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Abstract. We show that the region lit by a point light source inside a simpl@n after

at mostk reflections off the boundary has combinatorial complegign®), for anyk > 1.

A lower bound ofQ ((n/k — ®(1))%) is also established which matches the upper bound
for any fixedk. A simple near-optimal algorithm for computing the illuminated region is
presented, which runs i@ (n* log n) time andO (n%*) space fok > 1, and inO(n?log? n)

time andO(n?) space fok = 1.

1. Introduction

Visibility-related problems have been extensively studied, in the diverse disciplines in
which they naturally arise, in different ways. In computational geometry and associated
research areas alone, O'Rourke [27] reports over 300 articles related to various aspects
of visibility. Visibility topics include, among others, problems concerning computation,

* Work on this paper by Boris Aronov has been supported by NSF Grant CCR-92-11541 and a Sloan
Research Fellowship. Tamal K. Dey acknowledges the support of NSF Grant CCR-93-21799 while he was at
the Department of Computer Science, Indiana University—Purdue University, Indianapolis, IN 46202, USA.
S. P. Pal acknowledges the support of aresearch grant from the Jawaharlal Nehru Centre for Advanced Scientific

Research, Bangalore, India.



62 B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad

characterization, and realization of visibility graphs, art gallery problems, shortest path
problems, and ray shooting and hidden surface elimination; see, for example, [3], [23],
[25], [27], [28], and [31].

Visibility is obviously intimately related to geometric optics, so that not only the
issue of direct (straight-line) visibility, but also of visibility with reflection naturally
occur here. Indeed, there is a large literature on geometric optics (such as [24], [12], and
[5]) and on the chaotic behavior of a reflecting ray of light or a bouncing billiard ball
(see, e.qg., [4], [14], [18], and [21]). The field is very interesting and has accumulated a
surprising number of long-standing open problems, some of which are startlingly simple
to state [20]. For example, it is not known if every obtuse triangle admits a cyclic billiard
ball path. More closely related to the issues addressed in this paper is the question: “Can
any simple polygon bounded by mirrors be completely lit up by a single light bulb placed
at an arbitrary point in its interior?” This question was first published in 1969 [19], and
was finally settled only very recently [33].

Remarkably, there has been almost no investigation of visibilitly reflectionin the
geometric complexity or algorithmic context. For example, reflection is a natural issue
in computer graphics, where a common rendering technique is to trace the path of light
arriving on each pixel of the screen, backward through multiple reflections [11]. Some
simple rendering problems can be solved at the pixel level with hardware assistance, such
as using a hardware Z-buffer algorithm. Any application requiring further manipulation
of the scene would benefit from this output being placed in a readily accessible data
structure rather than an array of pixels. However, it seems that non-pixel-based algorithms
have so far involved only direct visibility (see, e.g., [3]).

Reif et al. [30], on the other hand, address the problem of tracsiggelight ray
through a complicated optical system with the purpose of detecting if it ever arrives
at the specified destination point. They show that several versions of the problem in
three dimensions are undecidable. In addition, they list several restricted two- and three-
dimensional versions that are decidable, but provably hard. While they do not deal with
the situation considered in this paper, we feel that the problem might be hard even in this
simple context. We do not address this question directly, however.

Direct visibility has been investigated extensively over the past several years, and a
number of linear-time direct visibility algorithms for simple polygons are known [10],
[13]. Among different alternative notions of visibilitk-link visibility comes closest
to what we study in this paper. Horn and Valentine introduced this concept, where a
point y inside a given polygon i&-link-visible from another poink if there exists a
k-link polygonal path between them inside the polygon [15]. Link visibility has been
extensively studied since then; see, for example, [22], [16], [17], [32], and [8]. However,
in contrast tdk-link visibility, we further restrict the path so that it may only turn at the
boundary of the polygon and, moreover, must obey laws of geometric optics at these
reflection points. As a result, the two notions of visibility produce drastically different
behavior. For example, we show that, for snkathe complexity of the region lit up with
at mostk reflections is exponential i, while the corresponding region kflink-visible
points is bounded by at mostedges, for an¥; see, e.g., [32]. A model in which the
path may only turn at the boundary, but need not obey the reflection laws corresponds
to so-called “diffuse reflection.” It was analyzed, for a single reflection, in [1], and for
multiple reflections, by Prasad et al. [29].
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In a companion paper [1], we investigated the region visible from a point in a simple
n-gon bounded by mirrors, when at most one reflection is permitted. We obtained a tight
©®(n?) worst-case geometric complexity bound and described a sigpte log? n)
algorithm for computing this set. In the current paper we investigate the case where at
mostk reflections are permitted. We are interested in both the worst-case complexity
of the resulting lit region and in an efficient algorithm for computing the region. We
produce arO(n?) upper bound and af2 ((n/k — ®(1))%) worst-case lower bound on
this complexity and construct an algorithm wi(n® logn) running time, fork > 1.

