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Abstract. The still openHirsch conjectureasserts that1(d, n) ≤ n−d for all n > d ≥ 2,
where1(d, n) denotes the maximum edge-diameter of (convex)d-polytopes withn facets.
This paper adds to the list of pairs(d, n) that are known to beH-sharp in the sense that
1(d, n) ≥ n− d. In particular, it is proved that1(d, n) ≥ n− d for all n > d ≥ 14.

Introduction

For two verticesx andy of a polytopeP, thedistanceδP(x, y) is defined as the smallest
number of edges ofP that can be used to form a path fromx to y. Thediameterδ(P)
of P is the maximum ofδP(x, y) over all pairs(x, y) of P’s vertices. As reported by
Dantzig [D1], [D2], W. M. Hirsch conjectured in 1957 that1(d, n) ≤ n − d for all
n > d ≥ 2, where1(d, n) is the maximum diameter ofd-polytopes withn facets. The
purpose of the present paper is to enlarge the setS of pairs (d, n) that are known to
be H-sharp for the Hirsch conjecture, in the sense that1(d, n) ≥ n − d. It has long
been known thatS includes all pairs(d, n) with d < n ≤ 2d, and that whend ≤ 3 the
conditionn ≤ 2d is also necessary forH -sharpness [K]. Hence we focus on pairs(d, n)
for whichd ≥ 4 andn > 2d.

We use the term(d, n)-polytopeto denote asimple d-polytope with preciselyn
facets. It is known that1(d, n) is attained asδP(x, y) for some(d, n)-polytopeP and
two verticesx andy of P, and that whenn ≥ 2d it may be required further thatx and
y areestrangedin the sense that they do not share a facet [KW]. A(d, n)-polytopeP
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is H-sharp if and only if δ(P) ≥ n − d, and the pair(d, n) is H-sharp if and only if
1(d, n) ≥ n− d.

Demonstrating theH -sharpness of a pair(d, n) amounts to producing anH -sharp
(d, n)-polytope. Such a polytope with diametergreater than n− d would of course
disprove the Hirsch conjecture, but whenn > 2d it has been difficult even to produce
(d, n)-polytopesP for which δ(P) is equal to n− d. For example, of the 1142 combi-
natorial types of(4, 9)-polytopes catalogued by Altshuler et al. [ABS], only one (first
constructed in [KW]) has diameter 5. Here, as in [HK], that one is denoted byQ4.

In the past, polytopes showing theH -sharpness of pairs(d, n) with n > 2d have
all arisen fromQ4 by means of elementary wedging and product constructions. The
constructions in this paper are also based ultimately onQ4, but they use the following
additional construction tools:

(i) successive application of truncations of vertices and wedging over facets, extend-
ing the methods of [HK];

(ii) a procedure for blending twod-polytopes to form a third one (introduced by
Barnette [B] and used by Adler [A] to obtain a general lower bound for1(d, n)).

The use of these tools greatly extends the list of pairs(d, n) that are known to beH -
sharp, and leads also to an improvement of Adler’s bound. Figure 1 provides a graphic
overview of our results. The most striking new result is the fact that whend ≥ 14, the
pair (d, n) is H -sharp for alln > d.

Our use of the convenient termH-sharp does not imply a belief that the Hirsch
conjecture is correct. Indeed, we suspect that1(d, n) > n− d for all sufficiently large
d andn−d. In view of this belief, it has in the past been irritating that there were so few
pairs(d, n) for which1(d, n) was known even to attain the conjectured boundn− d.
The present note relieves some of the irritation, but it does not add to the list of pairs
(d, n) for which the value of1(d, n) is known precisely. Those are still as follows:
1(2, n) = bn/2c, 1(3, n) = b2n/3c − 1 [K], 1(4, 9) = 5 [KW], 1(4, 10) = 5 and
1(5, 11) = 6 [G].

In [D1] and [D2], the Hirsch conjecture was stated not only for polytopes but also
for convex polyhedra that may be unbounded. However, with1u(d, n) denoting the
maximum diameter in the unbounded case, it was shown in [KW] that1u(4, 8) = 5 and
consequently

1u(d, n) ≥ n− d +min

(⌊
d

4

⌋
,

⌊
n− d

4

⌋)
.

The methods of the present paper can be used to improve this lower bound on1u(d, n),
but the details are omitted because there seems to be no plausible or natural version of
the Hirsch conjecture for unbounded polyhedra.

1. Indication of Results

Some of our findings are summarized in Fig. 1 and in Corollary 7.4. Each row in Fig. 1
corresponds to the dimensiond as labeled, and the column labeledj corresponds to
n = 2d+ j . A box or shading in position(d, j ) indicates that1(d, 2d+ j ) ≥ d+ j and
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Fig. 1. Some(d, n) for which 1(d, n) ≥ n − d. The previously known examples are indicated by the
lighter region on the left. The table indicates a unique(4, 9)-polytope, which we callQ4, of diameter 5. Using
Lemma 5.1 we construct a wedge overQ4 and truncate it twice to obtain a(5, 12)-polytope of diameter
7. (The arrows associated withτ , ω, andFG indicate the respective operations of truncation, wedging, and
blending.) Similarly, once(d, n) is known to beH -sharp, products, wedges, and Lemma 5.1 guarantee that
(d+ k, n+ j + k) is H -sharp whenever 0≤ k ≤ j ≤ 2k; that is, once a box is shaded, all the boxes between
the lower-left diagonal and lower-right diagonal from this box are shaded. The labeled boxes correspond to the
constructions of Theorem 7.3 applied toQ4; these constructions are the root of Corollary 7.4, which establishes
the H -sharpness of the indicated pairs ford ≤ 13, and of Theorem 7.5, which shows that(d, n) is H -sharp
for all n > d ≥ 14.

hence that the Hirsch bound, if correct, is sharp for the pair(d, 2d+ j ). The previously
known examples are covered by the lighter region on the left. For further details, see the
figure’s caption and see Corollary 7.4 and Theorem 7.5. The arrows in the 14th, 15th,
and 16th rows indicate that the entire rows (and thus all subsequent rows) areH -sharp.

