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Abstract. We show that the region lit by a point light source inside a simplen-gon after
at mostk reflections off the boundary has combinatorial complexityO(n2k), for anyk ≥ 1.
A lower bound ofÄ((n/k −2(1))2k) is also established which matches the upper bound
for any fixedk. A simple near-optimal algorithm for computing the illuminated region is
presented, which runs inO(n2k logn) time andO(n2k) space fork > 1, and inO(n2 log2 n)
time andO(n2) space fork = 1.

1. Introduction

Visibility-related problems have been extensively studied, in the diverse disciplines in
which they naturally arise, in different ways. In computational geometry and associated
research areas alone, O’Rourke [27] reports over 300 articles related to various aspects
of visibility. Visibility topics include, among others, problems concerning computation,
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characterization, and realization of visibility graphs, art gallery problems, shortest path
problems, and ray shooting and hidden surface elimination; see, for example, [3], [23],
[25], [27], [28], and [31].

Visibility is obviously intimately related to geometric optics, so that not only the
issue of direct (straight-line) visibility, but also of visibility with reflection naturally
occur here. Indeed, there is a large literature on geometric optics (such as [24], [12], and
[5]) and on the chaotic behavior of a reflecting ray of light or a bouncing billiard ball
(see, e.g., [4], [14], [18], and [21]). The field is very interesting and has accumulated a
surprising number of long-standing open problems, some of which are startlingly simple
to state [20]. For example, it is not known if every obtuse triangle admits a cyclic billiard
ball path. More closely related to the issues addressed in this paper is the question: “Can
any simple polygon bounded by mirrors be completely lit up by a single light bulb placed
at an arbitrary point in its interior?” This question was first published in 1969 [19], and
was finally settled only very recently [33].

Remarkably, there has been almost no investigation of visibilitywith reflectionin the
geometric complexity or algorithmic context. For example, reflection is a natural issue
in computer graphics, where a common rendering technique is to trace the path of light
arriving on each pixel of the screen, backward through multiple reflections [11]. Some
simple rendering problems can be solved at the pixel level with hardware assistance, such
as using a hardware Z-buffer algorithm. Any application requiring further manipulation
of the scene would benefit from this output being placed in a readily accessible data
structure rather than an array of pixels. However, it seems that non-pixel-based algorithms
have so far involved only direct visibility (see, e.g., [3]).

Reif et al. [30], on the other hand, address the problem of tracing asingle light ray
through a complicated optical system with the purpose of detecting if it ever arrives
at the specified destination point. They show that several versions of the problem in
three dimensions are undecidable. In addition, they list several restricted two- and three-
dimensional versions that are decidable, but provably hard. While they do not deal with
the situation considered in this paper, we feel that the problem might be hard even in this
simple context. We do not address this question directly, however.

Direct visibility has been investigated extensively over the past several years, and a
number of linear-time direct visibility algorithms for simple polygons are known [10],
[13]. Among different alternative notions of visibility,k-link visibility comes closest
to what we study in this paper. Horn and Valentine introduced this concept, where a
point y inside a given polygon isk-link-visible from another pointx if there exists a
k-link polygonal path between them inside the polygon [15]. Link visibility has been
extensively studied since then; see, for example, [22], [16], [17], [32], and [8]. However,
in contrast tok-link visibility, we further restrict the path so that it may only turn at the
boundary of the polygon and, moreover, must obey laws of geometric optics at these
reflection points. As a result, the two notions of visibility produce drastically different
behavior. For example, we show that, for smallk, the complexity of the region lit up with
at mostk reflections is exponential ink, while the corresponding region ofk-link-visible
points is bounded by at mostn edges, for anyk; see, e.g., [32]. A model in which the
path may only turn at the boundary, but need not obey the reflection laws corresponds
to so-called “diffuse reflection.” It was analyzed, for a single reflection, in [1], and for
multiple reflections, by Prasad et al. [29].
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In a companion paper [1], we investigated the region visible from a point in a simple
n-gon bounded by mirrors, when at most one reflection is permitted. We obtained a tight
2(n2) worst-case geometric complexity bound and described a simpleO(n2 log2 n)
algorithm for computing this set. In the current paper we investigate the case where at
mostk reflections are permitted. We are interested in both the worst-case complexity
of the resulting lit region and in an efficient algorithm for computing the region. We
produce anO(n2k) upper bound and anÄ((n/k−2(1))2k) worst-case lower bound on
this complexity and construct an algorithm withO(n2k logn) running time, fork > 1.
The combinatorial complexity bound involves a careful counting argument (it turns out
that an upper bound ofO(n2k+1) is easy, but the proof of the stronger bound is more
involved), while the algorithm uses a standard divide-and-conquer approach and follows
almost immediately from previous analysis.

