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Abstract. The still operHirsch conjecturasserts thaa (d, n) < n—dforalln > d > 2,
whereA(d, n) denotes the maximum edge-diameter of (congegplytopes witm facets.
This paper adds to the list of paifd, n) that are known to bé&l-sharpin the sense that
A(d, n) > n—d. In particular, it is proved thaa(d,n) > n—dforalln > d > 14.

Introduction

For two verticex andy of a polytopeP, thedistancesp (X, y) is defined as the smallest
number of edges oP that can be used to form a path frorto y. Thediameters(P)

of P is the maximum oBp (X, y) over all pairs(x, y) of P’s vertices. As reported by
Dantzig [D1], [D2], W. M. Hirsch conjectured in 1957 that(d,n) < n — d for all

n > d > 2, whereA(d, n) is the maximum diameter af-polytopes withn facets. The
purpose of the present paper is to enlarge theSset pairs (d, n) that are known to
be H-sharpfor the Hirsch conjecture, in the sense thdaid, n) > n — d. It has long
been known thaf includes all pairgd, n) with d < n < 2d, and that when < 3 the
conditionn < 2d is also necessary fatl -sharpness [K]. Hence we focus on pdiisn)
for whichd > 4 andn > 2d.

We use the terntd, n)-polytopeto denote asimple dpolytope with preciselyn
facets. It is known that (d, n) is attained asp (X, y) for some(d, n)-polytopeP and
two verticesx andy of P, and that whem > 2d it may be required further that and
y areestrangedn the sense that they do not share a facet [KW]dAn)-polytope P
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is H-sharpif and only if 5(P) > n — d, and the paird, n) is H-sharpif and only if
A(d,n) > n—d.

Demonstrating théd -sharpness of a paid, n) amounts to producing aH -sharp
(d, n)-polytope. Such a polytope with diametgireater than n— d would of course
disprove the Hirsch conjecture, but when= 2d it has been difficult even to produce
(d, n)-polytopesP for which §(P) is equal to n— d. For example, of the 1142 combi-
natorial types o{4, 9)-polytopes catalogued by Altshuler et al. [ABS], only one (first
constructed in [KW]) has diameter 5. Here, as in [HK], that one is denotegby

In the past, polytopes showing th¢-sharpness of pair&l, n) with n > 2d have
all arisen fromQ,4 by means of elementary wedging and product constructions. The
constructions in this paper are also based ultimatelDgnbut they use the following
additional construction tools:

(i) successive application of truncations of vertices and wedging over facets, extend-
ing the methods of [HK];

(i) a procedure for blending twd-polytopes to form a third one (introduced by
Barnette [B] and used by Adler [A] to obtain a general lower bound¥ad, n)).

The use of these tools greatly extends the list of pars) that are known to bé -
sharp, and leads also to an improvement of Adler’s bound. Figure 1 provides a graphic
overview of our results. The most striking new result is the fact that vehenl14, the
pair (d, n) is H-sharp for alln > d.

Our use of the convenient tertd -sharp does not imply a belief that the Hirsch
conjecture is correct. Indeed, we suspect that, n) > n — d for all sufficiently large
d andn —d. In view of this belief, it has in the past been irritating that there were so few
pairs(d, n) for which A(d, n) was known even to attain the conjectured bouand d.
The present note relieves some of the irritation, but it does not add to the list of pairs
(d, n) for which the value ofA(d, n) is known precisely. Those are still as follows:
A(2,n) = [n/2], A(3,n) = [2n/3] — 1 [K], A(4,9) = 5[KW], A4, 10) = 5 and
A(5,11) =6 [G].

In [D1] and [D2], the Hirsch conjecture was stated not only for polytopes but also
for convex polyhedra that may be unbounded. However, wilid, n) denoting the
maximum diameter in the unbounded case, it was shown in [KW]4h#&4, 8) = 5 and

consequently
. d n-—d
A — - .
u(d,n) >n d+mlnq4J,{ 7] J)

The methods of the present paper can be used to improve this lower boundam),
but the details are omitted because there seems to be no plausible or natural version of
the Hirsch conjecture for unbounded polyhedra.

1. Indication of Results

Some of our findings are summarized in Fig. 1 and in Corollary 7.4. Each row in Fig. 1
corresponds to the dimensiahas labeled, and the column labelgadorresponds to
n = 2d+ j. Abox or shading in positiofd, j) indicates than(d, 2d+ j) > d+j and
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Fig. 1. Some(d, n) for which A(d,n) > n — d. The previously known examples are indicated by the
lighter region on the left. The table indicates a unige9)-polytope, which we calQa, of diameter 5. Using
Lemma 5.1 we construct a wedge ow@y and truncate it twice to obtain @, 12)-polytope of diameter

7. (The arrows associated with w, ande< indicate the respective operations of truncation, wedging, and
blending.) Similarly, oncéd, n) is known to beH-sharp, products, wedges, and Lemma 5.1 guarantee that
(d+k,n+ j +Kk) is H-sharp whenever & k < j < 2k; that is, once a box is shaded, all the boxes between
the lower-left diagonal and lower-right diagonal from this box are shaded. The labeled boxes correspond to the
constructions of Theorem 7.3 applied®a; these constructions are the root of Corollary 7.4, which establishes
the H-sharpness of the indicated pairs b 13, and of Theorem 7.5, which shows tlidt n) is H-sharp
foralln>d > 14.

hence that the Hirsch bound, if correct, is sharp for the @hi2d + j). The previously
known examples are covered by the lighter region on the left. For further details, see the
figure’s caption and see Corollary 7.4 and Theorem 7.5. The arrows in the 14th, 15th,
and 16th rows indicate that the entire rows (and thus all subsequent rows}sirarp.