2. Definitions and Notation

At least two distinct types of “sharpness” for simple polytopes are of interest in con-
nection with the Hirsch conjecture. A(d, n)-polytope P is H-sharp provided that
δ(P) ≥ n − d, andP is 1-sharpprovided thatδ(P) = 1(d, n). For each pair(d, n)
with n > d there are1-sharp polytopes; however, there are noH -sharp polytopes for
(d, n) = (2, n > 4), (3, n > 6), or (4, 10). H -sharpness and1-sharpness are equivalent
precisely when1(d, n) = n − d. The major accomplishment of this paper is the con-
struction of manyH -sharp polytopes, revealing many pairs(d, n) to beH -sharp. Since
the constructions involve the interplay of several different methods, some rather technical
definitions and notations appear to be required. They are provided by this section.

Let P be ad-polytope with diameterδ(P). For−1 ≤ k ≤ d, let f k(P) denote
the set of allk-faces ofP. The members off 0(P), f 1(P), f d−2(P), and f d−1(P) are
respectively thevertices,edges, ridges, andfacetsof P. For a vertexx of a(d, n)-polytope
P, we define theH-setH(x) for x to be

H(x) = HP(x) = {y ∈ f 0(P) : δP(x, y) ≥ n− d}.
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For a setX of vertices, theH -setH(X) is

H(X) = HP(X) =
⋂
x∈X

H(x).

It follows from these definitions that ifH(x) is nonempty, thenx ∈ H2(x) andH3(x) =
H(x).

H -sets are a special instance ofδ-sets. Forx ∈ f 0(P) and for anyδ ≥ 0, theδ-set
Dδ

P(x) of x in P is defined as follows:

Dδ
P(x) = {y ∈ f 0(P) : δP(x, y) ≥ δ}.

TheH -set is thenHP(x) = Dn−d
P (x). We say that two setsX,Y ⊂ f 0(P) form aδ-pair

(X,Y) if δP(x, y) ≥ δ for each choice ofx ∈ X andy ∈ Y. WhenP is a(d, n)-polytope
andδ = n−d, aδ-pair(X,Y) is also called anH-pair. Whenδ = δ(P), aδ-pair(X,Y)
is called adiametral pair.

(For pairs(d, n) such that1(d, n) = n− d, the notion of anH -pair can be replaced
by the more natural notion of mutually diametral sets. Our lemmas about truncation,
wedging, and blending have natural analogues in that context as well.)

For setsX,Y ⊆ f 0(P), we define thedistance

δP(X,Y) = min
(x,y)∈X×Y

δP(x, y).

A short pathfrom X to Y is a path of lengthδP(X,Y) from somex ∈ X to somey ∈ Y.
We are also concerned with fast edges and slow edges. For a polytopeP with u, v, x ∈

f 0(P) and [u, v] ∈ f 1(P), the directed edge(u, v) is fast toward xin P if δ(v, x) <
δ(u, x). This is equivalent to saying that(u, v) begins ashort pathfrom u to x, where
this means a path of lengthδP(u, x). A directed edge(u, v) that is not fast towardx in
P is slow toward xin P. If [u, v] ∈ f 1(P) andδP(u, x) = δP(v, x), then the directed
edges(u, v) and(v, u) are both slow towardx; in this case, we say that the undirected
edge [u, v] is slow toward x.

For anH -pair (X,Y), an edge [u, v] is fast for (X,Y) if some short path betweenX
andY contains the edge [u, v]; otherwise, the edge [u, v] is slow for (X,Y).

WhenP is a polytope andX ⊂ f 0(P), we say thatX holds a k-faceof P if there is
a k-face of P whose vertices all belong toX. We denote by(d, n : h, k) the set of all
triples(P, X,Y) in which P is anH -sharp(d, n)-polytope with anH -pair (X,Y) such
that X holds anh-face andY holds ak-face. The collection of all nonempty quadruples
(d, n : h, k) is denoted byT .

3. Wedging

The wedgeωP = ωF P of a(d, n)-polytopeP over a facetF ∈ f d−1(P) is a(d+1, n+
1)-polytope, and hence is associated in the figure with the square that is below and to the
left of the square associated withP. Suppose thatP is ad-polytope inRd, andF is any
face ofP. In the terminology of [KW], awedgeoverP with foot F is a(d+1)-polytope
ωF P that is formed by intersecting the “cylinder”C = P × [0,∞[ with a closed half-
spaceJ in Rd+1 such that the intersectionJ ∩C is bounded and has nonempty interior,
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and the bounding hyperplaneH of J is such thatH ∩ (Rd × {0}) = aff(F)× {0}. The
boundary complex ofωF P is combinatorially equivalent to the complex formed from
the boundary complex of the prismP× [0, 1] by identifying{p}× [0, 1] with (p, 0) for
each pointp of F .

In each use of wedging here, the foot of the wedge is a facet of the polytopeP. In
effect, the identification process replaces the facet (d-face) F × [0, 1] of the prism by
a ridge ((d − 1)-face) R that is a copy ofF . In the wedgeωF P there are two facets
that contain the ridgeR, and each of these facets is combinatorially equivalent toP. We
denote these facets byB (= P × {0}) andT (= P × {1}) and call them thebaseand
thetopof the wedge; thusR= B ∩ T . Since each vertex ofωF P is incident toT or B,
it corresponds naturally to a vertex inP. Each vertexv ∈ F has a unique natural image
in the ridgeR in ωF P. Each vertexv ∈ P\F has a natural image in the baseB and a
second natural image in the topT ; we denote these images byvb (= v × {0}) andvt

(= v × {1}), respectively. Edges ofωP of the form [vb, v
t ] are calledvertical edges.

Each pathρ inωF P has a natural imageπρ in P, obtained by projecting the path onto
either the base or top. A path inP has many natural images inωF P; we can arbitrarily
assign each vertexv in the path to one of its imagesvb or vt and introduce vertical edges
as necessary. Given a path fromx to y in P and fixed images of the endpoints, this path
has a set of tight natural images inωF P between these endpoints [HK]. Letx̄ ∈ {xb, xt }
and ȳ ∈ {yb, yt }, and letρ be a path fromx to y in P; then atight natural imageof ρ
from x̄ to ȳ in ωF P is a pathρ̄ from x̄ to ȳ of minimal length such thatπρ̄ = ρ. In
ωF P, if x̄ andȳ are coincident either to the baseB or to the topT , then there is a unique
tight natural imagēρ if and only if the pathρ in P visits the footF at most once; if one
of x̄ and ȳ is incident toB and the other toT , then there is a unique tight natural image
in ωF P if and only if the path inP visits F exactly once. Otherwise, ifρ visits the foot
r ≥ 1 times, then there are 2r−1 tight natural images.