Two aspects of our analysis deserve special mention. The first is that the approach
to the complexity analysis needed for the casek > 1, as described in the current paper,
is different from that needed fork = 1, as described in [1], and applying the current
analysis to the case of at most one reflection yields a bound which is not tight; a unified
approach is proposed in [7]. Secondly, the lower and upper complexity bounds match
for any fixedk, but diverge whenk grows as a function ofn. In fact, the lower bound
construction breaks down completely fork comparable withn. We have no construction
where the complexity of the region lit up with at mostk reflections is superquadratic in
k, for largek and fixedn.

The remainder of this paper is organized as follows. Section 2 presents some prelim-
inary definitions. Sections 3 and 4 establish the upper and lower bounds, respectively.
Finally, Section 5 describes a near-optimal algorithm that computes the visibility polygon
with at mostk reflections.

2. Preliminaries

Let P ⊂ R2 be a simplen-gon with no three collinear vertices. Letint(P) andbd(P)
denote the interior and the boundary ofP, respectively. Two points inP are said to
be 1-visible (or directly visible1) if the interior of the line segment joining them lies in
int(P).

We consider visibility with reflection where the angle of incidence is equal to the angle
of reflection. This type of reflection is termedspecular reflectionin computer graphics.
For k > 1, a pointy is said to bek-visiblefrom a pointx (under specular reflection), if
there exist pointsp1, p2, . . . , pk−1 lying in the interiors of edges ofP such that a ray
emitted fromx reachesy afterk− 1 stages of specular reflection atp1, p2, . . . , pk−1, in
this order. Since specular reflection at a vertex is not well defined, we disallow reflection
at vertices ofP, which is a standard assumption in the literature. In Fig. 1,y is 2-visible
from Sandz is 4-visible fromS.

For a pointS ∈ P, let V0(S) denote the polygonal region consisting of points inP
that are directly visible fromS, and, fork ≥ 1, letVk(S) denote the polygonal region

1 This is called “clear visibility” in [26].
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Fig. 1. Visibility under reflection.

consisting of points that arè-visible from S, for somè ≤ k+ 1. Informally,Vk(S) is
the set of points that receive light fromSafter at mostk reflections off the boundary ofP.
For` > 1, let D be aǹ -visible point. By definition, there exist pointsp1, p2, . . . , p`−1

lying in the interiors of edgese1, e2, . . . , è −1 of P, respectively, on thè-link path from
S to D. The maximal(` − 1)-visible portion ofè −1 consisting of points lit up by rays
reflected off edgese1, . . . , è −2, in this order, constitutes amirror m at the(` − 1)st
stage of reflection. All points ofVk(S) that arè -visible to S throughm, via the same
sequence of reflections, constitute themirror visibility polygon, V(m), of that mirror.
V(m) is a relatively open subset ofP (except possibly for some reflex vertices ofP)
since we assume that vertices ofP absorb any light incident on them. As the light rays
are reflected off edgese1, . . . , è −1, a corresponding sequence of virtual images of the
source is also created. At the first stage, the light rays reflected offe1 emerge (when
extended backward) from a virtual imageS1 of S0 = Swith respect to the mirror one1;
S1 is a reflection ofS0 in the line containinge1. To define the sequence of virtual images,
denote the virtual image with respect to the mirror onei−1 by Si−1, for 1 < i ≤ `. Si ,
the next virtual image in the sequence, is the reflection ofSi−1 through the mirror onei .

Let {m1,m2, . . . ,ma} be the set of all mirrors, up to and including stagek, in any
order. Let Vi = V(mi ). Let the corresponding set of virtual images be{S1, S2, . . . , Sa}
whereSi is created with respect to the mirrormi . Slightly abusing the notation, we let
m0 represent a “dummy mirror” so thatV0(S) = V0 = V(m0) is the set of points directly
visible fromS in our collection{Vi }.

Clearly,Vk(S) =
⋃a

i=0 Vi . Put1i =
⋃i

j=0 Vj , for 0 ≤ i ≤ a so thatVk(S) = 1a.
The connected components of the complementary regionP\1i are calledblind spotsof
1i (see Fig. 2). These are the regions ofP that do not receive light when we consider
only mirror visibility polygonsV(m0),V(m1), . . . ,V(mi ). In particular, blind spots of
1a do not receive light afterk stages of reflections, asa is the total number of (real)
mirrors. The blind spots of1i that are adjacent tobd(P) are calledboundary blind spots
of 1i ; the remaining blind spots areinterior.

3. Upper Bound

It has already been shown that the complexity ofV1(S) is O(n2) [1]. Here, we aim to
prove that the complexity ofVk(S) = 1a is O(n2k) for k > 1. To estimate the size of
Vk(S) we start by showing that there can be at mostO(n2k) blind spots inVk(S). First
we state several crucial properties of the mirror visibility polygons.
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Fig. 2. Interior blind spots (1) and boundary blind spots (2) of14 = V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4.

Lemma 3.1. Each Vi is a simple polygon with no more than n edges.