2. Definitions and Notation

At least two distinct types of “sharpness” for simple polytopes are of interest in con-

nection with the Hirsch conjecture. £d, n)-polytope P is H-sharp provided that

3(P) > n—d, andP is A-sharpprovided thats(P) = A(d, n). For each paikd, n)

with n > d there areA-sharp polytopes; however, there arelesharp polytopes for

(d,n) =(2,n > 4),(3,n > 6),0r(4, 10). H-sharpness andl-sharpness are equivalent

precisely whemA(d, n) = n — d. The major accomplishment of this paper is the con-

struction of manyH-sharp polytopes, revealing many paids n) to be H-sharp. Since

the constructions involve the interplay of several different methods, some rather technical

definitions and notations appear to be required. They are provided by this section.
Let P be ad-polytope with diametes(P). For —1 < k < d, let f¥(P) denote

the set of alk-faces ofP. The members of °(P), f1(P), f4-2(P), and f9-1(P) are

respectively thgerticesedgesridges andfacetsof P. For a vertex of a(d, n)-polytope

P, we define theH -setH(x) for x to be

H(X) = Hp(X) = {y € T°(P) : 8p(X,y) > n—d}.
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For a setX of vertices, theH-setH(X) is

H(X) = Hp(X) = [ HX).

xeX

It follows from these definitions that #{(x) is nonempty, ther € H2(x) andH3(x) =
H(X).

H-sets are a special instancese$ets. Forx e fo(P) and for anys > 0, thes-set
D& (x) of x in P is defined as follows:

DL(x) = {y € fO(P) : 8p(X, y) > &}

TheH-setis therHp(Xx) = DrF‘,*d(x). We say that two set¥, Y ¢ f°(P) form as-pair
(X,Y)if 8p(x, y) > é foreach choice ok € X andy € Y. WhenP is a(d, n)-polytope
ands = n—d, aé-pair (X, Y) is also called atd -pair. Whens = §(P), asd-pair (X, Y)
is called adiametral pair

(For pairs(d, n) such thatA(d, n) = n — d, the notion of arH-pair can be replaced
by the more natural notion of mutually diametral sets. Our lemmas about truncation,
wedging, and blending have natural analogues in that context as well.)

For setsX, Y € f9(P), we define thelistance

sp(X,Y) = (X’)l,’}ll)fgwaP(X, y)-

A short pathfrom X to Y is a path of lengtldp (X, Y) from somex € X to somey € Y.
We are also concerned with fast edges and slow edges. For a poR/teipeu, v, X €
fO(P) and u, v] € f1(P), the directed edgéu, v) is fast toward xin P if §(v, X) <
3(u, x). This is equivalent to saying that, v) begins ashort pathfrom u to x, where
this means a path of length (u, x). A directed edgéu, v) that is not fast toward in
P is slow toward xin P. If [u, v] € f1(P) andép(u, X) = 8p(v, X), then the directed
edgequ, v) and(v, u) are both slow toward; in this case, we say that the undirected
edge [, v] is slow toward x

For anH-pair (X, Y), an edgel, v] is fastfor (X, Y) if some short path betweex
andY contains the edgau[ v]; otherwise, the edgal| v] is slowfor (X, Y).

WhenP is a polytope an c f°(P), we say thaiX holds a k-facef P if there is
ak-face of P whose vertices all belong td. We denote byd, n : h, k) the set of all
triples (P, X, Y) in which P is anH-sharp(d, n)-polytope with anH -pair (X, Y) such
that X holds anh-face andy holds ak-face. The collection of all nonempty quadruples
(d,n: h,Kk) is denoted by7 .

3. Wedging

The wedgewP = wr P of a(d, n)-polytopeP over afaceF € f9-1(P)isa(d+1, n+
1)-polytope, and hence is associated in the figure with the square that is below and to the
left of the square associated with Suppose thal is ad-polytope inRY, andF is any

face of P. In the terminology of [KW], avedgeover P with foot F is a(d + 1)-polytope

wg P that is formed by intersecting the “cylinde€ = P x [0, oo[ with a closed half-
spacel in R4+ such that the intersectiahN C is bounded and has nonempty interior,
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and the bounding hyperplar of J is such thaH N (R x {0}) = aff(F) x {0}. The
boundary complex ofog P is combinatorially equivalent to the complex formed from
the boundary complex of the prishx [0, 1] by identifying{p} x [0, 1] with (p, 0) for
each pointp of F.

In each use of wedging here, the foot of the wedge is a facet of the polfrope
effect, the identification process replaces the faddate) F x [0, 1] of the prism by
a ridge (d — 1)-face) R that is a copy ofF. In the wedgewg P there are two facets
that contain the ridg®, and each of these facets is combinatorially equivale it td/e
denote these facets i (= P x {0}) andT (= P x {1}) and call them thdaseand
thetop of the wedge; thu®k = BN T. Since each vertex @fg P is incident toT or B,
it corresponds naturally to a vertex ih Each vertew € F has a unique natural image
in the ridgeR in we P. Each vertexw € P\F has a natural image in the baBeand a
second natural image in the tdp we denote these images by (= v x {0}) andv!
(= v x {1}), respectively. Edges ofP of the form py, v'] are calledvertical edges

Each pathp in wg P has a natural imagep in P, obtained by projecting the path onto
either the base or top. A path P has many natural images #x P; we can arbitrarily
assign each vertexin the path to one of its images or v' and introduce vertical edges
as necessary. Given a path fromto y in P and fixed images of the endpoints, this path
has a set of tight natural imagesdi P between these endpoints [HK]. Lete {X,, X!}
andy € {y, ¥}, and letp be a path fronx to y in P; then atight natural imageof p
from X to y in wg P is a pathp from X to y of minimal length such that o = p. In
wg P, if X andy are coincident either to the baBeor to the topT, then there is a unique
tight natural image if and only if the pathp in P visits the footF at most once; if one
of X andy is incident toB and the other td@, then there is a unique tight natural image
in wg P if and only if the path inP visits F exactly once. Otherwise, if visits the foot
r > 1times, then there aré 2 tight natural images.

