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1.

Abstract. A geometric hypergraph Hs a collection ofi -dimensional simplices, called
hyperedgesr, simply,edgesinduced by somé + 1)-tuples of avertex set Vin general
position ind-space. The topological structure of geomegjiaphs i.e., the casel = 2,

i = 1, has been studied extensively, and it proved to be instrumental for the solution of
a wide range of problems in combinatorial and computational geometry. They include the
k-set problem, proximity questions, bounding the number of incidences between points and
lines, designing various efficient graph drawing algorithms, etc. In this paper, we make an
attempt to generalize some of these tools to higher dimensions. We will mainly consider
extremal problems of the following type. What is the largest number of edgasplices)

that a geometric hypergraph pfvertices can have without containing certéimbidden
configurations? In particular, we discuss the special cases when the forbidden configurations
arek intersecting edgeg&,pairwise intersecting edgdscrossing edgeg, pairwise crossing
edgesk edges that can be stabbed byi dtat, etc. Some of our estimates are tight.

Introduction

In recent years, the study of graph drawings has become a rich separate discipline within
computational geometry. Much of the research has been motivated by applications,
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including software engineering, CAD, database design, cartography, circuit schematics,
automatic animation, visual interfaces, etc. (See [27].) Itis quite remarkable that classical
graph theory proved to be rather powerless to tackle many of the arising problems.
Instead, one often had to develop new topological tools to deal with families of curves, i.e.,
graphs drawn in the plane or in some other surfaces. Perhaps the best-known example is
the Lipton—Tarjan Separator Theorem for planar graphs [14], which has many extensions,
generalizations, and a broad spectrum of applications ranging from numerical analysis
to complexity theory. In particular, it enables us to use the divide-and-conquer paradigm
to construct various geometric representations of abstract graphs and networks. Another
important example is the following result discovered independently by Ajtaiatahv”
Newborn—-Szemedi and Leighton. It can be used to obtain, e.g., sharp bounds for the
area requirement of graph layouts. ké&t5) denote thecrossing numbeof a graphG,

i.e., the minimum number of crossing pairs of edges over all planar drawings of

Theorem 1.1[2], [13]. Let G be a simple graph with n vertices anf> edges If
e(G) > 4n, thenk (G) > e(G)3/10?.

As SZkely [24] pointed out, this result almost immediately implies the Szedier”
Trotter theorem [25], [26] on the number of incidences between points and lines. His
argument is so nice and short that we cannot resist adapting it to establish the follow-
ing generalization of the Szeneei~Trotter theorem, which was found by Clarkson—
Edelsbrunner-Guibas—Sharir—Welzl and has numerous algorithmic consequences. (For
an improved version of Theorem 1.1 and for some other applicationseé®8zs idea,
see [22] and [18], respectively.)

Theorem 1.2[7]. The total number of sides of n distinct cells determined by m lines
in general position in the plane is at most(®/3n%3 + m).

Proof. Notice thatitis sufficient to prove the assertion for a system of €eli® two of
which share an edge. Pick a pomtin each celk; € C. For any paif(s;, s;) of collinear
edges belonging tg € C andc; € C, respectively, connegs to p; by a polygonal chain

of length three via the midpoints of the segmestands;, provided that this polygon is

not adjacent to any other member®fThe collection of these polygonal chains can be
regarded as the edge set of a gr&@dhlwhose vertices arpy, .. ., pn. If aline is adjacent

tok cellsinC, then it contributes to exactky— 1 edges of5’. Hence X, the total number

of sides of all cellsirC, differs from the number of edges 6f by at mosim. Removing

the multiple edges fron®’, we obtain a simple graph whose number of edges satisfies
e(G) > e(G')/4 = (X — m)/4. In view of the fact that any crossing between two edges
of G occurs at a crossing of some pair of lines of the arrangement, Theorem 1.1 implies
that eithere(G) < 4n or

SinceX < 4e(G) + m, Theorem 1.2 follows. O
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Given a set oh points in general position in the plane, join two of them by a line
segment if there are exactky/points on one side of the line connecting them. Get
denote the resulting graph. Lasz [15] proved that no straight line can cross more than
2k edges ofG. Now Theorem 1.1 implies that the number of edges (the number of
so-calledk-set3 is at mostO(k'/?n). Indeed, if the number of edgesésthen either
we havee < 4n or there exists an edge crossing at le&gt50n?) other edges. Thus,
€?/(50n%) < 2k, as required. (See [20] for a slight improvement.) It was shown by Dey
and Edelsbrunner [9] that a similar approach can be used to establ®mé) upper
bound on the number dfalving planesn 3-space, which improved some earlier results
of [6] and [4].