Proof. Consider the polygonP ∪ T whereT is the triangle formed bySi andmi (see
Fig. 3). Although, as subsets of the plane,T and P may overlap, we viewP ∪ T as a
Riemann surface, with the two polygons identified alongmi . It is easily observed thatVi

is the direct visibility polygon ofSi in P∪T minus the triangleT . Since a direct visibility
polygon in a polygon of sizen cannot have more thann edges, the result follows.

Lemma 3.2. There are a total of O(nk) mirrors if k stages of reflection are allowed.

Proof. The bound follows directly from the fact that a mirror at stagei can generate at
mostn− 1 mirrors for the next stage since each mirror visibility polygon is bounded by
at mostn edges (Lemma 3.1).

Now we make some simple observations about how eachVi decomposesP. The
edges of the relative boundary ofVi are calledshadow edges. It is a straightforward,
nevertheless crucial, observation thatVi has no vertex inint(P). Letebe a shadow edge

Fig. 3. Mirror mi , its visibility polygonVi , and virtual sourceSi .



66 B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad

of Vi (see Fig. 1). It dividesP into two subpolygons with disjoint interiors. The interior
of one of these two subpolygons does not meetVi . This portion ofP, denotedSh(e),
is called theshadowof e. The following lemma is an immediate consequence of this
definition.

Lemma 3.3. If e is a shadow edge of Vi , no other edge of Vi can lie inSh(e).

Lemma 3.4. No segment contained in the interior of P can intersect the relative bound-
ary of Vi more than twice.

Proof. If a segment intersects at least three shadow edges ofVi , it has to intersect at
least one edge ofVi lying in the shadow of another edge, violating Lemma 3.3.

Lemmas 3.1 and 3.2 immediately imply anO(n2k+2) bound on the complexity of
Vk(S), as the desired set is the union ofO(nk) polygons withO(n) edges each. The
claim follows from the observation that each vertex ofVk(S) is a vertex of the resulting
arrangement ofO(nk+1) segments. The bound can be further strengthened toO(n2k+1)

by observing that the arrangement is “special” due to Lemma 3.4. However, this bound
is still an order of magnitude larger than our target bound, which we proceed to establish.

Lemma 3.5. The region bounded by a simple closed curve contained in P cannot have
any point of bd(P) in its interior.

Proof. If a point of bd(P) lay inside such a region inP, thenbd(P) would intersect
the interior ofP, an impossibility.

Lemma 3.6. If two mirror visibility polygons Vi ,Vj intersect in such a way that each
of two shadow edges e1, e2 of Vi intersects each of two shadow edges f1, f2 of Vj , then
there are no other intersections between the relative boundaries of Vi and Vj .

Proof. First, observe that by Lemma 3.4 neithere1 nore2 meet the boundary ofVj again,
and a symmetric statement holds forf1 and f2. Thus, by Lemma 3.3, the intersection
of Vi andVj lies completely in the quadrilateralQ delimited bye1, e2, f1, and f2 (see
Fig. 4). Therefore, if the boundaries of the two visibility polygons ever meet at points

Fig. 4. A pair of edges of one mirror visibility polygon intersects a pair of edges of another mirror visibility
polygon.
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other than the four corners ofQ, they have to do so insideQ. Then there is a shadow
edge ofVi entirely inQ. However, such edges connect two points on the boundary ofP.
Hence there are two points on the boundary ofP in Q. This contradicts Lemma 3.5.

The combinatorial complexity ofVk(S) is determined by the complexity of its blind
spots. Therefore, we concentrate on counting first the number of blind spots present in
Vk(S) and then their total combinatorial complexity. We prove that there are onlyO(n2k)

blind spots inVk(S). To show this we add the mirror visibility polygonsV0,V1, . . . ,Va,
one by one, and count the increase in the number of blind spots. Recall that, by definition,
1i = 1i−1 ∪ Vi andVk(S) = 1a. First we observe some important properties of blind
spots. Each interior blind spot is convex and each boundary blind spot is bounded by a
connected portion ofbd(P) and a convex chain formed by portions of shadow edges.
The proof of this fact for the case of at most one reflection is given in [1]. It applies here
as it only uses the fact thatVi ’s are polygonal and have no vertices in the interior ofP.
We will need another property of blind spots:

Lemma 3.7. The intersection of a blind spot h and any segment s⊂ P connecting two
points on bd(P), if nonempty, is a connected subsegment of s.

Proof. The only points at whichs can enter or leaveh are points wheres intersects a
shadow edgeeof some mirror visibility polygonVj . Sinceh must be contained inSh(e),
onces leavesh, it can never re-enter it, as it cannot re-enterSh(e).

The next property follows from Lemma 3.3 and the fact that all lines containing the
shadow edges ofVi must pass through the single image pointSi . We say that a segment
s cuts acrossa blind spot ifs crosses the relative boundary of the blind spot twice.

Lemma 3.8. Any fixed blind spot in1i−1 can be cut across by at most two shadow
edges of Vi .

Proof. Suppose to the contrary that three shadow edgese1, e2, e3 of Vi do cut across
blind spoth.