The combinatorial complexity bound involves a careful counting argument (it turns out
that an upper bound dd(n%+1) is easy, but the proof of the stronger bound is more
involved), while the algorithm uses a standard divide-and-conquer approach and follows
almost immediately from previous analysis.

Two aspects of our analysis deserve special mention. The first is that the approach
to the complexity analysis needed for the clse 1, as described in the current paper,
is different from that needed fd¢ = 1, as described in [1], and applying the current
analysis to the case of at most one reflection yields a bound which is not tight; a unified
approach is proposed in [7]. Secondly, the lower and upper complexity bounds match
for any fixedk, but diverge wherk grows as a function ofi. In fact, the lower bound
construction breaks down completely focomparable witin. We have no construction
where the complexity of the region lit up with at mdsteflections is superquadratic in
k, for largek and fixedn.

The remainder of this paper is organized as follows. Section 2 presents some prelim-
inary definitions. Sections 3 and 4 establish the upper and lower bounds, respectively.
Finally, Section 5 describes a near-optimal algorithm that computes the visibility polygon
with at mostk reflections.

2. Preliminaries

Let P c %42 be a simplen-gon with no three collinear vertices. Lieit(P) andbd(P)
denote the interior and the boundary Bf respectively. Two points ifP are said to
be Lvisible (or directly visible') if the interior of the line segment joining them lies in
int(P).

We consider visibility with reflection where the angle of incidence is equal to the angle
of reflection. This type of reflection is termegecular reflectionn computer graphics.
Fork > 1, a pointy is said to bek-visiblefrom a pointx (under specular reflection), if
there exist pointg, P2, - .., Pk—1 lying in the interiors of edges dP such that a ray
emitted fromx reachegy afterk — 1 stages of specular reflection@t, p, ..., pk_1, in
this order. Since specular reflection at a vertex is not well defined, we disallow reflection
at vertices ofP, which is a standard assumption in the literature. In Fig.i$,2-visible
from Sandz is 4-visible fromS.

For a pointS € P, let Vy(S) denote the polygonal region consisting of pointdin
that are directly visible fron$, and, fork > 1, let Vi (S) denote the polygonal region

1 This is called “clear visibility” in [26].
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Fig. 1. Visibility under reflection.

consisting of points that arevisible from S, for somet < k + 1. Informally, Vk(S) is
the set of points that receive light fro8after at mosk reflections off the boundary d¢f.
For¢ > 1, let D be an¢-visible point. By definition, there exist points, pz, ..., Pe—1
lying in the interiors of edgesy, e, . . ., €,_1 of P, respectively, on thé-link path from
Sto D. The maximal¢ — 1)-visible portion ofe,_; consisting of points lit up by rays
reflected off edgesy, ..., e_o, in this order, constitutes mirror m at the (¢ — 1)st
stage of reflection. All points ofx(S) that are¢-visible to S throughm, via the same
sequence of reflections, constitute the@ror visibility polygon V (m), of that mirror.
V (m) is a relatively open subset & (except possibly for some reflex vertices
since we assume that vertices®fabsorb any light incident on them. As the light rays
are reflected off edges, ..., e,_1, a corresponding sequence of virtual images of the
source is also created. At the first stage, the light rays reflectegl @fnerge (when
extended backward) from a virtual imageof S° = Swith respect to the mirror oey;
St is areflection o in the line containing. To define the sequence of virtual images,
denote the virtual image with respect to the mirroreony by S, for1 <i < ¢. S,
the next virtual image in the sequence, is the reflectiol of through the mirror o .

Let {my, my, ..., My} be the set of all mirrors, up to and including stdgen any
order. LetV; = V(m;). Let the corresponding set of virtual images{isé, &, ..., S}
whereS is created with respect to the mirror. Slightly abusing the notation, we let
mg represent a “dummy mirror” so th&h(S) = Vo = V (mp) is the set of points directly
visible from Sin our collection{V; }. _

Clearly,Vk(S) = U, Vi. Puta; = U}:O\/j, for 0 < i < aso thatV(S) = Aa.
The connected components of the complementary relgial; are callecblind spotsof
A; (see Fig. 2). These are the regionshothat do not receive light when we consider
only mirror visibility polygonsV (mg), V(my), ..., V(m;). In particular, blind spots of
A, do not receive light aftek stages of reflections, asis the total number of (real)
mirrors. The blind spots of; that are adjacent tod(P) are callecboundary blind spots
of Aj; the remaining blind spots aneterior.

