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Abstract. A geometric hypergraph His a collection ofi -dimensional simplices, called
hyperedgesor, simply,edges, induced by some(i + 1)-tuples of avertex set Vin general
position ind-space. The topological structure of geometricgraphs, i.e., the cased = 2,
i = 1, has been studied extensively, and it proved to be instrumental for the solution of
a wide range of problems in combinatorial and computational geometry. They include the
k-set problem, proximity questions, bounding the number of incidences between points and
lines, designing various efficient graph drawing algorithms, etc. In this paper, we make an
attempt to generalize some of these tools to higher dimensions. We will mainly consider
extremal problems of the following type. What is the largest number of edges (i -simplices)
that a geometric hypergraph ofn vertices can have without containing certainforbidden
configurations? In particular, we discuss the special cases when the forbidden configurations
arek intersecting edges,k pairwise intersecting edges,k crossing edges,k pairwise crossing
edges,k edges that can be stabbed by ani -flat, etc. Some of our estimates are tight.

1. Introduction

In recent years, the study of graph drawings has become a rich separate discipline within
computational geometry. Much of the research has been motivated by applications,

∗ The research of the first author was supported in part by DST-SR-OY-E-06-95 grant, India. The second
author’s research was supported by NSF Grant CCR-94-24398, PSC-CUNY Research Award 663472, and
OTKA-4269.



474 T. K. Dey and J. Pach

including software engineering, CAD, database design, cartography, circuit schematics,
automatic animation, visual interfaces, etc. (See [27].) It is quite remarkable that classical
graph theory proved to be rather powerless to tackle many of the arising problems.
Instead, one often had to develop new topological tools to deal with families of curves, i.e.,
graphs drawn in the plane or in some other surfaces. Perhaps the best-known example is
the Lipton–Tarjan Separator Theorem for planar graphs [14], which has many extensions,
generalizations, and a broad spectrum of applications ranging from numerical analysis
to complexity theory. In particular, it enables us to use the divide-and-conquer paradigm
to construct various geometric representations of abstract graphs and networks. Another
important example is the following result discovered independently by Ajtai–Chv´atal–
Newborn–Szemer´edi and Leighton. It can be used to obtain, e.g., sharp bounds for the
area requirement of graph layouts. Letκ(G) denote thecrossing numberof a graphG,
i.e., the minimum number of crossing pairs of edges over all planar drawings ofG.

Theorem 1.1[2], [13]. Let G be a simple graph with n vertices and e(G) edges. If
e(G) ≥ 4n, thenκ(G) ≥ e(G)3/100n2.

As Székely [24] pointed out, this result almost immediately implies the Szemer´edi–
Trotter theorem [25], [26] on the number of incidences between points and lines. His
argument is so nice and short that we cannot resist adapting it to establish the follow-
ing generalization of the Szemer´edi–Trotter theorem, which was found by Clarkson–
Edelsbrunner–Guibas–Sharir–Welzl and has numerous algorithmic consequences. (For
an improved version of Theorem 1.1 and for some other applications of Sz´ekely’s idea,
see [22] and [18], respectively.)

Theorem 1.2[7]. The total number of sides of n distinct cells determined by m lines
in general position in the plane is at most O(m2/3n2/3+m).

Proof. Notice that it is sufficient to prove the assertion for a system of cellsC, no two of
which share an edge. Pick a pointpi in each cellci ∈ C. For any pair(si , sj ) of collinear
edges belonging toci ∈ C andcj ∈ C, respectively, connectpi to pj by a polygonal chain
of length three via the midpoints of the segmentssi andsj , provided that this polygon is
not adjacent to any other member ofC. The collection of these polygonal chains can be
regarded as the edge set of a graphG′ whose vertices arep1, . . . , pn. If a line is adjacent
tok cells inC, then it contributes to exactlyk−1 edges ofG′. Hence,X, the total number
of sides of all cells inC, differs from the number of edges ofG′ by at mostm. Removing
the multiple edges fromG′, we obtain a simple graph whose number of edges satisfies
e(G) ≥ e(G′)/4≥ (X −m)/4. In view of the fact that any crossing between two edges
of G occurs at a crossing of some pair of lines of the arrangement, Theorem 1.1 implies
that eithere(G) < 4n or (

m

2

)
≥ κ(G) ≥ e(G)3

100n2
.