A graph drawn in the plane by possibly crossing straight-line segments is called a
geometric graphMore precisely, a geometric gragh consists of a set of poinig in
general position in the plane and a set of segmEnighose endpoints belong 1. As
was demonstrated above, for a number of applications it was necessary to solve some
extremal problems for geometric graphs. The systematic study of these problems was
initiated by P. Erds, Y. Kupitz [12], and M. Perles. (For a recent survey, see [17].)

It seems plausible that to extend the incidence results to higher dimensions, to improve
the upper bound for the number of times the unit distance can occur ampamts
in 3-space, or to make further progress concerningktset problem, one has to find
the right generalizations of Theorem 1.1 to systems of surfaces or surface patches in
d-space. For simplicity, we will only discuss the case when these surface patches are flat
(simplices).

Definition 1.1. A d-dimensional geometric r-hypergraph‘Hs a pair(V, E), where
V is a set of points in general positionfitf, andE is a set of closed — 1)-dimensional
simplices induced by somretuples ofV. The setd/ andE are called theertex seand
edge sebf HY, respectively.

Akiyama and Alon [3] proved the following theorem. Dét= V,; U --- U Vy (V4] =
... = |V4| = n) be adn-element set in general positiondtf, and letE consist of all
(d — 1)-dimensional simplices having exactly one vertex in edchrhenE contains
n disjoint simplices. Combining this with a result of B<[10], we obtain a nontrivial
upper bound for the number of edges af-dimensional geometrid-hypergraph oh
vertices that contains dopairwise disjoint edges.

If we want to excludecrossingsrather than disjoint edges, or want to generalize
Theorem 1.1 to geometric hypergraphs, we face the following problem. Even if we
restrict our attention to systems of triangles induced by three-dimensional point sets in
general position, it is not completely clear how a “crossing” should be defined, let alone
the notion of “crossing number.” If two segments cross, they do not share an endpoint.
Should this remain true for triangles? We have to clarify the terminology.

Definition 1.2. Two simplices are said to haveantrivial intersectionif their relative
interiors have a point in common. If, in addition, the two simplices are vertex disjoint,
then they are said toross

More generallyk simplices are said to havenantrivial intersectionif their relative
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interiors have a point in common. If, in addition, all simplices are vertex disjoint, then
they are said taross

Consideik simplices. It is important to note that the fact thaery pairof them has a
nontrivial intersection does not imply thalt of them do. To emphasize that this stronger
condition is satisfied, we often say that the simplices havardrivial intersection in the
strong senseor simply that theystrongly intersectSimilarly, a set opairwisecrossing
simplices is not necessarigrossing If want to emphasize that thell cross, we will
say that theyross in the strong senser shortly that thegtrongly cross

As we pick more and more distingt — 1)-dimensional simplices induced by a set of
n points in%Y, the number of crossings between them will usually increase. The aim of
this paper is to generalize the planar results to obtain some information about the growth
rate of this process. In the inverse formulation, one can ask for the maximum number of
edges that a-dimensional geometric-hypergraphH of n vertices can have without
containing some fixed crossing pattern. Throughout this papei?le%, n) denote this
maximum, wheref is the family offorbiddenconfigurations, i.e., forbidden geometric
subhypergraphs. Most of our bounds will be asymptatiandr are thought to be fixed,
while n tends to infinity.

In the next two sections, we estimaﬂ;é(]—', n) for various families?. In Section 4,
we generalize Theorem 1.1. Finally, we discuss some related questions and give a few
applications of our results.