3. Upper Bound

It has already been shown that the complexitpefS) is O(n?) [1]. Here, we aim to
prove that the complexity ofi(S) = A, is O(n%) for k > 1. To estimate the size of
Vi (S) we start by showing that there can be at m0$h%) blind spots inV(S). First
we state several crucial properties of the mirror visibility polygons.
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Fig. 2. Interior blind spots (1) and boundary blind spots (2yaf = Vo U V1 U Vo U V3 U V4.

Lemma 3.1. Each V is a simple polygon with no more than n edges

Proof. Consider the polygo® U T whereT is the triangle formed bg andm; (see
Fig. 3). Although, as subsets of the plaifeand P may overlap, we viewP U T as a
Riemann surface, with the two polygons identified alanglt is easily observed thaf
is the direct visibility polygon o8 in PUT minus the triangld . Since a direct visibility
polygon in a polygon of siza cannot have more thanedges, the result follows. O

Lemma 3.2. There are a total of @*) mirrors if k stages of reflection are allowed

Proof. The bound follows directly from the fact that a mirror at stagan generate at
mostn — 1 mirrors for the next stage since each mirror visibility polygon is bounded by
at mostn edges (Lemma 3.1). O

Now we make some simple observations about how a4atlecomposesd. The
edges of the relative boundary 9f are calledshadow edgedt is a straightforward,
nevertheless crucial, observation tiahas no vertex itnt(P). Lete be a shadow edge

Fig. 3. Mirror m;, its visibility polygonV;, and virtual sourcé .
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of V; (see Fig. 1). It divide® into two subpolygons with disjoint interiors. The interior
of one of these two subpolygons does not méeftThis portion of P, denotedShe),

is called theshadowof e. The following lemma is an immediate consequence of this
definition.

Lemma 3.3. If e is a shadow edge of \ho other edge of \Mcan lie inSh(e).

Lemma 3.4. Nosegmentcontained intheinterior of P can intersectthe relative bound-
ary of { more than twice

Proof. If a segment intersects at least three shadow edg¥s dfhas to intersect at
least one edge of; lying in the shadow of another edge, violating Lemma 3.3. O

Lemmas 3.1 and 3.2 immediately imply @(n%*2) bound on the complexity of
Vi(S), as the desired set is the union ©(n*) polygons withO(n) edges each. The
claim follows from the observation that each vertexpfS) is a vertex of the resulting
arrangement oD (n“*1) segments. The bound can be further strengthen@nd<+1)
by observing that the arrangement is “special” due to Lemma 3.4. However, this bound
is still an order of magnitude larger than our target bound, which we proceed to establish.

Lemma 3.5. The region bounded by a simple closed curve contained in P cannot have
any point of bdP) in its interior.

Proof. If a point of bd(P) lay inside such a region iR, thenbd(P) would intersect
the interior of P, an impossibility. O

Lemma 3.6. If two mirror visibility polygons V, V; intersect in such a way that each
of two shadow edges e, of V; intersects each of two shadow edges fp of V;, then
there are no other intersections between the relative boundariesafid/\.

Proof. First, observe thatby Lemma 3.4 neiteenore, meet the boundary of; again,

and a symmetric statement holds fyrand f,. Thus, by Lemma 3.3, the intersection
of Vi andV; lies completely in the quadrilater® delimited byey, e, f1, and f, (see

Fig. 4). Therefore, if the boundaries of the two visibility polygons ever meet at points

Fig. 4. A pair of edges of one mirror visibility polygon intersects a pair of edges of another mirror visibility
polygon.
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other than the four corners @, they have to do so insid®. Then there is a shadow
edge ofV; entirely in Q. However, such edges connect two points on the boundd®y of
Hence there are two points on the boundaryah Q. This contradicts Lemma 3.9

The combinatorial complexity ofi(S) is determined by the complexity of its blind
spots. Therefore, we concentrate on counting first the number of blind spots present in
Vi (S) and then their total combinatorial complexity. We prove that there are@aig)
blind spots ink(S). To show this we add the mirror visibility polygoNg, Vi, .. ., Va,
one by one, and count the increase in the number of blind spots. Recall that, by definition,
Ai = Aj_1 UV; and(S) = A,. First we observe some important properties of blind
spots. Each interior blind spot is convex and each boundary blind spot is bounded by a
connected portion dbd(P) and a convex chain formed by portions of shadow edges.
The proof of this fact for the case of at most one reflection is given in [1]. It applies here
as it only uses the fact th&t’s are polygonal and have no vertices in the interioPof
We will need another property of blind spots:

Lemma 3.7. The intersection of a blind spot h and any segmeatB connecting two
points on bdP), if nonemptyis a connected subsegment of s

Proof. The only points at whicls can enter or leavh are points whers intersects a
shadow edge of some mirror visibility polygorV;. Sinceh must be contained i8he),
onces leavesh, it can never re-enter it, as it cannot re-ergéfe). O

The next property follows from Lemma 3.3 and the fact that all lines containing the
shadow edges of; must pass through the single image p@htWe say that a segment
s cuts across blind spot ifs crosses the relative boundary of the blind spot twice.