SinceX ≤ 4e(G)+m, Theorem 1.2 follows.
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Given a set ofn points in general position in the plane, join two of them by a line
segment if there are exactlyk points on one side of the line connecting them. LetG
denote the resulting graph. Lov´asz [15] proved that no straight line can cross more than
2k edges ofG. Now Theorem 1.1 implies that the number of edges (the number of
so-calledk-sets) is at mostO(k1/2n). Indeed, if the number of edges ise, then either
we havee < 4n or there exists an edge crossing at leaste2/(50n2) other edges. Thus,
e2/(50n2) ≤ 2k, as required. (See [20] for a slight improvement.) It was shown by Dey
and Edelsbrunner [9] that a similar approach can be used to establish anO(n8/3) upper
bound on the number ofhalving planesin 3-space, which improved some earlier results
of [6] and [4].

A graph drawn in the plane by possibly crossing straight-line segments is called a
geometric graph. More precisely, a geometric graphG consists of a set of pointsV in
general position in the plane and a set of segmentsE whose endpoints belong toV . As
was demonstrated above, for a number of applications it was necessary to solve some
extremal problems for geometric graphs. The systematic study of these problems was
initiated by P. Erd˝os, Y. Kupitz [12], and M. Perles. (For a recent survey, see [17].)

It seems plausible that to extend the incidence results to higher dimensions, to improve
the upper bound for the number of times the unit distance can occur amongn points
in 3-space, or to make further progress concerning thek-set problem, one has to find
the right generalizations of Theorem 1.1 to systems of surfaces or surface patches in
d-space. For simplicity, we will only discuss the case when these surface patches are flat
(simplices).

Definition 1.1. A d-dimensional geometric r-hypergraph Hd
r is a pair(V, E), where

V is a set of points in general position in<d, andE is a set of closed(r −1)-dimensional
simplices induced by somer -tuples ofV . The setsV andE are called thevertex setand
edge setof Hd

r , respectively.

Akiyama and Alon [3] proved the following theorem. LetV = V1∪ · · · ∪Vd (|V1| =
· · · = |Vd| = n) be adn-element set in general position in<d, and letE consist of all
(d − 1)-dimensional simplices having exactly one vertex in eachVi . ThenE contains
n disjoint simplices. Combining this with a result of Erd˝os [10], we obtain a nontrivial
upper bound for the number of edges of ad-dimensional geometricd-hypergraph ofn
vertices that contains nok pairwise disjoint edges.

If we want to excludecrossingsrather than disjoint edges, or want to generalize
Theorem 1.1 to geometric hypergraphs, we face the following problem. Even if we
restrict our attention to systems of triangles induced by three-dimensional point sets in
general position, it is not completely clear how a “crossing” should be defined, let alone
the notion of “crossing number.” If two segments cross, they do not share an endpoint.
Should this remain true for triangles? We have to clarify the terminology.

Definition 1.2. Two simplices are said to have anontrivial intersection, if their relative
interiors have a point in common. If, in addition, the two simplices are vertex disjoint,
then they are said tocross.

More generally,k simplices are said to have anontrivial intersection, if their relative
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interiors have a point in common. If, in addition, all simplices are vertex disjoint, then
they are said tocross.

Considerk simplices. It is important to note that the fact thatevery pairof them has a
nontrivial intersection does not imply thatall of them do. To emphasize that this stronger
condition is satisfied, we often say that the simplices have anontrivial intersection in the
strong sense, or simply that theystrongly intersect. Similarly, a set ofpairwisecrossing
simplices is not necessarilycrossing. If want to emphasize that theyall cross, we will
say that theycross in the strong sense, or shortly that theystrongly cross.