For any pair of verticesx andy, and for any faceF of P, a path betweenx andy in
P has tight natural images inωF P, betweenxb andyb, betweenxt andyt , betweenxb

andyt , and betweenxt andyb. It is obvious that

δωP(xb, yb) = δωP(x
t , yt ) = δP(x, y) and that δωP(xb, yt ) = δωP(x

t , yb).

We make frequent use of the fact that these latter numbers are both equal toδP(x, y) if
and only if some short path inP from x to y visits F , and they are otherwise equal to
δP(x, y) + 1. If P is a(d, n)-polytope andF is a facet ofP, then the wedgeωF P is a
(d + 1, n+ 1) polytope, and ifP is H -sharp, then so isωF P.

Lemma 3.1. Let P be a(d, n)-polytope, let F be a facet of P, and letωP = ωF P.
Thenδ(ωP) = δ(P) if and only if, for each diametral pair of vertices x and y of P,
some short path between x and y visits F. In the remaining case, δ(ωP) = δ(P)+ 1.

Proof. The wedging lemma in [HK] tells us that each short path betweenxb andyt in
ωP is the tight natural image of a short path betweenx andy in P, and consequently
δωP(xb, yt ) = δP(x, y) if and only if some short path betweenx andy visitsF ; otherwise
every short path betweenxb andyt must use a vertical edge. No more than one vertical
edge is required. The vertical edge makes each short path inωP one longer than its
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natural image inP, in which caseδωP(xb, yt ) = δP(x, y)+1. By considering the natural
images inP of short paths between diametral vertices inωP, we see immediately that
δ(ωP) ≤ δ(P)+ 1.

If there is a diametral pair of verticesx andy in P such that no short path between
them visitsF , thenδ(ωP) ≥ δ(P)+ 1; thus in this caseδ(ωP) = δ(P)+ 1.

In case there is no such diametral pair, then for each diametral pairx andy some short
pathρ between them visitsF . Then each tight natural image ofρ in ωP is of length
δ(P) and henceδωP(xb, yt ) = δ(P). In this case,δ(ωP) = δ(P).

To track H -pairs under wedging, we extend the wedge notation to sets of vertices.
For X ⊂ f 0(P), ωF (X) is defined to be the set of all natural images of elements ofX
in ωF P; that is,ωF (X) = Xb ∪ Xt . Suppressing the name of the polytopeP simplifies
the notation, and the identity ofP will always be clear from context. Note that the
intersectionXb ∩ Xt consists, in effect, of the members ofX that are incident to the
facetF , and if there are no such members, thenωF (X) consists in effect of two disjoint
copies ofX.

The next lemma and its corollary demonstrate that wedging can be used to increase the
dimensions of the faces held by anH -pair. The nicer result is that a wedge can increase
the dimension of the two faces simultaneously, providing a map from(d, n : h1, h2) to
(d+1, n+1 : h1+1, h2+1); this map requires only thatn > 2d. To see this, consider
any two vertices, one from each of thehi -faces held by anH -pair. There are at most
2d facets incident to at least one of these two vertices, and wedging over any remaining
facet will increase the dimensions of both held faces. By iterating this operation, we
obtain polytopes withH -pairs holding faces of relatively high dimension, necessary for
effective use of truncation and blending, e.g., the Lemma 4.2 and Corollary 6.3 below.

Lemma 3.2. If (X,Y) is an H-pair in a(d, n)-polytope P, and F is a facet of P, then
(ωF (X), ωF (Y)) is an H-pair in the(d + 1, n+ 1)-polytopeωP = ωF P.

Proof. For each pair(x, y) ∈ X × Y, the tight natural images of short paths between
x andy are of length eitherδP(x, y) or δP(x, y)+ 1; however,ωP is a(d + 1, n+ 1)-
polytope, andδP(x, y) ≥ n− d by hypothesis.

Many of the polytopes constructed below result from iterated wedging, so we intro-
duce the concise notationωk P to denote ak-fold wedge overP. Whenx and y are
diametral vertices of a(d, n)-polytopeP with n > 2d, at leastn− 2d facets ofP miss
both x and y. For each choiceF1, . . . , Fk of k such facets, thek-fold wedge can be
defined inductively by

ωk P = ωωk−1Fk
ωk−1P.

Since our main results do not depend on the choice and the order of thesek facets incident
to neitherx nor y, we may usually regardωk P as denoting any(d+ k, n+ k)-polytope
that is formed by successive wedging, in some order, over (the images of)k facets ofP
that miss bothx andy.

It follows from Lemma 3.2 that ifP is anH -sharp(d, n)-polytope withn > 2d and
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H -pair (X,Y), then, for allk ≤ n − 2d, ωk P is an H -sharp(d + k, n + k)-polytope
with H -pair (ωk X, ωkY).

Corollary 3.3. If (P, X,Y) ∈ (d, n : h1, h2) and if there are k facets F1, . . . , Fk such
that the sets X\ f 0(Fi ) and Y\ f 0(Fi ) are nonempty for each Fi , then

(ωk P, ωk X, ωkY) ∈ (d + k, n+ k : h1+ k, h2+ k).

In particular,

(i) if (d, n) ∈ S, then(d + k, n+ k : k, k) ∈ T for all 0≤ k ≤ n− 2d;
(ii) if (d, n : h1, h2) ∈ T , then (d + k, n + k : h1 + k, h2 + k) ∈ T for all

0≤ k ≤ n− 2d.

Proof. Since the setsX\ f 0(Fi ) andY\ f 0(Fi ) are nonempty for eachFi , wedging over
the image ofFi increases the dimension of the faces held inX and inY. If (d, n) ∈ S,
there exists(P, x, y) ∈ (d, n : 0, 0) such thatx and y are estranged; thus there are
n− 2d facets incident to neitherx nor y, and the stated result (i) follows. For (ii), letx
be a vertex of theh1-face held byX and lety be a vertex of theh2-face held byY; there
are at leastn− 2d facets incident to neitherx nor y, and thek-fold wedge over anyk of
these establishes the result.

4. Truncation

To truncatea(d, n)-polytopeP at a vertexv, we form the intersectionτvP of P with any
closed half-space that missesv and whose bounding hyperplane passes strictly between
v and the remaining vertices ofP. Note that sinceP is simple,τvP is a (d, n + 1)-
polytope with new facetτ(v) andd− 1 additional vertices. Combinatorially, the vertex
v is replaced by a(d−1)-simplex6(v) with one of its vertices on each edge incident to
v. For example, ifu is a neighbor ofv in P, then inτvP, σ(u) is a vertex in6(v) whose
neighbors are thed − 1 other vertices in6(v) andu.