2. Full-Dimensional Simplices

LetZ; (resp.SZ}) denote the class of all geometric hypergraphs consistikgrof- 1)-
dimensional simplices, any two of which have a nontrivial intersection (resp. all of
which are strongly intersecting). Similarly, I€f (resp.SC}) denote the class of all
geometric hypergraphs consistinggdairwise crossing (resp. strongly crossitg)- 1)-
simplices.

Theorem 2.1. For any fixed k> 1, one can select at most (@9/?!) d-dimensional
simplices induced by n points in d-space with the property that no k of them share a
common interior pointThis bound cannot be improvethat is

fd /(23 n) = @3, fd ((STE n) = ©(n'Y2)).
Proof. Clearly, we have
QY2 < & (@ n) < 18 (STET ),

where the first inequality follows from the fact that there are triangulations of size
Q(n'9/21y with n vertices inf?. Consider, e.g., the vertical projection of the lower part
of any cyclic polytope of vertices infid+1.

To see than‘g’H(SIﬁ“, n) < O(nl%?1), we set up a charging scheme. Let us regard
M9-1 as the coordinate hyperplaneif spanned by the firal — 1 axes, and leXgq
denote the last coordinate axis. Suppose ¥ais vertical. Fix a geometric hypergraph
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HY., = (V. E) which has nok edges with a common interior point and whase
vertices are in general position. For afydimensional simplex\ induced by, where

¢ < [(d—=1)/2], let E» C E denote the set of all edges blé’+1 that containA on
their boundaries. It follows from the condition ¢tf, ; that the infinite vertical cylinder
A + X4 based omA intersects the interior of at mostk— 1) elements ofE,. Let us
chargeA one unit for each of these edges. Since the total numbéssofiplices with

¢ < |(d —1)/2] is at most[d/2]n[%?! it remains to show that every edgec E
has been charged for. Indeed, by Radon’s theorem [23], the vertex set of the orthogonal
projection ofe into %91 can be partitioned into two part§; and S, such that their
convex hulls cross each other a8l + |S| = d + 1. Suppose without loss of generality
that|S| < [(d + 1)/2]. Then the convex hull 0§, is an¢-dimensional simplex\; for
somet < [(d — 1)/2], and we had to charg#; for e. O

Theorem 2.2. Let E be any set of d-dimensional simplices induced by an n-element
point set VC %Y. If E has no two crossing elementisen|E| = O(n%), and this bound
is asymptotically tightin notation

fd(C3™ ) = 6nY).

Proof. To prove the lower bound, consider a geometric hypergraph consisting of all
d-dimensional simplices induced By that contain a given vertexe V.

Next we establish the upper bound.Hfhas no two simplices having a nontrivial
intersection, thenE| < O(n/921), by the previous theorem. Otherwise, choose two
d-simplicesA, A, € E whose intersection is nontrivial. It is easy to show (see, e.g., [8]
and [9]) that there exist afy-face A} of A1 and ané,-face A’ of A, with £1 + ¢, =d
such thatA] and A}, are crossing.

Assume first that there is an edge E which is vertex disjoint from\; and contains
A} as a face. Then every eddec E that containsA’ as a face must share at least one
vertex withe. The number of such simplicefsis at mostd + 1) (d_znl_l). Let us remove
all of them fromE.

In the second case, every edge E that containsA), as a face shares a vertex with
A} Obviously, the number of such simplicess at most(¢1 + 1)(4_,._;)- Remove all
of them fromE.

We continue this procedure until there remain no nontrivial intersectioBsAtt this
point, E has at mosD(n'%/?) elements, and the total number of simplices that have
been removed is at most

n n n n o
(51+1)(d+1)<d—€1—1> * <£2+1)(£l+1)<d—52—1) =0m. o

3. (d— 1)-Simplices ind-Space

Theorem 3.1. Let E be a family ofd — 1)-dimensional simplices induced by an n-
element point set VC€ %Y such that E has no k members with pairwise nontrivial
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intersectiong(d, k > 1). Then for k = 2 and 3, we havelE| = O(n1). Otherwise
|E| = O(n%11log?~®n). In notation

o(nd-1 ifk =2,3;

d 7d —
fa . m = {O(ndl |0ng_6 n) otherwise

This result is asymptotically tight if, &k < 3.