Lemma 3.8. Any fixed blind spot im\j_; can be cut across by at most two shadow
edges of

Proof. Suppose to the contrary that three shadow eégess, e; of V; do cut across
blind spoth.

Lemma 3.7 implies that eadh, for j = 1, 2, 3, intersect$ in an interval between
its two points of intersection with the relative boundarhof

LetV; be amirror visibility polygon associated with mirnmg and sourcé , for some
i > 0; the case that it is the direct visibility polyg®a of Sis considered below. Then
the edge®,, e, e3 can be ordered according to the order in which the rays emanating
from virtual sourceS and containing the edges crass, see Fig. 5(a,b). Without loss
of generality, suppose the orderds e, e3. Consider the ray, emanating fronS and
containinge,. Notice thak, cannot emanate from; (see Fig. 5(a)), as otherwise itwould
cut P into two parts, each containing one &f es, thereby contradicting Lemma 3.3.
Thus the situation is as in Fig. 5(b).

We have shown thak cannot emanate from the mirror . Let s, be the portion of
r, betweerm; ande,. By constructions, cutsP into two partsP; andP;, containinge;
andes, respectively. Recall that we have assumed ¢harosses the relative boundary
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Fig. 5. Three shadow edges ®f cannot cut across a blind spot.

of h twice. Applying Lemma 3.7 t@, U &, we see thats, Ue;) Nh = e Nh, sos,
never meets. Howeverh must lie on both sides &}, as it is crossed by bo#ly andes.
Contradiction. Therefore, &, e, e3 boundV;, for somei > 0, they cannot cut across
a common blind spdt.

Finally, suppose that; is the direct visibility polygon o8. (For the sake of simplicity
in the following argument, we assume tf&its not collinear with any two vertices of
P.) Let¢;, j = 1,2, 3, be the line containing;. Lets;, for eachj = 1, 2, 3, be the
minimal line segment of; connecting two boundary points &fand containinds. See
Fig. 5(c). By the above assumption one of the endpoint ©f the reflex vertex oP
from whiche; emanates. (Note th&¢ g.) Eachs; cuts the polygon in two. It is easily
seen that (possibly after permuting the indices) the following must lspiclats P into
two parts so that each part contains one;o®;. On the other hand, arguing as above,
(2 Ue) Nh =e,Nh. Thuss, does not medt, so there is no point df on one side of
S, contradicting the choice &, e, es. O

Blind spots ofA; are obtained by removing points ®f from blind spots ofA;_;.
Thus we have:

Corollary 3.9. Any blind spot ofA;_; can generate at most two newnterior blind
spots inA; as a result of overlapping with;VIn other words a blind spot ofA;_;
contains at most two interior blind spots 4f.

Lemma 3.10. Let hy, h, be two blind spotginterior or boundary of A;j_; that are
simultaneously intersected by a pair of shadow edges e’arfd/eand such that no other
blind spot intersects both e andleetween hand hp. Such an event can be associated
with a pair (m;, m;) of mirrors, for some j< i, whichis “charged” only once throughout
the incremental construction ¥4 (S) = A, from Ag.

Proof. Let e exit h; through the edgg. Consider the regiol®@ bounded by the two
portions of relative boundaries bf, h, and the two portions af ande’ as in Fig. 6. By
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Fig. 6. A pair of shadow edges intersecting two blind spots.

Lemma 3.5, the interior o does not contain any point bfl(P). Letj < i be such that

g C bd(V)). Sincee enters another blind spot after enterigthroughg, it must exit

V; through another shadow edge, sayWe claim thaig andg’ must intersect'. Since

Q cannot contain a boundary point Bf (Lemma 3.5),g andg’ must exitQ through

an edge other tham These exit points cannot lie on the relative blind spot boundaries
since the blind spots are containedd\V;. Henceg, g’ of V; must intersece ande’ of

Vi, and by Lemma 3.6 no other edge\gfcan intersecY;. ThusV; andV; intersectin a
guadrilateralR bounded by (portions of) two shadow edges’ of V; and two shadow
edgesy, g’ of V;.

The event in question can be assigned to the distinguished pair of mimarsy;),
with j < i. This pair of mirrors cannot be charged for another pair of blind spats of.
Indeed, if a different pair, sayhj, h,) charge(m;, m;), we must haveR" = V; NV,
betweenh; andhy, in the above sense. However, that is impossible sRice- R by
Lemma 3.6 and onl,, hy haveR between them. O

We now count the number of interior blind spots that can be present ifhe number
of boundary blind spots is determined separately. To count the interior blind spits in
we enumerate them as they are generated throughout the incremental construsstion of
starting fromA. For this we concentrate on a generic incremental step of constructing
Aj from Aj_;1 by overlayingV; onit,for1< j <i.