Lemma 3.7 implies that eachej , for j = 1, 2, 3, intersectsh in an interval between
its two points of intersection with the relative boundary ofh.

Let Vi be a mirror visibility polygon associated with mirrormi and sourceSi , for some
i > 0; the case that it is the direct visibility polygonV0 of S is considered below. Then
the edgese1, e2, e3 can be ordered according to the order in which the rays emanating
from virtual sourceSi and containing the edges crossmi ; see Fig. 5(a,b). Without loss
of generality, suppose the order ise1, e2, e3. Consider the rayr2 emanating fromSi and
containinge2. Notice thate2 cannot emanate frommi (see Fig. 5(a)), as otherwise it would
cut P into two parts, each containing one ofe1, e3, thereby contradicting Lemma 3.3.
Thus the situation is as in Fig. 5(b).

We have shown thate2 cannot emanate from the mirrormi . Let s2 be the portion of
r2 betweenmi ande2. By construction,s2 cutsP into two partsP1 andP3, containinge1

ande3, respectively. Recall that we have assumed thate2 crosses the relative boundary
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Fig. 5. Three shadow edges ofVi cannot cut across a blind spot.

of h twice. Applying Lemma 3.7 tos2 ∪ e2, we see that(s2 ∪ e2) ∩ h = e2 ∩ h, sos2

never meetsh. However,h must lie on both sides ofs2, as it is crossed by bothe1 ande3.
Contradiction. Therefore, ife1, e2, e3 boundVi , for somei > 0, they cannot cut across
a common blind spoth.

Finally, suppose thatVi is the direct visibility polygon ofS. (For the sake of simplicity
in the following argument, we assume thatS is not collinear with any two vertices of
P.) Let `j , j = 1, 2, 3, be the line containingej . Let sj , for each j = 1, 2, 3, be the
minimal line segment of̀ j connecting two boundary points ofP and containingS. See
Fig. 5(c). By the above assumption one of the endpoints ofsj is the reflex vertex ofP
from whichej emanates. (Note thatS 6∈ ej .) Eachsj cuts the polygon in two. It is easily
seen that (possibly after permuting the indices) the following must hold:s2 cutsP into
two parts so that each part contains one ofe1, e3. On the other hand, arguing as above,
(s2 ∪ e2) ∩ h = e2 ∩ h. Thuss2 does not meeth, so there is no point ofh on one side of
s2, contradicting the choice ofe1, e2, e3.

Blind spots of1i are obtained by removing points ofVi from blind spots of1i−1.
Thus we have:

Corollary 3.9. Any blind spot of1i−1 can generate at most two newinterior blind
spots in1i as a result of overlapping with Vi . In other words, a blind spot of1i−1

contains at most two interior blind spots of1i .

Lemma 3.10. Let h1, h2 be two blind spots(interior or boundary) of 1i−1 that are
simultaneously intersected by a pair of shadow edges e and e′ of Vi and such that no other
blind spot intersects both e and e′ between h1 and h2. Such an event can be associated
with a pair(mi ,mj )of mirrors, for some j< i ,which is “charged” only once throughout
the incremental construction ofVk(S) = 1a from10.

Proof. Let e exit h1 through the edgeg. Consider the regionQ bounded by the two
portions of relative boundaries ofh1, h2 and the two portions ofeande′ as in Fig. 6. By
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Fig. 6. A pair of shadow edges intersecting two blind spots.

Lemma 3.5, the interior ofQ does not contain any point ofbd(P). Let j < i be such that
g ⊂ bd(Vj ). Sincee enters another blind spot after enteringVj throughg, it must exit
Vj through another shadow edge, sayg′. We claim thatg andg′ must intersecte′. Since
Q cannot contain a boundary point ofP (Lemma 3.5),g andg′ must exitQ through
an edge other thane. These exit points cannot lie on the relative blind spot boundaries
since the blind spots are contained inP\Vj . Henceg, g′ of Vj must intersecte ande′ of
Vi , and by Lemma 3.6 no other edge ofVj can intersectVi . ThusVi andVj intersect in a
quadrilateralR bounded by (portions of) two shadow edgese, e′ of Vi and two shadow
edgesg, g′ of Vj .

The event in question can be assigned to the distinguished pair of mirrors(mi ,mj ),
with j < i . This pair of mirrors cannot be charged for another pair of blind spots of1i−1.
Indeed, if a different pair, say,(h′1, h

′
2) charge(mi ,mj ), we must haveR′ = Vi ∩ Vj

betweenh′1 andh′2, in the above sense. However, that is impossible sinceR′ = R by
Lemma 3.6 and onlyh1, h2 haveR between them.

We now count the number of interior blind spots that can be present in1i . The number
of boundary blind spots is determined separately. To count the interior blind spots in1i ,
we enumerate them as they are generated throughout the incremental construction of1i

starting from10. For this we concentrate on a generic incremental step of constructing
1j from1j−1 by overlayingVj on it, for 1≤ j ≤ i .