Proof. Ford = 2,the assertionis true, by the results of [19] and [1]. AssumelthaB.
For any(d — 3)-simplex A induced byV, let E, denote the family of all members of
E that containA as a face. Pick any poirg, in the relative interior ofA, and letF,
denote the three-dimensional flat orthogonahtand passing througpa .

Everye € E, meetsF, in a polygon, whose two sides incident f, are the
intersections of, with the two(d — 2)-faces ofe containingA. Thus, the total number
of sides incident tq, that occur in somenN F, (e € Ep) isatmosin —d + 2 < n.
Take a small two-dimensional sphe8& C F, centered ap,. The intersections of?
with the elements oE, form the edge set of a graph with at mastertices. It follows
from the properties oE that this graph has nk pairwise crossing edges, so, by the
planar results, its number of edgég, |, satisfies

. _[om if k=2, 3;
IBal = O(nlog®%n)  otherwise.

Summing over al(d — 3)-simplicesA induced byV, we obtain(g)|E| = Y AIEal,
and hence the upper bound.

To show that the result is tight fat = 3, k = 2, consider a nested sequenceng2
pyramids based on the same two-dimensional cony@xgon. These pyramids have a
total ofn?/4 triangular faces, no two of which have a nontrivial intersection. [

It is an outstanding open problem to decide whether the order of magnitude of the
above bound can be improved, e.g.,doe 4,k = 2. However, modifying the procedure
described in the proof Theorem 2.2, one can show that the following related result is
asymptotically tight. The details are left to the reader.

Theorem 3.2. Let E be a family ofd — 1)-dimensional simplices induced by an n-
element point set \€ RY. If E has no two crossing membetsen|E| = O(n-1), and
this bound cannot be improvekh notation

fdcd, n) =enih.

The results in the next section enable us to establish the following generalization of
Theorem 3.2.

Theorem 3.3. Let E be a family ofd — 1)-dimensional simplices induced by an n-
element point set \€ %%, where dk > 1. If E has no k pairwise crossing members
then|E| = O(n%~®D*?) In notation

(@, m = oM@

).



Extremal Problems for Geometric Hypergraphs 479
4. k-Tuples of Strongly Crossing Simplices

Given anyd-dimensional geometric-hypergraphH® = (V, E) with n vertices, let
x«(HY) denote the number aftrongly crossing Kuples of edges. Using our notations,
|E| > f4(SC}, n) obviously implies thak,(HY) > 0. Define

d ; d
Xk’r (nv e) = rp{lank(Hr )’
r

where the minimum is taken over aHIrd = (V, E) with |V| = n vertices andE| = e
edges (simplices).

The following theorem provides us with a recipe of how to give a lower bound on
thenumberof crossingk-tuples of edges, if we know how many edges are necessary to
guarantee the existence afiesuchk-tuple. This result generalizes Theorem 1.1. (See
also [8], [9], [16], and [21], for related problems and results.)

Theorem 4.1. Assume that $(SC}. n) < ¢,(f')/n® and that e> (c; + 1)(7)/n’ for
suitable constants;and0 < § < 1. Then there exists,c> 0 such that

Y
¢ (n,e) > cz<knr)ey/<?> ,

wherey =1+ (k— Dr/s.

Proof. By induction onn. Let H = HY = (V, E) be ad-dimensional geometric-
hypergraph witm vertices ane edges. Suppose further thdthas the smallest possible
number of crossing-tuples, i.e. xx(H) = xﬁ",(n, e) = x(n,e). We can also assume
thatn > kr, for otherwise the assertion is trivial.

First we consider the rande; + 1)(7)/n® < e < (c1+r + 1)({')/n’. It follows from
the assumptions that H has more thaltrl([‘)/n‘S edges, then any additional edge will
participate in a nevk-tuple of strongly crossing edges. Hence, the number of crossing

k-tuples is at least
@O _ (e
T = T C(m) R

as long a< is sufficiently small.