As we pick more and more distinct(r −1)-dimensional simplices induced by a set of
n points in<d, the number of crossings between them will usually increase. The aim of
this paper is to generalize the planar results to obtain some information about the growth
rate of this process. In the inverse formulation, one can ask for the maximum number of
edges that ad-dimensional geometricr -hypergraphHd

r of n vertices can have without
containing some fixed crossing pattern. Throughout this paper, letf d

r (F , n) denote this
maximum, whereF is the family offorbiddenconfigurations, i.e., forbidden geometric
subhypergraphs. Most of our bounds will be asymptotic:d andr are thought to be fixed,
while n tends to infinity.

In the next two sections, we estimatef d
r (F , n) for various familiesF . In Section 4,

we generalize Theorem 1.1. Finally, we discuss some related questions and give a few
applications of our results.

2. Full-Dimensional Simplices

LetIr
k (resp.SIr

k) denote the class of all geometric hypergraphs consisting ofk (r −1)-
dimensional simplices, any two of which have a nontrivial intersection (resp. all of
which are strongly intersecting). Similarly, letCr

k (resp.SCr
k) denote the class of all

geometric hypergraphs consisting ofk pairwise crossing (resp. strongly crossing)(r−1)-
simplices.

Theorem 2.1. For any fixed k> 1, one can select at most O(ndd/2e) d-dimensional
simplices induced by n points in d-space with the property that no k of them share a
common interior point. This bound cannot be improved. That is,

f d
d+1(Id+1

k , n) = 2(ndd/2e), f d
d+1(SId+1

k , n) = 2(ndd/2e).

Proof. Clearly, we have

Ä(ndd/2e) ≤ f d
d+1(Id+1

k , n) ≤ f d
d+1(SId+1

k , n),

where the first inequality follows from the fact that there are triangulations of size
Ä(ndd/2e) with n vertices in<d. Consider, e.g., the vertical projection of the lower part
of any cyclic polytope ofn vertices in<d+1.

To see thatf d
d+1(SId+1

k , n) ≤ O(ndd/2e), we set up a charging scheme. Let us regard
<d−1 as the coordinate hyperplane in<d spanned by the firstd − 1 axes, and letXd

denote the last coordinate axis. Suppose thatXd is vertical. Fix a geometric hypergraph
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Hd
d+1 = (V, E) which has nok edges with a common interior point and whosen

vertices are in general position. For any`-dimensional simplex1 induced byV , where
` ≤ b(d − 1)/2c, let E1 ⊆ E denote the set of all edges ofHd

d+1 that contain1 on
their boundaries. It follows from the condition onHd

d+1 that the infinite vertical cylinder
1 + Xd based on1 intersects the interior of at most 2(k − 1) elements ofE1. Let us
charge1 one unit for each of these edges. Since the total number of`-simplices with
` ≤ b(d − 1)/2c is at mostdd/2endd/2e, it remains to show that every edgee ∈ E
has been charged for. Indeed, by Radon’s theorem [23], the vertex set of the orthogonal
projection ofe into <d−1 can be partitioned into two parts,S1 and S2, such that their
convex hulls cross each other and|S1|+|S2| = d+1. Suppose without loss of generality
that|S1| ≤ b(d+ 1)/2c. Then the convex hull ofS1 is an`-dimensional simplex11 for
somè ≤ b(d − 1)/2c, and we had to charge11 for e.

Theorem 2.2. Let E be any set of d-dimensional simplices induced by an n-element
point set V⊆ <d. If E has no two crossing elements, then|E| = O(nd), and this bound
is asymptotically tight. In notation,

f d
d+1(Cd+1

2 , n) = 2(nd).

Proof. To prove the lower bound, consider a geometric hypergraph consisting of all
d-dimensional simplices induced byV that contain a given vertexv ∈ V .

Next we establish the upper bound. IfE has no two simplices having a nontrivial
intersection, then|E| ≤ O(ndd/2e), by the previous theorem. Otherwise, choose two
d-simplices11,12 ∈ E whose intersection is nontrivial. It is easy to show (see, e.g., [8]
and [9]) that there exist aǹ1-face1′1 of 11 and aǹ 2-face1′2 of 12 with `1 + `2 = d
such that1′1 and1′2 are crossing.