Let H j denote the set of blind spots of1j−1. We enumerate blind spots inH j in
successive steps and count the contributions of each group of blind spots to the increase
of the number ofinterior blind spots during construction of1j = 1j−1 ∪ Vj .

Step(i). First consider all blind spots fromH j that do not contribute to the increase in
the number of interior blind spots as a result of the intersection withVj . These include (a)
the blind spots that are not intersected bybd(Vj ), since they either light up completely,
or remain completely dark, (b) the interior blind spots that are intersected by only one
edge ofbd(Vj ), since each of them yields a single (though smaller) blind spot, and
(c) the boundary blind spots that do not generate any interior blind spot as a result of
intersection withbd(Vj )—they may be split into two or more boundary blind spots, or
they may simply get smaller. LetH j

1 denote the set ofremainingblind spots.

Step(ii). Consider those boundary blind spots inH j
1 whose convex chains are intersected

by only one edge ofbd(Vj ). Each such edge intersects the convex chain of a boundary
blind spot twice since otherwise the blind spot would have been considered in step (i).
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Fig. 7. The interior blind spot created from a boundary blind spot is charged to the endpoints of its convex
chain.

Since only one new interior blind spot is created from an existing boundary blind spot
considered in step (ii), it is enough to count the total number of boundary blind spots
considered in step (ii) for determining the number of new interior blind spots created
from them.

Lemma 3.11. At most ni boundary blind spots are considered in step(ii) over all Vj ,
1≤ j ≤ i .

Proof. A boundary blind spot considered in step (ii) must have both endpoints of its
convex chain covered by the interior ofVj , 1 ≤ j ≤ i , for otherwise it would not
yield an interior blind spot. This means that these endpoints do not appear in any other
boundary blind spot later. We charge the contributions of these boundary blind spots to
these endpoints. Figure 7 illustrates the two endpointsp1, p2 of a convex chain. Since
there are no more thann endpoints of shadow edges bounding everyVj , for eachj ≤ i ,
we haveni charges in total.

Now we proceed to count the other interior blind spots. LetH j
2 be the set of blind

spots inH j
1 that are not considered in step (ii). The increase in the number of interior

blind spots due to generation of new blind spots fromH j
2 is bounded by twice the size

of H j
2 , because each blind spot inH j

2 , whether interior or boundary, is replaced by at
most two new interior blind spots; see Corollary 3.9.

Lemma 3.12.
∑i

j=1 |H j
2 | is at most

(i+1
2

)+ 3ni .

Proof. First, we prove thatH j
2 has at mostj + 3n blind spots.

Due to eliminations in steps (i) and (ii), the relative boundary of every blind spot in
H j

2 is intersected by exactly two edges ofVj . Consider the following planar graphG: Its
nodes are the shadow edges ofVj that meet the relative boundary of at least one blind
spot; recall that there are fewer thann such edges. The arcs ofG correspond to blind
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Fig. 8. (a) Blind spots remaining inH j
2 . (b) Planar graphG.

spots ofH j
2 —two nodes are adjacent if the corresponding shadow edges meet a common

blind spot. We allow multiple arcs between two nodes, corresponding to multiple blind
spots meeting the same pair of edges ofVj . See Fig. 8.G is clearly planar, as blind spots
are disjoint and each meets exactly two edges ofVj . By Euler’s formula, the number of
arcs inG is proportional to the number of its nodes (fewer thann) plus the number of
what we refer to as 2-sided faces, which are faces in the embedding ofG bounded by
two nodes (shadow edges) and two arcs connecting them (two consecutive blind spots).
For example, in Fig. 8(b) we have a 2-sided face betweene1 ande2, bounded byA and
B. The 2-sided faces correspond exactly to events counted by Lemma 3.10; each event
is associated with a pair of mirrors(mj ,mj ′), with j ′ ≤ j . Thus the contribution of this
quantity is at mostj sincemj can be paired with at mostj mirrors processed before it.
By Euler’s formula, the number of the arcs not incident to any 2-sided face is at most
3n, proving the claim.

Summing over allH j
2 , j = 1, . . . , i , we obtain the desired bound.

Lemma 3.13. 1i has at most
(i+1

2

)+ 5ni blind spots.

Proof. All interior blind spots in1i have been created from an existing blind spot.
Lemma 3.11 provides the total number of interior blind spots created from boundary
blind spots considered in step (ii), while Lemma 3.12 provides the total number of
remaining interior blind spots. Combining these two counts there are

(i+1
2

)+4ni interior
blind spots in1i . Finally, since there are at mostni endpoints of shadow edges ini
mirror visibility polygons, there are at mostni boundary blind spots in1i . Summing
the two estimates, we obtain the desired

(i+1
2

)+ 5ni bound.

Lemma 3.14. 1i has at most O(i 2+ ni log i ) edges.