For any pair of verticex andy, and for any facd- of P, a path betweer andy in
P has tight natural images inr P, betweenx, andyy, betweerx! andy!, betweenx;
andy!, and between! andyy. It is obvious that

80P (X, Yb) = Sup (X', Y) = 8p(X, y) andthat §,p(Xp, ') = Sup (X', Yb).

We make frequent use of the fact that these latter numbers are both equétty) if
and only if some short path iR from x to y visits F, and they are otherwise equal to
Sp(X,y) + 1. If Pis a(d, n)-polytope and- is a facet ofP, then the wedgerP is a
(d+ 1, n+ 1) polytope, and ifP is H-sharp, then so ieg P.

Lemma 3.1. Let P be a(d, n)-polytope let F be a facet of Pand letwP = wgP.
Thens(wP) = §(P) if and only if for each diametral pair of vertices x and y of P
some short path between x and y visitdrrthe remaining casé (wP) = §(P) + 1.

Proof. The wedging lemma in [HK] tells us that each short path betwgemdy! in

P is the tight natural image of a short path betweeandy in P, and consequently
8op (Xp, Y = 8p(X, y) ifand only if some short path betwegmandy visits F ; otherwise
every short path betweeq andy! must use a vertical edge. No more than one vertical
edge is required. The vertical edge makes each short patiPione longer than its



6 F. B. Holt and V. Klee

natural image irP, in which casé,p (X, ¥!) = 8p(X, ¥)+ 1. By considering the natural
images inP of short paths between diametral verticeaiR, we see immediately that
S(wP) < 8(P) + 1.

If there is a diametral pair of verticesandy in P such that no short path between
them visitsF, thens (wP) > §(P) + 1; thus in this casé(wP) = §(P) + 1.

In case there is no such diametral pair, then for each diametral pagty some short
pathp between them visits. Then each tight natural image pfin wP is of length
8(P) and hencé,p(Xp, y') = §(P). In this case§(wP) = §(P). O

To track H-pairs under wedging, we extend the wedge notation to sets of vertices.
For X C fO(P), we(X) is defined to be the set of all natural images of elements of
in wg P; that is,wr (X) = Xp U X!. Suppressing the name of the polytdpaimplifies
the notation, and the identity d? will always be clear from context. Note that the
intersectionX, N X! consists, in effect, of the members Xfthat are incident to the
facetF, and if there are no such members, thgr(X) consists in effect of two disjoint
copies ofX.

The nextlemma and its corollary demonstrate that wedging can be used to increase the
dimensions of the faces held by &hpair. The nicer result is that a wedge can increase
the dimension of the two faces simultaneously, providing a map fchm : hy, hy) to
(d+21,n+1:hy+1, hy+1); this map requires only that > 2d. To see this, consider
any two vertices, one from each of thefaces held by arH-pair. There are at most
2d facets incident to at least one of these two vertices, and wedging over any remaining
facet will increase the dimensions of both held faces. By iterating this operation, we
obtain polytopes wittH -pairs holding faces of relatively high dimension, necessary for
effective use of truncation and blending, e.g., the Lemma 4.2 and Corollary 6.3 below.

Lemma 3.2. If (X,Y)isan H-pairin a(d, n)-polytope B and F is a facet of Pthen
(wg (X), we(Y)) is an H-pair in the(d + 1, n 4+ 1)-polytopew P = wg P.

Proof. For each paifx, y) € X x Y, the tight natural images of short paths between
x andy are of length eithedp (X, y) orp(x, ¥) + 1; howeverwP isa(d + 1, n + 1)-
polytope, andp (X, ¥) > n — d by hypothesis. O

Many of the polytopes constructed below result from iterated wedging, so we intro-
duce the concise notatian®P to denote &-fold wedge overP. Whenx andy are
diametral vertices of &, n)-polytopeP with n > 2d, at leasn — 2d facets ofP miss
both x andy. For each choicé-, ..., F¢ of k such facets, th&-fold wedge can be
defined inductively by

P = Cl)wk—lpka)kil P.

Since our main results do not depend on the choice and the order oktfaests incident
to neitherx nory, we may usually regar@d* P as denoting anyd + k, n + k)-polytope
that is formed by successive wedging, in some order, over (the imagke$aa@ts ofP
that miss bothx andy.

It follows from Lemma 3.2 that i is anH-sharp(d, n)-polytope withn > 2d and
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H-pair (X, Y), then, for allk < n — 2d, »*P is anH-sharp(d + k, n + k)-polytope
with H-pair (w*X, oXY).

Corollary 3.3. If (P, X,Y) € (d, n: hy, hy) and if there are k facets;F. .., Fx such
that the sets Xf°(F) and Y\ f°(F;) are nonempty for each; Rthen

(WP, X, oY) € (d + k,n+k : hy + k, hy + k).

In particular,

@) if d,n) e S,then(d+k,n+k:k,k)e7 forall0<k<n-—2d;
@iy if (d,n: hy,hy) € 7,then(d +k,n+k : hy +k h, + k) € 7 for all
O<k=<n-2d.