For a subsetY ⊂ f 0(P), we denote byσ(Y) the set

σ(Y) = {σ(y) ∈ f 0(τ P) : y ∈ Y}.

Note thatσ(Y) may be empty, and it is no larger thanY; only thosey ∈ Y that are
neighbors ofv will have corresponding elements inσ(Y). Since6(v) is a (d − 1)-
simplex andσ(Y) ⊂ f 0(6(v)), σ(Y) is the set of vertices of some simplex.

Paths inτvP have natural images inP, obtained by mapping eachσ(w) to v; and
each pathρ in P has a uniquetight natural imagein τvP, which is the path of minimum
length inτvP whose natural image inP is ρ; if v is an endpoint inρ, then there is a
unique tight natural image for each choice ofσ(w) for the corresponding endpoint.

The next two lemmas make rigorous the observation that not only does truncation
at a vertex of ak-faceF held in anH -pair produce anotherH -sharp polytope, but the
(k − 1)-simplex given by the truncation ofF at this vertex is held by anH -pair in the
resulting polytope. Wheneverk − 1 > 0 we can repeat this process. Thus if ak-face
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is held in anH -pair, we can truncate any vertex of thisk-face to obtain anH -sharp
polytope with a(k− 1)-face held in anH -pair; then we can truncate any vertex of this
(k− 1)-face, then any vertex of the resulting(k− 2)-face, and so on up tok times.

Lemma 4.1. Let P be an H-sharp(d, n)-polytope with H-pair(X,Y). For y ∈ Y, let
τ P = τy(P). If σ(Y) is nonempty, thenδ(τ P) ≥ n−d+1,and(X, σ (Y)) is an H-pair
in τ P.

Proof. Let x ∈ X andσ(w) ∈ σ(Y), thusw ∈ Y. Any short path fromx to σ(w) in
τ P must arrive atσ(w) either via the edge [w, σ(w)] or via the edges [u, σ (u), σ (w)]
for some neighboru of y in P. In either case, the length of the path is increased by
one. Since(X,Y) is an H -pair in P, for eachσ(w) ∈ σ(Y) and eachx ∈ X we have
δP(x, σ (w)) ≥ n− d + 1 in the(d, n+ 1)-polytopeτ P; thus(X, σ (Y)) is anH -pair
in τ P.

For(P, X,Y) ∈ (d, n : h1, h2), we want to truncate repeatedly in (the images of) the
faces held byX andY. We define thek-fold truncation inX, τ k

X P, inductively as

τ k
X P = τx∈σ k−1X(τ

k−1
X P),

and

σ k X = σ(σ k−1X),

in which we first truncate at a vertex of anh1-face held byX. The polytopeτ k
Y P is defined

similarly, and we extend this notation by usingτ k1
X τ

k2
Y P to denote the result of anyk1-fold

truncation inX andk2-fold truncation inY, taken in any order. As withk-fold wedging,
k-fold truncation specifies a class of polytopes, depending on the vertices chosen for
truncation; since our major results do not depend on this choice, if(P, X,Y) ∈ (d, n :
h1, h2), we useτ k1

X τ
k2
Y P to denote any(d, n+ k1+ k2)-polytope obtained by truncating

P k1 times in theh1-face held byX andk2 times in theh2-face held byY.

Lemma 4.2. Let (P, X,Y) ∈ (d, n : h, k). Then, for all 0≤ i ≤ h and all0≤ j ≤ k,

(τ i
Xτ

j
Y P, σ i X, σ j Y) ∈ (d, n+ i + j : h− i, k− j ).

Thus(d, n+ i ) ∈ S for all 0≤ i ≤ h+ k.

Proof. It suffices to show that if(P, X,Y) ∈ (d, n : h, k) andv is a vertex incident to
anh-face held byX, then(τvP, σ (X),Y) ∈ (d, n+ 1 : h − 1, k). Let F be anh-face
held byX and letv ∈ f 0(F). TruncatingP atv introduces a(d−1)-simplex6(v), one
of whose facets is the(h − 1)-simplex6F (v) introduced byτvF . Since the argument
for the previous lemma applies to eachσF (v),6F (v) is an(h−1)-face held byσ(X).

That is, if (P, X,Y) ∈ (d, n : h, k), then we can truncate inX up toh times and in
Y up tok times, producingH -sharp polytopes from(d, n) to (d, n+ h+ k).

In this paper we have truncated at vertices for convenience. Similar results hold when
the vertex truncations are replaced by truncations at other faces. With(P, X1, X2) ∈



Many Polytopes Meeting the Conjectured Hirsch Bound 9

(d, n : h1, h2), let F be anyk-face (0≤ k < d− 1) that contains aji -face of thehi -face
held byXi , where−1≤ ji < hi but not j1 = j2 = −1. Then

(τF P, σ (X1), σ (X2)) ∈ (d, n+ 1 : h1− j1− 1, h2− j2− 1).

(When ji = −1, we here takeσ(Xi ) = Xi .) These truncations lead to additionalH -sharp
polytopes, but they do not provide any newH -sharp pairs(d, n).

5. The First Peak

In Fig. 1 the columns are indexed byn−2d. The prismP× I is a(d+1, n+2)-polytope,
which, in the figure, corresponds to the adjacent square below that forP. The prism is a
special case of a product; in general, the productP1× P2 is a(d1+d2, n1+n2)-polytope
with diameter

δ(P1× P2) = δ(P1)+ δ(P2).

The productP1 × P2 is H -sharp if and only if bothP1 and P2 areH -sharp, and hence
the prismP × I is H -sharp if and only ifP is.

If any square in the table corresponds to anH -sharp pair(d, n), then by prisms and
wedges, so do all the squares(d + k + j, n+ 2k + j ) for k, j ≥ 0. These lie between
a lower-left diagonal from(d, n) and the remainder of the column below the square
for (d, n). Starting with the cubes andQ4, we obtain a narrow peak ofH -sharp pairs
against the left side of Fig. 1. Additionally, we can take products withQ4, which slowly
widens the peak as we descend:Q4 × Q4 is an(8, 18)-polytope of diameter 10, thus
all pairs(d, 2d + 2) areH -sharp ford ≥ 8. Generally for eachk ≥ 1, H -sharpness of
the pair(4k, 9k) follows from consideration of thek-fold product ofQ4 with itself, and
consequently all pairs(d, 2d + k) areH -sharp ford ≥ 4k.