Assume first that there is an edgee∈ E which is vertex disjoint from1′1 and contains
1′2 as a face. Then every edgef ∈ E that contains1′1 as a face must share at least one
vertex withe. The number of such simplicesf is at most(d+1)

( n
d−`1−1

)
. Let us remove

all of them fromE.
In the second case, every edgee ∈ E that contains1′2 as a face shares a vertex with

1′1. Obviously, the number of such simplicese is at most(`1 + 1)
( n

d−`2−1

)
. Remove all

of them fromE.
We continue this procedure until there remain no nontrivial intersections inE. At this

point, E has at mostO(ndd/2e) elements, and the total number of simplices that have
been removed is at most(

n

`1+ 1

)
(d + 1)

(
n

d − `1− 1

)
+
(

n

`2+ 1

)
(`1+ 1)

(
n

d − `2− 1

)
= O(nd).

3. (d− 1)-Simplices ind-Space

Theorem 3.1. Let E be a family of(d − 1)-dimensional simplices induced by an n-
element point set V⊆ <d such that E has no k members with pairwise nontrivial
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intersections(d, k > 1). Then, for k = 2 and3, we have|E| = O(nd−1). Otherwise,
|E| = O(nd−1 log2k−6 n). In notation,

f d
d (Id

k , n) =
{

O(nd−1) if k = 2, 3;
O(nd−1 log2k−6 n) otherwise.

This result is asymptotically tight if d, k ≤ 3.

Proof. Ford = 2, the assertion is true, by the results of [19] and [1]. Assume thatd ≥ 3.
For any(d − 3)-simplex1 induced byV , let E1 denote the family of all members of
E that contain1 as a face. Pick any pointp1 in the relative interior of1, and letF1
denote the three-dimensional flat orthogonal to1 and passing throughp1.

Every e ∈ E1 meetsF1 in a polygon, whose two sides incident top1 are the
intersections ofF1 with the two(d−2)-faces ofecontaining1. Thus, the total number
of sides incident top1 that occur in somee∩ F1 (e ∈ E1) is at mostn− d + 2 < n.
Take a small two-dimensional sphereS2 ⊆ F1 centered atp1. The intersections ofS2

with the elements ofE1 form the edge set of a graph with at mostn vertices. It follows
from the properties ofE that this graph has nok pairwise crossing edges, so, by the
planar results, its number of edges,|E1|, satisfies

|E1| =
{

O(n) if k = 2, 3;
O(n log2k−6 n) otherwise.

Summing over all(d − 3)-simplices1 induced byV , we obtain
(d

2

)|E| = ∑
1 |E1|,

and hence the upper bound.
To show that the result is tight ford = 3, k = 2, consider a nested sequence ofn/2

pyramids based on the same two-dimensional convexn/2-gon. These pyramids have a
total ofn2/4 triangular faces, no two of which have a nontrivial intersection.

It is an outstanding open problem to decide whether the order of magnitude of the
above bound can be improved, e.g., ford = 4,k = 2. However, modifying the procedure
described in the proof Theorem 2.2, one can show that the following related result is
asymptotically tight. The details are left to the reader.

Theorem 3.2. Let E be a family of(d − 1)-dimensional simplices induced by an n-
element point set V⊆ <d. If E has no two crossing members, then|E| = O(nd−1), and
this bound cannot be improved. In notation,

f d
d (Cd

2 , n) = 2(nd−1).

The results in the next section enable us to establish the following generalization of
Theorem 3.2.