Proof. Since the setX\ f°(F;) andY\ f°(F) are nonempty for eadk , wedging over
the image ofF increases the dimension of the faces hel&iand inY. If (d,n) € S,
there existy P, x, y) € (d,n : 0,0) such thatx andy are estranged; thus there are
n — 2d facets incident to neithet nory, and the stated result (i) follows. For (ii), et
be a vertex of thé;-face held byX and lety be a vertex of thé,-face held byy; there
are at leash — 2d facets incident to neither nor y, and thek-fold wedge over ank of
these establishes the result. O

4, Truncation

Totruncatea(d, n)-polytopeP at a vertex, we form the intersection, P of P with any
closed half-space that misseand whose bounding hyperplane passes strictly between
v and the remaining vertices ¢f. Note that sinceP is simple,z, P is a(d, n + 1)-
polytope with new facet (v) andd — 1 additional vertices. Combinatorially, the vertex
v is replaced by &d — 1)-simplexX (v) with one of its vertices on each edge incident to
v. For example, if1 is a neighbor ob in P, then int, P, o (u) is a vertex inX (v) whose
neighbors are thd — 1 other vertices irE (v) andu.

For a subseY c f9(P), we denote by (Y) the set

oY) ={o(y) e fO%P):yeY].

Note thato (Y) may be empty, and it is no larger thafy only thosey € Y that are
neighbors ofv will have corresponding elements én(Y). SinceZ (v) is a(d — 1)-
simplex ands (Y) C fo%(Z(v)), o (Y) is the set of vertices of some simplex.

Paths int, P have natural images iR, obtained by mapping eaeh(w) to v; and
each pathp in P has a uniquéght natural imagen t, P, which is the path of minimum
length int, P whose natural image iR is p; if v is an endpoint inp, then there is a
unique tight natural image for each choiceodfv) for the corresponding endpoint.

The next two lemmas make rigorous the observation that not only does truncation
at a vertex of &-face F held in anH-pair produce anothead -sharp polytope, but the
(k — 1)-simplex given by the truncation &f at this vertex is held by ahl-pair in the
resulting polytope. Whenevdér— 1 > 0 we can repeat this process. Thus K-ace
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is held in anH-pair, we can truncate any vertex of thkidace to obtain arH-sharp
polytope with a(k — 1)-face held in arH-pair; then we can truncate any vertex of this
(k — 1)-face, then any vertex of the resultitig— 2)-face, and so on up totimes.

Lemma4.1. Let P be an H-shargd, n)-polytope with H-pair( X, Y). Fory € Y, let
TP = 1y(P). If o (Y) is nonemptythend (t P) > n—d +1,and(X, o (Y)) is an H-pair
intP.

Proof. Letx € X ando(w) € o(Y), thusw € Y. Any short path fronk to o (w) in

7 P must arrive at (w) either via the edgey, o (w)] or via the edgesu, o (u), o (w)]

for some neighbou of y in P. In either case, the length of the path is increased by
one. Sincg X, Y) is anH-pair in P, for eacho (w) € o(Y) and eaclx € X we have
Sp(X,o(w)) > n—d+ 1inthe(d, n+ 1)-polytoper P; thus(X, o(Y)) is anH-pair
intP. O

For (P, X,Y) € (d, n: hy, hy), we want to truncate repeatedly in (the images of) the
faces held byX andY. We define thé-fold truncation inX, =& P, inductively as

k k—1
Ty P = Tyeor1x (1 " P),

and
o*X = O'(O'k_l)(),

in which we first truncate at a vertex of gr-face held byX. The polytoper P is defined
similarly, and we extend this notation by us'rri@r'\ﬁ2 P to denote the result of arky-fold
truncation inX andk,-fold truncation inY, taken in any order. As witk-fold wedging,

k-fold truncation specifies a class of polytopes, depending on the vertices chosen for
truncation; since our major results do not depend on this choi¢®, iX, Y) € (d, n:

hy, hy), we useri?r'\}z P to denote anyd, n + k; + kp)-polytope obtained by truncating

P k; times in theh;-face held byX andk; times in theh,-face held byy.

Lemma4.2. Let(P,X,Y)e(d,n:h,k).Thenforall0<i <handall0 < j <Kk,
(thtdP. o' X, oY)y e@d.n+i+j:h—ik—j).
Thus(d,n+i)e Sforall0<i <h+k.

Proof. It suffices to show that ifP, X, Y) € (d, n: h, k) andv is a vertex incident to
anh-face held byX, then(z,P,o(X),Y) € (d,n+1:h—1,k). Let F be anh-face
held byX and letv € f°(F). TruncatingP atv introduces dd — 1)-simplexX (v), one
of whose facets is théh — 1)-simplex ¢ (v) introduced byr, F. Since the argument
for the previous lemma applies to eagh(v), X (v) is an(h — 1)-face held by (X).O

Thatis, if (P, X,Y) € (d, n: h, k), then we can truncate iK up toh times and in
Y up tok times, producingd-sharp polytopes frond, n) to (d, n + h + k).

In this paper we have truncated at vertices for convenience. Similar results hold when
the vertex truncations are replaced by truncations at other faces.(R/ith;, X2) €
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(d, n: hy, hy), let F be anyk-face (0< k < d — 1) that contains g -face of theh;-face
held by X;, where—1 < jj < h; butnotj; = j, = —1. Then

(te P, 0(X1), 0(X2)) € (d,n+1:h1—j1—1,h2—j2—1).

(Whenjj = —1, we heretake (Xj) = X;.) These truncations lead to additiom&dsharp
polytopes, but they do not provide any nélvsharp pairgd, n).

5. The First Peak

In Fig. 1 the columns are indexed by-2d. The prismP x | isa(d+1, n+2)-polytope,
which, in the figure, corresponds to the adjacent square below thBt fline prism is a
special case of a product; in general, the prodRict P; is a(d; +dy, ny +ny)-polytope
with diameter

(P x Po) = 8(Py) +5(P2).

The productP; x P, is H-sharp if and only if bothP; and P, are H-sharp, and hence
the prismP x | is H-sharp if and only ifP is.

