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Abstract. Let g(n) denote the least integer such that among anyg(n) points in general
position in the plane there are alwaysn in convex position. In 1935, P. Erd˝os and G. Szekeres
showed thatg(n) exists and 2n−2 + 1≤ g(n) ≤ (2n−4

n−2

)+ 1. Recently, the upper bound has
been slightly improved by Chung and Graham and by Kleitman and Pachter. In this paper
we further improve the upper bound to

g(n) ≤
(

2n− 5

n− 2

)
+ 2.

In 1933, Esther Klein raised the following question. Is it true that for everyn there is a
least numberg(n) such that among anyg(n) points in general position in the plane there
are alwaysn in convex position?

This question was answered in the affirmative in a classical paper by Erd˝os and
Szekeres [ES1]. In fact, they showed [ES1] and [ES2] that

2n−2+ 1≤ g(n) ≤
(

2n− 4

n− 2

)
+ 1.

The lower bound, 2n−2 + 1, is sharp forn = 2, 3, 4, 5 and has been conjectured to be
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sharp for alln. However, the upper bound,
(2n−4

n−2

) + 1 ≈ c(4n/
√

n), was not improved
for 60 years. Recently, Chung and Graham [CG] managed to improve it by 1. Shortly
after, Kleitman and Pachter [KP] showed thatg(n) ≤ (2n−4

n−2

)+ 7− 2n.
Inspired by these results, in this paper we get a further improvement, roughly by a

factor of 2.

Theorem. Any set of
(2n−5

n−2

) + 2 points in general position in the plane contains n
points in convex position.

In other words,g(n) ≤ (2n−5
n−2

) + 2. Since 2
(2n−5

n−2

) = (2n−4
n−2

)
, our upper bound is

about half of the original bound of Erd˝os and Szekeres. In the original proof, Erd˝os and
Szekeres were looking for special convexn-gons, namely forn-caps andn-cups.

Definition. The points(x1, y1), (x2, y2), . . . , (xn, yn), x1 < x2 < · · · < xn, form an
n-capif

y2− y1

x2− x1
>

y3− y2

x3− x2
> · · · > yn − yn−1

xn − xn−1
.

Similarly, they form ann-cupif

y2− y1

x2− x1
<

y3− y2

x3− x2
< · · · < yn − yn−1

xn − xn−1
.

(See Fig. 1.)

Lemma [ES1]. Let f(n, m) be the least integer such that any set of f(n,m) points in
general position in the plane contains either an n-cap or an m-cup. Then

f (n,m) =
(

n+m− 4

n− 2

)
+ 1.

Proof of Theorem. Let P be a set of points in general position in the plane and suppose
that P does not containn points in convex position. Leta be a vertex of the convex hull
of P. Letb be a point outside the convex hull ofP such that none of the lines determined
by the points ofP\{a} intersects the segmentab. Finally, let` be a line throughb which
avoids the convex hull ofP (see Fig. 2).

Consider a projective transformationT which maps the linè to the line at infinity,
and maps the segmentab to the vertical half-linev−(a′), emanating downward from

Fig. 1. A 6-cap and a 6-cup.
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Fig. 2. The setP and its imageP′ = T(P).

a′ = T(a). We get a point setP′ = T(P) from P. Since` avoided the convex hull
of P, the transformationT does not change convexity on the points ofP, that is, any
subset ofP is in convex position if and only if the corresponding points ofP′ are in
convex position. So the assumption also holds forP′, no n points of P′ are in convex
position. By the choice of the pointb, none of the lines determined by the points of
P′\{a′} intersectsv−(a′). Therefore, anym-cap in the setQ′ = P′\{a′} can be extended
by a′ to a convex(m+ 1)-gon.

Since non points of P′ are in convex position,Q′ cannot contain anyn-cup or
(n− 1)-cap. Therefore, by the lemma,

|Q′| ≤ f (n, n− 1)− 1=
(

2n− 5

n− 2

)
, |P| ≤

(
2n− 5

n− 2

)
+ 1,

and the theorem follows.
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