Theorem 3.3. Let E be a family of(d − 1)-dimensional simplices induced by an n-
element point set V⊆ <d, where d, k > 1. If E has no k pairwise crossing members,
then|E| = O(nd−(1/d)k−2

). In notation,

f d
d (Cd

k , n) = O(nd−(1/d)k−2
).
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4. k-Tuples of Strongly Crossing Simplices

Given anyd-dimensional geometricr -hypergraphHd
r = (V, E) with n vertices, let

xk(Hd
r ) denote the number ofstrongly crossing k-tuples of edges. Using our notations,

|E| > f d
r (SCr

k, n) obviously implies thatxk(Hd
r ) > 0. Define

xd
k,r (n, e) = min

Hd
r

xk(H
d
r ),

where the minimum is taken over allHd
r = (V, E) with |V | = n vertices and|E| = e

edges (simplices).
The following theorem provides us with a recipe of how to give a lower bound on

thenumberof crossingk-tuples of edges, if we know how many edges are necessary to
guarantee the existence ofonesuchk-tuple. This result generalizes Theorem 1.1. (See
also [8], [9], [16], and [21], for related problems and results.)

Theorem 4.1. Assume that fdr (SCr
k, n) < c1

(n
r

)
/nδ and that e≥ (c1 + 1)

(n
r

)
/nδ for

suitable constants c1 and0≤ δ ≤ 1. Then there exists c2 > 0 such that

xd
k,r (n, e) > c2

(
n

kr

)
eγ
/(n

r

)γ
,

whereγ = 1+ (k− 1)r /δ.

Proof. By induction onn. Let H = Hd
r = (V, E) be ad-dimensional geometricr -

hypergraph withn vertices andeedges. Suppose further thatH has the smallest possible
number of crossingk-tuples, i.e.,xk(H) = xd

k,r (n, e) = x(n, e). We can also assume
thatn > kr , for otherwise the assertion is trivial.

First we consider the range(c1+1)
(n

r

)
/nδ ≤ e≤ (c1+ r +1)

(n
r

)
/nδ. It follows from

the assumptions that ifH has more thanc1
(n

r

)
/nδ edges, then any additional edge will

participate in a newk-tuple of strongly crossing edges. Hence, the number of crossing
k-tuples is at least

e− c1

(n
r

)
nδ
≥
(n

r

)
nδ

> c

(
n

kr

)
eγ(n
r

)γ ,
as long asc is sufficiently small.

Next we assume thate> (c1+ r + 1)
(n

r

)
/nδ. For any pointp ∈ V , let Hp denote the

geometric hypergraph obtained fromH by removingp together with all edges ((r − 1)-
simplices) that containp as a vertex. The number of edges ofHp is denoted byep. If
we sum over allp the number of crossingk-tuples of edges inHp, then every crossing
k-tuple of H will be counted exactlyn− kr times. Therefore,

(n− kr) · x(n, e) = (n− kr) · xk(H) =
∑
p∈V

xk(Hp) ≥
∑
p∈V

x(n− 1, ep).

Note that
(n−1

r−1

) ≤ r
(n

r

)
/nδ, becauseδ ≤ 1. Sincep can be a vertex of at most

(n−1
r−1

)
edges

of H , we have

ep > (c1+ r + 1)

(n
r

)
nδ
−
(

n− 1

r − 1

)
≥ (c1+ 1)

(n
r

)
nδ
≥ (c1+ 1)

(n−1
r

)
(n− 1)δ

.
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Thus, we can apply the induction hypothesis to everyHp to obtain

(n− kr) · x(n, e) > c

(n−1
kr

)(n−1
r

)γ ∑
p∈V

eγp .

Obviously,
∑

p∈V ep = (n− r )e. Using the fact thatγ > 1, by Jensen’s inequality we
have

∑
p∈V eγp ≥ n((n− r )e/n)γ . This finally yields

xd
k,r (n, e) = x(n, e) > c · n

(n−1
kr

)
n− kr

· (
n−r

n )γ(n−1
r

)γ · eγ = c

(
n

kr

)
eγ(n
r

)γ .
Now we are ready to apply the last—somewhat technical—result.

Theorem 4.2. Let xd
2,d(n, e) denote the minimum number of crossing pairs in any e-

element set of(d−1)-simplices induced by n points in<d in general position. Then, for
every n and e≥ cnd−1, we have

c1
ed+1

nd(d−1)
< xd

2,d(n, e) < c2
e2+1/bd/2c

nd/bd/2c .