If any square in the table corresponds tokwsharp paird, n), then by prisms and
wedges, so do all the squar@s+ k + j,n+ 2k + j) for k, j > 0. These lie between
a lower-left diagonal fromd, n) and the remainder of the column below the square
for (d, n). Starting with the cubes anQ,4, we obtain a narrow peak dfi-sharp pairs
against the left side of Fig. 1. Additionally, we can take products @ithwhich slowly
widens the peak as we descenfd; x Q4 is an(8, 18)-polytope of diameter 10, thus
all pairs(d, 2d + 2) areH-sharp ford > 8. Generally for eack > 1, H-sharpness of
the pair(4k, 9k) follows from consideration of thie-fold product ofQ,4 with itself, and
consequently all pair&, 2d + k) areH-sharp ford > 4k.

Our first set of new results broadens this first peak in Fig. 1 by uQpdn the
truncation and wedging lemmas given above.

Lemma5.1. If (d,n) e Sandn> 2d,then(d+1,n+3) € S.

Proof. Let P be anH-sharp(d, n)-polytope withn > 2d and estranged diametral
verticesx andy. Sincen > 2d, we can take the fodt for P to be incident to neither
X nory. By Lemma 3.2, the set¥ = {xp, X'} andY = {y,, y'} form anH-pair inwP.
Hence(wP, X,Y) e d+1,n+1: 1 1), and by Lemma 4.2xtywP is anH-sharp
(d + 1, n + 3)-polytope. O

Starting fromQ,4, we have(4, 9) € S and thus conclude that + k, 9+ j) € S
forallk > 1 andk < j < 3k. Equivalently,(d, 2d + k) € S for all d > k + 3. This
construction is much more aggressive (i.e., moves to the right in the table more quickly)
than does the formation of products.
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Fig. 2. Schematic of the fast—slow blerié, x1) > (P2, X2). lllustrated are the edges incidenttpin P;

and incident toc; in P, and the neighbors oy andxz in P; and Py, respectively. Of the blended edges, the
fast edges fronx; towardY; and fromx; towardY; are indicated by solid line segments, the slow edges by
dashed line segments.

6. Blending

Our final tool is a refinement of a polytope-blending operatam< P, introduced by
Barnette [B] and used by Adler [A] to investigate diameters.iFer 1, 2, letx; be a
vertex of a(d, n;)-polytopeP,. The idea behind the blending operatieris to truncate

P, atx; and thento create a new simplgolytopeP; o< P, by identifying the facet (x1)

of Py with the facetr(x,) of P, in such a way that each truncated facetRapfblends

into a truncated facet oP,. The next three paragraphs provide a specific geometric
construction of a blend d?; and P, (Fig. 2).

Let H; be a hyperplane iR? such thatH; N P, = {x;}, and letJ; denote the image of
P, under a projective transformation that carrigsnto the hyperplane at infinity. Then
U; is an unbounded simple polyhedron withfacets, and thel edges ofP incident
to x; are carried intal parallel rays. By intersecting; with a closed half-space whose
bounding hyperplan&; is perpendicular to these rays, we obtaiian; + 1)-polytope
V; in which the new face§ is a(d — 1)-simplex that replaces the vertaxof P, .

The next step is to subjedt to an affine transformation which, preserving the per-
pendicularity toG; of the edges o¥; with just one end ir§, carries§ onto a regular
(d — 1)-simplex of edge-length 1. Having done this, we apply rigid motions to gjng
and$ into coincidence on some hyperplane, withandV; in opposite half-spaces.

Now, finally, setP = V; U V, = P; > P,. Then each of thd (d — 2)-faces ofS is
the intersection of with one other facet of;, and these two facets blend together to
form a single facet oP. Each edge incident tq in Py is blended together with an edge
incident tox, in P, to form a single edge i, < P,; these edges i, =~ P, together
with all faces incident to them form theaistof Py <t Ps.

In order to fix the combinatorial type of the blended polytdpe~< P, it is not
sufficient to specify merely the two “component” polytopes that are to be blended to
form Py o< P, and the edges that are involved in the blending operation. We must also
specify a permutatiotrr that describes the pairing of thiefacetsF, ..., Fq incident
to x; with the facets3y, ..., G4 incident toxy; the facetF; is blended with face6,;
to form a facet in the waist oP, < P, = (Py, X1) <, (P2, X2). Since the facets
S are regular simplices of the same size, every permutation is permissible, and dis-
tinct permutations produce distinct blends, up to any symmetries within or beteen
and Ps.
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We can identify f O(Py)\{x1} with its image inP; >« P, and likewise f °(P,)\{X,}
with its image. These identifications provide us with a bijectidmetweenf °(P; o< P)
and fO(Py) U fO(P,)\{x1, X}. Via this identification of vertices, we obtain, for paths in
P1 > Py, natural images irP; and P..

An edge [i1, u,] in the waist of P, o< P,, with 7u; € f°(P), has the pair of edges
[uz, X1] and [x2, uy] for its natural image; any other edge Bf >« P, has a unique edge
for its natural image. Theatural imageof a pathp in P, >« P, is the sequence of edges
pin f1(P) U f1(P,) obtained by taking natural images of the edges in the sequence
giveninp.

If p does not contain an edge in the waistRyfs< Py, then its natural image is a
path in one ofP; or P,, andp andp will have the same length. f usesk > 1 edges in
the waist ofP; >« P,, then the ordered edges gnwill form two paths,p; in P, andp;
in Py; pj visits x; preciselyk times, and the sum of the lengths @f and o, is k more
than the length op.

Let p be a path fromv to x; in Py which visitsx; only once, leto have terminal edge
[ug, x1], and letw € fO(P2)\{x.}. Then arextensiorof p to w is any pathp from v to
w in Py >a P, such that the natural image pfstarts withp in P;. A minimal extension
of p to w is an extension op to w of minimal length.