Let H denote the set of blind spots of;_;. We enumerate blind spots i in
successive steps and count the contributions of each group of blind spots to the increase
of the number ofnterior blind spots during construction @f; = Aj_1 U V.

Step(i). First consider all blind spots frordl | that do not contribute to the increase in
the number of interior blind spots as a result of the intersectionyitiihese include (a)

the blind spots that are not intersecteddal¢V; ), since they either light up completely,

or remain completely dark, (b) the interior blind spots that are intersected by only one
edge ofbd(V;), since each of them yields a single (though smaller) blind spot, and
(c) the boundary blind spots that do not generate any interior blind spot as a result of
intersection withbd(V;)—they may be split into two or more boundary blind spots, or

they may simply get smaller. L(HlJ denote the set akmainingblind spots.

Step(ii). Consider those boundary blind spoterj whose convex chains are intersected
by only one edge abd(V;). Each such edge intersects the convex chain of a boundary
blind spot twice since otherwise the blind spot would have been considered in step (i).
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Fig. 7. The interior blind spot created from a boundary blind spot is charged to the endpoints of its convex
chain.

Since only one new interior blind spot is created from an existing boundary blind spot
considered in step (ii), it is enough to count the total number of boundary blind spots
considered in step (i) for determining the number of new interior blind spots created
from them.

Lemma 3.11. At most ni boundary blind spots are considered in gtgpover all \;,
1<j<i.

Proof. A boundary blind spot considered in step (ii) must have both endpoints of its
convex chain covered by the interior ¥, 1 < j < i, for otherwise it would not

yield an interior blind spot. This means that these endpoints do not appear in any other
boundary blind spot later. We charge the contributions of these boundary blind spots to
these endpoints. Figure 7 illustrates the two endpgmig, of a convex chain. Since
there are no more thamendpoints of shadow edges bounding evgryfor eachj <,

we haveni charges in total. O

Now we proceed to count the other interior blind spots. I:Iétbe the set of blind
spots inH, that are not considered in step (ii). The increase in the number of interior
blind spots due to generation of new blind spots frbljns bounded by twice the size

of HJ, because each blind spot iy}, whether interior or boundary, is replaced by at
most two new interior blind spots; see Corollary 3.9.

Lemma3.12. Y j_;|H]|is at most('}") + 3ni.

Proof. First, we prove that-|2J has at mos§ + 3n blind spots.

Due to eliminations in steps (i) and (ii), the relative boundary of every blind spot in
H, is intersected by exactly two edges\gf Consider the following planar grayg Its
nodes are the shadow edgesvhfthat meet the relative boundary of at least one blind
spot; recall that there are fewer tharsuch edges. The arcs & correspond to blind
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Fig. 8. (a) Blind spots remaining ilh'lzj. (b) Planar grapi®.

spots ofH)—two nodes are adjacent if the corresponding shadow edges meet a common
blind spot. We allow multiple arcs between two nodes, corresponding to multiple blind
spots meeting the same pair of edge¥ofSee Fig. 8G is clearly planar, as blind spots
are disjoint and each meets exactly two edgeg; 0By Euler’s formula, the number of
arcs inG is proportional to the number of its nodes (fewer timrplus the number of
what we refer to as-8ided faceswhich are faces in the embedding®fbounded by
two nodes (shadow edges) and two arcs connecting them (two consecutive blind spots).
For example, in Fig. 8(b) we have a 2-sided face betwegemde,, bounded byA and
B. The 2-sided faces correspond exactly to events counted by Lemma 3.10; each event
is associated with a pair of mirrote;, m;/), with j* < j. Thus the contribution of this
quantity is at mos§ sincem; can be paired with at mogtmirrors processed before it.
By Euler’s formula, the number of the arcs not incident to any 2-sided face is at most
3n, proving the claim.