Next we assume that> (c; +r +1)(7)/n’. For any pointp € V, let H, denote the
geometric hypergraph obtained frdtby removingp together with all edges( — 1)-
simplices) that contaimp as a vertex. The number of edgesHf is denoted bye,. If
we sum over allp the number of crossink-tuples of edges i, then every crossing
k-tuple of H will be counted exactiy — kr times. Therefore,

(n—kr)-x(n,e) = (n—Kkr)-x(H) = Zxk(Hp) > Zx(n —1ep).

peVv peVv

Note tha ?j) <r(;)/n’, becausé < 1. Sincep can be a vertex of at moe{tj) edges

of H, we have

(r)

no

n n—1
(?:i) > @+ 2 1 D)

e > (Ci+r+1 N 1
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Thus, we can apply the induction hypothesis to eudgyto obtain
()
r
n—1\7 }E:E%'
( r ) peV
Obviously,Zpev ey = (n —r)e. Using the fact thay > 1, by Jensen’s inequality we
have)_ ., € > n((n —r)e/n)”. This finally yields

(n—kr)-x(n,e) >c

n—1 n—r
n =y n 4
xﬂr(n,e)zx(n,e)>c-n(¢)-“—-eyzc< )(— O
r

Now we are ready to apply the last—somewhat technical—result.

Theorem 4.2. Let xqu(n, e) denote the minimum number of crossing pairs in any e-

element set ofd — 1)-simplices induced by n points$if in general positionThen for
every n and e= cn®1, we have

gd+1 g2+1/1d/2]

- d -
Clnd(dfl) <Xz4(N, € < C2 TR

Proof. By Theorem 3.2, we can apply Theorem 4.1 with- 2,r = d, and§ = 1, and
the lower bound immediately follows.

To prove the upper bound, we exhibit a geometric hyperg#d@h: (V, E) with
n vertices ance edges, in which everyd/2]-dimensional face of every edge € E
crosses at most - ett1/19/2l /nd/Ld/2] other elements oE. This is indeed sufficient,
because there are on¥(e) such faces, and ih1, A, € E cross, then one of them will
always be crossed by|a/2]-dimensional face of the other.

Consider two pointsp and p’ of the d-dimensionalmoment curve M) =
(t,t2,..., 19, t € %. We say thatp precedes p(in notation,p < p') if p = M(t),
p' = M(’) for somet < t’. The following elementary properties can be easily deduced
from the fact that every hyperplane intersects the moment curve in athpasits. To
simplify the presentation, let = |d/2| andv = [d/2].

Claml. Letp < p2<--+<pyrrandq < Qg < --- < Qys1 be distinct points on
the moment curyavhich form a u-simplex and av-simplext, respectivelyTheno
andt cross each other if and only if the points gand q interleave i.e., every interval
0; 0j+1 contains exactly one;p

Claim 2. Leto andA be a u-dimensional simplex and@— 1)-dimensional simplex
respectivelyall of whose vertices are on the moment cui¥er and A are crossing
theno must also cross somedimensional face oA.

We only prove the second claim. Color the verticessofind A by red and blue,
respectively. I does not cross anyface ofA, then by Claim 1 there is no sequence of
lengthd + 2 with alternating colors. Thus, the set of all vertices can be partitioned into
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at mostd + 1 monochromatic intervals. This implies that the red and blue points (and
their convex hulls) can be separated by a hyperplane passing throughpaigts of

the moment curve separating the monochromatic intervals. This proves Claim 2. (Note
that the statement does not remain true if we drop the assumption that all vertices of the
simplices are taken from the moment curve.)

Let us define a geometric hypergraptf on the vertex seV = {pi = M(i) |
1 <i < n}, as follows. Choosé pointspi;, < pi, < --- < P, from V such that
the firstv pointsp;, < pi, < --- < pi, are selected arbitrarily, and all other gaps
fpg1 — s lps2 —lys1, ..., 1d —ig_1 < k. Setk = @(e¥/¥/n"/Y), so that the total number
of such sequences is roughdy= ® (nk"). Let E, the edge set dﬂé‘, be defined as the
collection of all(d — 1)-simplices induced by these sequences.