Proof. Divide the set of mirror visibility polygons into two subsetsM1 = {V0,V2, . . . ,

Vbi /2c} andM2 = {Vbi /2c+1,Vbi /2c+2, . . . ,Vi }. PutR1 =
⋃

M1 andR2 =
⋃

M2. Notice
that all arguments used in Lemma 3.13 can be applied toanyordering of the mirrors.
Thus, the bound in Lemma 3.13 can be used for both collections of mirror visibility
polygons,R1 andR2. Accordingly, they each haveO(i 2+ ni) blind spots. We can think
of the blind spots ofR1 (resp.R2) as a collection of faces in the arrangement formed
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by the boundaries of the polygons inM1 (resp.M2) and the boundary ofP. The blind
spots of1i are a subset of faces in the merged arrangement. We mark each blind spot of
1i with a point. To bound the complexity of these marked faces in1i we determine the
combined complexity of the marked blind spots (such a blind spot may contain more than
one marker) individually inR1 andR2 and then consider the effect of merging the two.
Note that each blind spot of1i is a marked face in the resulting overlaid arrangement.
Let c(m, `) denote the complexity ofm marked cells in an arrangementA(L) of ` line
segments. LetL = L1 ∪ L2 whereL1 and L2 have`1 and`2 segments, respectively.
The combination lemma of [9] expresses the complexity of the marked faces inA(L)
in terms of the complexitiesc(m, `1), c(m, `2) of the marked faces inA(L1), A(L2),
respectively, and the effect of merging the two, as follows:

c(m, `) = c(m, `1)+ c(m, `2)+ O(m+ `) .
For1i we havem= O(i 2+ni) (Lemma 3.12) and̀ = O(ni). Denoting the worst-case
complexity of blind spots in1i as f (i ), over all possible orderings of the mirrors, we
obtain the recurrence

f (i ) =
{

2 f (i /2)+ O(i 2+ ni), for i > 1,
O(n), for i = 1.

This recurrence solves toO(i 2+ ni log i ).

Theorem 3.15. Vk(S) has combinatorial complexity O(n2k), for any k≥ 1.

Proof. Recall thatVk(S) = 1a. Using Lemma 3.14,Vk(S) hasO(a2+na loga) edges.
Since there areO(nk) mirrors involved in constructingVk(S) we havea = O(nk).
Plugging in this value ofa we obtain anO(n2k+nk+1 logn) bound for the complexity of
Vk(S). Fork > 1, the first term dominates the second and thusVk(S) hasO(n2k) edges.
By a different argument we proved in [1] thatV1(S) has sizeO(n2). Combining these
two results we obtain the desired bound for allk ≥ 1.

Note that we had to use two different proof techniques, one fork = 1 and another
for k > 1. An alternate approach to estimating the complexity ofVk(S) that applies
uniformly to all k ≥ 1 and also handles more general light source shapes is described
in [7].

4. Lower Bound

In this section we describe the construction of a simplen-gonP with a point light source
Sso that the regionVk(S) lit up with at mostk reflections has combinatorial complexity
Ä((n/k−2(1))2k). The construction can be carried out for anyk < n/c, wherec > 1
is an absolute constant. This lower bound asymptotically matches the upper bound of
Theorem 3.15, ifk is considered fixed.

We use a series ofk “gadgets” that we callconvex mirrors(CMs) each consisting of
N = bn/kc −2(1) segments that we callfacets. In this section the termbeamrefers to
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Fig. 9. CM(α, N).

the collection of all rays emanating fromS in a contiguous interval of directions and then
reflecting off the same sequence of polygon edges, before arriving at the portion of the
polygon under consideration. We arrange for a single beam of light to emerge from the
sourceS and fall on the first CM, which splits it intoN beams. These beams converge
on the second CM, which splits them intoN2 beams. Repeating this processk times, we
obtain a set ofNk very thin beams, most pairs of which intersect, obtaining a pattern of
complexityÄ(N2k). Details are provided below.

Let N ≥ 1 be an integer and letα < π/(2N) be a positive number. We define an
N-faceted convexα-mirror, CM(α, N), as a convex chain ofN segments (facets), with
turn angleα at each vertex, and such that there exists a pointf (we call it anapexof
the mirror) from which each facet subtends an angle of measure 2α. When the precise
values ofα andN are unimportant or understood from the context, we refer to this object
as aconvex mirror, or simply CM.

Observation 4.1. For sufficiently small values ofα, CM(α, N) exists.

Proof. Fix a parameterγ , 0 < γ < π/2. Refer to Fig. 9. Without loss of generality,
assume that the first facet of CM emanates from the origin at the angle of+γ to the
positivex-axis and every subsequent edge turns counterclockwise from the line contain-
ing the previous one byα. Let mi be thei th facet of the mirror. Usingmi as the base,
construct the triangleτi above it with interior anglesγ + (i −1)α,π−γ − (i +1)α, and
2α, respectively, at the left, right, and top vertex. Then the left edge ofτi overlaps the
right edge ofτi−1. Hence, an appropriate choice of relative sizes of the facets guarantees
that the top vertices of all trianglesτi coincide. This is the desired apexf of the CM.