Our first set of new results broadens this first peak in Fig. 1 by usingQ4 in the
truncation and wedging lemmas given above.

Lemma 5.1. If (d, n) ∈ S and n> 2d, then(d + 1, n+ 3) ∈ S.

Proof. Let P be anH -sharp(d, n)-polytope withn > 2d and estranged diametral
verticesx andy. Sincen > 2d, we can take the footF for ωP to be incident to neither
x nor y. By Lemma 3.2, the setsX = {xb, xt } andY = {yb, yt } form anH -pair inωP.
Hence(ωP, X,Y) ∈ (d + 1, n+ 1 : 1, 1), and by Lemma 4.2τXτYωP is anH -sharp
(d + 1, n+ 3)-polytope.

Starting fromQ4, we have(4, 9) ∈ S and thus conclude that(4+ k, 9+ j ) ∈ S
for all k ≥ 1 andk ≤ j ≤ 3k. Equivalently,(d, 2d + k) ∈ S for all d ≥ k + 3. This
construction is much more aggressive (i.e., moves to the right in the table more quickly)
than does the formation of products.
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Fig. 2. Schematic of the fast–slow blend(P1, x1) FG (P2, x2). Illustrated are the edges incident tox1 in P1

and incident tox2 in P2, and the neighbors ofx1 andx2 in P1 andP2, respectively. Of the blended edges, the
fast edges fromx1 towardY1 and fromx2 towardY2 are indicated by solid line segments, the slow edges by
dashed line segments.

6. Blending

Our final tool is a refinement of a polytope-blending operationP1 FG P2 introduced by
Barnette [B] and used by Adler [A] to investigate diameters. Fori = 1, 2, let xi be a
vertex of a(d, ni )-polytopePi . The idea behind the blending operationFG is to truncate
Pi atxi and then to create a new simpled-polytopeP1 FG P2 by identifying the facetτ(x1)

of P1 with the facetτ(x2) of P2 in such a way that each truncated facet ofP1 blends
into a truncated facet ofP2. The next three paragraphs provide a specific geometric
construction of a blend ofP1 andP2 (Fig. 2).

Let Hi be a hyperplane inRd such thatHi ∩ Pi = {xi }, and letUi denote the image of
Pi under a projective transformation that carriesHi into the hyperplane at infinity. Then
Ui is an unbounded simple polyhedron withni facets, and thed edges ofPi incident
to xi are carried intod parallel rays. By intersectingUi with a closed half-space whose
bounding hyperplaneGi is perpendicular to these rays, we obtain a(d, ni +1)-polytope
Vi in which the new facetSi is a(d − 1)-simplex that replaces the vertexxi of Pi .

The next step is to subjectVi to an affine transformation which, preserving the per-
pendicularity toGi of the edges ofVi with just one end inSi , carriesSi onto a regular
(d− 1)-simplex of edge-length 1. Having done this, we apply rigid motions to bringS1

andS2 into coincidence on some hyperplane, withV1 andV2 in opposite half-spaces.
Now, finally, setP = V1 ∪ V2 = P1 FG P2. Then each of thed (d − 2)-faces ofSi is

the intersection ofSi with one other facet ofVi , and these two facets blend together to
form a single facet ofP. Each edge incident tox1 in P1 is blended together with an edge
incident tox2 in P2 to form a single edge inP1 FG P2; these edges inP1 FG P2 together
with all faces incident to them form thewaistof P1 FG P2.

In order to fix the combinatorial type of the blended polytopeP1 FG P2, it is not
sufficient to specify merely the two “component” polytopes that are to be blended to
form P1 FG P2 and the edges that are involved in the blending operation. We must also
specify a permutationπ that describes the pairing of thed facetsF1, . . . , Fd incident
to x1 with the facetsG1, . . . ,Gd incident tox2; the facetFi is blended with facetGπ i

to form a facet in the waist ofP1 FG P2 = (P1, x1) FGπ (P2, x2). Since the facets
Si are regular simplices of the same size, every permutation is permissible, and dis-
tinct permutations produce distinct blends, up to any symmetries within or betweenP1

andP2.
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We can identify f 0(P1)\{x1} with its image inP1 FG P2 and likewise f 0(P2)\{x2}
with its image. These identifications provide us with a bijectionπ betweenf 0(P1 FG P2)

and f 0(P1)∪ f 0(P2)\{x1, x2}. Via this identification of vertices, we obtain, for paths in
P1 FG P2, natural images inP1 andP2.

An edge [u1, u2] in the waist ofP1 FG P2, with πui ∈ f 0(Pi ), has the pair of edges
[u1, x1] and [x2, u2] for its natural image; any other edge ofP1 FG P2 has a unique edge
for its natural image. Thenatural imageof a pathρ̄ in P1 FG P2 is the sequence of edges
ρ in f 1(P1) ∪ f 1(P2) obtained by taking natural images of the edges in the sequence
given inρ̄.

If ρ̄ does not contain an edge in the waist ofP1 FG P2, then its natural imageρ is a
path in one ofP1 or P2, andρ̄ andρ will have the same length. If̄ρ usesk ≥ 1 edges in
the waist ofP1 FG P2, then the ordered edges inρ will form two paths,ρ1 in P1 andρ2

in P2; ρi visits xi preciselyk times, and the sum of the lengths ofρ1 andρ2 is k more
than the length of̄ρ.

Let ρ be a path fromv to x1 in P1 which visitsx1 only once, letρ have terminal edge
[u1, x1], and letw ∈ f 0(P2)\{x2}. Then anextensionof ρ tow is any pathρ̄ from v to
w in P1 FG P2 such that the natural image ofρ̄ starts withρ in P1. A minimal extension
of ρ tow is an extension ofρ tow of minimal length.

Combinatorially, the blending ofP1 and P2 is achieved by a pairwise identification
of the facets ofP1 incident tox1 with those ofP2 incident tox2. We describe the com-
binatorics by giving the incidence matrixM(P1 FG P2) in terms ofM(P1) andM(P2).
Recall that for a polytopeP with n facets andm vertices, the incidence matrixM(P) is
ann×m {0, 1}-matrix in whichMi j = 1 if and only if faceti and vertexj are coincident.

