab-
lished the following properties.

(1) The tilings generated by these substitutions are all nonperiodic.
(2) The tilings have well-defined limiting distributions of size and orientation. Ifθ/π

is irrational, this distribution is rotationally invariant. In Radin’s terminology, the
tilings have “statistical rotational symmetry.” The form of the joint distribution
of size and orientation suggests that the tiling has a purely absolutely continuous
spectrum.

(3) The tilings with rationalz all satisfy the hypotheses of Goodman-Strauss’s theo-
rem, implying that they can be forced through local matching rules.

(4) The rational tilingsTil(p/q), with q > 1, have statistical fluctuations that grow
with iterations of the substitution rule (although they grow slower than the size
of the system). InTil(1/2) these fluctuations force triangles to meet in an infinite
number of distinct ways. We conjecture that this infinite diversity of local behavior
is a property of all rational tilingsTil(p/q) with q > 1 andp/q 6= 1/3.

(5) In the rational tilingsTil(p/1) the eigenvalues that control fluctuations are all less
than one. InTil(2) this forces the tiles to meet in only a finite number of local
patterns. We conjecture that this is a property of all tilingsTil(p/1).
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