Combinatorially, the blending P, and P, is achieved by a pairwise identification
of the facets ofP; incident tox; with those ofP, incident tox,. We describe the com-
binatorics by giving the incidence matri (P >« P,) in terms of M (Py) andM(P,).
Recall that for a polytop® with n facets andn vertices, the incidence matrM (P) is
annxm {0, 1}-matrixinwhichM;; = 1ifand only if facei and vertex are coincident.

First, permute the rows and columnsif(P;) so that the first column corresponds
to the vertexx;, and thelast d rows correspond to the facets to be blended. Similarly
permute the rows and columnsidf( P,) so that the first column corresponds to the vertex
X2, and thefirst d rows correspond to the facets to be blendedhe order dictated by
M (Py). That is, the facet corresponding to row — d + 1 of M(P;) will be blended
with the facet corresponding to the first rowdf(P,), and so on:

[Opa W _ D Ve
M(Pl)_[<1)d V1i|n1><m1 and M(PZ)_[(())nz—d W2i|mxmz'

Then the incidence matrix faiPy, x;) > (P,, X2) is given by

W (0)
M(Pl > Pz) = V1 V2
(0> W, (Ng+n2—d)x (My+my—2)

The waist ofP; o< P; is given by the blocks\; V5].

The above descriptions apply to the blending of two simple polytopes at any vertices.
However, since we want to construct polytopes of large diameter, we consider only
blends that aréong with respect to certain pain&,, §,). This refers to blends of the
form (P, X1) > (P2, X2) wheres; is a known lower bound o8(P,) and the vertices,
andx, are such thaDi',l (Xi) is nonempty. Our primary concern is with the Hirsch bound
and hence in the case in whigh= n; — d. In the remainder of the paper, the notations
(P1, X1) < (P2, X2) and Py =< P; indicate long blends.
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By using Q4, product formation, and the long blending operation, Adler [A] estab-
lished the following general lower bound:

A(d,n)zn—d—v(n_d)—‘—kl

5d

To see this, note (as in [A]) that for a long blend, the polytdpe= P; < P; is a
(d, n; + ny — d)-polytope withs(P) > 81 + 6, — 1. Thus, for fixedd, there is arhg
such thatA(d,n) > n—dforalld < n < hg, and ifnis in the range

(k=21 (hg —d) +hg <n < k(hg —d)+ hg,

a judicious choice oP; and P, yields A(d, n) > n — d — k with

K — [n—hd"‘ :[n—d"_l.
hg —d hg —d
Given the previously knowii -sharp pairs, as indicated in Fig. 1, Adler could use only
hg = [9d/4].

In the blend(Py, X1) >« (P,, X2), each edge incident tg in P; is blended with an
edge incident tox; in P, to form a single edge in the waist & > P,. An edge in the
waist of a long blendP; >« P; is either &ast—slow edgeafast—fast edgeor aslow—slow
eqsge depending on whether the two edges blended to form it were fast or slow toward
Dp (X)-

A fast—slow blends a long blend in which there are no fast—fast edges in the waist.
Each fast edge frorm; toward D‘E,ll(xl) is blended with a slow edge froxp toward

D‘E,Zz(xz), and each fast edge frora toward Dﬁ,zz(xz) is blended with a slow edge from

X; toward D‘é}l(xl). There may also be slow edges blended with slow edges, but there
are no fast—fast edges. Look again at Fig. 2.

Lemma6.1. If Pyox P, = (P, X1) < (P52, X») is a fast—slow blendhen

8(Py< Po) > 81 + 8o

Proof. Since afast—slow blend is along blend, the ¥ets: D‘,ill(xl) andYs = D‘é,zz(xz)
are both nonempty. Let; € Y1 andy, € Y,, and letU; be the neighbors of; in P, and
let U, be the neighbors of; in Ps.

Any short path inP; > P, betweeny; andy, has a natural image iR, from y; to
x1 and another irP, from x; to y». For8p,..p, (Y1, Y2) < 81 + 82, both of these natural
images must be short paths.

Any short path inP; from y; to x; terminates with a fast edgei|, x;] for some
uy € Uy, andép, (Y1, U1) = 8pap, (Y1, U1) > 81 — 1. In the waist, there is a unique edge
[uz, uz] incident tou;. By assumptionP; o< P, is a fast—slow blend, so«f, uy] is a
slow edge toy, in Py, anddp, (Yo, U2) = Speap, (Y2, U2) > 82. That is, each short path
from y; to X; in Py can be minimally extended to a path i >« P, from y; to y, of
Iength(Sl —1D+1+48 =61+ 6. ThUSSplez(yl, Y2) > 81+ 62, and saS (P o< Py) >
81 + 62. O
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Lemma 6.2. Let (P, X1) < (P2, X2) be a fast—slow blend of H-sharp polytopes P
and B, with respective H-pairgYy, {X}) and (Ys, {X2}). Then R < P, is H-sharp
with H-pair (Y1, Y2).

Proof. SinceP; is anH-sharp(d, n1)-polytope and?; is anH-sharp(d, ny)-polytope,
we may také; = n; —d ands, = n, —d. ThenPy < Py is a(d, n; + ny —d)-polytope,
which by the previous lemma has diameter

§(Pr<x Po) > 814+ 8 =n1+ny,—2d.

Thus the fast—slow blenl, > P, is H-sharp if bothP; and P, are. Moreover, the proof
in the previous lemma shows th&..p, (Y1, ¥2) > n1 —d + ny — d for each such
(Y1, Y2) € Y1 X Ya. O

Corollary 6.3. If (d, n1: hy, ki), (d, na: hy, ko) € 7 and by + hy > d, then(d, ny +
nz—d : k]_,kz) eT.