The construction can be carried out if 0< γ < π/2 andα < (π − γ )/(N + 1).

Note that in the above constructionα, N, andγ determine the CM, up to scaling.
We define a set of beams to beβ-parallel in a diskif each beam lights the entire disk,

and the range of directions of incoming light rays, over all beams and all points of the
disk, fits in an angular interval of measureβ. We refer to the length of the smallest such
interval as the (angular) spreadof the beams covering the disk.
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Fig. 10. CM and the light beams.

Lemma 4.2. Let D be a disk lit up completely by a collection of sincomingβ-parallel
beams. Then there exists another disk D′ with the following properties: CM(β/2, N)
can be constructed in D so that the incoming beams split into sNoutgoingbeams which
are (N + 1)β-parallel in D′ and the ratio of the distance between the centers of D and
D′ to the radius of the larger of the two disks can be made arbitrarily large asβ → 0.

Proof. Without loss of generality, suppose thatD is centered at the origin and that the
directions from any point inD to the source of any incoming beam are all in the range
from π − β to π . Let γ , 0< γ < π/2, be a parameter. We orient CM= CM(β/2, N)
as before, aiming the first facetm1 at angle+γ , secondm2 at angle+γ + β/2, and
so forth. In general, facetmi , for i = 2, . . . , N, emanates from the rightmost endpoint
of facetmi−1 at the angle ofβ/2 to the line containingmi−1 and thus at the angle of
γ + (i − 1)β/2 to the positivex-axis. Refer to Fig. 10. The entire construction is scaled
so that the rightmost point of the CM lies on the boundary ofD.

Recall that each incoming beam emanates from a point (its real or virtual source).
Consider two parallel beams of light emanating from directionsπ − β (“steep”) and
π (“shallow”), respectively; aparallel beam here is a beam the source of which lies at
infinity. The intersection of reflections of the two beams off facetmi is precisely the
triangleτi . The reflection of any parallel beam emanating from a direction in the interval
[π − β, π ] in mi coversτi . Any beam emanating from a point source at a finite distance
in some direction in this range has the property that its reflection offmi coversτi , so
that f lies in the interior of the reflection. In particular, reflections off every incoming
beam in every facet of the CM formsN beams, every one of which covers a sufficiently
small neighborhood of the apexf of the CM. We place a diskD′ centered atf in that
neighborhood. An easy calculation shows that the angular spread of thesN reflected
beams atD′ is at most(N + 1)β.

Let x0 be the length of the left edge ofτ1 and letxN be the length of the right edge of
τN . Straightforward calculation shows that

x0

xN
= sin(γ + (N + 1)β/2) sin(γ + Nβ/2)

sin(γ + β/2) sinγ
,
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Fig. 11. Placement of mirrors in the polygon.

which is larger than one, for fixedγ and small enoughβ, and approaches one asβ → 0,
sinceγ is an acute angle.

As the CM is scaled to just fit inD, the radius ofD is the distanceδ from the beginning
of m1 to the end ofmN . As x0 ≥ xN , for smallβ, δ ≤ 2x0 sin(Nβ/2), sinceNβ is the
angle subtended fromf by the entire CM. On the other hand,D′ is an arbitrarily small
disk centered atf . Hence the ratio of the distancex0 between the centers ofD andD′

to the larger radius isx0 : δ = 1 : (2 sin(Nβ/2))→ ∞ asβ → 0. This completes the
proof of the lemma.

Putting CMs together, we finally obtain the lower bound construction.

Theorem 4.3. There exists a simple n-gon with a source point S and k CMs, such
that the combinatorial complexity of the resulting visibility region, Vk(S), isÄ((n/k−
2(1))2k).

Proof. We start with a snake-like polygon; the width of every leg of the “corridor”
is much smaller than its length; refer to Fig. 11, not drawn to scale. Pick a diskD1

visible to S, and place the first convex mirror, CM1 = CM(δ, N), inside it. There is
only one beam coming in to CM1 and N going out. The angular spread of the single
incoming beam can be made less thanδ, for any δ > 0 of our choice, by shrinking
D1. The corridor is constructed to be a little wider thanD1. The outgoing beams will
overlap in a diskD2 which we construct by Lemma 4.2. The spread among the beams
in that disk will be at most(N + 1)δ. Place CM2 = CM((N + 1)δ, N) in D2. This
producesN2 beams overlapping in diskD3 with angular spread bounded by(N + 1)2δ.
Repeatk times, gettingNk beams. TheNk beams overlap in a common region (“target
area”); in fact they overlap at least in a common diskDk+1, by construction, and have
angular spread(N + 1)kδ in it. The beams make a near-right-angle turn at each CM,
which corresponds to setting theγ parameter of CM to a value close toπ/4. Putting
δ = π/(100(N + 1)k) ensures that angular spread in every CM is smaller thanπ/100.
This is sufficient to make all the CM constructions work as described since it satisfies
the constraintβN ¿ π assumed in the definition of a CM.
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We now modify CMk as follows. Pick a generic point on each of itsN facets and
consider each point to be a submirror of the facet, with infinitesimal length. This produces
N fans ofNk−1 reflected ray-like beams each. At least about1

2

(Nk−1

2

)(N
2

) = 2(N2k) pairs
of these rays intersect in the target area.