Summing over aIHZJ, j =1,...,i,we obtain the desired bound. O

Lemma 3.13. A; has at mos{'5") + 5ni blind spots

Proof.  All interior blind spots inA; have been created from an existing blind spot.
Lemma 3.11 provides the total number of interior blind spots created from boundary
blind spots considered in step (i), while Lemma 3.12 provides the total number of
remaining interior blind spots. Combining these two counts theré 4§11r)st-|— 4ni interior

blind spots inA;. Finally, since there are at most endpoints of shadow edgesiin
mirror visibility polygons, there are at most boundary blind spots iA;. Summing

the two estimates, we obtain the desi(egt) + 5ni bound. O

Lemma3.14. A; has at most @i? + nilogi) edges

Proof. Divide the set of mirror visibility polygons into two subséts = {Vo, Vo, .. .,
VLi/ZJ} and M, = {VU/2J+1’ VU/2J+2’ ..., Vi}. PutR; = U M1 and R, = U M. Notice

that all arguments used in Lemma 3.13 can be applieahjoordering of the mirrors.
Thus, the bound in Lemma 3.13 can be used for both collections of mirror visibility
polygons,R; andR,. Accordingly, they each hav@(i? + ni) blind spots. We can think

of the blind spots oRR; (resp.R;) as a collection of faces in the arrangement formed



72 B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad

by the boundaries of the polygons iy (resp.M;) and the boundary doP. The blind

spots ofA; are a subset of faces in the merged arrangement. We mark each blind spot of
Aj with a point. To bound the complexity of these marked facesjiwe determine the
combined complexity of the marked blind spots (such a blind spot may contain more than
one marker) individually irR; and R, and then consider the effect of merging the two.
Note that each blind spot &; is a marked face in the resulting overlaid arrangement.
Let c(m, £) denote the complexity ah marked cells in an arrangemeftL) of ¢ line
segments. Let. = L; U L, whereL; andL, havet; and¢, segments, respectively.
The combination lemma of [9] expresses the complexity of the marked fack&.in

in terms of the complexities(m, £1), c(m, £,) of the marked faces i\(L1), A(L>),
respectively, and the effect of merging the two, as follows:

c(m, £) =c(m, £1) + c(m, £2) + O(M+¢£) .

For A; we havem = O(i?+ni) (Lemma 3.12) and = O(ni). Denoting the worst-case
complexity of blind spots im\; as f (i), over all possible orderings of the mirrors, we
obtain the recurrence

N 21(i/2) + O(@i? + ni), for i>1,
= o), for i=1

This recurrence solves ©(i2 + ni logi). O
Theorem 3.15. Vi (S) has combinatorial complexity @), for any k> 1.

Proof. Recallthat)(S) = Aa,. Using Lemma 3.14/(S) hasO(a®+naloga) edges.
Since there ar@(n¥) mirrors involved in constructing/c(S) we havea = O(n%).
Plugging in this value of we obtain arO(n® +nk*1logn) bound for the complexity of
Vi(S). Fork > 1, the first term dominates the second and tu$) hasO(n%) edges.
By a different argument we proved in [1] thef(S) has sizeO(n?). Combining these
two results we obtain the desired bound forka 1. O

Note that we had to use two different proof techniques, onéfer 1 and another
for kK > 1. An alternate approach to estimating the complexityafS) that applies
uniformly to allk > 1 and also handles more general light source shapes is described
in [7].

4. Lower Bound

In this section we describe the construction of a sinmpign P with a point light source
Sso that the regioiw(S) lit up with at mostk reflections has combinatorial complexity
Q((n/k — ®(1))%). The construction can be carried out for dny n/c, wherec > 1
is an absolute constant. This lower bound asymptotically matches the upper bound of
Theorem 3.15, ik is considered fixed.

We use a series &f “gadgets” that we calbonvex mirrorfCMs) each consisting of
N = [n/k] — ®(1) segments that we cdHcets In this section the terrheamrefers to
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apex f

Fig.9. CM(a, N).

the collection of all rays emanating fro&in a contiguous interval of directions and then
reflecting off the same sequence of polygon edges, before arriving at the portion of the
polygon under consideration. We arrange for a single beam of light to emerge from the
sourceS and fall on the first CM, which splits it inttl beams. These beams converge
on the second CM, which splits them ini? beams. Repeating this procéssmes, we
obtain a set oNk very thin beams, most pairs of which intersect, obtaining a pattern of
complexityQ2 (N%). Details are provided below.

Let N > 1 be an integer and let < 7 /(2N) be a positive number. We define an
N -faceted convex-mirror, CM(, N), as a convex chain dfi segmentsféacetg, with
turn anglex at each vertex, and such that there exists a pbitwe call it anapexof
the mirror) from which each facet subtends an angle of measuré&/ben the precise
values ofx andN are unimportant or understood from the context, we refer to this object
as aconvex mirror or simply CM.

Observation 4.1. For sufficiently small values of, CM(«, N) exists

Proof. Fix a parametey, 0 < y < n/2. Refer to Fig. 9. Without loss of generality,
assume that the first facet of CM emanates from the origin at the angle @b the
positivex-axis and every subsequent edge turns counterclockwise from the line contain-
ing the previous one by. Let m; be theith facet of the mirror. Usingn; as the base,
construct the triangle above it with interior angleg + (i — D)o, m — y — (i + 1)@, and
20, respectively, at the left, right, and top vertex. Then the left edge o¥erlaps the
right edge ofrj_;. Hence, an appropriate choice of relative sizes of the facets guarantees
that the top vertices of all triangles coincide. This is the desired apéxof the CM.