First, permute the rows and columns ofM(P1) so that the first column corresponds
to the vertexx1, and thelast d rows correspond to the facets to be blended. Similarly
permute the rows and columns ofM(P2) so that the first column corresponds to the vertex
x2, and thefirst d rows correspond to the facets to be blended,in the order dictated by
M(P1). That is, the facet corresponding to rown1 − d + 1 of M(P1) will be blended
with the facet corresponding to the first row ofM(P2), and so on:

M(P1) =
[〈0〉n1−d W1

〈1〉d V1

]
n1×m1

and M(P2) =
[〈1〉d V2

〈0〉n2−d W2

]
n2×m2

.

Then the incidence matrix for(P1, x1) FG (P2, x2) is given by

M(P1 FG P2) =
W1 〈0〉

V1 V2

〈0〉 W2


(n1+n2−d)×(m1+m2−2)

.

The waist ofP1 FG P2 is given by the blocks [V1V2].
The above descriptions apply to the blending of two simple polytopes at any vertices.

However, since we want to construct polytopes of large diameter, we consider only
blends that arelong with respect to certain pairs(δ1, δ2). This refers to blends of the
form (P1, x1) FG (P2, x2) whereδi is a known lower bound onδ(Pi ) and the verticesx1

andx2 are such thatDδi
Pi
(xi ) is nonempty. Our primary concern is with the Hirsch bound

and hence in the case in whichδi = ni − d. In the remainder of the paper, the notations
(P1, x1) FG (P2, x2) andP1 FG P2 indicate long blends.
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By usingQ4, product formation, and the long blending operation, Adler [A] estab-
lished the following general lower bound:

1(d, n) ≥ n− d −
⌈

4(n− d)

5d

⌉
+ 1.

To see this, note (as in [A]) that for a long blend, the polytopeP = P1 FG P2 is a
(d, n1 + n2 − d)-polytope withδ(P) ≥ δ1 + δ2 − 1. Thus, for fixedd, there is anhd

such that1(d, n) ≥ n− d for all d < n ≤ hd, and ifn is in the range

(k− 1)(hd − d)+ hd < n ≤ k(hd − d)+ hd,

a judicious choice ofP1 andP2 yields1(d, n) ≥ n− d − k with

k =
⌈

n− hd

hd − d

⌉
=
⌈

n− d

hd − d

⌉
− 1.

Given the previously knownH -sharp pairs, as indicated in Fig. 1, Adler could use only
hd = b9d/4c.

In the blend(P1, x1) FG (P2, x2), each edge incident tox1 in P1 is blended with an
edge incident tox2 in P2 to form a single edge in the waist ofP1 FG P2. An edge in the
waist of a long blendP1 FG P2 is either afast–slow edge, afast–fast edge, or aslow–slow
edge, depending on whether the two edges blended to form it were fast or slow toward
Dδi

Pi
(xi ).

A fast–slow blendis a long blend in which there are no fast–fast edges in the waist.
Each fast edge fromx1 toward Dδ1

P1
(x1) is blended with a slow edge fromx2 toward

Dδ2
P2
(x2), and each fast edge fromx2 towardDδ2

P2
(x2) is blended with a slow edge from

x1 toward Dδ1
P1
(x1). There may also be slow edges blended with slow edges, but there

are no fast–fast edges. Look again at Fig. 2.

Lemma 6.1. If P1 FG P2 = (P1, x1) FG (P2, x2) is a fast–slow blend, then

δ(P1 FG P2) ≥ δ1+ δ2.

Proof. Since a fast–slow blend is a long blend, the setsY1 = Dδ1
P1
(x1) andY2 = Dδ2

P2
(x2)

are both nonempty. Lety1 ∈ Y1 andy2 ∈ Y2, and letU1 be the neighbors ofx1 in P1 and
let U2 be the neighbors ofx2 in P2.

Any short path inP1 FG P2 betweeny1 andy2 has a natural image inP1 from y1 to
x1 and another inP2 from x2 to y2. For δP1FGP2(y1, y2) < δ1 + δ2, both of these natural
images must be short paths.

Any short path inP1 from y1 to x1 terminates with a fast edge [u1, x1] for some
u1 ∈ U1, andδP1(y1, u1) = δP1FGP2(y1, u1) ≥ δ1− 1. In the waist, there is a unique edge
[u1, u2] incident tou1. By assumption,P1 FG P2 is a fast–slow blend, so [x2, u2] is a
slow edge toy2 in P2, andδP2(y2, u2) = δP1FGP2(y2, u2) ≥ δ2. That is, each short path
from y1 to x1 in P1 can be minimally extended to a path inP1 FG P2 from y1 to y2 of
length(δ1−1)+1+ δ2 = δ1+ δ2. ThusδP1FGP2(y1, y2) ≥ δ1+ δ2, and soδ(P1 FG P2) ≥
δ1+ δ2.
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Lemma 6.2. Let (P1, x1) FG (P2, x2) be a fast–slow blend of H-sharp polytopes P1

and P2, with respective H-pairs(Y1, {x1}) and (Y2, {x2}). Then P1 FG P2 is H-sharp,
with H-pair (Y1,Y2).

Proof. SinceP1 is anH -sharp(d, n1)-polytope andP2 is anH -sharp(d, n2)-polytope,
we may takeδ1 = n1−d andδ2 = n2−d. ThenP1 FG P2 is a(d, n1+n2−d)-polytope,
which by the previous lemma has diameter

δ(P1 FG P2) ≥ δ1+ δ2 = n1+ n2− 2d.

Thus the fast–slow blendP1 FG P2 is H -sharp if bothP1 andP2 are. Moreover, the proof
in the previous lemma shows thatδP1FGP2(y1, y2) ≥ n1 − d + n2 − d for each such
(y1, y2) ∈ Y1× Y2.

Corollary 6.3. If (d, n1: h1, k1), (d, n2: h2, k2) ∈ T and h1 + h2 ≥ d, then(d, n1 +
n2− d : k1, k2) ∈ T .

Proof. For i = 1, 2, let (Pi , Xi ,Yi ) ∈ (d, ni : hi , ki ), and letxi be a vertex of the
hi -face held byXi . Sinceh1+h2 ≥ d, we can take(P1, x1) FG (P2, x2) to be a fast–slow
blend, and the previous lemma yields

(P1 FG P2,Y1,Y2) ∈ (d, n1+ n2− d : k1, k2).