We have to show that any-facec = p, p, - P, (1 <12 < -+ < ly41) of any
edge ofHJ crosses at mogD(et*/!/n9/Y) other edges\ € E. By Claim 2, such an
edgeA must have a-facet = pm, Pm, -+ Pm,y (M1 < My < --- < Myy1) Which
is crossed bys. By Claim 1, thel’s andm’s must interleave. It follows from the way
how A was created that at least one of the gaps between two consautigiigeat most
k. Consequently, anp. € E that crosses must have two consecutive vertices whose
distance is at modt and the interval determined by them contains a vertex.oFhis
immediately implies that for each vertgx € o, there are at most’~1kU** edges that
intersects and containp, in one of their intervals of size at mokt Sinces has only
u + 1 vertices, we obtain that the number of edgeﬂ-@fcrossingo cannot exceed
O(nv~1k'+1) = O(ke/n) = O(et+¥!/nd/Y), as desired. O

Note that the upper bound in Theorem 4.2 beats the bopged®—1/nd)/@-D op-
tained by takingn/v disjoint copies of the complet&-uniform hypergraph on (roughly)

v vertices, where = (e/n)¥@=D_ Actually, the two bounds are of the same order of
magnitude when the hypergraphdiensei.e.,e = Q(n9).

Now we are in a position to establish Theorem 3.3 by inductiok.okccording to
Theorem 3.2, the statement is true koe 2. It follows from Theorem 4.2 that il has
nvertices an@ > cnd~! edges, then it has an edgecrossing at leaste? /n?@-1 other
edges. We may assume that there are-nd pairwise crossing elements among the edges
that crossA, for otherwiseH§ would contairk pairwise crossing edges. Therefore, we
can use the induction hypothesiskor 1 to conclude that;e? /nd@-1 = Q(nd-/d*?),
whencee = O(nd—@/d %),

5. Related Problems

Lower-Dimensional Simplices. So far, mostof our results concerned full-dimensional
simplices or(d — 1)-simplices iri®. Now we apply a theorem of Voica andZivanevié
[28] to deduce a result on geometric hypergraphs with lower-dimensional edges.
Consider @omplete r-partite geometric hypergraplf ivhose vertex set is the union
ofr disjoint setsvy, Vo, ..., V; of size¢ each, and whose edge set consists afall 1)-
dimensional simplices that have a vertex in e¥clGeneralizing a result of [29], Voica
andZivaljevié [28] have shown that if > 2p — 1 for some primep < d/(d —r + 1),
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thenK 9 containsp strongly crossing edges. Note thatfog [d/2]+ 1, we havep < 1,
which is impossible.

Proposition 5.1. Let £9(SCi, n) denote the maximum number of edges that a d-
dimensional geometric r-hypergraph of n vertices can have without containing k strongly
crossing edgesSuppose that there is a prime p such thatkp < d/(d —r +1). Then

Q' < £4(SC.n) < O ),

wheres = 1/(2p — 1)"' 2.

Proof. By the above-mentioned result, i does not havé strongly crossing edges,
then it cannot contain a completgartite subhypergraph with more thap 2 1 vertices
in each of its classes. A result of EsI[10] now implies thatE| < n'~1/@p-""
The lower bound follows by taking arrhypergraph consisting of a(f_}) simplices
containing a fixed vertex.

We conjecture that the lower bound in Proposition 5.1 is asymptotically tight.

Crossing Many Simplices by a Flat. In[16], we posed the following question. What

is the largest numbeg = g,‘(”r(n, e) such that for anyd-dimensional geometric-

hypergraph witm vertices and edges, one can findlaflat crossing at leagj edges?
Applying the results of the previous sections, we can obtain the following two bounds.

Proposition 5.2. gf ;(n, &) = Q(e%/n@=Y) fork > |d/2].