The construction can be carried out ity < /2 ande < (x —y)/(N+1). O

Note that in the above constructian N, andy determine the CM, up to scaling.

We define a set of beams to Beparallel in a diskif each beam lights the entire disk,
and the range of directions of incoming light rays, over all beams and all points of the
disk, fits in an angular interval of measygeWe refer to the length of the smallest such
interval as thegngular) spreadof the beams covering the disk.
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apex f N

steep

shallow

Fig. 10. CM and the light beams.

Lemma 4.2. Let D be adisk lit up completely by a collection ahsomingg-parallel
beams Then there exists another disk @ith the following propertiesCM(8/2, N)

can be constructed in D so that the incoming beams split int@atgoingbeams which
are (N + 1)8-parallel in D’ and the ratio of the distance between the centers of D and
D’ to the radius of the larger of the two disks can be made arbitrarily largg as 0.

Proof. Without loss of generality, suppose thats centered at the origin and that the
directions from any point irD to the source of any incoming beam are all in the range
fromnr — Btor. Lety, 0 < y < /2, be a parameter. We orient CM CM(B/2, N)
as before, aiming the first facet; at angle+y, secondm; at angle+y + /2, and
so forth. In general, facet;, fori = 2, ..., N, emanates from the rightmost endpoint
of facetm;_; at the angle of8/2 to the line containingn;_; and thus at the angle of
y + (i —1)B8/2 to the positivex-axis. Refer to Fig. 10. The entire construction is scaled
so that the rightmost point of the CM lies on the boundarpof

Recall that each incoming beam emanates from a point (its real or virtual source).
Consider two parallel beams of light emanating from directisns g (“steep”) and
7 (“shallow”), respectively; garallel beam here is a beam the source of which lies at
infinity. The intersection of reflections of the two beams off fatetis precisely the
trianglet;. The reflection of any parallel beam emanating from a direction in the interval
[7 — B, 7] in m; coverst;. Any beam emanating from a point source at a finite distance
in some direction in this range has the property that its reflectiompffoverst;, so
that f lies in the interior of the reflection. In particular, reflections off every incoming
beam in every facet of the CM foreN beams, every one of which covers a sufficiently
small neighborhood of the apeixof the CM. We place a disB’ centered aff in that
neighborhood. An easy calculation shows that the angular spread si\theflected
beams aD’ is at most(N + 1)8.

Let Xo be the length of the left edge of and letxy be the length of the right edge of
N Straightforward calculation shows that

Xo _ sin(y + (N + /2 siny + Np/2)
XN sin(y + B/2) siny

)
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Fig. 11. Placement of mirrors in the polygon.

which is larger than one, for fixgd and small enougfi, and approaches one gs— 0,
sincey is an acute angle.

Asthe CMis scaledtojustfitiD, the radius oD is the distancé from the beginning
of my to the end oimy. As g > Xy, for smallg, § < 2xpsin(NB/2), sinceNg is the
angle subtended from by the entire CM. On the other hanD, is an arbitrarily small
disk centered af . Hence the ratio of the distangg between the centers @f and D’
to the larger radius i% : § = 1 : (2sin(NB/2)) — oo aspB — 0. This completes the
proof of the lemma. O

Putting CMs together, we finally obtain the lower bound construction.

Theorem 4.3. There exists a simple n-gon with a source point S and k ,Gush
that the combinatorial complexity of the resulting visibility regidR(S), is Q((n/k —
O (1)%).

Proof. We start with a snake-like polygon; the width of every leg of the “corridor”
is much smaller than its length; refer to Fig. 11, not drawn to scale. Pick aliisk
visible to S, and place the first convex mirror, GM= CM(3, N), inside it. There is
only one beam coming in to CMand N going out. The angular spread of the single
incoming beam can be made less tldarior any$ > 0 of our choice, by shrinking

D:. The corridor is constructed to be a little wider thBa. The outgoing beams will
overlap in a diskD, which we construct by Lemma 4.2. The spread among the beams
in that disk will be at mostN + 1)8. Place CM = CM((N + 1)8, N) in D,. This
producesN? beams overlapping in disRs; with angular spread bounded b + 1)25.
Repeak times, getting\Nk beams. ThéNk beams overlap in a common region (“target
area”); in fact they overlap at least in a common di3ik 1, by construction, and have
angular spreadN + 1)%s in it. The beams make a near-right-angle turn at each CM,
which corresponds to setting theparameter of CM to a value close #9'4. Putting

8 = /(100N + 1)¥) ensures that angular spread in every CM is smaller #h4i00.