If the fast–slow blend ofH -sharp polytopesP1 FG P2 is not a counterexample to the
Hirsch conjecture, thenδ(P1 FG P2) = δ(P1)+ δ(P2), and(Y1,Y2) is a diametral pair.

7. Additional Peaks

This section uses blending, truncation, and wedging to create a second peak from the
first one in the table, a third from the second, and so on until the peaks blend together
into broad plateaus.

Because of their frequent occurrence in the blendings below, we introduce a special
notation to designateH -sharp(d, 2d)-polytopes that haveH -pairs holding faces of fairly
high dimension. The symbolPd:h,k denotes an arbitrary(d, 2d)-polytope with anH -pair
(X,Y) such that(Pd:h,k, X,Y) ∈ (d, 2d : h, k).

Lemma 7.1. For each d ≥ 5 and each k with1 ≤ k ≤ d − 4, there is a triple
(Pd:k,d−3−k, X,Y) ∈ (d, 2d : k, d − 3− k).

Proof. Ford = 5, we have

(P5:1,1, X,Y) = (ωQ4, ω{x}, ω{y}) ∈ (5, 10 : 1, 1).

Now it suffices to note the inductive step that if(P, X,Y) ∈ (d, 2d : h1, h2)with h1 > 0,
then

(τX P, σ (X),Y) ∈ (d, 2d + 1 : h1− 1, h2)
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and

(ωτX P, ωσ(X), ωY) ∈ (d + 1, 2d + 2 : h1, h2+ 1).

The polytopesPd of [HK] provide the extreme examplePd:d−4,1; and having a(d−4)-
face held by one member of anH -pair enables us to perform blends on any polytope in
which one member of anH -pair holds a 4-face. We can produce polytopes with these
4-faces either by alternately wedging and truncating as above, or by simply wedging
whenn− 2d is large enough.

Lemma 7.2. Let (Q, X,Y) ∈ (d, n : h1, h2), and let k= max{4− h1, 4− h2, 0}. If
n− 2d ≥ k, then

(i) (d + k, n+ k+ j ) ∈ S for 0≤ j ≤ 8;

and if d+ k ≥ 5, then

(ii) (d + k, n+ d + 2k+ j ) ∈ S for 0≤ j ≤ 5;
(iii) (d + k, n+ 2d + 3k+ j ) ∈ S for 0≤ j ≤ 2.

Proof. If n−2d ≥ k, we can apply Corollary 3.3 to thek-fold wedgeωk Q. Since each
of X andY holds a(4− k)-face, inωk Q the setsωk(X) andωk(Y) form anH -pair and
each of these sets holds a 4-face. Truncating the vertices of both of these 4-faces, we
obtain (i).

Now make a fast–slow blendωk Q FG Pd+k:d+k−4,1, thus forming anH -sharp(d +
k, n+ d + 2k)-polytope with anH -pair (X,Y) in which X holds a 4-face andY holds
a 1-face. We can truncate this polytope inX andY up to five times, establishing (ii).

Finally for (iii), make a fast–slow blend

Pd+k:1,d+k−4 FG ωk Q FG Pd+k:d+k−4,1;

this is anH -sharp(d+ k, n+ 2d+ 3k)-polytope with anH -pair (X,Y) in which each
set holds a 1-face. We can truncate this polytope once inX and once inY to produce
H -sharp polytopes.

Theorem 7.3. If (d, n) ∈ S with n> 2d, then

(i) (d + 1, n+ 1), (d + 1, n+ 2), (d + 1, n+ 3) ∈ S;
(ii) for 0≤ k ≤ d + 1, (2d, n+ 3d − k) ∈ S;
(iii) (2d, 2n+ 2d − 2), (2d, 2n+ 2d − 1), (2d, 2n+ 2d) ∈ S;
(iv) for k ≥ 1 and0≤ j ≤ 4d − 2, (4d − 2, 4d − 2+ (2n− 2)k) ∈ S;
(v) for k ≥ 1 and0≤ j ≤ 4d − 5, (4d − 2, 8d − 4+ (2n− 2)k+ j ) ∈ S;

(vi) for k ≥ 1 and0≤ j ≤ 4d − 8, (4d − 2, 12d − 6+ (2n− 2)k+ j ) ∈ S.

Proof. For each pair indicated, we produce anH -sharp polytope. Start with anH -sharp
(d, n)-polytopeQ, and letX andY be anH -pair of Q. Then apply wedging, truncation,
and blending in the ways described below. (Refer to Lemma 3.2 for wedges, Lemma 4.2
for truncations, and Lemma 6.2 for blends.) For the polytopesPd:h,k that are involved
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in this proof and the next one, we always assume thath ≤ k and we useXP andYP to
denote the indicatedH -pair; thusXP holds the face of lower dimension.

(i) (Q, X,Y) ∈ (d, n : 0, 0), so (ωQ, ωX, ωY) ∈ (d + 1, n + 1 : 1, 1), and by
Lemma 4.2,(d + 1, n+ 1), (d + 1, n+ 2), (d + 1, n+ 3) ∈ S.

(ii) As in the extreme example ofPd:d−4,1, we form P = (ωτY)
d−1ωQ, with all

wedges over the truncated top of the previous wedge. LetX̄ andȲ be the images inP
of X andY. Now (P, X̄, Ȳ) ∈ (2d, n+ 2d − 1 : d, 1). For 0≤ k ≤ d,

(τ k
XτY P, σ k X, σY) ∈ (2d, n+ 2d − 1+ k : d − k, 0).

(iii) Continuing with theP of part (ii), (P, X̄, Ȳ) ∈ (2d, n+2d−1 : d, 1), we take a
vertexx ∈ X̄ incident to thisd-face and form the fast–slow blendB = (P, x) FG (P, x).
This blendB is anH -sharp(2d, 2n+ 2d− 2)-polytope with anH -pair Ȳ1 andȲ2, each
of which holds an edge. Thus(B, Ȳ1, Ȳ2) ∈ (2d, 2n+2d−2 : 1, 1), and, by Lemma 4.2,
(2d, 2n+ 2d − 2), (2d, 2n+ 2d − 1), (2d, 2n+ 2d) ∈ S.

(iv) The wedgeW = W1 = ω2d−2B is anH -sharp(4d − 2, 2n+ 4d − 4)-polytope
with H -pairω2d−2Ȳ1 andω2d−2Ȳ2, each of which holds a(2d − 1)-face. Thus

(W, ω2d−2Ȳ1, ω
2d−2Ȳ2) ∈ (4d − 2, 2n+ 4d − 4 : 2d − 1, 2d − 1).