Proof. Let Hg’ be ad-dimensional geometrid-hypergraph withn vertices ance >
cn’~! edges. By Theorem 4.%¢ ;(n, €) > ¢y - €**1/n@=D Let {0, 0p} be a cross-
ing pair of edges ian,’. Then eithero; or o, has a|d/2]|-face o that crosses the
other edge [8]. Therefore, at least one edgé—l@fhas a|d/2]-face crossing at least
X3 4(n, e)/((Ld‘jZJ)e) = Q(e?/n9@-D) other edges. O

Proposition 5.3. gZ,(n,e) = Q€ "/n" ") for |d/2) <k <, [d/2] +1

<Tr.

Proof. By Proposition 5.1,frd(C’, n) = O(n"~%) holds withs = (1/3)" L. Plugging
this into Theorem 4.1, we obtai§ , (n, e) > ¢ (5)e’/(7)”, wherey = 1+ 3 ~*r. Just
like in the proof of the previous proposition, we can argue that there exigig -
simplex that crosses at Iee!%'(xgr (n, e)/e) simplices. O

Ramsey-Type Questions. Let us color with two colors alir — 1)-dimensional sim-
plices induced by points in general position i#tY. Is it true that one of the color classes
necessarily contains certain special subconfigurations, provided th#rge enough?
If the answer is in the affirmative, then we can ask for the smallést which this will
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occur. A variety of questions of this type are discussed in [11], in the planar case. Some
of the results can be generalized to higher dimensions.

Theorem 5.1. Let us color with two colors alld — 1)-dimensional simplices induced
by (d + 1)n — 1 points in general position if9. Then one can always find n disjoint
simplices of the same coldrhis result cannot be improved

Proof. LetP beasetofd+1)n—1 points in general position iR, and fix a 2-coloring
of all (d — 1)-simplices induced by. Ani-element subset d? is called an-setif it
can be obtained by intersectiigwith an open half-space. It is easy to see that any two
i-setsQ andQ’ can be connected by a chainiegets,Q = Qo, Q1, Q2,..., Qs = Q,
whose any two consecutive members have symmetric difference 2. Indeét aled
H’ be two oriented hyperplanes, each passing through precisely onemp@asp.p’)
€ P, such that the intersection &f with the open positive half-spaces determined by
them isQ andQ’, respectively. We can assume without loss of generalitythatH’ is
a(d — 2)-flat F and that everyd — 2)-flat parallel toF contains at most one point &.
RotateH in the clockwise direction around thid — 2)-flat throughp parallel toF until
it hits another poing € P, and then continue the rotation around ttie- 2)-flat through
g parallel toF, etc. During this procedure, wheneudrpasses through precisely one
point of P, the points lying on its positive side form a névget Q.

Assume that we have already established the theorem for every integer smaller than
n, and thatn is even. Consider a oriented hyperplaiegassing through precisely one
point of P and dividing the remaining points into two equal hal¥gandQ’, whereQ
lies in the positive half-space bounded Hy By the induction hypothesis, one can find
n/2 pairwise disjoint monochromatid — 1)-simplices both inQ and inQ'. If they are
of the same color, we are done. So we can assume that they are of different colors, say
red and blue. Conne€ andQ’ by a chain of(d + 1)n/2 — 1-sets, as described above,
and letH = Hg, Hi, Hy, ..., Hs = —H denote some corresponding positions of the
rotating (oriented) hyperplane. Then we can findsaich thatQ, hasn/2 disjoint red
simplices butQ;,; does not, i.e., it has/2 disjoint blue simplices. Notice that now the
((d + 1)n/2 — 1)-sets lying in the negative half-spaces boundedbynd H;..; must
be identical. This set also contains a familyrgP disjoint monochromatic simplices,
which can be augmented either by the red simplice®br by the blue simplices of
Q.1 to a family of n disjoint simplices of the same color. The case wheas odd is
somewhat more complicated, but it can be treated by a slight modification of the planar
proof in [11]. Note, however, that the above argument already shows that the theorem is
true for everyn that is a power of 2.

To show that the result is best possible,et= P; U P,, where|P;| = dn— 1 and
|P2| = n— 1. Color all(d — 1)-simplices inP; red and all otheftd — 1)-simplices inP
blue. Obviously, there are nopairwise disjoint monochromatic simplices. O
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