Proof. Fori = 1,2, let(P, Xi,Yi) € (d,n; : hi, k), and letx; be a vertex of the
h;i-face held byX;. Sinceh; + h, > d, we can také Py, X1) > (P», X2) to be a fast—slow
blend, and the previous lemma yields

(Pr< P2, Y1, Y)) € (d,n1+n2—d 2 ky, kg) O

If the fast—slow blend of-sharp polytope$; = P, is not a counterexample to the
Hirsch conjecture, thefi(P; < P,) = §(Py) + 8(P>), and(Y, Y») is a diametral pair.

7. Additional Peaks

This section uses blending, truncation, and wedging to create a second peak from the
first one in the table, a third from the second, and so on until the peaks blend together
into broad plateaus.

Because of their frequent occurrence in the blendings below, we introduce a special
notation to designatd -sharp(d, 2d)-polytopes that havel -pairs holding faces of fairly
high dimension. The symb®ly.» x denotes an arbitrarig, 2d)-polytope with arH -pair
(X, Y) such thatPgnk, X,Y) € (d,2d : h, k).

Lemma7.1. For each d > 5 and each k withl < k < d — 4, there is a triple
(Pd:k.d—S—k» X, Y) (S (d, 2d : k, d-—3-— k)

Proof. Ford = 5, we have
(PS::L:L’ X9 Y) = (a)Q4a w{x}7 w{Y}) € (57 10 . l 1)

Now it suffices to note the inductive step thathf, X, Y) € (d, 2d : hy, hy) withh; > 0,
then

(txP,o0(X),Y) € (d, 27d+1:hy—1, hg)
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and

(wtx P, wo (X),wY) € (d+1,2d 4+ 2 :hy, hy + 1). O

The polytoped?y of [HK] provide the extreme examply.4_4.1; and having &d —4)-
face held by one member of &h-pair enables us to perform blends on any polytope in
which one member of ahl-pair holds a 4-face. We can produce polytopes with these
4-faces either by alternately wedging and truncating as above, or by simply wedging
whenn — 2d is large enough.

Lemma7.2. Let(Q, X,Y) € (d,n : hy, hy), and let k= max4 — hy,4 — hy, 0}. If
n —2d > k, then

() d+k,n+k+j)eSfor0<j<8;
and if d+ k > 5,then

(i) d+k,n+d+2k+j)eSforO<j <5
(i) d+kn+2d+3k+j)eSfor0<j<2.

Proof. If n—2d > k, we can apply Corollary 3.3 to thefold wedgew* Q. Since each
of X andY holds a(4 — k)-face, ino*Q the setsv¥(X) andw*(Y) form anH-pair and
each of these sets holds a 4-face. Truncating the vertices of both of these 4-faces, we
obtain (i).
Now make a fast—slow blend®Q < Pdtk-d+k-a.1, thus forming anH-sharp(d +
k, n 4+ d + 2k)-polytope with anH -pair (X, Y) in which X holds a 4-face an¥ holds
a 1-face. We can truncate this polytopedrandY up to five times, establishing (ii).
Finally for (iii), make a fast—slow blend

K .
Park:1,d+k—4 > @ Q > Pyyxedik—4,1;

this is anH-sharp(d + k, n + 2d + 3k)-polytope with anH -pair (X, Y) in which each
set holds a 1-face. We can truncate this polytope once and once inY to produce
H-sharp polytopes. O

Theorem 7.3. If (d, n) € S with n > 2d, then

) d+1,n+1),d+1,n+2),d+1n+3 eS;

(i) forO0<k=<d+1,(2d,n+3d—Kk) € S;

(i) (2d,2n+2d —2), (2d,2n+2d — 1), (2d, 2n + 2d) € S;

(iv) fork>1and0< j<4d—-2,(4d —2,4d — 2+ (2n — 2)k) € S;

(v) fork>1and0< j<4d—5,(4d —2,8d -4+ 2n—2)k+ j) € S;
(vi) fork>1and0<j<4d—-8,(4d—-2,12d -6+ (2n—2k+ j) € S.

Proof. Foreach pairindicated, we producetdrsharp polytope. Start with an-sharp

(d, n)-polytopeQ, and letX andY be anH -pair of Q. Then apply wedging, truncation,

and blending in the ways described below. (Refer to Lemma 3.2 for wedges, Lemma 4.2
for truncations, and Lemma 6.2 for blends.) For the polytopask that are involved
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in this proof and the next one, we always assumelthatk and we useXp andYp to
denote the indicateH -pair; thusXp holds the face of lower dimension.

() (Q,X,Y) € (d,n: 0,0, so(wQ,wX,wY) € d+1,n+1:11),and by
Lemma4.2(d+1,n+1),d+1,n+2),d+1n+3) eS.

(ii) As in the extreme example dPy.q_41, We form P = (wty)dtwQ, with all
wedges over the truncated top of the previous wedgeXLandY be the images i
of X andY. Now (P, X,Y) € (2d,n4+2d —1:d,1). ForO<k <d,

(tktyP,o*X, oY) € (2d,n+2d —1+k:d —k, 0).

(iii) Continuing with theP of part (i), (P, X, Y) € (2d,n+2d —1 :d, 1), we take a
vertexx € X incident to thisd-face and form the fast—slow blel= (P, X) > (P, x).
This blendB is anH-sharp(2d, 2n + 2d — 2)-polytope with anH -pair Y; andY,, each
of which holds an edge. Thé8, Y1, Y») € (2d, 2n+2d—2: 1, 1), and, by Lemma 4.2,
(2d,2n+2d — 2), (2d,2n+ 2d — 1), (2d,2n + 2d) € S.