This is sufficient to make all the CM constructions work as described since it satisfies
the constrainBN « 7 assumed in the definition of a CM.
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We now modify CM as follows. Pick a generic point on each of Nsfacets and
consider each point to be a submirror of the facet, with infinitesimal length. This produces
N fans of Nk~ reflected ray-like beams each. At least ab%n(u'\t;l) (2‘) = O(N%) pairs
of these rays intersect in the target area.

Indeed, if one numbers the rays in each fan (see rays coming out pfrORig. 11),
from 1 to Nk~ (clockwise in the figure), and numbers fans from INig(top left to
bottom right in the figure), then rayin fan j mustintersectray infanj’ > jifi’ >i.

The casé’ = i corresponds to rays originating from the same incoming beam—these
rays must meet as the mirror is “convex” and distinct facets are rotated by at least the
angle to compensate for the angular spread of the incoming rays, whilh-is1)<~1s

for CMk. Consider the casé > i. By the above reasoning rayin fan j’ meets ray

in fan j. However, rayi’ in fan j’ lies clockwise of ray and hence meets rayn fan j

even earlier. Hence at least approximately half of the ray pairs eventually intersect.

By the generic choice of points for infinitesimal mirrors, no three rays emanating
from different mirrors have a point in common. Thus the abev&l ) estimate on the
number of pairs of intersecting rays also estimates the number of vertices of the resulting
arrangement. Therefore, each infinitesimal mirror can be expanded to a sufficiently short,
but positive-length, mirror without reducing the complexity of the union of resulting
beams. This produces a family 8 N¥) beams of light each of which has encountered
k reflections and whose union has complexityN>¥). It remains to check that no light
from S other than that reflecting off CM. . ., CM, in this order, is allowed to arrive at
the target area witk or fewer reflections.

The link distance betwee8 and the target area Is+ 1, so no ray can reach the
target area with fewer thdareflections. No “unauthorized” ray can reach the target area
with exactlyk reflections since, in order to do so, such a ray would have to make at
most one turn inside each L-shaped region indicated in the figure. The L-shape is not
drawn to scale—its “legs” are much longer than they are wide. However, the only points
directly visible from both the “entrance” and the “exit” of an L-shape are those of the
CM contained in it, points in the interior d® near the turn, points did(P) on either
side of the CM, and the reflex corner of the L-shape. Among those, however, none but
the points of the CM can be used to reflect a ray of light from the entrance, so that it
arrives at the exit. This proves the claim. |

5. Algorithm for Computing Vi (S)

We first computeVp(S) and all mirror visibility polygonsV; successively as follows.
For computing the mirror visibility polygoV; we first determine the imag8 of S

with respect to the mirram;. Then considering the direct visibility polygon 8f in the
polygonP U T, T being the triangle formed b§ andm;, we can obtairV; as described

in Lemma 3.1. Direct visibility polygons can be computed by any one of the known
linear-time algorithms [10], [13]. (More precisely, itis easy to check that a triangulation-
based algorithm will work correctly on the Riemann surf&e T, even if, as subsets

of the planeP andT overlap.) After computing aN;’s we apply a divide-and-conquer
technique to compute the final visibility polygai(S). LetV' = Vo U --- U V4,2, and

V" = V241U - - UV, be computed recursively. To compie= V' UV"” we merge
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V" andV” employing the sweep-line algorithm of Bentley and Ottmann [2]. We sweep
VvV’ andV” from left to right and construct as the sweep proceeds. Each intersection
betweerbd(V’) andbd(V") detected by the algorithm must contribute a vertex on the
boundary ofV. By Lemma 3.14V’, V",V have onlyO(¢? + n¢log¢) vertices and
segments on their boundary. Howevers a = O(n¥) so O(log¢) = O(logn*) =
O(logn), ask is fixed. Thus sweeping take3(¢2logn + n¢log?n) time. Note that
using an optimal output-sensitive algorithm, such as [6], for merging does not improve
the running time sinc®’, V”, V have the same order of complexity in the worst-case.
The timeT (¢) for our divide-and-conquer algorithm can be expressed as

T = 2T (¢/2) + O(f?logn +ntlog?n),  for ¢ > 1,
— 10, for £=1,

which solves taT (¢) = O(¢?logn + n¢log®n). Observing that the required space
remains bounded by the sizes of the unions of mirror visibility polygons, we obtain the
following result.

Theorem 5.1. The visibility polygonV(S) can be computedin @ log n+n*+*log®n)
time and Qn%) spacefor any k> 1.

Note that, with the sharp@(n¢) bound on the complexity of the unidhof £ mirror
visibility polygons for the cask = 1, previous analysis yields a strong@tn?log? n)
bound on the running time of the algorithm, when it is used to comput®). This is
essentially the algorithm given in [1].
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