Proof. By Theorem 3.2, we can apply Theorem 4.1 withk = 2, r = d, andδ = 1, and
the lower bound immediately follows.

To prove the upper bound, we exhibit a geometric hypergraphHd
d = (V, E) with

n vertices ande edges, in which everybd/2c-dimensional face of every edge1 ∈ E
crosses at mostc′ · e1+1/bd/2c/nd/bd/2c other elements ofE. This is indeed sufficient,
because there are onlyO(e) such faces, and if11,12 ∈ E cross, then one of them will
always be crossed by abd/2c-dimensional face of the other.

Consider two pointsp and p′ of the d-dimensionalmoment curve M(t) =
(t, t2, . . . , td), t ∈ <. We say thatp precedes p′ (in notation,p ≺ p′) if p = M(t),
p′ = M(t ′) for somet < t ′. The following elementary properties can be easily deduced
from the fact that every hyperplane intersects the moment curve in at mostd points. To
simplify the presentation, letu = bd/2c andv = dd/2e.

Claim 1. Let p1 ≺ p2 ≺ · · · ≺ pu+1 and q1 ≺ q2 ≺ · · · ≺ qv+1 be distinct points on
the moment curve, which form a u-simplexσ and av-simplexτ , respectively. Thenσ
andτ cross each other if and only if the points pi and qj interleave, i.e., every interval
qj qj+1 contains exactly one pi .

Claim 2. Letσ and1 be a u-dimensional simplex and a(d−1)-dimensional simplex,
respectively, all of whose vertices are on the moment curve. If σ and1 are crossing,
thenσ must also cross somev-dimensional face of1.

We only prove the second claim. Color the vertices ofσ and1 by red and blue,
respectively. Ifσ does not cross anyv-face of1, then by Claim 1 there is no sequence of
lengthd + 2 with alternating colors. Thus, the set of all vertices can be partitioned into
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at mostd + 1 monochromatic intervals. This implies that the red and blue points (and
their convex hulls) can be separated by a hyperplane passing through anyd points of
the moment curve separating the monochromatic intervals. This proves Claim 2. (Note
that the statement does not remain true if we drop the assumption that all vertices of the
simplices are taken from the moment curve.)

Let us define a geometric hypergraphHd
d on the vertex setV = {pi = M(i ) |

1 ≤ i ≤ n}, as follows. Choosed points pi1 ≺ pi2 ≺ · · · ≺ pid from V such that
the first v points pi1 ≺ pi2 ≺ · · · ≺ piv are selected arbitrarily, and all other gaps
iv+1− iv, iv+2− iv+1, . . . , i d− i d−1 ≤ k. Setk = 2(e1/u/nv/u), so that the total number
of such sequences is roughlye= 2(nvku). Let E, the edge set ofHd

d , be defined as the
collection of all(d − 1)-simplices induced by these sequences.

We have to show that anyu-faceσ = pl1 pl2 · · · plu+1 (l1 < l2 < · · · < lu+1) of any
edge ofHd

d crosses at mostO(e1+1/u/nd/u) other edges1 ∈ E. By Claim 2, such an
edge1 must have av-faceτ = pm1 pm2 · · · pmv+1 (m1 < m2 < · · · < mv+1) which
is crossed byσ . By Claim 1, thel ’s andm’s must interleave. It follows from the way
how1 was created that at least one of the gaps between two consecutivem’s is at most
k. Consequently, any1 ∈ E that crossesσ must have two consecutive vertices whose
distance is at mostk and the interval determined by them contains a vertex ofσ . This
immediately implies that for each vertexpl ∈ σ , there are at mostnv−1ku+1 edges that
intersectσ and containpl in one of their intervals of size at mostk. Sinceσ has only
u + 1 vertices, we obtain that the number of edges ofHd

d crossingσ cannot exceed
O(nv−1ku+1) = O(ke/n) = O(e1+1/u/nd/u), as desired.