Indeed, if one numbers the rays in each fan (see rays coming out of CMk in Fig. 11),
from 1 to Nk−1 (clockwise in the figure), and numbers fans from 1 toN (top left to
bottom right in the figure), then rayi in fan j must intersect rayi ′ in fan j ′ > j if i ′ ≥ i .
The casei ′ = i corresponds to rays originating from the same incoming beam—these
rays must meet as the mirror is “convex” and distinct facets are rotated by at least the
angle to compensate for the angular spread of the incoming rays, which is(N + 1)k−1δ

for CMk. Consider the casei ′ > i . By the above reasoning rayi in fan j ′ meets rayi
in fan j . However, rayi ′ in fan j ′ lies clockwise of rayi and hence meets rayi in fan j
even earlier. Hence at least approximately half of the ray pairs eventually intersect.

By the generic choice of points for infinitesimal mirrors, no three rays emanating
from different mirrors have a point in common. Thus the above2(N2k) estimate on the
number of pairs of intersecting rays also estimates the number of vertices of the resulting
arrangement. Therefore, each infinitesimal mirror can be expanded to a sufficiently short,
but positive-length, mirror without reducing the complexity of the union of resulting
beams. This produces a family of2(Nk) beams of light each of which has encountered
k reflections and whose union has complexity2(N2k). It remains to check that no light
from Sother than that reflecting off CM1, . . . , CMk, in this order, is allowed to arrive at
the target area withk or fewer reflections.

The link distance betweenS and the target area isk + 1, so no ray can reach the
target area with fewer thank reflections. No “unauthorized” ray can reach the target area
with exactlyk reflections since, in order to do so, such a ray would have to make at
most one turn inside each L-shaped region indicated in the figure. The L-shape is not
drawn to scale—its “legs” are much longer than they are wide. However, the only points
directly visible from both the “entrance” and the “exit” of an L-shape are those of the
CM contained in it, points in the interior ofP near the turn, points ofbd(P) on either
side of the CM, and the reflex corner of the L-shape. Among those, however, none but
the points of the CM can be used to reflect a ray of light from the entrance, so that it
arrives at the exit. This proves the claim.

5. Algorithm for Computing Vk(S)

We first computeV0(S) and all mirror visibility polygonsVi successively as follows.
For computing the mirror visibility polygonVi we first determine the imageSi of S
with respect to the mirrormi . Then considering the direct visibility polygon ofSi in the
polygonP∪T , T being the triangle formed bySi andmi , we can obtainVi as described
in Lemma 3.1. Direct visibility polygons can be computed by any one of the known
linear-time algorithms [10], [13]. (More precisely, it is easy to check that a triangulation-
based algorithm will work correctly on the Riemann surfaceP ∪ T , even if, as subsets
of the plane,P andT overlap.) After computing allVi ’s we apply a divide-and-conquer
technique to compute the final visibility polygonVk(S). Let V ′ = V0 ∪ · · · ∪ Vb`/2c and
V ′′ = Vb`/2c+1∪ · · · ∪ V` be computed recursively. To computeV = V ′ ∪ V ′′ we merge
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V ′ andV ′′ employing the sweep-line algorithm of Bentley and Ottmann [2]. We sweep
V ′ andV ′′ from left to right and constructV as the sweep proceeds. Each intersection
betweenbd(V ′) andbd(V ′′) detected by the algorithm must contribute a vertex on the
boundary ofV . By Lemma 3.14V ′,V ′′,V have onlyO(`2 + n` log`) vertices and
segments on their boundary. However,` ≤ a = O(nk) so O(log`) = O(lognk) =
O(logn), ask is fixed. Thus sweeping takesO(`2 logn + n` log2 n) time. Note that
using an optimal output-sensitive algorithm, such as [6], for merging does not improve
the running time sinceV ′,V ′′,V have the same order of complexity in the worst-case.
The timeT(`) for our divide-and-conquer algorithm can be expressed as

T(`) =
{

2T(`/2)+ O(`2 logn+ n` log2 n), for ` > 1,
O(n), for ` = 1,

which solves toT(`) = O(`2 logn + n` log3 n). Observing that the required space
remains bounded by the sizes of the unions of mirror visibility polygons, we obtain the
following result.

Theorem 5.1. The visibility polygonVk(S)can be computed in O(n2k logn+nk+1 log3n)
time and O(n2k) space, for any k≥ 1.

Note that, with the sharperO(n`) bound on the complexity of the unionV of `mirror
visibility polygons for the casek = 1, previous analysis yields a strongerO(n2 log2 n)
bound on the running time of the algorithm, when it is used to computeV1(S). This is
essentially the algorithm given in [1].
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