(iv) The wedgeW = W* = »?4-2B is anH-sharp(4d — 2, 2n + 4d — 4)-polytope
with H-pair 0?4-2Y; andw?~2Y,, each of which holds é&d — 1)-face. Thus

(W, ©2972Y;, 0®972Y,) e (4d —2,2n+4d —4:2d — 1, 2d — 1).
Now letW? = W =< W, and inductivelyW* = W1 0q W = (W s<)*"IW. Then
(WX, 0?72Y;, 0®2Y,) € (4d —2,4d — 2+ 2n— 2)k : 2d — 1,2d — 1).

Lemma 4.2 allows up tod!— 2 truncations inV* that produceH -sharp polytopes.
(v) Fork > 1, we can also form the fast-slow bleld < Pag—2:2d-1,2d—a. This
H-sharp polytope provides the triple

(WK oa Pag_2:20-1.2d-4, ®?472Y1, Xp)
c(4d—2 8d—4+(2n—2)k:2d—1,2d — 4).

We again appeal to Lemma 4.2 to obtain the full result.
(vi) Fork > 1, a fast—slow blend oW* produces the triple

(Pag—2:20-4.2d—1 >0 WK <t Pag_p:24_1.2d-4, Xp, Xp)
€ (4d —2,12d — 6+ (2n — 2)k : 2d — 4, 2d — 4).

Lemma 4.2 establishes the result. O

Applying this theorem t®, justifies the entries in Fig. 1. Corollary 7.4 identifies the
relevant polytopes fall < 14, and Theorem 7.5 establishes that, n) > n —d for all
n>dz>14.

Corollary 7.4. Since the(4, 9)-polytope Q is H-sharp the following pairs are H-
sharp

(5,n=12, (6 n=19, (7,n <18),
@n=21, B24=n=<26, (On=30, (10n=34),
(1,n<46), (1,49<n<51), (A2n<56), (13 n<62).
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Proof. Apply Theorem 7.3 to the tripléQg, {x}, {y}) € (4,9 : 0, 0). By (i), the set
S includes(5, 10), (5, 11), and(5, 12), by (ii) it includes (8, 16), ..., (8, 21), and by
(iii) itincludes (8, 24), (8, 25), and(8, 26).

Ford = 9, 10, we take the two blends

(Po:15 > Paig2, X, Y) € (9,27 : 1, 2),
and
(P1o:25 > Pigs2, X, Y) € (10,30 : 2 2).
Now apply Theorem 7.3 t0Q, X,Y) € (8,24 : 1, 1). Then

(0°Q, 0°X, 0%Y) € (11,27 : 4 4),

(P17 0°Q, Xp,Y) € (11,38:14),

and (Pi1:17 < 0®Q <t Piy71, Xp, Xp) € (11,49 : 1 1);
(0*Q, w*X, 0*Y) € (12,28 :55),

(P27 < 0*Q, Xp, 0?Y) € (12,40:25),

and (Pr2o7 > 0?Q < Progo, Xp, Xp) € (12,521 2 2);
(0°Q, 0°X, 0°Y) € (13,29 : 6 6),

(P1337 < 0°Q, Xp, ®°Y) € (13,42:36),

and (Pi3.a7 < 0°Q < P13, Xp, Xp) € (13,55 : 3 3).

Now let (Q, X,Y) € (7,18 : 0,0). Then
(0*Q, *X, 0*Y) € (11,22 : 4 4),
and
(P17 09 0*Q < Piiza, Xp, Xp) € (11,441 1 1).
Take(Q, X,Y) €(9,30:00). Then
(0*Q, w*X, 0*Y) € (13,34 : 4 4),
and
(P30 <t 0?Q o<t Pigg1, Xp, Xp) € (13,60 : 1 1).

Lemmas 5.1 and 4.2 demonstrate tHesharpness of the remaining pairs in Fig. 1
ford < 13. O

Theorem 7.5. Foralld > 14andalln>d, (d,n) € S.

Proof It suffices to show that, for alt > 15, (14, n) is H-sharp. For this, we apply
Theorem 7.3t®4 € (4, 9). TakingQ = Qg, theP in (ii) is an (8, 16)-polytope; theB in
(i) is an H-sharp(8, 24)-polytope with diametral sefs andY, each of which contains
the vertices of an edge. The wedgeof (iv) is an H-sharp(14, 30)-polytope, andVX is
anH-sharp(14, 14+16k)-polytope. Truncations aW* yield H-sharp(14, 14+16k+ j)-
polytopes for alk > 1 and all 0< j < 14. The polytopes of part (v) fill the remaining
gaps:WK 0« Py474 is an H-sharp(14, 28 + 16k)-polytope whose truncations yield
H-sharp(14, 28+ 16k + j)-polytopes for alk > 1 and all 0< j < 11. O
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All the polytopes constructed in this paper were derived from the unidisharp
(4, 9)-polytope Q4. The pair(4, 10) is known not to beH -sharp, but theéH-sharpness
of the pairs(4, n > 11) is unknown. If there is aH-sharp(4, 11)-polytope, then it
follows from Corollary 3.3, Lemma 4.2, and Corollary 6.3 that the entiredow 9 is
H-sharp; and if there is aH -sharp(4, n > 12)-polytope, these would demonstrate that
the entire rond = 8 is H-sharp, with the possible exceptions(8f m) for m = 22, 23
and 27< m < n + 4. If there is arH -sharp(4, 12 < n < 18)-polytope, then the entire
rowd = 8 is H-sharp.
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Addedin proof Corollary 7.4 has been extended to include eight additibraharp
pairs:(8, 22), (8, 23), (11, 47), (11, 48), (12,57), (13, 63), (13, 64), (13, 65). The last
four of these were discovered by Kerstin Fritzsche.