Note that the upper bound in Theorem 4.2 beats the boundc2(e2d−1/nd)1/(d−1) ob-
tained by takingn/ν disjoint copies of the completed-uniform hypergraph on (roughly)
ν vertices, whereν = (e/n)1/(d−1). Actually, the two bounds are of the same order of
magnitude when the hypergraph isdense, i.e.,e= Ä(nd).

Now we are in a position to establish Theorem 3.3 by induction onk. According to
Theorem 3.2, the statement is true fork = 2. It follows from Theorem 4.2 that ifHd

d has
n vertices ande> cnd−1 edges, then it has an edge1 crossing at leastc1ed/nd(d−1) other
edges. We may assume that there are nok−1 pairwise crossing elements among the edges
that cross1, for otherwiseHd

d would containk pairwise crossing edges. Therefore, we
can use the induction hypothesis fork−1 to conclude thatc1ed/nd(d−1) = O(nd−(1/d)k−3

),
whencee= O(nd−(1/d)k−2

).

5. Related Problems

Lower-Dimensional Simplices. So far, most of our results concerned full-dimensional
simplices or(d−1)-simplices in<d. Now we apply a theorem of Vre´cica andŽivaljević
[28] to deduce a result on geometric hypergraphs with lower-dimensional edges.

Consider acomplete r-partite geometric hypergraph Kd
r , whose vertex set is the union

of r disjoint setsV1,V2, . . . ,Vr of size` each, and whose edge set consists of all(r −1)-
dimensional simplices that have a vertex in eachVi . Generalizing a result of [29], Vre´cica
andŽivaljević [28] have shown that if̀ ≥ 2p− 1 for some primep ≤ d/(d − r + 1),
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thenK d
r containsp strongly crossing edges. Note that forr < dd/2e+1, we havep ≤ 1,

which is impossible.

Proposition 5.1. Let fd
r (SCr

k, n) denote the maximum number of edges that a d-
dimensional geometric r-hypergraph of n vertices can have without containing k strongly
crossing edges. Suppose that there is a prime p such that k≤ p ≤ d/(d− r + 1). Then

Ä(nr−1) ≤ f d
r (SCr

k, n) ≤ O(nr−δ),

whereδ = 1/(2p− 1)r−1.

Proof. By the above-mentioned result, ifHd
r does not havek strongly crossing edges,

then it cannot contain a completer -partite subhypergraph with more than 2p−1 vertices
in each of its classes. A result of Erd˝os [10] now implies that|E| < nr−1/(2p−1)r−1

.

The lower bound follows by taking anr -hypergraph consisting of all
(n−1

r−1

)
simplices

containing a fixed vertex.

We conjecture that the lower bound in Proposition 5.1 is asymptotically tight.

Crossing Many Simplices by a Flat. In [16], we posed the following question. What
is the largest numberg = gd

k,r (n, e) such that for anyd-dimensional geometricr -
hypergraph withn vertices ande edges, one can find ak-flat crossing at leastg edges?

Applying the results of the previous sections, we can obtain the following two bounds.

Proposition 5.2. gd
k,d(n, e) = Ä(ed/nd(d−1)) for k ≥ bd/2c.

Proof. Let Hd
d be ad-dimensional geometricd-hypergraph withn vertices ande >

cnd−1 edges. By Theorem 4.2,xd
2,d(n, e) > c1 · ed+1/nd(d−1). Let {σ1, σ2} be a cross-

ing pair of edges inHd
d . Then eitherσ1 or σ2 has abd/2c-face σ that crosses the

other edge [8]. Therefore, at least one edge ofHd
d has abd/2c-face crossing at least

xd
2,d(n, e)/(

( d
bd/2c

)
e) = Ä(ed/nd(d−1)) other edges.

Proposition 5.3. gd
k,r (n, e) = Ä(e3(r−1)r /nr (3(r−1)r−1)) for bd/2c ≤ k ≤ r, dd/2e + 1

≤ r .