Now let W2 = W FG W, and inductivelyWk = Wk−1 FG W = (W FG)k−1W. Then

(Wk, ω2d−2Ȳ1, ω
2d−2Ȳ2) ∈ (4d − 2, 4d − 2+ (2n− 2)k : 2d − 1, 2d − 1).

Lemma 4.2 allows up to 4d − 2 truncations inWk that produceH -sharp polytopes.
(v) For k ≥ 1, we can also form the fast–slow blendWk FG P4d−2:2d−1,2d−4. This

H -sharp polytope provides the triple

(Wk FG P4d−2:2d−1,2d−4, ω
2d−2Ȳ1, XP)

∈ (4d − 2, 8d − 4+ (2n− 2)k : 2d − 1, 2d − 4).

We again appeal to Lemma 4.2 to obtain the full result.
(vi) For k ≥ 1, a fast–slow blend onWk produces the triple

(P4d−2:2d−4,2d−1 FG Wk FG P4d−2:2d−1,2d−4, XP, XP)

∈ (4d − 2, 12d − 6+ (2n− 2)k : 2d − 4, 2d − 4).

Lemma 4.2 establishes the result.

Applying this theorem toQ4 justifies the entries in Fig. 1. Corollary 7.4 identifies the
relevant polytopes ford < 14, and Theorem 7.5 establishes that1(d, n) ≥ n−d for all
n > d ≥ 14.

Corollary 7.4. Since the(4, 9)-polytope Q4 is H-sharp, the following pairs are H-
sharp:

(5, n ≤ 12), (6, n ≤ 15), (7, n ≤ 18),
(8, n ≤ 21), (8, 24≤ n ≤ 26), (9, n ≤ 30), (10, n ≤ 34),
(11, n ≤ 46), (11, 49≤ n ≤ 51), (12, n ≤ 56), (13, n ≤ 62).
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Proof. Apply Theorem 7.3 to the triple(Q4, {x}, {y}) ∈ (4, 9 : 0, 0). By (i), the set
S includes(5, 10), (5, 11), and(5, 12), by (ii) it includes(8, 16), . . . , (8, 21), and by
(iii) it includes (8, 24), (8, 25), and(8, 26).

For d = 9, 10, we take the two blends

(P9:1,5 FG P9:4,2, X,Y) ∈ (9, 27 : 1, 2),

and

(P10:2,5 FG P10:5,2, X,Y) ∈ (10, 30 : 2, 2).

Now apply Theorem 7.3 to(Q, X,Y) ∈ (8, 24 : 1, 1). Then

(ω3Q, ω3X, ω3Y) ∈ (11, 27 : 4, 4),

(P11:1,7 FG ω3Q, XP,Y) ∈ (11, 38 : 1, 4),

and (P11:1,7 FG ω3Q FG P11:7,1, XP, XP) ∈ (11, 49 : 1, 1);
(ω4Q, ω4X, ω4Y) ∈ (12, 28 : 5, 5),

(P12:2,7 FG ω4Q, XP, ω
4Y) ∈ (12, 40 : 2, 5),

and (P12:2,7 FG ω4Q FG P12:7,2, XP, XP) ∈ (12, 52 : 2, 2);
(ω5Q, ω5X, ω5Y) ∈ (13, 29 : 6, 6),

(P13:3,7 FG ω5Q, XP, ω
5Y) ∈ (13, 42 : 3, 6),

and (P13:3,7 FG ω5Q FG P13:7,3, XP, XP) ∈ (13, 55 : 3, 3).

Now let (Q, X,Y) ∈ (7, 18 : 0, 0). Then

(ω4Q, ω4X, ω4Y) ∈ (11, 22 : 4, 4),

and

(P11:1,7 FG ω4Q FG P11:7,1, XP, XP) ∈ (11, 44 : 1, 1).

Take(Q, X,Y) ∈ (9, 30 : 0, 0). Then

(ω4Q, ω4X, ω4Y) ∈ (13, 34 : 4, 4),

and

(P13:1,9 FG ω4Q FG P13:9,1, XP, XP) ∈ (13, 60 : 1, 1).

Lemmas 5.1 and 4.2 demonstrate theH -sharpness of the remaining pairs in Fig. 1
for d < 13.

Theorem 7.5. For all d ≥ 14and all n> d, (d, n) ∈ S.

Proof. It suffices to show that, for alln ≥ 15, (14, n) is H -sharp. For this, we apply
Theorem 7.3 toQ4 ∈ (4, 9). TakingQ = Q4, theP in (ii) is an(8, 16)-polytope; theB in
(iii) is an H -sharp(8, 24)-polytope with diametral setsX andY, each of which contains
the vertices of an edge. The wedgeW of (iv) is anH -sharp(14, 30)-polytope, andWk is
anH -sharp(14, 14+16k)-polytope. Truncations ofWk yield H -sharp(14, 14+16k+ j )-
polytopes for allk ≥ 1 and all 0≤ j ≤ 14. The polytopes of part (v) fill the remaining
gaps:Wk FG P14:7,4 is an H -sharp(14, 28+ 16k)-polytope whose truncations yield
H -sharp(14, 28+ 16k+ j )-polytopes for allk ≥ 1 and all 0≤ j ≤ 11.
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All the polytopes constructed in this paper were derived from the uniqueH -sharp
(4, 9)-polytopeQ4. The pair(4, 10) is known not to beH -sharp, but theH -sharpness
of the pairs(4, n ≥ 11) is unknown. If there is anH -sharp(4, 11)-polytope, then it
follows from Corollary 3.3, Lemma 4.2, and Corollary 6.3 that the entire rowd = 9 is
H -sharp; and if there is anH -sharp(4, n ≥ 12)-polytope, these would demonstrate that
the entire rowd = 8 is H -sharp, with the possible exceptions of(8,m) for m = 22, 23
and 27≤ m< n+ 4. If there is anH -sharp(4, 12≤ n ≤ 18)-polytope, then the entire
row d = 8 is H -sharp.
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Added in proof. Corollary 7.4 has been extended to include eight additionalH -sharp
pairs:(8, 22), (8, 23), (11, 47), (11, 48), (12, 57), (13, 63), (13, 64), (13, 65). The last
four of these were discovered by Kerstin Fritzsche.