Proof. By Proposition 5.1,f d
r (Cr

2, n) = O(nr−δ) holds withδ = (1/3)r−1. Plugging
this into Theorem 4.1, we obtainxd

2,r (n, e) > c
( n

2r

)
eγ /

(n
r

)γ
, whereγ = 1+ 3r−1r . Just

like in the proof of the previous proposition, we can argue that there exists abd/2c-
simplex that crosses at leastÄ(xd

2,r (n, e)/e) simplices.

Ramsey-Type Questions. Let us color with two colors all(r − 1)-dimensional sim-
plices induced byn points in general position in<d. Is it true that one of the color classes
necessarily contains certain special subconfigurations, provided thatn is large enough?
If the answer is in the affirmative, then we can ask for the smallestn for which this will
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occur. A variety of questions of this type are discussed in [11], in the planar case. Some
of the results can be generalized to higher dimensions.

Theorem 5.1. Let us color with two colors all(d− 1)-dimensional simplices induced
by (d + 1)n − 1 points in general position in<d. Then one can always find n disjoint
simplices of the same color. This result cannot be improved.

Proof. Let P be a set of(d+1)n−1 points in general position in<d, and fix a 2-coloring
of all (d − 1)-simplices induced byP. An i -element subset ofP is called ani -set if it
can be obtained by intersectingP with an open half-space. It is easy to see that any two
i -setsQ andQ′ can be connected by a chain ofi -sets,Q = Q0, Q1, Q2, . . . , Qs = Q′,
whose any two consecutive members have symmetric difference 2. Indeed, letH and
H ′ be two oriented hyperplanes, each passing through precisely one pointp (resp.p′)
∈ P, such that the intersection ofP with the open positive half-spaces determined by
them isQ andQ′, respectively. We can assume without loss of generality thatH ∩ H ′ is
a(d−2)-flat F and that every(d−2)-flat parallel toF contains at most one point ofP.
RotateH in the clockwise direction around the(d−2)-flat throughp parallel toF until
it hits another pointq ∈ P, and then continue the rotation around the(d−2)-flat through
q parallel toF , etc. During this procedure, wheneverH passes through precisely one
point of P, the points lying on its positive side form a newi -setQk.

Assume that we have already established the theorem for every integer smaller than
n, and thatn is even. Consider a oriented hyperplaneH passing through precisely one
point of P and dividing the remaining points into two equal halvesQ andQ′, whereQ
lies in the positive half-space bounded byH . By the induction hypothesis, one can find
n/2 pairwise disjoint monochromatic(d− 1)-simplices both inQ and inQ′. If they are
of the same color, we are done. So we can assume that they are of different colors, say
red and blue. ConnectQ andQ′ by a chain of(d+ 1)n/2− 1-sets, as described above,
and letH = H0, H1, H2, . . . , Hs = −H denote some corresponding positions of the
rotating (oriented) hyperplane. Then we can find at such thatQt hasn/2 disjoint red
simplices butQt+1 does not, i.e., it hasn/2 disjoint blue simplices. Notice that now the
((d + 1)n/2− 1)-sets lying in the negative half-spaces bounded byHt andHt+1 must
be identical. This set also contains a family ofn/2 disjoint monochromatic simplices,
which can be augmented either by the red simplices ofQt or by the blue simplices of
Qt+1 to a family of n disjoint simplices of the same color. The case whenn is odd is
somewhat more complicated, but it can be treated by a slight modification of the planar
proof in [11]. Note, however, that the above argument already shows that the theorem is
true for everyn that is a power of 2.

To show that the result is best possible, letP = P1 ∪ P2, where|P1| = dn− 1 and
|P2| = n− 1. Color all(d− 1)-simplices inP1 red and all other(d− 1)-simplices inP
blue. Obviously, there are non pairwise disjoint monochromatic simplices.
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the second part of Theorem 2.1 follows from the results in [5].



484 T. K. Dey and J. Pach

References

1. P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir. Quasi-planar graphs have a linear number
of edges. In:Graph Drawing ’95. Lecture Notes in Computer Science, vol. 1027. Springer-Verlag, Berlin,
1996, pp. 1–7. Also in:Combinatorica(to appear).
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